

Technical Report: Non-Invasive Detection of Explosives Using Bespoke Unmanned Aerial Systems

Dr. Kaya Kuru

KAYA KURU¹ AADITHYA SUJIT¹ DARREN ANSELL¹ JOHN MICHAEL PINDER¹ DAVID JONES¹ BENJAMIN JON WATKINSON¹ RIDHA HAMILA², (Senior Member, IEEE), AND CLAIRE TINKER-MILL¹

¹ School of Engineering, University of Central Lancashire, Preston, PR1 2HE UK ²Department of Electrical Engineering, Oatar University, Doha, Oatar

Where opportunity creates success

INTRODUCTION

- 100 million buried landmines,
- 61 states worldwide impacted,
- 1,000 deminers lost their lives or suffered injuries (1999-2012),
- The precise locations of legacy landmines unknown,
- Discovering and clearing legacy explosives using a force made up of humans or animals ➢extremely risky,
	- ➢labour- and time-intensive.
- More than a century required to remove all buried explosives using conventional methods
- Development of a landmine/UXO/IDE detection system that is quick, safe, and economical is urgent.

INTRODUCTION

• Land-based vehicles (wheeled, legged, and dragged robots) face a number of challenges,

 \triangleright including accurate navigation over rough terrain

 \triangleright it takes a while to scan larger terrain with those slow, heavy vehicles.

• Autonomous easy-to-use drones can

 \triangleright expedite surveying and

➢provide better access to challenging terrain with hard-to-reach topography and thick vegetation

INTRODUCTION

- In this work, an autonomous robotic drone, MagnoUAS, integrated with a magnetometer developed \checkmark a bespoke,
	- ✓low-cost,
	- \checkmark small size
	- ✓lightweight
	- \checkmark small footprint,
	- ✓easy-to-use
- to detect landmines/IDE/UXO locations
	- ✓rapidly and safely.
	- \checkmark with extreme height precision and terrain following mode.

Sensor technologies

TABLE I: Properties of Fluxgate sensor — HWT3100-485.

Fig. 1: Fluxgate sensor with three-axis MF output. Model: HWT3100-485.

Integration of MagnoUAS With Sensors Acquiring the sensing

Integration of sensors with onboard Arduino Programming of sensing using Python

Integration of MagnoUAS With Sensors

Inner component design8 **Ground (BLK wire)** Tx (Green wire) **Rx (Yellow wire) Ground (BLK wire)** 醇 +5V Power Line 83 -- Source from BEC M2 Signal to Rx2 M1 Signal to Rx1

Integration of MagnoUAS With Sensors Features of the drone

Fig. 2: Outer design of MagnoUAS.

Features of integrated MagnoUAS

Particular features of the integrated MagnoUAS considering operational objectives.

Development of the Application

University of **Central Lancashire**

UCLan

Lab tests with MagnoUAS

X, Y and Z component directions of the magnetometers are processed as formulated in Eqs. 1, 2, 3

Lab tests with MagnoUAS

MagnoUAS operates with high detection accuracy at low altitudes and speeds (i.e., 0.5 m, 1 m/s).

Field tests with MagnoUAS at UCLAN Landmine Field Duniversity of Central Lancashire

Fig. 4: Autonomous use of MagnoUAS in the UCLan landmine field. All data points.

Fig. 6: All landmine locations, with "very high" MF (red), shown by the user.

Fig. 5: Landmine locations, until the current scanned point in the route, shown by user during data streaming while MagnoUAS is still in operation.

Fig. 7: Landmine locations, with "very high" (red) and "high" (orange) MF, shown by the user.

Real field tests at the Latvia Field

Fig. 8: Latvia field test -III-. Top: all data points; middle: high MF; bottom: MF graph for all data points in the route depicted at the top.

