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* 100 million buried landmines,

* 61 states worldwide impacted,

* 1,000 deminers lost their lives or suffered injuries (1999-2012),

* The precise locations of legacy landmines unknown,

* Discovering and clearing legacy explosives using a force made up of humans or animals
»extremely risky,
»labour- and time-intensive.

* More than a century required to remove all buried explosives using conventional methods

» Development of a landmine/UXO/IDE detection system that is quick, safe, and economical is urgent.
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INTRODUCTION

* Land-based vehicles (wheeled, legged, and dragged robots) face a number of challenges,
»including accurate navigation over rough terrain
» it takes a while to scan larger terrain with those slow, heavy vehicles.

e Autonomous easy-to-use drones can
»expedite surveying and

» provide better access to challenging terrain with hard-to-reach topography and thick vegetation
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INTRODUCTION

* In this work, an autonomous robotic drone, MagnoUAS, integrated with a magnetometer developed
v'a bespoke,
v’ low-cost,
v'small size
v'lightweight
v'small footprint,
v'easy-to-use
* to detect landmines/IDE/UXO locations
v'rapidly and safely.

v'with extreme height precision and terrain following mode.



Sensor technologies

TABLE I: Properties of Fluxgate sensor — HWT3100-485.

Sr.No. | Features Properties

| Output MF and heading angle

2 MF range -800uT—+800uT

3 Heading angle range | -180—-+180

4 Sensitivity 13nT/LSB

5 Return rate can be adjusted between 0.2-
100Hz

6 Components Built-in sensor chips: 2*Sen-
XY-f(pnl13104) and 1*Sen-Z-
f(pn13101) geomagnetic mod-
ule; 1*Magl12C(pn13156) con-
trol chip

7 Resolution 16 bits for each axis

8 Voltage S5V—36V

9 Current <10mA

10 Volume 83mm*25mm*25mm

11 Data interface 485 serial port (the specific level
depends on the selection, the
baud rate

12 Casing Waterproof  and vibration-
resistance aluminium casine
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Fig. 1: Fluxgate sensor with three-axis MF output. Model:
HWT3100-485.
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Python Tutorial
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2 import serial

3 import time

4

S Lf L iname: == matn  ";
6 ser = sertal.Serial('/dev/ttyACMO’, 9600, timeout=1)
ser.reset_input_buffer()

9 while True:

ser.write(b"Hello from Raspberry Pii\n®)

1line = ser.readline().decode( utf-8").rstrip()
12 print(line)

13 # tine.sleeplitl]
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Intesration of sensors with onboard Arduino Programming of sensing using Python
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Inner component design
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Features of the drone

Front View
Component Features
UAS/aircraft model name DIJI F-450
UAS battery packs Tattu 4S 1800mah
UAS battery chargers Overlander Charger
Transmitters model name Futaba T8J
Transmitters battery packs NiMH 4.8V

Transmitters battery chargers | Futaba Battery Charger
Ground station control model | HP 15inch Laptop / Android Tablet +

name chargers
Left View SiK telemetry HolyBro ground side unit
Data communication Netgear + charger
Data transfer USB flash Drive, Arduino — Pi Cable
Propeller set 9X4.5
Software QgroundControl, Wit-motion software

RONT X Qe UAS Y e UAS
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Fig. 2: Outer design of MagnoUAS.
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Features of integrated MagnoUAS
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Particular features of the integrated MagnoUAS considering operational objectives.

Element Feature Description

Magnetometer. FGM3D/75 Fluxgate Two FGM3D/75 Fluxgate

Operational weight | 880 gr The operational weight when mounted to the UAV is 880g including the battery.

Power supply 1V, 1,950 mAh Li-Ion Re-chargeable battery.

Connection 1 Bluetooth Bluetooth module is implemented into the MagDrone device.

Connection 2 Fischer connector The Fischer connector can be used as a telemetry port.

GPS receiver 1 Internal GNSS The GNSS receiver contains a support battery for memorising the Almanach and the configura-

tion. The Fischer connector is used as a telemetry port becomes the GPS input.

GPS receiver 2

External GPS

The Fischer connector can be used as the GPS input while the telemetry port is Bluetooth.

Sampling 200Hz. All three axles of every sensor are sampled at 200Hz.

Data logger SD card The capacity of the SD card is 2GB . This capacity is enough for about 24 hours of uninterrupted
recording.

Software MagDrone Data Tool The MagDrone device provides a telemetry port that allows for live data output and reception of
start and stop commands.

