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1 Abstract

2 Introduction: Deep Brain Stimulation (DBS) and Motor Cortex stimulation (MCS) are 

3 invasive interventions in order to treat various neuropathic pain syndromes such as Central 

4 Post-Stroke Pain. While each treatment has varying degree of success, comparative analysis 

5 has not yet been performed, and the success rates of these techniques using validated, 

6 objective pain scores have not been synthesised. 

7 Methods: A systematic review and meta-analysis was conducted in accordance with PRISMA 

8 guidelines. Three databases were searched, and articles published from January 2000 October 

9 2024 were included (last search date 25 October 2024). Meta-Analysis was performed using 

10 random effects models. We evaluated the performance of DBS or MCS by assessing studies 

11 that reported pain relief using Visual Analogue Scale (VAS) or Numerical Rating Scale 

12 (NRS) scores. 

13 Results: Of the 478 articles identified, 32 were included in the analysis (330 patients- 139 

14 DBS, & 191 MCS). The improvement in mean VAS score for patients that underwent DBS 

15 post-surgery was 48.6% compared to a score of 53.1% for patients that had MCS. The pooled 

16 number of patients who improved after DBS was 0.62 (95% CI, 0.51-0.71, I2=16%). The 

17 pooled number of patients who improved after MCS was 0.64 (95% CI, 0.53-0.74, I2=40%). 

18 Conclusion: The use of neurosurgical interventions such as DBS and MCS are last-resort 

19 treatments for Central Post-Stroke Pain, with limited studies exploring and comparing these 

20 two techniques. While our study shows that MCS might be a slightly better treatment option, 

21 further research would need to be done to determine the appropriate surgical intervention in 

22 the treatment of Central Post-Stroke Pain.

23

24
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1

2

3 INTRODUCTION

4 Central Post-Stroke Pain (CPSP) is one of the most challenging and distressing complications 

5 that stroke survivors face during recovery, affecting approximately 10-39% of stroke patients 

6 [12,18]. The onset of CPSP typically occurs within 1 to 3 months following a stroke, with the 

7 majority of cases manifesting symptoms by 6 months [13]. This condition is characterized by 

8 chronic pain resulting from damage to the central nervous system, which severely impacts 

9 patients’ quality of life. The duration of CPSP can be chronic, lasting for months or even 

10 years after the initial stroke event. Studies suggest that CPSP affects approximately 8% to 

11 35% of stroke patients, with pain often persisting long after the stroke[6]. The type of pain in 

12 CPSP is typically described as sharp, paroxysmal, and often localized to the hemiplegic side, 

13 though some patients report a more diffuse pain experience[63]. Research indicates that stroke 

14 survivors with chronic pain often exhibit higher levels of depression and anxiety, which can 

15 exacerbate pain perception and complicate treatment[18].

16 Currently, pharmacological treatments, such as anticonvulsants (e.g., gabapentin), selective 

17 serotonin reuptake inhibitors (SSRIs), and antidepressants like amitriptyline, are commonly 

18 used to manage CPSP. However, these medications are often associated with significant side 

19 effects, especially at higher doses, and many patients are unable to tolerate these treatments 

20 [27]. As a result, there is a growing need for alternative therapeutic options.

21 In recent years, invasive neuromodulation techniques have emerged as promising alternatives 

22 to manage CPSP, with Deep Brain Stimulation (DBS) and Motor Cortex Stimulation (MCS) 

23 at the forefront of innovative interventions [17]. Both techniques involve the application of 

24 electrical impulses to specific brain areas, aiming to modulate neural circuitry and provide 
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1 relief from chronic pain.  However, the targeting areas for both interventions are different.  In 

2 MCS,  two electrode leads are placed over the motor and sensory cortices, while in DBS 

3 surgery, deeper located brain structures are targeted, such as the ventral posterolateral (VPL) 

4 and ventral posteromedial (VPM) nuclei of the thalamus , the periventricular and 

5 periaqueductal grey matter (PVG/PAG), or the rostral anterior cingulate cortex (ACC) [15]. 

