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Abstract. Machine learning, a subset of artificial intelligence, shows potential for enhancing 

computational fire modelling compared to traditional methods such as computational fluid 

dynamics. This study explored using artificial neural networks to predict heptane fire 

development within a compartment, varying heat release rates from 100 to 3000 kW and 

ventilation areas from 0.16 to 4.8 m2. Artificial neural networks (ANNs) were trained using 

computational data from an ISO 9705 room. Network optimisation involved adjusting training-

to-validation ratios and fine-tuning hidden layer neuron counts. Results indicate optimised 

ANNs achieved less than 7% error for heat release rate predictions and 1.5% for ventilation size 

predictions, with a notable computational cost reduction exceeding 104-fold. These findings 

suggest a promising future for integrating machine learning into fire engineering, significantly 

reducing analysis time therefore fostering safety improvements and innovation in the field. 

1. Introduction 
This work investigates a crucial part of the world of fire engineering, where understanding and 

predicting fire behaviour is crucial. Given the nature of the discipline, experimental data is often limited, 

resulting in alternative tools being commonly used to predict fire behaviour. Among these tools, 

computational fluid dynamics (CFD) stands out as the most widely used approach in both industry and 

academia, but it is not without limitations, namely high computational cost. Therefore, it is crucial to 

explore new tools and how they can be used to carry out modelling more effectively. 

Machine learning, and in particular the use of artificial neural networks (ANNs), has been a fast-

growing area of research to be applied to numerous fields. The ANN is inspired by the way the human 

brain works, which is by having neurons/nodes which are connected to each other by some constraints 

[1]. Both the number of neurons and the nature of the connections are vital in the overall set up of the 

network. The architecture of a neural network can consist of three main layers which are the input layer, 

the hidden layer, and the output layer (see Figure 1.1). The input layer is the feature being fed into the 

network, quite often this is the independent variable, and the output is what the network is being trained 

to predict (dependent variable). The hidden layer(s) is used to map the input layer to the output layer. 

The layers are made up of elements known as neurons. The number of neurons in the hidden layer 

changes the way the input maps to the output and can result in an underfitted or overfitted model, 

making it a key parameter to optimise during network training. Deep learning features networks with 

multiple hidden layers; whereas, shallow neural networks (SNN) have only one [1]. 

A study carried out by Hodges [2] focused on how machine learning and ANNs could be used to 

predict parameters when looking into wildland fires. The dataset used for the neural network included 

10,000 wildland fire spread simulations. The network was created to produce an estimate for the 

standard heat flux, and it was found that the predictions had a 10% error compared to the simulated 

values for 95% of scenarios. Overall, it demonstrated a reduction in computational time by the order of 
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102 – 105. Further to this, other researchers [3] reviewed several machine learning techniques including 

deep learning with neural networks and found that predictions were 2-3 times faster than CFD 

simulations. The variation in the reduction in computational time is a result of how the model is built 

and what it’s predicting. This review also discussed that further work would be required to improve 

techniques and increase accuracy. Research on machine learning applications to compartment fires to 

obtain fire prediction has been further conducted, using transpose convolutional neural networks 

(TCNN) [4]. A TCNN is a specialised type of neural network architecture that is predominantly used 

for tasks involving grid-like structures such as images or spatial data. They differ from ANNs in many 

ways, with TCNNs designed to be used for image generation, whereas ANNs can be used to produce 

data and text. Recently, a method for forecasting temperatures and velocities within an enclosed space 

by utilising a TCNN based on zone fire modelling has been presented [4]. The TCNN model was also 

trained and validated with an extensive set of results from 1,333 CFD simulations, each characterised 

by varying fire attributes, compartment configurations, and ventilation layouts. In two compartment 

scenarios, the TCNN demonstrated its predictive capability by achieving temperature and velocity 

estimates that closely aligned with CFD predictions, deviating by ±17.2% and ±0.30 m/s, respectively. 

The model's robustness extended to more complex multi-compartment situations, where discrepancies 

with CFD predictions were confined within a range of ±11% for temperatures and ±0.25 m/s for 

velocities. The need for experimental measurements and high-resolution CFD to produce a model which 

is more reflective of real circumstances and the complexities of actual fire behaviour has been 

highlighted.  

 

Figure 1.1: ANN’s general architecture for a shallow neural network. 