DISCUSSION AND LIMITATIONS Evaluation of MagnoUAS

CONCLUSIONS

- This study mainly aims to help in making new fully automated landmine/UXO/IDE detection systems in a time-and-cost-efficient manner.
- The methods created in this study address the drawbacks of ground-based operations, such as high operator risk and inefficiency, and provide a quicker, safer, and more economical substitute for conventional landmine/UXO/IDE detection techniques.
- The developed platform in this work, the so-called MagnoUAS, is a small, lightweight drone that can be rapidly deployed by a demining team to scan a large area for any magnetic anomalies caused by the presence of metal in landmine/UXO/IDE.
- The risk to human operators can be reduced significantly with MagnoUAS.
- This research provides the related research community and industry with fundamental design and implementation parameters (e.g. flight speed, flight altitude) in building and using magnetometer-integrated UAS.

REFERENCES

1. K. Kuru *et al*., "Intelligent, Automated, Rapid, and Safe Landmine, Improvised Explosive Device and Unexploded Ordnance Detection Using Maggy," in *IEEE Access*, vol. 12, pp. 165736-165755, 2024.

2. K. Kuru, D. Ansell, B. J. Watkinson, D. Jones, A. Sujit, J. M. Pinder, et al., "Intelligent automated rapid and safe landmine and unexploded ordnance (UXO) detection using multiple sensor modalities mounted on autonomous drones", *IEEE Trans. Instrum. Meas.*, 2024.

3. H. Aoyama, K. Ishikawa, J. Seki, M. Okamura, S. Ishimura and Y. Satsumi, "Development of mine detection robot system", *Int. J. Adv. Robot. Syst.*, vol. 4, no. 2, pp. 25, 2007.

4. S. B. I. Badia, U. Bernardet, A. Guanella, P. Pyk and P. F. Verschure, "A biologically based chemo-sensing UAV for humanitarian demining", *Int. J. Adv. Robot. Syst.*, vol. 4, no. 2, pp. 21, 2007.

5. K. Kuru, "A Novel Hybrid Clustering Approach for Unsupervised Grouping of Similar Objects," In *International Conference on Hybrid Artificial Intelligence Systems*, pp. 642-653. Cham: Springer International Publishing, 2014.

6. I. Makki, R. Younes, C. Francis, T. Bianchi and M. Zucchetti, "A survey of landmine detection using hyperspectral imaging", *ISPRS J. Photogramm. Remote Sens.*, vol. 124, pp. 40-53, Feb. 2017, [online] Available: **7.**

7. D. Guelle, M. Gaal, M. Bertovic, C. Mueller, M. Scharmach and M. Pavlovic, "South-East Europe interim report field trial Croatia: Itep-project systematic test and evaluation of metal detectors—STEMD", 2007.

8. C. Castiblanco, J. Rodriguez, I. Mondragon, C. Parra and J. Colorado, "Air drones for explosive landmines detection", *Proc. 1st Iberian Robot. Conf.*, vol. 253, pp. 107-114, Jan. 2014.

9. X. Zhang, J. Bolton and P. Gader, "A new learning method for continuous hidden Markov models for subsurface landmine detection in ground penetrating radar", *IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.*, vol. 7, no. 3, pp. 813-819, Mar. 2014.

10. C. P. Gooneratne, S. C. Mukhopahyay and G. S. Gupta, "A review of sensing technologies for landmine detection: Unmanned vehicle based approach", *Proc. 2nd Int. Conf. Auton. Robots Agents*, pp. 401-407, Dec. 2004.

11. P. Gao and L. M. Collins, "A two-dimensional generalized likelihood ratio test for land mine and small unexploded ordnance detection", *Signal Process.*, vol. 80, no. 8, pp. 1669-1686, Aug. 2000, [online] Available:

12. W. Rafique, D. Zheng, J. Barras, S. Joglekar and P. Kosmas, "Predictive analysis of landmine risk", *IEEE Access*, vol. 7, pp. 107259-107269, 2019.

