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A B S T R A C T

Ammonium polyphosphates (APP) are widely used as nontoxic, biodegradable additives for food, fire retardancy
and fertilisers. APP has been shown to exist in six distinct phases, APP–I to APP–VI. Commercial products
identified as APP may contain one or more of these phases. Direct synthesis routes to APP involve condensation
of monoammonium phosphate or diammonium phosphate with urea or melamine as condensing agents, while
indirect synthesis can be obtained by interconversion of one APP phase to another. The most important chemical
properties for APP as a fertiliser are nitrogen and phosphorus content, water solubility, hydrolytic stability, and
chelating properties (sequestering trace metals). For fire protection, chemical properties such as low water
solubility or high hydrolytic stability, compatibility with polymers in plastics or coating formulations, thermal
stability and promotion of crosslinking are beneficial. As food additive, low toxicity and water–binding ability
are vital. This work found that few studies report on degree of polymerisation, particle size distribution, chain
branching, phase, crystallinity or purity of APP, despite APP being the main functionalising additive in specific
systems. It was found that some phases of APP (especially APP–III, IV, and VI) remained relatively uncharac-
terised, but development of new synthetic routes, and improved characterisation, opens new possibilities for
commercial exploitation. The unsystematic terminology used to describe these phosphates is addressed in a
glossary.

1. Introduction

Ammonium polyphosphate (APP) is an inorganic polymer with
versatile applications from enhancing material fire safety to providing
nutrients to support agricultural practices. Examples of common appli-
cations of APP include fertilisers, fire–safe electronics, frozen meat ad-
ditives, water treatment, high–end materials for luxury boats and
aviation, fire–resistant coatings for load–bearing steel structures, fire-
proofing textiles, and wood products. In 2023, the global market for APP
was estimated at USD 1.9 billion with a potential to reach USD 2.7
billion by 2029 [1,2]. In 2021, 48 000 kt phosphorus pentoxide (P2O5)
equivalents were consumed worldwide, of which 23 000 kt were
ammonium phosphate [3]. Despite APP’s importance, there is little
consensus on nomenclature or characterisation, with morphology,
crystallinity, particle size and its distribution, chemical purity, water
solubility, chain length, or chain-branching often left unspecified.
Hence, a systematic review on APP’s chemical and physical properties is
needed to bridge the gap in current literature. In contrast to earlier re-
views in the field [4–9], the focus is on chemical and physical property

requirements for APP fertiliser and fire retardancy applications. A re-
view is particularly relevant as the number of publications on APP has
intensified. Using the Scopus® database (end of June 2024) showed
2494 publications when using the search criteria (“Ammonium poly-
phosphate” OR “APP”) AND ((fire OR flame) AND retardant*) in the
title, abstract and keywords. Fig. 1 shows the number of publications
divided into coatings and polymers over the preceding 50 years. It is
apparent from Fig. 1 that around a fifth of the publications relate to
coatings development (searching for ((“Ammonium poly-
phosphate” OR “APP”) AND ((fire OR flame) AND retardant*) AND -
coating*) found 465 documents) with the remainder assumed to cover
solid polymers and textiles. 653 of the publications covered poly-
propylene; 376 epoxy resins; 314 polyurethanes; 172 polyesters; and
443 textiles, fibres or fabrics. In contrast, there were only 352 publica-
tions on APP and fertilisers. These numbers suggest that fire protection is
the largest field of APP research, or possibly that APP compounds go by
other names in different research fields.

Thus, this review starts with a clarification of APP nomenclature and
structure, followed by a condensed historical overview of its discovery
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and development. Next, a brief overview of the synthetic routes to the
various APP phases is presented. Having established the background, the
main section on chemical properties of APP relevant to the industrial
applications are described. Subsequently, tailoring APP to meet specific
needs is described, alongside ongoing developments, with future chal-
lenges including limited phosphate rock reserves. Finally, a glossary has
been compiled to aid the reader with the unsystematic nomenclature
applied in this field.

2. Nomenclature and structure

Phosphates can be named according to their average degree of
polymerisation (DP). The repeating unit (monomer) is orthophosphate
PO4

3- (Fig. 2, 1). Linking two monomers linearly by joining corner
O–atoms in the PO4 tetrahedra forms the dimer pyrophosphate P2O7

4-

(sometimes diphosphate), and linking three monomers the trimer
triphosphate P3O10

5- , is obtained (Fig. 2, 2 and 3, respectively). A gener-
alized structure is given in Fig. 2, 5 that covers four to twenty monomer
units (n= [2…18]) are termed oligophosphates, and chains above twenty
monomer units (n > 18) are termed polyphosphates. The oligomer and
polymer can have different structures: metaphosphate refers to cyclic
phosphates (IUPAC: cyclophosphates) [4,5] of which dimetaphosphate
P2O6

2- (Fig. 2, 6) and trimetaphosphate P3O9
3- (Fig. 2, 7) are the simplest

cyclic phosphates [6]; polyphosphates are linear, flexible chains of PO4
tetrahedra; ultraphosphates are branched or crosslinked polyphosphates
(Fig. 2, 11 or 12, respectively) containing at least one tertiary phos-
phorus atom linked via oxygen atoms to three other phosphorus atoms
[4,5].

