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Abstract: The isolation and characterization of bioactive metabolites from Streptomyces
species continue to represent a vital area of research, given their potential in natu-
ral product drug discovery. In this study, we characterize a new siderophore called
legonoxamine I, together with a known compound, streptimidone, from the talented soil
bacterium Streptomyces sp. MA37, using chromatographic techniques and spectroscopic
analysis. Legonoxamine I is a new holo-siderophore, which is likely to be a derailed product
from the biosynthetic pathway of legonoxamine A. We also demonstrate that legonoxamine
A possesses potent anticancer activity (IC50 = 2.2 µM), exhibiting a remarkable ~30-fold
increase in potency against MCF-7 ATCC HTB-22 breast cancer cells compared to desfer-
rioxamine B, a structural analogue of legonoxamine A (IC50 = 61.1 µM). Comparing the
structural difference between legonoxamine A and desferrioxamine B, it is deduced that the
phenylacetyl moiety in legonoxamine A may have contributed significantly to its enhanced
potency. Our findings contribute to the growing library of Streptomyces-derived metabolites
and underscore the genus’ potential as a promising source of lead compounds.

Keywords: legonoxamine; hydroxamate; hydroxylamine; iron chelators

1. Introduction
The genus Streptomyces is renowned for its outstanding ability to synthesize a plethora

of bioactive molecules, many of which exhibit potent anticancer properties. As a prolific
source of natural products, Streptomyces species have contributed to the discovery and
development of over two-thirds of clinically relevant antibiotics and numerous other
therapeutic agents. Streptomyces’ unique biosynthetic capabilities enable the synthesis
of a diverse array of specialized metabolites, which have demonstrated efficacy against
multiple cancer cell lines. Hence, exploring Streptomyces as a source of novel anticancer
compounds is crucial to identifying new lead compounds that could enhance the current
treatment strategies while minimizing adverse side effects.

The talented soil bacterium Streptomyces sp. MA37 has been a prolific source of diverse
natural products, including polyketides, spiroketides, siderophores, pyrrolizidines, car-
bazoles, and organofluorine compounds [1,2] (Figure 1). Continued mining for unique scaf-
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folds from the MA37 strain in our laboratory has led to the isolation of a new siderophore,
which is likely a derailed product from the legonoxamine A biosynthetic pathway [3,4].
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Figure 1. Representative natural products isolated from Streptomyces sp. MA37. 

Siderophores are specialized molecules secreted by microorganisms to scavenge iron 
from their environment, an essential nutrient that is often limited in availability [5]. These 
molecules can exist in two primary forms: apo-siderophores (unbound) and holo-sidero-
phores (iron-complexed). Apo-siderophores are iron-free and actively sequester iron ions 
(typically Fe3⁺) from the surroundings. Once iron binds to the apo-siderophore, it becomes 
a holo form recognized by specific receptors on the microbial cell surface, thereby allow-
ing the transport of the iron complex into the cell. Inside the cell, the iron is released from 
the siderophore for use in bacterial growth and other essential metabolic processes. 

In response to low iron availability, bacteria primarily produce unbound sidero-
phores, making the apo form the most commonly isolated and widely studied [6,7]. Alt-
hough uncommon, previous studies have reported the isolation of iron-bound sidero-
phores from bacteria such as ferrioxamine G, D, and E from Hafnia alvei and Erwinia am-
ylovora [8,9]. Herein, we present the structure determination for the new siderophore, 
legonoxamine I, along with the known glutarimide-containing polyketide, streptimidone, 

Figure 1. Representative natural products isolated from Streptomyces sp. MA37.

Siderophores are specialized molecules secreted by microorganisms to scavenge
iron from their environment, an essential nutrient that is often limited in availability [5].
These molecules can exist in two primary forms: apo-siderophores (unbound) and holo-
siderophores (iron-complexed). Apo-siderophores are iron-free and actively sequester iron
ions (typically Fe3+) from the surroundings. Once iron binds to the apo-siderophore, it
becomes a holo form recognized by specific receptors on the microbial cell surface, thereby
allowing the transport of the iron complex into the cell. Inside the cell, the iron is released
from the siderophore for use in bacterial growth and other essential metabolic processes.