In summary, it is evident that machine learning has huge prospects to be beneficial and become a 

widely used tool within industry. There is a lot to gain from exploring ANN modelling and how this 

can be used to predict actual values as opposed to producing an image, specifically in the context of 

building/compartment fires. The suggested method is a step towards implementing digital twins, where 

for each physical system, its digital counterpart is built and can be used to predict the response of the 

physical system. This study focuses on building and using an ANN to create an algorithm that can 

predict temperature at a given point in a fire compartment by varying two parameters, namely heat 

release rate (HRR) and ventilation. To determine whether the ANN is a useful tool, predicted values 

were compared to that which were obtained through CFD modelling, as well as what was found in 

literature. This provided an insight into whether this is a technique that the industry would benefit from 

further exploring and it also allowed further understanding of potential applications. 

2. Methodology 

2.1. Numerical methodology 

Numerical analysis was performed using Fire Dynamics Simulator (FDS) version 6.8. The approach 

taken was to model an ISO 9705 room according to Hwang et al [5]. Internal dimensions of the room 

measured 2.4 m x 3.6 m x 2.4 m with a single ventilation, centred at the bottom of the front wall. The 

fire was modelled in the centre of the room with dimensions of 1m x 1m and heptane was used as the 

fuel. The ramp up time was set to 1 second, as this would reduce the time taken to reach steady state 
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conditions which would in turn reduce the overall model run time. Thermocouples to record gas 

temperature were placed in the interior of the fire room. 

2.2. Grid independence study 

Before running any models, a grid independence study was carried out to determine the optimal grid 

resolution to produce accurate results, without it being too computationally expensive. A grid sensitivity 

study was performed for a fire with a heat release rate of 2070 kW where the ventilation area measured 

200 cm in height and 80 cm in width. Figure 2.1 shows the numerical steady-state temperatures at the 

rear and front thermocouple, located according to Hwang et al [5] using three different grids, cell size 

of 0.20 m, 0.10 m and 0.05 m. Whilst a mesh size of 0.20 m produced lower values for temperature at 

the rear thermocouple and higher values at the front thermocouple once steady state was reached, there 

was no significant difference in the numerical results of a 0.10 m and 0.05 m grid cell size. Given that 

a larger mesh would be more computationally cost effective, it was determined that 0.10 m would be 

used for all model runs.  

 

 

 

 

 

 

  

  

Figure 2.1: Temporal distribution at front thermocouple for different mesh sizes. 

2.2.1. Validation study. Numerical data collected from CFD was compared with experimental data. A 

heat release rate (HRR) of 2070 kW was used as an input to replicate the model in the work of Hwang 

et al [5]. The model was run until steady state was achieved (for 800 seconds) and then an average 

temperature was calculated. The average temperature during this period for the front (FT) and rear 

thermocouple (RT) was found to be 1195°C and 1364°C respectively. Table 2.1 shows that percentage 

differences between experimental and numerical values to be less than 5% for both thermocouples. 

 

Table 2.1: Average temperatures of CFD modelling and experiments (for validation). 

 

 

 

2.3. Machine learning – ANN 

2.3.1. Data collection. Two variables were investigated, heat release rate and ventilation area, so two 

datasets were required for each ANN. Each dataset was used to train and build an ANN. The CFD 

model, section 2.2, was used to simulate 30 scenarios with HRR ranging from 100 kW - 3000 kW 

(where ventilation area was 1.6m2) and 60 scenarios with ventilation areas ranging from 0.16 – 4.8 m2 

(where HRR was 2070 kW). Each of these models were run until steady state conditions were achieved. 

The average temperature over the steady state period was then calculated. Results that demonstrated 

temperatures had not reached a steady state were either omitted from the dataset or reran with extended 

simulation time.   

 RT Temperature (°C) FT Temperature (°C) 

Experiments (Hwang et al, 2010) 1310 1160 

CFD 1364 1195 

Percentage difference 4.12% 3.02% 
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2.3.2. Building, training and validating ANNs. The ANN was built using MATLAB. It was important 

to determine the number of input and output parameters that the network would have. Due to the small 

dataset, it was decided that two simple networks would be created. Therefore, both networks had no 

more than two inputs (HRR or width and height of ventilation area) and one output (temperature at front 

thermocouple at steady state).  Each dataset (see 2.3.1) was split into the training set and validation set 

which were used to train and validate the networks. The training set is used to train the model and 

optimise parameters such as the values of the bias and the weights of the connections of the neurons. 