Historically, both polyphosphate and ultraphosphate were termed
metaphosphate as long–chain polyphosphates had approximately the
same empirical formula as ring structures, (PO3)nn–

. The identity of the
cation is added to the phosphate chain for inorganic salts, such as
ammonium polyphosphate with NH4

+ counter ions. The monosubstituted
monomer ((NH4)H2PO4, IUPAC: ammonium dihydrogenphosphate) is
named monoammonium phosphate (MAP). The disubstituted monomer
((NH4)2HPO4, IUPAC: diammonium hydrogen phosphate), is named
diammonium phosphate (DAP), and the trisubstituted monomer
((NH4)3PO4, IUPAC: ammonium phosphate), is named triammonium
phosphate (TAP). MAP, DAP, and TAP are illustrated in Fig. 3. The
polyphosphates ((NH4)n+2PnO3n+1) are collectively named ammonium
polyphosphate (APP) [10].

However, different scientific fields have deviated from the system-
atic nomenclature and introduced field–specific nomenclature. In agri-

cultural research, MAP (sometimes ADP, for ammonium dihydrogen
phosphate) and DAP are the established abbreviations, while poly-
phosphate covers all ammonium phosphates with DP > 3. Further, su-
perphosphate covers a specific commercial phosphate–based fertiliser
consisting mainly of Ca(H2PO4). In cell biology PolyP or Pi (i: inorganic)
covers all linear polyphosphates, often as a general term without
defining DP, morphology etc. Within fire retardant chemistry a phase
number (APP–I to APP–VI) is given to APP to indicate its identity, based
on chain length, different unit cells, and parameters obtained from
X–ray diffraction (i.e. crystal structure) [11–13]. APP–I consists of
crystalline linear polyphosphate (Fig. 4, 16) with DP < 100 [4]. For DP
= 30 to 50, reported orthorhombic unit cell parameters are a = 14.500
Å, b = 24.590 Å, and c = 4.580 Å [13,14]. APP–II is a cross–linked
ultraphosphate (Fig. 4, 17) with DP > 1000 [15] that crystallises in the
space group P212121 with the orthorhombic unit cell dimensions of a =

4.256 Å, b = 6.475 Å, and c = 12.04 Å. For APP–III no pure phase has
been isolated. APP–IV crystallises with the monoclinic unit cell param-
eters a= 14.5 Å, b= 4.62 Å, c= 11.0 Å, and β = 100◦. APP–V crystallises
with the orthorhombic unit cell parameters a = 4.346 Å, b = 6.135 Å,
and c = 13.646 Å [11,16]. Finally, APP–VI has a triclinic unit cell with a
= 7.687 Å, b = 15.112 Å, and c = 4.845 Å, but is difficult to produce in
high purity [13]. GPC and NMR analysis show that APP–I is a rigid,
linear polyphosphate with ammonium counter ions. The molecular
structure of APP–II is hypothesised to be a chain spheroid with the ionic
bonds wrapped inside the crystal structure (Fig. 4, 17 and 18). Chemi-
cally, APP–V is similar to APP–II (shown by similar FTIR spectra and
solubility), but depending on synthesis route, with triazine rings from
melamine in the APP backbone (suggested structure shown in Fig. 4, 18)
[12,17].

Note that attention to the context often allows the APP phase to be
identified. When APP is a commercial fertiliser or food additive [18] it is
APP–I, but when it is an additive fire retardant for plastics or coatings, it
is APP–II [8]. In general, these are the two commercially phases readily
available. However, DP, morphology, and crystal phase must in most
cases be deduced from the application.

As shown, there are different naming conventions across different
application fields and scientific disciplines. In this work the naming will
be MAP, DAP, TAP, and APP. When APP is explicitly named, this refers
to polyphosphates with DP > 20. The reader is referred to the glossary
provided at the end of this paper for a more complete overview of
terminology.