In response to low iron availability, bacteria primarily produce unbound siderophores,
making the apo form the most commonly isolated and widely studied [6,7]. Although un-
common, previous studies have reported the isolation of iron-bound siderophores from bac-
teria such as ferrioxamine G, D, and E from Hafnia alvei and Erwinia amylovora [8,9]. Herein,
we present the structure determination for the new siderophore, legonoxamine I, along with
the known glutarimide-containing polyketide, streptimidone, from Streptomyces sp. MA37.
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Additionally, we also report the novel anticancer activity of the legonoxamine A siderophore
against breast cancer cells.

2. Results and Discussion
The Streptomyces sp. MA37 was cultivated under iron-limiting conditions to induce

siderophore production. Repeated rounds of chromatographic fractionation led to the isola-
tion of a new siderophore, legonoxamine I, along with the known compound streptimidone.
Through advanced spectroscopic methods, including nuclear magnetic resonance (NMR)
and mass spectrometric analysis, we elucidated their structures.

2.1. Structure Elucidation

High-resolution electrospray ionization mass spectrometry (HR ESI MS) provided
a molecular ion peak of compound 1 at m/z 571.2526 [M + Fe]+, consistent with
the calculated molecular weight for C23H43FeN6O7 (calculated [M + Fe]+, 571.2543;
∆ = −2.706 ppm), with five degrees of unsaturation (Figures 2A, 3 and S1).
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Figure 3. Assignment of fragment ions of the mass spectrum of legonoxamine I.

A closer examination of the MS also revealed a dominant ion peak at 517.33 Da,
suggesting the presence of the unbound form of the siderophore [M + 2H − Fe]+. Frag-
mentation analysis revealed peaks at 317.21 Da and 201.12 Da (Figure 3), corresponding to
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breakdown products involving the cleavage between succinyl and hydroxamate bonds, in-
dicating the presence of the typical tri-hydroxamate core characteristic of ferrioxamine-type
siderophores [9]. The hydroxamate functional group plays a crucial role in the chelating
ability of siderophores, particularly in iron-deficient environments. Composed of an amide
(–CONH–) and a hydroxyl group (–OH), the hydroxamate forms a bidentate site capable
of forming coordinate bonds with ferric ions (Fe3+). Multiple hydroxamate groups in a
siderophore molecule often coordinate simultaneously, creating a highly stable octahedral
complex with iron [10]. This strong stable binding allows siderophores to capture and
solubilize iron effectively, making it accessible to microorganisms that require it for critical
biological processes such as DNA synthesis, respiration, and enzyme catalysis [3,11]. How-
ever, the distinct isotopic pattern due to the natural abundances of iron isotopes, such as
56Fe and 54Fe, was not observed in the MS spectrum.

A comprehensive examination of the 1D and 2D NMR spectra, including 1H, 13C,
COSY, HSQC, and HMBC experiments (Figures S2–S5), provided evidence for the presence
of a siderophore in its iron-free (unbound) state (Table 1). A detailed analysis of the
spectral data suggested that compound 1 was closely related to the previously isolated
apo-siderophores, legonoxamine A and desferrioxamine B, from Streptomyces sp. MA37
(Figure 1) [3,4].

Table 1. 1H and 13C NMR data of Compound 1 at 600 MHz and 298 K in CD3OD.

No. 13C ppm * 1H ppm, mult. COSY HMBC

1-N - - - -

2 39.0, CH2 2.92, tr 3, 4, 5, 6 3, 4

3 28.3, CH2 1.54, m 2, 4, 5, 6 2, 4

4 22.8, CH2 1.39, m 2, 3, 5, 6 3, 5, 6

5 25.9, CH2 1.68, m 2, 3, 4, 6 2, 3, 4, 6

6 50.5, CH2 3.21, m 2, 3, 4, 5 4, 8, 9

7-NOH - - -

8 173.4, C - -

9 29.8, CH2 2.46, m 10 8, 9, 11

10 28.3, CH2 2.59, m 9 8, 10, 11

11 173.4, C - - -

12-NH - - - -

13 39.4, CH2 3.19, m 14, 15, 16, 17 14, 15

14 28.3, CH2 1.54, m 13, 15, 16, 17 13, 15

15 22.8, CH2 1.39, m 13, 14, 16, 17 14, 16, 17

16 25.9, CH2 1.68, m 13, 14, 15, 17 13, 14, 15, 17

17 50.5, CH2 3.21, m 13, 14, 15, 16 15, 19, 20

18-NOH - - - -

19 173.6, C - - -

20 29.8, CH2 2.46, m 21 19, 21, 22

21 28.3, CH2 2.59, m 20 19, 20, 22

22 174.2, C - - -
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Table 1. Cont.