6 While some studies have showcased this potential benefit, pooled comparative analysis has 

7 not yet been performed and the success rates of these techniques using validated, objective 

8 pain scores have not been synthesised. In this systematic review and meta-analysis, we aim to 

9 analyse the effect on pain relief offered by MCS and DBS on patients with Central Post-

10 Stroke Pain using clearly defined outcomes.

11

12

13

14

15

16

17

18 MATERIAL AND METHODS

19 Search strategy and selection criteria 

20 We conducted this systematic review and meta-analysis according to the Preferred Reporting 

21 Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines [55].
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1 We searched PubMed, Embase and Medline database of systematic reviews for full-text 

2 articles published in English (Search date 25th October2024). Search terms used a combination 

3 of the terms ‘Central Post-Stroke Pain’, ‘Deep Brain Stimulation’ and ‘Motor Cortex 

4 Stimulation’, and their associated synonyms. The full search strategy for all databases can be 

5 found in Supplementary Tables 1-3. The Population, Intervention, Comparator, Outcome, 

6 Study Design (PICOS) criteria was used (Supplementary table 4). Furthermore, excluded 

7 reviews and the reference list of retrieved articles were cross-referenced for enriching and 

8 completing the included database. We included studies of adults (≥18 years) that specifically 

9 mentioned the use of either DBS or MCS for the treatment of CPSP. We excluded studies that 

10 reported exclusively paediatric populations, and studies that examined other forms of 

11 neuropathic pain such as trigeminal neuralgia, diabetic and peripheral neuropathy.  We 

12 excluded studies that were conference abstracts or if the primary language was not English.  

13 Two reviewers (SK, CSG) independently screened titles, abstracts and full texts to include 

14 articles. If reviewers failed to reach consensus, a third author was sought for clarification. 

15 Data extraction 

16 Data extraction was completed by two authors independently (SK, CSG). The following data 

17 were extracted from included studies: Year published, journal, type of study (Randomized 

18 Control Trial [RCT] or observational study), single/multi centre, number of patients with 

19 CPSP, and number of these patients that underwent either MCS or DBS, number of patients 

20 that saw an improvement in pain, mean postoperative Visual Analogue Scale (VAS) or 

21 Numerical Rating Scale (NRS) scores and mean follow up time.  The VAS or NRS score was 

22 used as primary outcome metric in this study, offering a validated and standardized measure 

23 of pain intensity; the scale in each study was measured in 0-10. Any study that did not report 

24 individual patient NRS/VAS improvement scores were excluded.
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1

2

3 Risk of Bias Assessment 

4 Risk of bias assessment was completed by two reviewers independently (SK, CSG). 

5 Retrospective studies were classified according to the Newcastle- Ottowa Scale 

6 (NOS)[52][69]. NOS is a tool used to assess the quality of non-randomized studies, 

7 particularly cohort and case-control studies. Evaluation is based on three broad criteria: 

8 Selection, Comparability, and Outcome (for cohort studies) or Exposure (for case-control 

9 studies). Each of these criteria includes several sub-criteria, with points awarded to studies 

10 based on how well they meet each criterion.

11 Statistical analysis

12 Baseline characteristics were presented as descriptive frequencies. For meta-analysis, we used 

13 random effects models of variables and endpoints, with pooled proportions used for the 

14 reduction of pain scores using VAS as a continuous outcome measure. We evaluated the 

15 performance of DBS or MCS by assessing studies that reported pain relief using VAS or NRS 

16 scores. Pain improvement was defined as a reduction of 30% on the VAS or NRS score. 

17 This is considered clinically significant, as previous studies have indicated that reductions in 

18 pain scores of around 30–40% are needed to reflect clinically useful improvements [9,40]. 

19 The 30% cut-off for defining improvement was consistently applied across all studies 

20 included in this analysis.

21

22

23
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1 The total number of patients in each study, along with the number of patients who 

2 experienced pain improvement of  30%, was extracted. These data were then pooled by 

3 calculating proportions representing the percentage of patients experiencing clinically 

4 significant pain relief. The pooled proportions were aggregated across studies using random 

5 effects models to provide an overall estimate. A 95% confidence interval (CI) was calculated 

6 to account for study variability and quantify the uncertainty around the estimated proportions. 

7 This approach allowed us to evaluate the clinical effectiveness of the interventions across 

8 different studies, providing a measure of precision for the pooled estimates and reflecting the 

9 range within which the true proportion is expected to lie 95% of the time.