Fig. 1. Number of publications shown in Scopus® over the last 50 years on the applications of APP as a flame or fire retardant for polymers and coatings.
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3. Discovery and development

The application of MAP as a fire retardant was first reported in 1821
by Gay–Lussac [19] with the discovery that a mixture of MAP, ammo-
nium chloride, and borax provided flame inhibition when impregnated
into fabrics of linen, jute, and hemp. It was concluded that the
impregnation either decomposed into non–flammable vapours or
formed a glassy layer [20]. However, condensation reactions using MAP
as monomer proved challenging as MAP released its ammonia upon
heating without polymerising. In 1892, the first successful condensation
reaction resulted from heating DAP to give a water–insoluble ammo-
nium oligophosphates with an empirical formula equivalent to DP
around 10 [21]. It was further discovered that by immersing the product
in lukewarm water, the structure hydrolyses to oligophosphates with DP
around five. Even though no progress was made on APP synthesis routes
until World War II, the application of MAP and DAP for fire protection
continued. The research on fire retardant phosphorus salts from 1900 to
1968 is covered in detail in John Lyons’ classic book on fire retardants
[22]. By 1915, the US Department of Agriculture, Forest Products Lab-
oratory (FPL) has tested various timber additives for their fire–retardant
properties [23]. Until the 1930 s, FPL experimented systematically on
wood treatment with inorganic salts. Of the 70 chemicals tested, they

reported four positive results for phosphoric acid, mono magnesium
phosphate, MAP, and DAP [24–26], as described by Lyons [22].
Simultaneously, the development of synthetic ammonia (Haber–Bosch)
and ammonium nitrate for munitions resulted in repurposing fertiliser
production plants. This development resulted in a synthesis route for
ammoniation of superphosphate, a process patented in 1930 [27],
facilitating the first industrial production of a dual–nutrient fertiliser,
providing both nitrogen and phosphorus [28]. In 1956, an industrial
production process for superphosphoric acid was developed. This
revolutionized the fertiliser industry as production of liquid fertilisers
was introduced [29,30]. In 1962, oligophosphates were reported with
unique potential as fertilisers [31,32] that also sequestered metal ions in
soil [28]. In the 1960 s, with the growth of the plastics’ industry and
concomitant increase in the frequency and severity of unwanted fires,
fertilisers of different types were studied as potential fire retardants
[33]. The first ammonium polyphosphate fire retarding product Phos-
Chek 30/P was introduced in 1962 [34,35] and approved by FPL for fire
protection of wood in 1967 [36]. In 1965 the isolation from ammoniated
superphosphoric acid of long–chain crystalline APP was reported and
characterized with X–ray diffraction (XRD) [16]. Existence of six
possible arrangements of polyphosphate chains of sodium and potas-
sium polyphosphates had been established in the 1950′s [4,13,37].
These different phases of APP (APP–I to APP–V) were experimentally
verified with XRD in 1969 [11], followed by APP–VI in 1976 [13].
Around 1970, several methods of producing APP were patented, mainly
in the US [31,38], and research activities accelerated. Starting from the
1980 s many publications focussed on understanding and exploiting the
industrial applications of APP. These applications are grouped into
agriculture, food and feed, and fire retardancy, described separately in
Sections 5.1–5.3, respectively. These industries have collectively
contributed considerable progress in new and more efficient synthetic
routes to APP.

Fig. 2. Illustration of linear, cyclic, branched, and cross linked phosphate compounds. Counter ions are left out for clarity.

Fig. 3. Illustration of monoammonium phosphate (13, MAP), diammonium
phosphate (14, DAP), and triammonium phosphate (15, TAP).
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4. Synthetic routes

The emphasis of this review is on applications of APP however, a
brief overview of APP synthesis is given to explain the interrelationships
between the phases and the starting material. In general, phosphate rock
is the precursor for any APP production. Around 98% of APP is made via
a wet process yielding phosphoric acid (H3PO4) from phosphate rock,
which can subsequently be neutralised with ammonia (NH3) producing
MAP, DAP, and TAP. For the 2 % APP, the phosphate rock undergoes a
thermal process (Wöhler process), where it is converted into white
phosphorus (P4), which, by direct oxidation, gives phosphorus pent-
oxide (P2O5) [39,40]. To favour condensation polymerisation, avoiding

the release of ammonia, H3PO4, P2O5, MAP, DAP, and TAP are converted
into APP using condensing agents such as urea (CO(NH2)2) or melamine
(C3H6N6). Careful control of condensing agent, reaction temperatures,
reaction time, and flow conditions of wet/dry ammonia atmosphere
yield the different APP phases. An overview on synthesis routes and
phase transformations is presented in Fig. 5. The reader is referred to the
scientific literature for further details.