No. 13C ppm * 1H ppm, mult. COSY HMBC

23-NH - - - -

24 39.4, CH2 3.19, m 25, 26, 27, 28 25, 26

25 28.3, CH2 1.54, m 24, 26, 27, 28 24, 26

26 22.8, CH2 1.39, m 24, 25, 27, 28 24, 27, 28

27 28.3, CH2 1.54, m 24, 25, 26, 28 24, 25, 26, 28

28 46.8, CH2 3.63, t 24, 25, 26, 27 26, 27

29-NO - - -
* deduced from HMBC and HSQC data.

The 1H and 13C-NMR spectra and HSQC analysis revealed the presence of 23 carbon
signals, including 19 methylene carbons and 4 quaternary carbonyls (δC 174.2, 173.6,
173.4, and 173.4). Analysis of the 1H-1H COSY spectrum revealed two main spin systems,
including three repeating aminopentane motifs (H-2 to H-6, H13 to H-17, and H-24 to
H-28) and two recurring succinyl motifs (H-9 to H-10 and H-20 to H-21). The heteronuclear
multiple-bond correlations (HMBCs) from H-9 (δH 2.46) and H-10 (δH 2.59) to C-8 (δC 173.4)
and C-11 (δC 173.4), and from H-20 (δH 2.46) and H-21 (δH 2.59) to C-19 (δC 173.6) and
C-22 (δC 174.2), indicated the presence of two succinyl groups. The long-range couplings
observed in HMBC experiments established the connectivity of the five main substructures
from H-6 (δH 3.21) to the carbonyl carbon at C-8, H-13 (δH 3.19) to C-11, H-17 (δH 3.21) to
C-19, and H-24 (δH 3.19) to C-22.

Two potential non-complexed forms of compound 1 were proposed, with deprotona-
tion at either the N7 or N18 position (Figure S6). To assess the plausibility of each structure,
predicted chemical shifts (calculated using the ACD/Structure Elucidator; ACD/Labs
2019.2.0, version S05S41) [12] were compared against experimental chemical shifts obtained
in CD3OD at 600 MHz. The ACD/Labs Structure Elucidator uses the HOSE algorithm [13]
to calculate chemical shifts, which has been known to predict the correct chemical structures
of natural products [12,14,15]. Results revealed an excellent linear correlation, with an R2

value of 0.9991 for the N7-deprotonated form and 0.9995 for the N18-deprotonated form,
indicating that both structures closely match the observed data (Figure S6). ACD Labs
was unable to distinguish between the two non-complexed structures. Taken together,
compound 1, which we named legonoxamine I, represents a new siderophore, which is
likely to be a derailed product from the biosynthetic pathway of legonoxamine A [3,4].

The molecular formula of compound 2, also isolated as a white powder, was
established as C16H22NO4 by HRESIMS (calculated as [M + H]+ = 294.1700; ob-
served [M + H]+ = 294.1703; ∆ = 1.0198 ppm), indicating six degrees of unsaturation
(Figure 2B and Figure S7).

The 1H and 13C NMR spectra indicated the presence of 22 protons and 16 carbons
(2 CH3, 5 CH2, 5 CH, and 4 C). A comparison of the 1D and 2D NMR data of compound 2
to the known data for glutarimide antibiotics reported in the literature [16–19] indicated
that compound 2 is the known compound, i.e., streptimidone or 4-(2-hydroxy-5,7-dimethyl-
4-oxo-6,8-nonadienyl)-2,6-piperidinedione (Table S1; Figures S8–S13).