10 We carried out an additional sensitivity analysis by selectively removing studies at high risk 

11 of bias, then re-running the meta-analysis.

12  Data analysis of descriptive statistics was performed using the software Statistical Package 

13 for the Social Sciences (version 27; IBM; Armonk; NY). R statistics (Rstudio Version 4.0.1) 

14 was used to perform a meta-analysis and create figures, forest, and funnel plots (ggplot2 and 

15 meta-packages).

16 For each random effects model, we tested heterogeneity using the maximum restricted 

17 likelihood estimator. Prevalence was calculated using pooled proportions methods using the 

18 inverse variance method. The I² statistic was used to quantify the percentage of total variation 

19 across studies that is due to heterogeneity rather than chance [26]. I² values were interpreted 

20 as follows: 0–25%: Low heterogeneity, 26–50%: Moderate heterogeneity, >50%: Significant 

21 heterogeneity [25]. Heterogeneity was considered significant when I² > 50% and the P-value 

22 < 0.1. In cases of significant heterogeneity, further investigation was conducted to explore the 

23 sources of variability among studies. Publication bias was assessed using Egger’s test and by 

24 inspection of funnel plots.
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1 Sensitivity analysis

2 Further analysis was performed by including studies with a minimum of only 5 patients in 

3 order to assess if there was any impact on the overall results.  

4 RESULTS

5 Study details

6 After removal of duplicates, 97 studies were identified. After full-text assessment, 37 full-text 

7 studies were assessed for inclusion and were finally included, shown in Figure 1 

8 (Supplementary table 5). In total, 32 studies were included in the meta-analysis, after 

9 removing five case reports

10

11 Baseline characteristics

12 The baseline characteristics of included studies are summarized in Table 1 with a total 

13 number of 330 patients. The most common country of published studies was the United 

14 Kingdom (26.3%%, n=10). Among the 32 studies included, 16 studies explored the effects of 

15 DBS and 16 studies the outcome of MCS. Mean follow up for DBS studies was 18.7 months. 

16 For MCS studies, seven studies reported a follow-up time, with a mean of 22.3 months.

17

18

19

20 Effect of MCS and DBS on VAS pain relief
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1 The analysis of Sixteen MCS studies involving a total of 195 patients 

2 [12,14,21,24,27,29,39,44,45,48,61,65,66,71,78,82], revealed that 0.62 (95% CI: [0.53-0.74], 

3 I² = 40%) experienced pain improvement after undergoing MCS (Figure 2).

4

5

6

7

8 Among the sixteen DBS studies included that could be pooled for the meta-analysis 

9 [1,7,8,20,22,28,32,37,41,42,46,53,54,57,60,67], the number of patients who have shown an 

10 improvement out of each cohort is presented in figure 3. The pooled proportion of patients 

11 whose pain scores improved after DBS was 0.62 (95% CI, 0.51-0.71, I2=16%). 

12

13 Further analysis was conducted based on the stimulation target. Majority of the studies 

14 (10/16) targeted the PVG and ventral posterolateral thalamic nucleus (VPL) in 108 patients 

15 (Figure 4A). Across these studies, two electrodes are placed, one each in the PVG and VPL 

16 unilaterally. The placement of the electrodes is contralateral to the pain affected regions.

17

18 The remaining studies targeted the anterior cingulate cortex (ACC) in 11 patients , and the 

19 posterior limb of the internal capsule (PLIC) in 10 patients. 6 patients in the centromedian–

20 parafascicular nucleus were also included[1].  No significant conclusion regarding the optimal 

21 site for pain reduction could be made due to the fewer number of studies and smaller sample 

22 size (Figure 4B).