Fig. 5 illustrates that crystalline forms of APP–I, APP–II, APP–V, and
APP–VI [12,14,41–45], can be synthesised directly, whereas APP–III
and APP–IV can only be obtained from phase transformations, as in-
termediates [11,13]. Synthesis of APP–VI is reported with P2O5 as the
reagent. However, P2O5 is challenging to handle in commercial pro-
duction as it reacts readily with water. When DAP is used as reagent,
multiple condensing agents have been reported in literature (ψ in Fig. 5):
urea, dicyandiamide [46], melamine [47], andmelamine polyphosphate
(MPP) [12]. Further, APP yields are higher when the reactant is DAP
compared to MAP and TAP. Commercially, APP–I is prepared by heating
an equimolar mixture of MAP and urea at 250 ℃ for 1 h [43]. Subse-
quent heating under alternating gas flow of dry air and wet ammonia,
via an intermediate amorphous phase, results in APP–II formation
[11,42,44]. Consequently, commercially available APP–II products
commonly contain impurities of APP–I. Thus, commercial production of
specific APP types at high purity is still challenging due to the phase
transitions (dashed arrows in Fig. 5). This implies that proper chemical
characterisation of APP (e.g. particle sizes, morphology, degree of
crystallinity, DP, and its distribution) is necessary when targeting spe-
cific applications. Only a few studies include molecular weight (Mw and
Mn), their distributions, polydispersity index (PDI=Mw/Mn), and/or the
DP of the APP produced [48–52]. Henceforth, only APP–I, APP–II, and
APP–V are discussed in detail as they are the most frequent APP phases
[53].

5. Industrial applications

5.1. APP as fertiliser

The ability to provide both nitrogen (i.e. ammonium) and phos-
phorus (i.e. phosphoanhydride) makes APP a superior nutrient delivery
system for crops. From the 1970 s, research focused on optimising fer-
tiliser composition, thus driving continuous improvement of the indus-
trial production methods [28,54,55]. As an example, addition of small
amounts of APP to H3PO4 from the wet process (Fig. 5, upper left arrow)
kept phosphate rock impurities from precipitating during liquid fertil-
iser production while remaining available to plants as micronutrients.
However, plant roots can only absorb waterborne orthophosphate, so
APP does not provide any nutrient value to plants until it is hydrolysed
to orthophosphate. Thus, phosphorus uptake in the root zone depends
on the hydrolysis kinetics of APP into orthophosphate and the degree of
nutrient washout.

5.1.1. APP hydrolysis kinetics
Although the hydrolysis kinetics are of particular importance to

APP’s role as a fertiliser, it is also relevant when APP and water may
both be present, from resilience to weathering of APP formulations to
APP characterisation and analysis. Orthophosphate is released from APP
by unzipping from the APP chain ends (Fig. 6, top), and the hydrolysis is
a zero–order reaction with respect to oligophosphate (or APP) concen-
tration [4,6,56].

The hydrolysis rate is influenced by soil i) temperature, ii) pH, iii)
enzyme activity, and iv) metal ion content where increased temperature
i) results in increased hydrolysis rate constant (k) [57], as described by
the Arrhenius equation. ii) APP hydrolysis is acid catalysed and APP is
thus stable in neutral and alkaline aqueous solutions. Hence, lowering
the soil pH will increase the hydrolysis rate of APP into orthophosphate
[32]. As the salt of a strong acid and a weak base, long-chain ammonium

Fig. 4. Illustration of APP-I (13), APP-II (14) and APP-V (15). Note, that APP-V
is a suggestion, as the ratio of melamine and phosphate cross links are un-
known. For 14 and 15 n ≥ 1 and m ≥ 1.
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polyphosphates are slightly acidic, leading to suspensions of APP–II
having a solution pH of 5 to 6 [6]. This is likely to promote some
autocatalytic hydrolysis. iii) Hydrolytic stability is strongly dependent
on the enzymatic activity of phosphatase from microorganisms present
in the root zone of plants and the presence of phosphatase accelerates
the hydrolysis by a factor of 106 [58–60]. When phosphatase–assisted,
studies show that the hydrolysis rate of linear sodium polyphosphates is
independent of chain length [59]. iv) Studies have shown that APP
hydrolysis switches from unzipping to random chain scission when
catalysed by Zn2+, Fe2+ and/or Al3+ [61,62], promoting hydrolysis by
generating more end-groups (Fig. 6). However, Ni2+ stabilises the P-O-P
bond, retarding hydrolysis [63]. While MAP, DAP, and TAP in the soil
predominantly ion–exchange to form insoluble precipitates with metal
ions, APP chelates metal ions, sequestering micronutrients such as Fe2+/
Fe3+ [64], Zn2+ [62,65], Ca2+, and Mg2+ [66–68]. The metal ion

binding affinity depends on APP morphology, and only linear poly-
phosphates form stable complexes with all metal ions [6]. Hence, the
affinity is strongest for linear polyphosphates, weaker for cyclic, and
weakest for orthophosphates [69].