The double-bond configuration was assigned as E based on the absence of a cross-
peak between H-9 and the methyl protons at C-10 in the NOESY spectrum, indicating
that these protons are spatially distant and positioned on opposite sides of the double
bond. Furthermore, the chemical shift values closely match those of known models of
E-1,3-dienes [18], providing strong evidence for this stereochemical assignment.
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This study reaffirms the significance of Streptomyces as a source of diverse nat-
ural products. The combined production of streptimidone and legonoxamine I by
Streptomyces sp. MA37 likely represents a competitive strategy that enhances its ecological
fitness in resource-limited environments. Glutarimide-containing polyketides such as strep-
timidone are known for their potent antifungal properties, e.g., the ability to suppress the
growth of competing microbes such as Phytophthora capsici, Didymella bryoniae, Magnaporthe
grisea, and Botrytis cinerea in plants [16]. Furthermore, the natural streptimidone stereoiso-
mer exhibits the most potent antifungal activity, while those lacking the glutarimide moiety
are inactive against fungi [17]. Siderophores such as legonoxamine I, on the other hand,
help Streptomyces sequester iron from the environment, an essential nutrient often limited
in availability, while depriving competitors of access to this resource. Together, compounds
1 and 2 ensure that Streptomyces thrives by both suppressing competitors and securing
essential resources for its growth and metabolism.

2.2. Cell Proliferation Assay

Neither legonoxamine A nor desferrioxamine B showed cell proliferation against skin
cancer (A2058 ATCC CRL-11147). However, legonoxamine A displayed potent anticancer
activity against MCF-7 ATCC HTB-22 breast cancer cells with a half-maximal inhibitory
concentration (IC50) of 2.2 µM (Table 2). Compared to its structural analogue, desferrioxam-
ine B (IC50 = 61.1 µM), legonoxamine A exhibited a remarkable ~30-fold increase in potency.
Based on the structural differences between the two siderophores, the phenyl acetyl moiety
in legonoxamine A may have contributed significantly to its enhanced cytotoxic activity.

Table 2. Cytotoxic activity of legonoxamine A and desferrioxamine B against skin cancer, breast
cancer, and lung normal cell lines.

Compound Name

IC50

A2058
ATCC CRL-11147

(Skin Cancer)

MCF-7
ATCC HTB-22
(Breast Cancer)

ATCC CCL-171
(Lung Normal Cell)

Legonoxamine A - 2.2 µM -

Desferrioxamine B - 61.1 µM -
- indicates no activity at the highest concentration tested (50 µg/mL).

It is also noteworthy that legonoxamine A did not exhibit cytotoxic effects against nor-
mal lung cancer cell lines (ATCC CCL-171) at the highest concentration tested (50 µg/mL).
The results suggest that legonoxamine A may selectively target breast cancer cells without
harming normal healthy cells, which is a desirable property for potential therapeutic agents.
Our findings contribute to the growing library of Streptomyces-derived metabolites and
underscore the genus’s potential as a promising source of bioactive agents.

3. Materials and Methods
3.1. Reagents and Media

All reagents used in the experiment were obtained from Fisher Scientific (Lancaster,
UK). Unless otherwise stated, all media used were sourced from Oxoid (Hampshire, UK).

3.2. Extraction and Isolation

The isolation of the producing strain, Streptomyces sp. MA37, was described in previous
reports [3,20]. The seed culture of MA37 was prepared by inoculating glycerol stock into an
iron-limited medium, ISP2 (2.0 g of glucose, 2.0 g of yeast extract, and 5.0 g of malt extract
in 500 mL Milli-Q H2O) in a 1:10 ratio. The culture was then incubated for 3 days in a rotary
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shaker maintained at 28 ◦C and 220 rpm (Incu-shake FL16-2). This seed culture was then
used to prepare 10 L of bacterial fermentation, maintaining the same iron-limited broth,
inoculation ratio, and fermentation conditions. Subsequently, Diaion® HP-20 (3 g/50 mL)
was added to the culture broth and incubated under the same fermentation conditions for
24 h to adsorb secondary metabolites.

The mixture was then filtered under vacuum, and the recovered HP-20 resin was
rinsed with Milli-Q water to remove any residual biomass and culture medium. The
adsorbed compounds were subsequently eluted from the resin by extracting it with 100%
methanol thrice. All the methanol extracts were combined, concentrated under reduced
pressure at 40 ◦C using a rotary evaporator (Buchi Rotavapor R200, Langholm, UK), and
subjected to high-resolution electrospray ionization mass spectrometry (HRESIMS) analysis.
The crude extract was fractionated on a Strata® C18 SPE column using a solvent system
of methanol in water (i.e., 25%, 50%, 75%, and 100% MeOH), representing a gradient of
decreasing polarity. Finally, the column was flushed with 100% methanol containing 0.05%
trifluoroacetic acid (TFA). This process resulted in the collection of five distinct fractions
(F25, F50, F75, F100, and F100TFA). The fractions were then concentrated under reduced
pressure, as described above, and subjected to HRESIMS analysis.