Page 9 of 43

Official Journal of the American Academy of Pain Medicine

Pain Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/painm

edicine/advance-article/doi/10.1093/pm
/pnaf001/7951886 by bellvitge user on 13 January 2025



10

1

2 Sensitivity analysis

3 In DBS , twelve studies met the criteria for sensitivity analysis compared to thirteen MCS 

4 studies. Removing four studies (Pereira et al 2007, Kim et al 2012, Hunsche et al 2013 & Son 

5 et al 2014) [28,57,67]studies reduced the improvement in pain relief post DBS implantation to 

6 0.59 (95% C1: 0.48-0.69, p=0.24) from 0.624 (95% CI: 0.51-0.71, p=0.27). This was similar 

7 for the MCS cohort where the removal of three studies (Yamamoto et al 2007, Delavallée et al 

8 2008 & Ngyuen et al 2008) [12,45,78], reduced the improvement in pain relief to 0.63 (95% 

9 C1: 0.52-0.72, p<0.05) from 0.64 (95% CI: 0.53-0.74, p=0.05) (Supplementary Figure 1-2).

10 Egger’s test

11 The potential for publication bias in this meta-analysis was assessed using a funnel plot and 

12 Egger’s regression test. The funnel plot demonstrated a symmetrical distribution of study 

13 effect sizes around the central line, indicating no obvious visual signs of asymmetry (Figure 

14 5) . To statistically evaluate this, Egger’s test was performed, yielding a non-significant result 

15 (t = 0.81, df = 17, p = 0.4297). This p-value, which is well above the conventional threshold 

16 of 0.05, suggests no statistically significant asymmetry in the funnel plot. Consequently, these 

17 findings provide no strong evidence of publication bias within the studies included in this 

18 analysis. Thus, it can be reasonably concluded that the results of this meta-analysis are 

19 unlikely to be influenced by publication bias. Four studies were excluded from the Egger’s 

20 test due to missing standard error.

21

22

23
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1  Risk of Bias

2 The Risk of bias for retrospective cohort studies, using the Newcastle-Ottawa Scale. The 

3 mean score for all studies was 7.5 (out of a total maximum score of 9), and 5 studies were 

4 classified as high risk of bias (Figure 6). 

5

6 Discussion

7 This systematic review and meta-analysis is the first to pool the effect of MCS and DBS in 

8 patients with CPSP. By assessing the 32 studies, we found that MCS has an improvement in 

9 pain in 64.3% (123/191) of the patients and 62.5% (87/139) in patients receiving DBS. 

10 Patients that underwent MCS had a mean VAS improvement of 53.1% compared to 48.6% in 

11 patients that underwent DBS. 

12 Several theories about CPSP have been proposed. It is believed that CPSP could be caused by 

13 an imbalance between the paleospinothalamic (affective-emotional) and neospinothalamic 

14 (sensory-discriminative) pathways. Evidence indicates that impaired spinothalamic tract 

15 function is related to the pathogenesis of CPSP[51]. It has been hypothesized that MCS 

16 decreases thalamic hyperactivity by inducing corticothalamic connections [75,76]. However, 

17 the role of N-methyl-D-aspartate (NMDA) receptors and GABAergic interneurons has also 

18 been proposed as an interesting aspect of the potential mechanism in MCS [3,13,38]. 

19 Repetitive Transcranial Magnetic Stimulation (rTMS) of the motor cortex has shown 

20 restoration of intracortical inhibition in neuropathic pain patients, where the degree of pain 

21 relief correlates with the amount of restoration of inhibition [35]. Additionally, activation of 

22 the endogenous opioid descending system and alterations in the limbic system are described 

23 as potential mechanisms in MCS [19,58]. 
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1 As in MCS, the precise pain-relieving effect of DBS remains incompletely elucidated. The 

2 main difference between DBS and MCS is that the effect ensured through stimulation in DBS 

3 varies depending on the targeted brain area. Pain improvement in VPL/VPM thalamus DBS 

4 could be caused by the alteration of the balance of excitatory and inhibitory neurotransmitters 

5 within the pain pathways [2,64], which partly aligns with the potential underlying 

6 mechanisms of MCS. Stimulating the PVG and PAG will result in releasing endogenous 

7 opioid peptides with a decrease in activity of nociceptive signal-transmitting neurons [2,64] . 

8 An alteration of the emotional and cognitive aspects of chronic pain is suggested when 

9 stimulating brain targets of the limbic system, such as the ACC [2,64]. The lack of insight in 

10 the underlying mechanisms of DBS and MCS, as well as the pathophysiology of CPSP, 

11 illustrates the complexity of this pain syndrome and the need for a multidimensional approach 

12 in pain modulation therapies. 