5.1.2. Nutrient water solubility and mobility
In general, the water solubility at 25 ℃ for APP–I [14,70], APP–II

[41], and APP–V [45] is reported to range from 40–80, 0.03–3.1, and
0.05–3.2 g/L, respectively. Nevertheless, water solubility of APP de-
creases with higher DP [71], e.g. APP–I with a reported DP of 30 to 50
was reported to have a water solubility closer to 8.4 g/L [17,72] due to
increased crystal lattice energy [41]. High water-solubility of APP-I al-
lows it to be washed away from where it is needed, i.e. flowing away
from the plat roots [73,74], resulting in nutrient run–off and potential
eutrophication. An optimal fertilizer blend can be obtained by balancing

Fig. 5. Summarising the direct synthesis (solid arrow) and phase transformations (dashed arrow) of the six crystalline phases of APP from phosphate rock. Only
APP–I, APP–II, and APP–V are thermodynamically stable at room temperature and can be prepared in high purity [41]. Note that processes using ammonia (NH3) are
protected by patents.

Fig. 6. Processes and products for hydrolysis of ammonium polyphosphate. Ez: Enzymes.
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the faster uptake of MAP and DAP with the slow soil transport (e.g. due
to metal ion complexation) and hydrolysis of APP–I with the even slower
hydrolysis of APP–II (or APP–III to APP–V). Altogether, understanding
and controlling transport and hydrolysis of APP in different environ-
ments has driven agricultural research to significantly improve nutrient
uptake by designing fertilisers for specific soil and crop combinations
[58,75]. Recent research includes doping APP [76–78] methodically
mapping hydrolysis kinetics and storage stability [73,79,80] and hy-
drolysis control by encapsulation in bio–degradable polymers [81,82].
The aim of the research undertaken is to ensure that nutrients are
available to the plants in the right amount at the right time.

5.2. APP in food, feeds, and other applications

Polyphosphates are registered as a food additive (E452, with E452v
being ammonium polyphosphate) by the Joint FAO/WHO Expert
Committee on Food Additives, with a maximum tolerable daily phos-
phate intake (including APP) of 70 mg kg− 1 per day [83–85]. APPs
(mainly APP–I) are categorised as emulsifier and sequestrant. APPs are
added to frozen prepacked meat preventing drip loss, minimising thaw
drip, and cooked–out juices, mainly obtained due to APP’s high water
affinity via hydrogen bonding [7,86]. Further, agricultural studies show
that long–chain polyphosphates act as a growth promoter for broilers
and calves [87,88]. Polyphosphates are also employed in the medicinal
industry to prevent coagulation of blood [89,90]. In water treatment,
pentasodium triphosphates (Na5P3O6) were historically added to
laundry detergents as water softener to chelate mainly Ca2+ and Mg2+

ions, but now substituted by zeolites as the excess phosphorus in the
wastewater promotes eutrophication. Finally, due to APP’s ability to
prevent formation of mineral scale, it is often utilized in closed water
systems like heating/cooling systems for power engineering [7,91].

5.3. APP as a fire retardant

Fire retardants can be broadly classified into those which act pre-
dominantly in the gas phase, replacing highly reactive radicals in a
flame with less reactive species; those which replace significant amounts

of polymer with material which decomposes endothermically to release
inert volatiles (often loosely called “mineral fillers”) [92]; and those
which promote barrier formation, such as char or ceramics on the sur-
face of the condensed phase, of which a special case is the formation of a
swollen, intumescent barrier which better insulates the underlying
material. An overview of the fire retardant modes of action for APP is
presented in Fig. 7.

Since many fire retardants are subject to criticism for their potential
or proven toxicity, a fire retardant which has been approved as a food
additive, such as APP, has clear advantages. APP has potential as an
additive fire retardant because it releases ammonia when heated (Fig. 7,
upper right corner), leaving a residue of polyphosphoric acid (Fig. 7,
lower right corner). This combination is particularly valuable in intu-
mescent formulations. With the possibility of obtaining long-chained
and sparingly soluble APPs, the mechanism of thermal decomposition
of APP in a multitude of material systems has been investigated to
impart fire retardancy [93–100]. APP phases show distinct features in
their thermal decomposition profiles [14], and the thermal decompo-
sition temperature (Td) of an APP is an important factor affecting its
suitability in a particular polymer.

APP shows three stages of decomposition, starting around 300 ◦C
with elimination of traces of water and ammonia (~2–5 %). Then, from
300 ◦C to 450 ◦C chain-stripping with release of ammonia occurs
throughout the polymer, with ~ 18 % mass loss corresponding to
complete loss of ammonia from the APP [41]. The resulting poly-
phosphoric acid undergoes dehydration and decomposition, leading to
simpler compounds, such as P2O5 which are then progressively volatil-
ised [101–103] from 450℃ to 700℃ (residue mass at 700℃ is around
31–39 % [72]). The released water, ammonia and volatile phosphorus
compounds may dilute the fuel in the gas phase (Fig. 7, upper right
corner). The volatile phosphorus species may decompose to form species
such as HPO, which can replace highly reactive free radicals such as H⋅,
⋅OH, ⋅CH3 and ⋅O⋅ with less reactive radicals such as HPO2⋅ and PO⋅
[104]. Both are processes that will inhibit flaming combustion [96,105].