13. J. Colorado, I. Mondragon, J. Rodriguez and C. Castiblanco, "Geo-mapping and visual stitching to support landmine detection using a low-cost UAV", *Int. J. Adv. Robot. Syst.*, vol. 12, no. 9, pp. 125, 5772.

14. K. Kuru, D. Ansell, W. Khan and H. Yetgin, "Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform", *IEEE Access*, vol. 7, pp. 15804-15831, 2019.

15. K. Kuru, "Planning the future of smart cities with swarms of fully autonomous unmanned aerial vehicles using a novel framework", *IEEE Access*, vol. 9, pp. 6571-6595, 2021.

16. K. Kuru, D. Ansell, D. Jones, B. Watkinson, J. M. Pinder, J. A. Hill, et al., "Intelligent airborne monitoring of livestock using autonomous uninhabited aerial vehicles", *Proc. 11th Eur. Conf. Precision Livestock Farming*, pp. 1100-1110, 2024.

17. K. Kuru, J. M. Pinder, B. J. Watkinson, D. Ansell, K. Vinning, L. Moore, et al., "Toward mid-air collision-free trajectory for autonomous and pilot-controlled unmanned aerial vehicles", *IEEE Access*, vol. 11, pp. 100323-100342, 2023.

18. K. Kuru, S. Clough, D. Ansell, J. McCarthy and S. McGovern, "Intelligent airborne monitoring of irregularly shaped man-made marine objects using statistical machine learning techniques", *Ecol. Informat.*, vol. 78, Dec. 2023.

19. K. Kuru, S. Clough, D. Ansell, J. McCarthy and S. McGovern, "WILDetect: An intelligent platform to perform airborne wildlife census automatically in the marine ecosystem using an ensemble of learning techniques and computer vision", *Expert Syst. Appl.*, vol. 231, Nov. 2023.

20. A. Nikulin, T. S. De Smet, J. Baur, W. D. Frazer and J. C. Abramowitz, "Detection and identification of remnant PFM-1 `butterfly mines' with a UAV-based thermal-imaging protocol", *Remote Sens.*, vol. 10, no. 11, pp. 1672, Oct. 2018.

21. L. He, S. Ji, W. R. Scott and L. Carin, "Adaptive multimodality sensing of landmines", *IEEE Trans. Geosci. Remote Sens.*, vol. 45, no. 6, pp. 1756-1774, 2007.

22. V. Kovalenko, A. G. Yarovoy and L. P. Ligthart, "A novel clutter suppression algorithm for landmine detection with GPR", *IEEE Trans. Geosci. Remote Sens.*, vol. 45, no. 11, pp. 3740-3751, Oct. 2007.

23. K. Kuru, "Technical Report: Analysis of Intervention Modes in Human-In-The-Loop (HITL) Teleoperation With Autonomous Unmanned Aerial Systems," (2024).

24. M. G. Fernández, G. Á. Narciandi, A. Arboleya, C. V. Antuña, F. L. Andrés and Y. Á. López, "Development of an airborne-based GPR system for landmine and IED detection: Antenna analysis and intercomparison", *IEEE Access*, vol. 9, pp. 127382-127396, 2021.

25. T. W. Du Bosq, J. M. Lopez-Alonso and G. D. Boreman, "Millimeter wave imaging system for land mine detection", *Appl. Opt.*, vol. 45, no. 22, pp. 5686 2006. **26.** K. Stone, J. Keller, K. C. Ho, M. Busch and P. D. Gader, "On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms", *Proc. SPIE*, vol. 6953, pp. 331-342, Apr. 2008.

27. M. Garcia-Fernandez, A. Morgenthaler, Y. Alvarez-Lopez, F. L. Heras and C. Rappaport, "Bistatic landmine and IED detection combining vehicle and drone mounted GPR sensors", *Remote Sens.*, vol. 11, no. 19, pp. 2299, Oct. 2019, [online] Available[: https://www.mdpi.com/2072-4292/11/19/2299.](https://www.mdpi.com/2072-4292/11/19/2299)

28. M. García-Fernández, G. Álvarez-Narciandi, Y. Á. López and F. L.-H. Andrés, "Improvements in GPR-SAR imaging focusing and detection capabilities of UAVmounted GPR systems", *ISPRS J. Photogramm. Remote Sens.*, vol. 189, pp. 128-142, Jul. 2022.