13 While the literature is limited on the direct comparison of DBS vs MCS on CPSP, several 

14 studies have scrutinized its efficacy individually. A study by Owen et al, (2007) examined the 

15 effect of DBS on 47 patients with  CPSP and found a mean improvement in VAS score of 

16 59%[53]. Studies have found varying results with mean VAS pain relief of between 38.1%-

17 68.4%[16,20,32]. However, determinant factors should be taken into consideration, such as 

18 heterogeneity in terms of targeted areas: PVG and VPL were the most common sites with 2 

19 studies targeting the ACC and 1 study each targeting the PLIC. Studies looking at the effect of 

20 MCS are limited in comparison with DBS. A study by Zhang et al (2018) looked at the effect 

21 of MCS on 16 patients with CPSP and found a mean improvement in VAS score of 42.3% 

22 [82]. Similar to patients who underwent DBS surgery, MCS has been shown to improve VAS 

23 scores by 40 – 63.8%.[47,71].

24 A study by Nandi et al. (2002), analysed  the use of MCS and VPL/PVG DBS on patients 

25 with CPSP. This study concluded that while MCS offers better pain relief, this varies between 
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1 patients and is inconsistent in the long-term outcome [43]. Another study by Katayama et al 

2 (2002), found that a greater proportion of MCS patients experienced pain relief compared to 

3 ventral caudalis (VC) DBS patient [30]. Both studies indicated that DBS is a simpler 

4 procedure and generally better tolerated in patients.

5 Similar results were also found in studies comparing MCS vs DBS in other forms of 

6 neuropathic pain. Son et al. (2014), directly analysed  MCS and DBS in the same eight 

7 patients with chronic intractable neuropathic pain. MCS was successful in reducing pain in 

8 6/8 compared to 2/8 in DBS. [68]

9 While our results vary slightly with the current literature on mean VAS score, this could be 

10 attributed to various factors such as a larger total population of 330 pooled into the analysis, 

11 with other studies varying between 6-47 patients. As previously mentioned, the site of DBS 

12 insertion is key and could have played an important  role in the heterogeneity of the 

13 population.

14

15

16 Clinical and research implications

17 Our results have several implications for research and clinical practise. The slightly better 

18 success of MCS, solely based on pain scores, could aid clinicians in determining its 

19 appropriate use. However, multiple factors should be taken into account before utilizing MCS 

20 over DBS as a last-resort treatment for CPSP, including the risk profile, side effects, and 

21 patients’ medical history. 

22 The practical implications, such as treatment cost, could play a crucial role in determining the 

23 most suitable intervention, given the similar success-rates. While there are currently no 
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1 studies directly comparing the cost-effectiveness of DBS and MCS for neuropathic pain, a 

2 cost analysis study by Zaghi et al. (2009) indicated that MCS incurs significant initial 

3 expenses, estimated at $42,000.00. After 1-year of follow-up, with monthly visits to assess the 

4 parameters and configurations, the total cost of treatment is estimated to be around 

5 $45,600.00[80]. In comparison, an analysis by Bishay et al. (2024) of DBS costs across 

6 various disorders, neuropathic pain not included, estimated an inflation- and currency-

7 adjusted mean cost of $40,942.85  $17,987.43 for total DBS surgery. The initial cost of DBS 

8 treatment increases to $47,632.22  $23,067.08 after 1-year of follow-up [5]. Regardless, this 

9 is not a direct in-depth cost-effectiveness analysis between MCS and DBS for CPSP. It 

10 provides an impression of the estimated total costs for both interventions, including the first 

11 year of intensive follow-up.    

12 Follow-up care is essential for optimising treatment outcomes in both interventions. Although 

13 the nature and intensity of follow-up can vary significantly within patients. The “trial and 

14 error” approach to programming different configurations and parameters in patients treated 

15 with MCS or DBS is time consuming and patient specific. Therefore, novel research on 

16 investigating connectivity-based predictive models could potentially address these challenges. 

17 A personalized approach that optimizes configuration and parameters to target specific brain 

18 networks may improve the future application of MCS or DBS in the treatment of CPSP. 