DP, crosslinking, and crystallinity influence the actual APP decom-
position. For the different APP phases, onset Td (at 1 % mass loss) is
176 ◦C, 255 ◦C, and 129 ◦C for APP–I (DP of 30–40), APP–II, and APP–V,

Fig. 7. The conceptional modes of action for ammonium polyphosphate (APP) as a fire retardant. Where ‘R-OH’ represents APP’s reactions with hydroxyl groups, ‘R-
NH2’ represents APP’s reaction with nitrogen-based functional groups, and Cp: Specific heat capacity.
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respectively [14,72]. The low Td for APP–I compared to APP–II has been
ascribed to the presence of chelated metal ions [106]. In addition, the
decomposition of polyphosphoric acid is reported to start at 324 ◦C,
356 ◦C, and 332 ◦C for APP–I, APP–II, and APP–V, respectively, at 10 %
mass loss [14]. Literature shows that thermal decomposition behaviour
of APP–V depends significantly on synthesis route: DAP/urea [14] and
DAP/dicyandiamide [46] yield APP–V with higher thermal stability
than APP–II in the range 300–580 ◦C, whereas MAP/urea [11] and DAP/
MPP [72] yields lower thermal stability in entire temperature range (e.g.
low residue mass at 700 ◦C (APP–V: 5 %, APP–I, APP–II: 31–39 %)).
High thermal stability in the range 300–450 ◦C indicates greater trap-
ping of ammonia within the lattice. High thermal stability above 450 ◦C
indicates higher crosslinking/branching of the P-O-P structure, higher
crystallinity, and thermodynamic stability of the crystal phase, resulting
in less release of volatile phosphorus species due to polyphosphate de-
fragmentation. Overall, it remains crucial to characterise the actual APP
being used in that application field.

In addition to thermal decomposition, the particle size and
compatibility with the host polymer are important. Particle sizes below
10 μm ensure faster release of ammonia and more homogenous disper-
sion in the polymer matrix but APP will only be adequately dispersed if
the compatibility with the polymer is high. Since APP is a polar com-
pound, compatibility with non-polar polymers such as polyolefins will
require the use of compatibilisers etc. APP–II has been synthesized in
research laboratories with particle size ~ 4–5 μm [107], whereas the
mean diameter of APP–I is reported at ≈15 μm [14]. In general, particle
size of the different APP can be adjusted during production to match a
specific application. The particle size is normally reported in the tech-
nical datasheets e.g. if 90 % of the particles measures a diameter of ≤ 7
μm (i.e. top size or D90 = 7 μm). Extensive research on compatibiliza-
tion, microencapsulation, and surface modification of APP has resulted
in improved fire retardant formulations and improved compatibility in
organic matrices [108–112]. Even though APP–I has the lowest Td and
could be applied to polymers which decompose at low temperature, it
has a high solubility in water (40–80 g/L), low hydrolytic stability and
relatively large particle size. These drawbacks make APP–II the
preferred choice in most fire retardant applications.

5.3.1. Intumescence
Intumescence essentially means “the process of expansion”. Within

the field of fire science, the term covers the process in which several
components react in a specific sequence, triggered by heat, to form an
expanded and heat-resistant char to protect the underlying matrix from
heat (Fig. 7, lower left corner). The reaction sequence ensuring intu-
mescence is; gases from APP decomposition are released at temperatures
above the melting temperature of the host polymer. This ensures that the
released gases are captured to generate a porous cellular foam structure.
Then, to solidify this porous structure, APP also acts as an acid source to
catalyse β–elimination of the host polymer’s substituents to generate
cross links in the porous structure (i.e. a char). APP is the main func-
tional component in many intumescent formulations. To boost char-
building and cross-linking, a carbon source (i.e. a polyol) can be added
to the formulation. To boost char expansion, an additional spumific (or
blowing agent) can be added to the formulation [113]. Conventionally,
most intumescent formulation consists of the polymeric matrix, APP as
acid source, pentaerythritol (PER) as carbon source, and melamine as a
secondary spumific source.