29. K. Kuru et al., "Non-Invasive Detection of Landmines, Improvised Explosive Devices and Unexploded Ordnances Using Bespoke Unmanned Aerial Systems", In the International Conference on Electrical and Computer Engineering Researches, 2024.

30. J. Ishikawa, K. Furuta and N. Pavkovi, "Test and evaluation of Japanese GPR-EMI dual sensor systems at the Benkovac test site in Croatia" in Anti-Personnel Landmine Detection for Humanitarian Demining: The Current Situation and Future Direction for Japanese Research and Development, London, U.K.:Springer, pp. 63-81, 2009.

31. D. Donskoy, A. Ekimov, N. Sedunov and M. Tsionskiy, "Nonlinear seismo-acoustic land mine detection and discrimination", *J. Acoust. Soc. Amer.*, vol. 111, no. 6, pp. 2705-2714, 2002.

32. K. Kuru and H. Yetgin, "Transformation to advanced mechatronics systems within new industrial revolution: A novel framework in automation of everything (AoE)", *IEEE Access*, vol. 7, pp. 41395-41415, 2019.

33. K. Kuru, "Management of geo-distributed intelligence: Deep insight as a service (DINSaaS) on forged cloud platforms (FCP)", *J. Parallel Distrib. Comput.*, vol. 149, pp. 103-118, Mar. 2021.

34. N. T. Thnh, H. Sahli and D. N. Ho, "Finite-difference methods and validity of a thermal model for landmine detection with soil property estimation", *IEEE Trans. Geosci. Remote Sens.*, vol. 45, no. 3, pp. 656-674, Mar. 2007.

35. J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi and J. Chanussot, "Hyperspectral remote sensing data analysis and future challenges", *IEEE Geosci. Remote Sens. Mag.*, vol. 1, no. 2, pp. 6-36, Jun. 2013.

36. K. Kuru, "Human-in-the-Loop Telemanipulation Schemes for Autonomous Unmanned Aerial Systems," *2024 4th Interdisciplinary Conference on Electrics and Computer (INTCEC)*, Chicago, IL, USA, 2024.

37. K. Kuru. "Use of wearable miniaturised medical devices with artificial intelligence (ai) in enhancing physical medicine," (2024): 69-69.

38. J. M. M. Anderson, "A generalized likelihood ratio test for detecting land mines using multispectral images", *IEEE Geosci. Remote Sens. Lett.*, vol. 5, no. 3, pp. 547-551, Jul. 2008.

39. N. T. Thanh, H. Sahli and D. N. Hao, "Infrared thermography for buried landmine detection: Inverse problem setting", *IEEE Trans. Geosci. Remote Sens.*, vol. 46, no. 12, pp. 3987-4004, Dec. 2008.

40. M. G. Fernández, Y. Á. López, A. A. Arboleya, B. G. Valdés, Y. R. Vaqueiro, F. L.-H. Andrés, et al., "Synthetic aperture radar imaging system for landmine detection using a ground penetrating radar on board a unmanned aerial vehicle", *IEEE Access*, vol. 6, pp. 45100-45112, 2018.

41. M. Garcia-Fernandez, Y. Alvarez-Lopez and F. L. Heras, "Autonomous airborne 3D SAR imaging system for subsurface sensing: UWB-GPR on board a UAV for landmine and IED detection", *Remote Sens.*, vol. 11, no. 20, pp. 2357, Oct. 2019.

42. M. Schartel, R. Burr, R. Bähnemann, W. Mayer and C. Waldschmidt, "An experimental study on airborne landmine detection using a circular synthetic aperture radar", *arXiv:2005.02600*, 2005.