Using the optimal values for these parameters, the validation data could be used to evaluate and set the 

internal parameters of the model (e.g. the number of neurons in the hidden layer).  The optimisation of 

the network was done primarily in two ways. One being the ratio of the training data to the validation 

data in the dataset and the other being the number of neurons in the hidden layer. Each time the ratio 

was changed, the optimal number of neurons were found based on the root mean square error (RMSE). 

This would indicate how well the network was performing relative to the actual values in the dataset. 

Once optimisation was complete for the training and validation data, the ANNs could be assessed 

against new data points. Input points were fed into the network to obtain the predicted values for 

temperature. Comparing these to results found in research papers, experimental data and numerical data 

obtained through CFD modelling can show whether the ANN model is able to produce accurate 

predictions. 

3. Results & Discussion 

3.1. Effect of HRR 

3.1.1. Training and optimisation. The dataset was made of 30 points of varying heat release rate 

(ranging from 100 – 3000 kW). As described in section 2, the network was created with varying ratios 

and number of neurons. For each ratio, the optimal number of neurons was determined. In the case of a 

70:30 ratio of training data to validation data, Figure 3.1, it can be seen the optimal number would be 6 

or 8 neurons. This was repeated for the different ratios and each optimised ANN was run 5 times before 

an average was taken. This was a crucial step as the ANN re-trains each time it is run. For each run, the 

results were analysed based on the RMSE and correlation coefficient (R value). The results for the 

optimised networks can be seen in the tables below.  

Table 3.1: Average R value from the 5 runs/iterations of the ANN. 

 

 

 

 

 

 

 

  

     It’s important to know what the R value represents to gain a comprehensive understanding of the 

results being produced by the network. Regression analysis enables an understanding of how the 

changes in the independent variable(s) are associated with the changes in the dependent variables. 

Typically, higher values of R suggest that the model is better fitted to the data. Therefore, the best fitted 

model based on the R value can be seen to be the 70:30 ratio with 6 neurons in the hidden layer, as its 

R value for ‘All’ is the highest (R=0.9998, as per Table 3.1). Other scenarios have a higher R value for 

training and validation – 60:40 with 4 neurons in the hidden layer and 80:20 with 5 neurons in the 

hidden layer. The R value for ‘All’ accounts for both the training and validation data, so it is the scenario 

Training: 

Validation data 

ratio 

Number of 

neurons in the 

hidden layer 

Average R value (4 s. f.) 

Training Validation All 

50:50 4 0.9997 0.9966 0.9990 

50:50 5 0.9999 0.9978 0.9986 

60:40 4 1.0000 0.9996 0.9997 

60:40 6 0.9999 0.9958 0.9976 

70:30 6 0.9999 0.9997 0.9998 

70:30 8 0.9844 0.9955 0.9841 

80:20 5 0.9998 0.9998 0.9998 

80:20 8 0.9973 0.9998 0.9980 
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where the ANN is well fitted to both. The results of this analysis were also in line with the RMSE 

calculated which was lowest for the test data when the network was run with a 70:30 ratio and 6 neurons 

were in the hidden layer, which indicates this to be the optimal ANN.  

Figure 3.1: RMSE value for training and validation data (zoomed in snapshot on the right). 

3.1.2. Testing the network. Test data was fed into the ANN, consisting of three data points (630 kW, 

1080 kW and 2070 kW). The temperature at steady state for 630 kW and 2070 kW was obtained through 

running the FDS model. The temperature when the HRR was 1080 kW, however, was extracted from 

Hwang’s study [5]. Table 3.2 shows percentage error calculated for each network. The best results were 

produced when there was a 70:30 training to validation data ratio with 6 neurons in the hidden layer, 

with an overall average error of 2.36%. 

Table 3.2: Average percentage error for test data for different scenarios. 

Training: Val 

data ratio 

Number of neurons 

in the hidden layer 

Average percentage error (%) Overall average 

error (%) 630 kW 1080 kW 2070 kW 

50:50 4 1.19 9.25 0.34 3.59 

50:50 5 1.88 6.61 1.09 3.19 

60:40 4 1.00 7.64 0.32 2.99 

60:40 6 2.80 6.67 0.26 3.24 

70:30 6 0.59 6.21 0.28 2.36 

70:30 8 2.97 7.70 0.65 3.77 

80:20 5 0.45 7.81 0.63 2.96 

80:20 8 2.84 8.39 1.09 4.10 

3.2. Effect of ventilation 

The optimised network in this case was obtained in the same way as above, except a larger dataset of 