Data Binary raw data Moving directions, tracks and overlapping. The data can be converted into a readable format

using the MagDrone Data Tool

Offset correction

Temperature offset data

Offset correction data such as temperature offset data are stored. These data are applied to the
data measured by the magnetometers.
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Development of the Application

Maggy using the Maggy's GPS data Landmines and UXO Detection | locations with magnetic field over

the chosen threshold on the map

Altapeu rJ
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Lab tests with MagnoUAS
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MF (uT) = (Maggyrawdara * Sensitivity) /1000;
where Sensitivity = 13nT /LSB;
—800uT < Maggyrawdaa < +800uT;

1000 converts nT unit to uT (micro — Tesla);
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(1

MFyxy; = sqrt(MFy + MFy + MF});

where MF is the magnetic field with respect to axis.

2

- Maggyneading (degrees) = atan2(magy,, mag.) = (180/pi);

where mag. and mag, are the magnetic field strength 3)

values in the x and y axes respectively;

180/pi converts radians to degrees;,

X, Y and Z component directions of the magnetometers are processed as formulated in Egs. 1, 2, 3
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MagnoUAS operates with high detection accuracy at low altitudes and speeds

(i.,e., 0.5 m, 1 m/s).
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Fig. 4: Autonomous use of MagnoUAS in the UCLan land- Flg' 2 Landming lopations; untd t he: urTent scan'ned p01'nt
in the route, shown by user during data streaming while

rme ficld, AL data points. MagnoUAS is still in operation.

START STREAMING  STOP STREAMING

Fig. 7: Landmine locations, with “very high” (red) and “high”

Fig. 6: All landmine locations, with “very high” MF (red).
(orange) MF, shown by the user.

shown by the user.
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Landmine Survey Analysis
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Fig. 8: Latvia field test -1II-. Top: all data points; middle: high
MF; bottom: MF graph for all data points in the route depicted
at the top.
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# | CRITERIA v'/- | NOTES 7
| MH ex- - only explosive objeets-with ferrous 11 | Air-to-ground data Maggy provides near real-time
/ plosive types metals can be detected by Ma streaming sca.nne_d streaming data to the user
2 | Determination of the | - | only MF location of metallic objegts while in operation.
\ type and composition can be detected. 12 | Real-time data pro- Maggy provides real-time scanned
ch ts cessing streaming data to the user,
- : - p— . which is displayed on a small
3 Smdl}l} and light | v l*lg.il? ]payload <1 kg. tablet/smartphone device.
weight _ _ 13 | Easy to usefoff the Maggy is a compact tool.
4 | Manoeuvrable v' | rotary, vertical take-off and landing. shelf
5 | Terrain following | v | Maggy uses a radar altimeter. 14 | User friendly 30 minutes of training is sufficient
mode to use Maggy effectively.
6 | Autonomous/automated v° | Maggy uses UgCS system — drone 15 | Resource friendly not resource-hungry processing.
mode flight planning software. Ability to run ordinary computing
7 Low energy | v Fig.|1_9,| payload < 1 kg, most of the _ device. ‘
consumption processing and computing is per- 16 | Ability to analyse old Al-based tablet/smartphone appli-
formed by the tablet application surveys cation provides users with multiple
| 8~ Good flight time, | - | Maggy can fly 4.5 minutes per bat=— — decision-making abilities. ‘
. 17 | Classification  and Al-based tablet/smartphone appli-
——long battery life tery . e . . . .
_ clustering abilities cation provides users with multiple
9 | Robust v | Maggy was designed to perform ro- decision-making abilities.
bustly (Figs. ' The 18 | Ability to fly under 1 to increase the efficacy of sensors.
GPS component will be replaced meter
with a robust one. 19 | Small footprint Fig.m payload < 1 kg.
10 | Accurate/reliable v' | Maggy is tested in the benchmark 20 | Accessible, low-cost, Maggy is low-cost compared
test fields with the benchmark out- affordability to commercially available
puts. magnetometer systems.
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This study mainly aims to help in making new fully automated landmine/UXO/IDE
detection systems in a time-and-cost-efficient manner.

The methods created in this study address the drawbacks of ground-based
operations, such as high operator risk and inefficiency, and provide a quicker, safer,
and more economical substitute for conventional landmine/UXO/IDE detection
techniques.

The developed platform in this work, the so-called MagnoUAS, is a small, lightweight
drone that can be rapidly deployed by a demining team to scan a large area for any
magnetic anomalies caused by the presence of metal in landmine/UXO/IDE.

The risk to human operators can be reduced significantly with MagnoUAS.

This research provides the related research community and industry with
fundamental design and implementation parameters (e.g. flight speed, flight
altitude) in building and using magnetometer-integrated UAS.
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