43. M. García-Fernández, Y. Á. López and F. L. Andrés, "Airborne multi-channel ground penetrating radar for improvised explosive devices and landmine detection", *IEEE Access*, vol. 8, pp. 165927-165943, 2020.

44. K. Kuru, "Use of autonomous uninhabited aerial vehicles safely within mixed air traffic," (2023).

45. H. Liu, C. Zhao, J. Zhu, J. Ge, H. Dong, Z. Liu, et al., "Active detection of small UXO-like targets through measuring electromagnetic responses with a magneto-inductive sensor array", *IEEE Sensors J.*, vol. 21, no. 20, pp. 23558-23567, Oct. 2021.

46. K. Kuru, "IoTFaUAV: Intelligent remote monitoring of livestock in large farms using Autonomous uninhabited aerial vehicles," *Computers and Electronics in Agriculture* (2023).

47. A. M. Elsayad, F. Mubarak, H. Abdullah, M. Fahhad and N. Saad, "Advancements in passive landmine detection a multiclass approach with fluxgate sensor and machine learning models", *Proc. 41st Nat. Radio Sci. Conf. (NRSC)*, pp. 158-165, Apr. 2024.

48. Y. Zhang, X. Liao and L. Carin, "Detection of buried targets via active selection of labeled data: Application to sensing subsurface UXO", *IEEE Trans. Geosci. Remote Sens.*, vol. 42, no. 11, pp. 2535-2543, Nov. 2004.

49. Y. Mu, L. Chen and Y. Xiao, "Small signal magnetic compensation method for UAV-borne vector magnetometer system", *IEEE Trans. Instrum. Meas.*, vol. 72, pp. 1-7, 2023.

50. H. Lee, C. Lee, H. Jeon, J. J. Son, Y. Son and S. Han, "Interference-compensating magnetometer calibration with estimated measurement noise covariance for application to small-sized UAVs", *IEEE Trans. Ind. Electron.*, vol. 67, no. 10, pp. 8829-8840, Oct. 2020.

51. K. Kuru, "Technical report: Human-in-the-loop telemanipulation platform for automation-in-the-loop unmanned aerial systems," (2024).

52. L.-S. Yoo, J.-H. Lee, S.-H. Ko, S.-K. Jung, S.-H. Lee and Y.-K. Lee, "A drone fitted with a magnetometer detects landmines", *IEEE Geosci. Remote Sens. Lett.*, vol. 17, no. 12, pp. 2035-2039, Dec. 2020.

53. A. Barnawi, N. Thakur, N. Kumar, K. Kumar, B. Alzahrani and A. Almansour, "Classification of area of interest based on 2D map using segmentation for path planning of airborne landmines detection", *Proc. IEEE Int. Conf. Consum. Electron. (ICCE)*, pp. 1-6, Jan. 2023.

54. K. Kuru, D. Ansell, M. Jones, C. De Goede and P. Leather, "Feasibility study of intelligent autonomous determination of the bladder voiding need to treat bedwetting using ultrasound and smartphone ML techniques: Intelligent autonomous treatment of bedwetting", *Med. Biol. Eng. Comput.*, vol. 57, no. 5, pp. 1079-1097, Dec. 2018.

55. K. Kuru, D. Ansell, M. Jones, B. J. Watkinson, N. Caswell, P. Leather, et al., "Intelligent autonomous treatment of bedwetting using non-invasive wearable advanced mechatronics systems and MEMS sensors: Intelligent autonomous bladder monitoring to treat NE", *Med. Biol. Eng. Comput.*, vol. 58, no. 5, pp. 943- 965, Feb. 2020.

56. K. Kuru, D. Ansell, D. Hughes, B. J. Watkinson, F. Gaudenzi, M. Jones, et al., "Treatment of nocturnal enuresis using miniaturised smart mechatronics with artificial intelligence", *IEEE J. Transl. Eng. Health Med.*, vol. 12, pp. 204-214, 2024.