Prompted by a comprehensive review from Vandersall in 1971 [114]
on intumescent systems, a significant part of fire retardant chemistry
research in the 1980 s and 1990 s focused on understanding the role of
APP in thermal degradation of various systems [115–117], especially
carbonisation during intumescence [98,100,118–120]. In short, upon
heating, the matrix undergoes viscoelastic softening which allows
capturing of gases released by endothermic decomposition of APP and
melamine to generate a foam. Simultaneously, phosphoric acid (released
from APP) dehydrates the PER (and potentially also the polymeric

matrix) giving various phosphate ester products [121,122]. Subsequent
phosphate ester scission results in unsaturated ring structures that react
into polycyclic aromatic hydrocarbon structures, and via Diels–Alder or
free radical reactions, to yield a cross-linked, foamed, cellular char
[96,123,142]. The resulting foamed char provides thermal insulation
and inhibits heat transfer to the matrix as well as reducing fuel transfer
from the matrix to the flaming gas phase (Fig. 7, lower left corner).
Reviews on intumescence and detailed studies of the mechanisms have
been compiled in literature e.g. [118,124–126].

5.3.1.1. Fire retardant in thermoplastics. Thermoplastics offer cheap and
easy manufacturing solutions as they can undergo plastic deformation at
relatively low (< 300 ◦C) temperatures and can be formed into useful
objects [127]. A critical property of an added fire retardant is that it
must stay inactive during the polymer processing window (the tem-
perature interval between melting and thermal decomposition). Sec-
ondly, when a fire retardant is incorporated into the plastic matrix and a
fire triggers the intumescence process, the intumescent reaction
sequence must take place when the plastic is molten and not yet
decomposed. Lastly, for a fire retardant to be effective, it needs to sup-
press ignition, for example by the release of non–combustible volatiles,
and/or promote char formation before polymer decomposition fuels the
fire with combustible volatiles. In general, the plastic processing win-
dow is narrow (~20–40 ◦C [127]) and the fire retardant action must
match the melting of the polymer with the onset temperature of the
intumescent sequence. Hence, understanding the temperature sequence
and the chemical decomposition of both matrix material and of the
different steps in an intumescent process is crucial to component se-
lection [8,128,129]. A drawback of APP usage is that both thermal
stability and integrity of the thermoplastic is reduced through the
physical disruptive forces from the ammonia release. The high crystal-
linity and resultant incompatibility with most fire retardant additives,
has made polypropylene (PP) one of the most difficult plastics to
formulate with a low flammability, halogen-free fire retardant. To in-
crease the compatibility of APP with PP, either the polymer needs to be
modified to reduce its crystallinity and increase its polarity (e.g. via
grafting with maleic anhydride), the APP is to be compatibilized with
non–polar moieties [130], or microencapsulation [131].

APP addition to polyesters has been shown to impart effective levels
of fire retardancy with the formation of a fire protecting foamed cellular
char [132]. However, a drawback is that poly(ethylene terephthalate)
(PET) and poly(butylene terephthalate) (PBT) have accelerated thermal
degradation via acid–catalysed ester hydrolysis (Fig. 7, lower right
corner) [133]. In the absence of APP, polyamide 6 (PA6) decomposition
occurs through competing mechanisms yielding e.g. caprolactam, vol-
atile chain fragments containing nitrile, carbon–carbon unsaturated
chain ends, and residue [134]. Addition of APP–II lowers Td for PA6 by
50–70 ◦C due to acid catalysis amide depolymerisation. In PA6.6 APP–II
catalyses char formation by scission of the alkyl amide bond resulting in
formation of carbodiimide that subsequently trimerizes to form alkyl
triazine [135,136]. The thermal degradation mechanisms of aliphatic
polyamides blended with APP can be found in literature [137].

5.3.1.2. Fire retardant in thermosets. Thermosets are either liquids that
canbepressurized andmixeduponentry into amouldor apliable solid (e.
g. rubber) that can be compression moulded into its final shape. After
loading the thermoset into the mould, it is cured by heating at tempera-
tures typically below 200 ◦C to produce the desired objects. As with
thermoplastics, it is a prerequisite that incorporated fire retardant can
withstand the heating during the curing process. For optimal fire
retardancy a matching of the APP decomposition temperature with the
thermoset decomposition temperature is required [138]. However, while
thermoplastics softenwhenheated, the cross linkingof thermosets lowers
reactant interactions and the chemical mobility (Fig. 7, lower right
corner). Consequently, APP’s thermal release of phosphoric acid (H3PO4)
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and catalysing thedehydration reactions in the condensedphase becomes
AAP’s predominant mechanism in fire protection of thermosets. In
polyurethanes (PUR), APP-II lowers the decomposition temperature by
promoting an acid-catalysed degradation of the urethane linkage. This
changes the pyrolytic products that are formation of a thermostable
phosphocarbonous char [116,139,140]. This phosphoric acid reactivity
toward nitrogen containing groups is sometimes referred to as ‘N/P
synergy’ [141,142]. In epoxy resins, the main hinderance for utilizing
APP is the polarity difference between APP and the resin. Hence, a
thermodynamical penalty (i.e. highΔHmix) in combinationwith low resin
viscosity results in APP segregation. This ismitigated by eithermodifying
the epoxy resin to obtain higher compatibility [143] or introduce surface
modifications on the APP particles. APP surface modifications are ob-
tained via cationic exchange of the ammonium ion with larger amines
such as ethanolamine, ethylenediamine, diethyl triamine, and/or piper-
azine. An additional benefit is that APP obtains dual functionality as both
cross linker and acid source [144–146]. Further, hydrophobic modifica-
tion or multi-functionalization of APP is done to enhance the charring
reactions with the cured epoxy matrix [147,148]. For rubbers a thiol
functionalizedAPPcan improve its fire retardancyandagain functionas a
cross linker [149]. In general, multicomponent additive mixtures are
required for sufficient fire protection of both epoxy and rubbers
[150–152].