60 was used (Section 2.3.1). This was due to the independent variable being the ventilation area, 

therefore both the height and width of the opening were changed. For this network, the 80:20 ratio 

appeared to be the best performing network based on the R value. However, when the models were 

tested, it was noted that the network with a 60:40 ratio and 5 neurons in the hidden layer provided the 

best predictions. High regression values do not always guarantee the best test predictions due to the risk 

of overfitting. Whilst the model may excel when it comes to the dataset, it may fail to capture the 

broader patterns present in real-world data which are required to produce accurate predictions for test 

data. The network was again tested with three new data points (0.8m x 2m, 1m x 2m and 2m x 1.6m), 

all of which were obtained through CFD simulations. The optimal network produced extremely accurate 

results, with a percentage error of less than 1.5% for all test points.  

3.3. Comparison of run time 

The trained and optimised ANNs produced accurate results. The predictions were obtained significantly 

faster than running a CFD model. It is important to note that the comparison does not include set up or 

optimisation time as this can depend on the ability of the user. The CFD run time can also be lowered 

◼ Training 

 
◼ Validation 
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through the use of a better computer processor. With this said, the results show that using the ANN is 

considerably more computationally cost effective, as seen in Table 3.3. The results show that using the 

artificial neural network is considerably more computationally cost effective. This is in line with the 

results in some literature which found computational time was reduced by an order of 102 – 105 [2], 

however proved to be more effective than other research into machine learning where run time was only 

reduced 2-3-fold [3]. The accuracy of the CFD model can also be compared to the accuracy of the ANN. 

When the results of the CFD model were validated against those results found in literature (see section 

2.1.2), the percentage error was under 5%. The results from the ANN when compared to those obtained 

from CFD modelling were also less than 5%. This implies that a well built and optimised ANN can 

produce results with a similar margin of error as produced from CFD modelling.  

Table 3.3: model run time for the test data, including training time for MATLAB  

HRR (kW) 
Run Time (seconds)  

FDS MATLAB 

630 11400 

1 1080 16560 

2070 19080 

Total 47040 1 

 

4. Conclusion & Recommendations 

The machine learning model proved to be effective in reducing computational time, holding significant 

implications for real-time decision-making in critical fire engineering scenarios. The ANNs displayed 

remarkable accuracy in predicting thermal responses, with percentage errors consistently below 7% for 

HRR and below 1.5% for ventilation area. The study highlights the potential of machine learning and 

ANNs in fire engineering but emphasises the need for further work. The model accurately predicts 

values within the dataset range but needs testing outside this range for broader applicability. Broadening 

the model's scope by including more parameters and exploring time as a variable could enhance its 

predictive power, although this would increase complexity. This would also establish how accurately 

an ANN performs in response to real-life changes that could occur. The study underscores the 

importance of high-quality datasets and suggests exploring models built solely from experimental data 

or using a hybrid approach. Additionally, comparing different types of ANN models in fire engineering 

could provide insights into the most effective approach. Overall, whilst the study considers a simple 

scenario, it demonstrates a good foundation for utilising ANNs in fire engineering, with opportunities 

for enhancing complexity, exploring diverse datasets, and investigating alternate architectures to 

improve safety and efficiency in fire engineering practices. 

References 

[1] Šoljić, F., (2019). Sandro Skansi: Introduction to Deep Learning. From Logical Calculus to 

Artificial Intelligence. Synthesis Philosophica, 34(2), 477–479. 

[2] Hodges, J. L., (2018) Predicting Large Domain Multi-Physics Fire Behaviour Using Artificial 

Neural Networks. Virginia Polytechnic Institute and State University. 

[3] Lattimer, B. Y., Hodges, J. L., & Lattimer, A. M. (2020). Using machine learning in physics-based 

simulation of fire. Fire Safety Journal, 114, 102991. https://doi.org/10.1016/j.firesaf.2020.102991 

[4] Hodges, J. L., Lattimer, B. Y., & Luxbacher, K. D. (2019). Compartment fire predictions using 

transpose convolutional neural networks. Fire Safety Journal, 108, 102854. 

https://doi.org/10.1016/j.firesaf.2019.102854 

[5] Hwang, C.-H., Lock, A., Bundy, M., Johnsson, E., & Gwon Hyun Ko. (2010). Studies on Fire 

Characteristics in Over- and Underventilated Full-scale Compartments. Journal of Fire Sciences, 

28(5), 459–486. https://doi.org/10.1177/0734904110363106 

 

 

Ventilation 
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