57. N. Caswell et al., "Patient engagement in medical device design: Refining the essential attributes of a wearable pre-void ultrasound alarm for nocturnal enuresis", *Pharmaceutical Med.*, vol. 34, no. 1, pp. 39-48, Jan. 2020.

58. K. Kuru, "Sensors and sensor fusion for decision making in autonomous driving and vehicles", 2023.

59. K. Kuru, D. Ansell, D. Jones, B. Watkinson, J. M. Pinder, J. A. Hill, et al., "IoTFaUAV: Intelligent remote monitoring of livestock in large farms using autonomous unmanned aerial vehicles with vision-based sensors", *Biosyst. Eng.*, 2024.

60. K. Kuru, D. Ansell and D. Jones, "Airborne vision-based remote sensing imagery datasets from large farms using autonomous drones for monitoring livestock", 2023.

61. K. Kuru, S. Worthington, D. Ansell, J. M. Pinder, B. Watkinson, D. Jones, et al., "Platform to test and evaluate human-in-the-loop telemanipulation schemes for autonomous unmanned aerial systems", *Proc. 20th IEEE/ASME Int. Conf. Mech. Embedded Syst. Appl. (MESA)*, pp. 1-8, Sep. 2024.

62. K. Kuru, S. Worthington, D. Ansell, J. M. Pinder, A. Sujit, B. Watkinson, et al., "AITL-WING-HITL: Telemanipulation of autonomous drones using digital twins of aerial traffic interfaced with wing", *Robot. Auto. Syst.*, vol. 180, 2024.

63. K. Kuru, D. Ansell, "Vision-Based Remote Sensing Imagery Datasets From Benkovac Landmine Test Site Using An Autonomous Drone For Detecting Landmine Locations", IEEE Dataport, September 24, 2023.

64. J. Jirigalatu, V. Krishna, E. L. S. da Silva and A. Døssing, "Experiments on magnetic interference for a portable airborne magnetometry system using a hybrid unmanned aerial vehicle (UAV)", *Geosci. Instrum. Methods Data Syst.*, vol. 10, no. 1, pp. 25-34, Jan. 2021.

65. L. E. Tuck, C. Samson, J. Laliberté and M. Cunningham, "Magnetic interference mapping of four types of unmanned aircraft systems intended for aeromagnetic surveying", *Geosci. Instrum. Methods Data Syst.*, vol. 10, no. 1, pp. 101-112, May 2021.

66. O. Maidanyk, Y. Meleshko and S. Shymko, "Study of influence of quadrocopter design and settings on quality of its work during monitoring of ground objects", *Adv. Inf. Syst.*, vol. 5, no. 4, pp. 64-69, Dec. 2021.

67. K. Kuru, "Magnetic field mapping of a landmine field using a magnetometer-integrated drone and intelligent application", 2024.

68. K. Kuru and W. Khan, "Novel hybrid object-based non-parametric clustering approach for grouping similar objects in specific visual domains", *Appl. Soft Comput.*, vol. 62, pp. 667-701, Jan. 2018.

69. N. Walsh and W. Walsh, "Rehabilitation of landmine victims—The ultimate challenge", *Bull. World Health Org.*, vol. 81, pp. 665-670, Feb. 2003.

70. S. Pati, B. K. Mishra, S. K. Bishnu, A. Mukhopadhyay and A. Chakraborty, "DroneMag: A novel approach using drone technology for detection of magnetic metal", *Proc. 7th Int. Conf. Electron. Mater. Eng. Nano-Technol. (IEMENTech)*, pp. 1-4, Dec. 2023.

71. C. Yilmaz, H. T. Kahraman and S. Söyler, "Passive mine detection and classification method based on hybrid model", *IEEE Access*, vol. 6, pp. 47870-88, 2018. **72.** K. Kuru, O. Erogul and C. Xavier, "Autonomous low power monitoring sensors", *Sensors*, vol. 21, pp. 1-2, Aug. 2021.