Compound 1 was detected in F100, while compound 2 was detected in F100TFA
using HRESIMS and 1H NMR analysis. Further purification was carried out using high-
performance liquid chromatography (HPLC; Agilent 1260 Infinity) with a reversed-phase
C18 semi-preparative column (ACE 10 µM 10 × 250 mm). The purification was achieved
using a linear gradient from 15% H2O:MeOH:TFA (95:5:0.1) to 100% MeOH for 45 min with
a solvent flow rate of 1.5 mL/min to yield legonoxamine I (1) (3.0 mg) and streptimidone (2)
(2.0 mg).

3.3. NMR and MS Measurements

HR-ESIMS was determined using the LC-MS Thermo Scientific MS system (LTQ
Orbitrap, Hemel Hempstead, UK) coupled to a Thermo Instrument HPLC system (Accela
PDA detector, Accela PDA autosampler, and Accela pump, C18 Sunfire 150 × 46 mm
Waters®, UK). The following parameters were used: a capillary voltage of 45 V, a capillary
temperature of 320 ◦C, an auxiliary gas flow rate of 10–20 arbitrary units, a sheath gas flow
rate of 40–50 arbitrary units, a spray voltage of 4.5 kV, and a mass range of 100–2000 amu
(with a maximum resolution of 30,000). A high-performance digital Bruker AVANCE III HD
600 MHz (Ascend™ 14.1 Tesla, UK) and a Prodigy TCI™ cryoprobe were used to obtain the
following information at 25 ◦C: 1H NMR, 13C NMR, 1H–1H COSY, 1H–13C HSQC,1H–13C
HMBC, and NOESY.

3.4. Cell Proliferation Assay

The antiproliferative activity of siderophores was tested against skin cancer
(A2058 ATCC CRL-11147) and breast cancer cells (MCF-7 ATCC HTB-22 using the
CellTiter 96® Aqueous One Solution Cell Proliferation Assay, following the protocol de-
scribed previously [21]. Meanwhile, the toxicity was tested on the lung normal cells
(ATCC CCL-171). The cell lines were seeded in 96-well-microtitre plates (Nunc, Thermo
Fisher Scientific, New York, NY, USA) at 2000 cells/well in Dulbecco’s Modified Ea-
gle Medium (DMEM, Thermo Fisher Scientific, Waltham, MA, USA) with fetal bovine
serum (10%, FBS, Sigma Aldrich, St. Louis, MO, USA) and gentamicin (10 µg/mL, Sigma
Aldrich, USA). Cells were incubated at 37 ◦C in a 5% CO2 atmosphere for 24 h. The
wells were then treated with various concentrations of the pure compounds to a total
volume of 100 µL/well. The plate was then incubated for 72 h at 37 ◦C and 5% CO2. Af-
ter treatment, 10 µL of CellTiter 96® Aqueous One Solution Reagent (Promega, Madison,
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WI, USA) was added to each well, and the cells were incubated for 1–4 h at 37 ◦C. Cell
viability was determined based on the conversion of 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) tetrazolium (yellow) to a
formazan product (blue) by metabolically active cells. The absorbance was measured at
485 nm using a microplate reader (Multimode detector DTX 880). The quantity of formazan
product, as measured by the absorbance, is directly proportional to the number of living
cells in the culture. The dose-dependent response of the pure compounds (100 ng/mL, 1,
2.5, 5, 10, 12.5, 25, and 50 µg/mL) was tested in triplicates. Cell viability was expressed as
mean ± standard deviation.

4. Conclusions
The successful isolation of both legonoxamine I siderophore and streptimidone polyke-

tide from Streptomyces sp. MA37 species underscores its remarkable biosynthetic potential.
Our findings also highlight the potential of legonoxamine A to inhibit breast cancer cell
proliferation selectively, warranting further investigation into its mechanisms of action.
Streptomyces’s unique biosynthetic capabilities provide an opportunity to discover diverse
metabolites that may exhibit selective toxicity toward cancer cells while minimizing harm
to normal tissues. The genus Streptomyces continues to be a valuable resource for natural
product discovery.
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