19 Generally, DBS is considered more invasive than MCS. This procedure involves the 

20 implantation of electrodes into deeper brain regions, while MCS requires electrode placement 

21 on the surface of the dura mater. Nevertheless, a craniotomy has been carried out over the 

22 Rolandic region for appropriate placement in MCS, whereas a burr hole approach is used in 

23 DBS surgery. 
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1 Although MCS and DBS are distinct procedures, adverse events appear to be rare and 

2 manageable. Potential adverse effects following DBS and MCS surgery include seizures, 

3 hematomas, infections, headaches and hardware malfunction. Additionally, some 

4 complications are procedure specific, such as epidural fibrosis, electrode migration, and 

5 effusion formation are associated with MCS surgery [59]. In DBS, the side effects are more 

6 location dependent, such as paraesthesias, muscle spasms, and phosphenes. Side effects could 

7 also occur at accustomed therapeutic voltages, the electrode leads therefore should be 

8 repositioned into a slightly altered location [70]. The aforementioned findings highlight that 

9 while DBS and MCS are effective therapies for chronic neuropathic pain, careful and accurate 

10 post-surgical management is not only required for optimizing result, but also cost-

11 effectiveness and minimizing the risk of adverse events. 

12 In contrast to the invasive nature of DBS and MCS, non-invasive brain stimulation (NIBS) 

13 techniques have been investigated to adjust the excitability of specific functional brain 

14 regions[31,72]. The most prevalent utilized NIBS techniques in clinical setting are 

15 transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). 

16 Research indicates that rTMS can effectively reduce neuropathic pain. A study demonstrated 

17 that rTMS targeting the motor cortex resulted in significant pain relief for patients suffering 

18 from refractory neuropathic pain[74].  The mechanism described by which rTMS alleviates 

19 pain is thought to involve modulation of cortical excitability and restoration of normal brain 

20 function in pain processing pathways[56]. A clinical trial found that anodal tDCS applied to 

21 the motor cortex significantly ameliorated chronic pain and reduced intracortical inhibition, 

22 suggesting a potential mechanism for its analgesic effects[4].  While there is no study directly 

23 comparing the effect of NIBS on CPSP, a recent meta-analysis on sensory function recovery 

24 in stroke patients showed that both tDCS and rTMS significantly outperformed control 
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1 conditions. NIBS was beneficial in the acute and subacute phases of stroke, while a moderate 

2 effect was observed in chronic stroke patients [11]. 

3 Although rTMS currently has been described as a predictive factor for MCS, the application 

4 of NIBS treatments could potentially being integrated in the treatment of CPSP after warrant 

5 future research. Moreover, the integration of individualized treatment protocols is likely to 

6 play a crucial role in the future of non-invasive neuromodulation[36]. Current research 

7 suggests that the same stimulation parameters may not yield uniform effects across different 

8 individuals due to variations in brain anatomy and neurophysiology [77]. Personalized 

9 approaches, such as adjusting stimulation intensity and targeting specific brain regions based 

10 on individual patient profiles, could enhance treatment outcomes and minimize side 

11 effects[10].

12 Though we analyse the efficacy of DBS and MCS on patient outcome there are certain aspects 

13 that need to be addressed. The success of MCS could be due to fewer studies present on this 

14 topic and the impact of information bias would need to be considered. Various factors 

15 impacting pain relief such as severity and location of stroke, age, and social habits could have 

16 an impact on the overall outcome [23,50]. Studies have also shown that coping strategies such 

17 as social support can influence the effect of pain relief [62,79]. A cross-sectional study found 

18 that access to a trusted healthcare professional, living with pain for ≥10 years and 

19 polypharmacy had a significant effect on the amount of pain relief  [81].

20

21 Limitations

22 This study has several limitations. Firstly, all studies included were retrospective, precluding 

23 pooled analysis of prospective studies. In addition, the region of the brain where DBS was 

24 performed is heterogeneous and could have impacted the effect of pain relief. In MCS, the 
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1 variety of surgical approaches over time and the exact location of the electrode leads could 

2 influence the level of pain relief due to the lack of a standardised protocol. In this meta-

3 analysis, only pain scores have been considered, whereas in pain research, Quality of Life 

4 (QoL) and medication use is at least as important.  We also excluded full-text papers not 

5 available in English, restricting paper eligibility. 

6

7 Conclusion

8 The use of neurosurgical interventions, such as DBS and MCS, are a propitious field for the 

9 treatment of CPSP, with limited studies exploring and comparing these two techniques. 

10 While our study suggests a modest improvement in pain scores with MCS over DBS in 

11 patients suffering from CPSP, these findings should be viewed as preliminary. Pain scores 

12 alone is insufficient to establish MCS as a definitively superior or non-inferior treatment 

13 option compared to DBS. Further factors such as cost-effectiveness in pain treatment, long-

14 term efficacy and multi-dimensional functional outcomes would need to be assessed in order 

15 to determine the appropriate surgical neuromodulation for CPSP.

16
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1 Figure Legends

2 Figure 1. PRISMA Flow diagram, of study selection for inclusion in this review and meta-

3 analysis.

4 Figure 2:  Forest plot showcasing VAS improvement after MCS using and random effects 

5 models.

6 Figure 3:  Forest plot showcasing VAS improvement after DBS using random effects models.

7 Figure 4 A: Forest plot showcasing VAS improvement in studies targeting the PVG/VPL 

8 using   random effects models.

9 Figure 4B: Forest plot showcasing VAS improvement in various other targets using   random 

10 effects models.

11 Figure 5: Funnel plot assessing publication bias.

12 Figure 6: Risk of Bias using the Newcastle-Ottowa Scale

13

14

15

Page 25 of 43

Official Journal of the American Academy of Pain Medicine

Pain Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/painm

edicine/advance-article/doi/10.1093/pm
/pnaf001/7951886 by bellvitge user on 13 January 2025



Characteristic N (%)

Country of Origin

UK 10 (26.3%)

France 5 (13.1%)

USA 4 (10.5%)

Germany 3 (7.9%)

Japan 3 (7.9%)

Italy 2 (5.3%)

China 2 (5.3%)

Poland 2 (5.3%)

Russia 1 (2.6%)

Belgium 1 (2.6%)

Netherlands 1 (2.6%)

Canada 1 (2.6%)

South Korea 1 (2.6%)

Switzerland 1 (2.6%)

Study design

Retrospective 33 (100%)

Total Number of patients 330

Total Number of improved patients 210

DBS

Number of patients 139

 Number of patients showed improvement 

in pain relief

87 (62.5%)
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Mean VAS score improvement post-surgery  48.6% (±13.42%)

Mean follow up time in months (Standard 

deviation)

 18.67 (±13.52)

MCS

Patients 191

 Number of patients showed improvement 

in pain relief

123 (64.3%)

Mean VAS score improvement post-surgery  53.17% (±9.27%)

Mean follow up time in months (Standard 

deviation)

22.3 (±10.1)

Page 27 of 43

Official Journal of the American Academy of Pain Medicine

Pain Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/painm

edicine/advance-article/doi/10.1093/pm
/pnaf001/7951886 by bellvitge user on 13 January 2025



For Review Only

 

Figure 1: PRISMA flowchart detailing the selection process of studies included in this systematic review and 
meta-analysis. 
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Figure 2: Forest plot demonstrating the pooled effect size for improvement in Visual Analog Scale (VAS) 
scores following Motor Cortex Stimulation (MCS), analysed using random effects models to account for 

between-study variability. 
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Figure 3: Forest plot summarizing the improvement in Visual Analog Scale (VAS) scores achieved after Deep 
Brain Stimulation (DBS), with random effects modelling to address heterogeneity among studies. 
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Figure 4A: Forest plot highlighting the improvement in VAS scores observed in studies focusing on 
stimulation of the periventricular grey (PVG) and ventroposterolateral nucleus (VPL), analysed through 

random effects models to estimate the combined effect size. 
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Figure 4B: Forest plot presenting the pooled VAS improvements from studies targeting alternative brain 
regions, evaluated using random effects models to incorporate variability across studies. 
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Figure 5: Funnel plot assessing the presence of publication bias in the included studies, offering insight into 
the symmetry of study effects and potential reporting biases. 
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Figure 6: Risk of bias evaluation for included studies, conducted using the Newcastle-Ottawa Scale to assess 
methodological quality and validity. 
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