5.3.1.3. Fire retardant in cellulose based materials. Cellulose based ma-
terials (e.g. cotton, wood, etc.) are fire protected by addition of APP and
has been extensively studied. In general, polysaccharides react with APP
at elevated temperatures to promote dehydration and crosslinking,
resulting in char formation. Above 300 ◦C, cellulose starts to decompose
yielding CO, CO2, and H2O, and volatile tars (mainly laevoglucosan)
[153,154]. During thermal decomposition an intermediate thermally
stable aliphatic char (char I) is formed and upon further heating this
leads to polycyclic aromatic structures (char II) [155,156]. In the pres-
ence of APP, phosphorylation of cellulosic hydroxyl groups and the
subsequent phosphorus ester scission results in the formation of a stable
conjugated aromatic char (Fig. 7, lower left corner) [157–161]. Hence,
when APP decomposes with cellulose, an aromatic char is formed, which
reduces the release of flammable volatiles and tars. Recently, APP has
gained attention as an environmentally friendly fire retardant due to its
low toxicity and compatibility with biopolymers, together with its
biodegradability. Environment–friendly fire retardant formulations
have been reported for APP in combination with polylactic acid (PLA),
sugars, starch, chitin, lignin, etc., in multiple applications [162–164].

5.3.1.4. Intumescent coating formulations. Paint formulations are often
stabilized dispersions i.e. wet formulations, and they normally consist of
a polymeric binder, pigments, fillers, additives, solvent and potential
cosolvents in either one- or two-component formulations. Post appli-
cation, when the paint is dried or cured into a coating, the binder serves
as the matrix embedding pigments, fillers and additives which together
define the properties of the obtained coating [165–167]. The main
purpose of a coating is to form a protective barrier whereby it separates
the substrate from the environment. Intumescent coatings apply APP,
PER and melamine as functional fillers to provide fire protection [124].
All pigments and fillers, including APP, are mechanically mixed into a
paint dispersion together with multiple components with various
chemical functionalities [168,169]. Hence, APP is exposed to both the
solvent and all other paint ingredients that can potentially hamper APP’s
stability. The dispersion must remain stable during manufacturing,
processing, storage, and application. Consequently, the utilized APP
must be compatible with the solvent as well as the coating components
and their chemistries. For thermoplastics, APP and other intumescent
components are compounded directly into the matrix, while for coatings
they precipitate together with the binder, pigments, fillers, and other
additives during the drying process. When in the dried state, a coating

resembles a plastic with embedded intumescent reactants [170]. Thus,
the reaction sequence and carbonisation process are equivalent to the
process in thermoplastics.

Intumescent coatings are widely applied as passive fire protection,
particularly to loadbearing steel structures [99,171,172]. The coating is
activated by the increased temperatures during a fire, where the intu-
mescence reaction sequence (Section 5.3.1) is initiated. As steel is non-
combustible, the foamed char acts only as thermal insulation to delay
temperature increase of the underlying steel substrate. To prevent
weakening and potential collapse of a steel structure, the steel temper-
ature should remain below 500 ℃ depending on the alloying elements
[173]. To aid protective barrier formation during intumescence, coat-
ings often contain inorganic fillers that react with APP. This is discussed
in the following section.

5.3.2. Formation of ceramic barriers
Reactions at elevated temperatures between APP and inorganic

compounds may form ceramic layers that limit heat and mass transport
to and from the organic matrix (Fig. 7, upper left corner). Studies show
that above 800 ◦C, APP’s degradation products react with titanium di-
oxide (TiO2) forming a stable titanium pyrophosphate (TiP2O7)
[174–177]. Thermally stable products have also been found from reac-
tion between APP and zinc borate (mainly as 2ZnO⋅3B2O3⋅3H2O) which
forms zinc pyrophosphate (Zn2P2O7), zinc phosphate (Zn3(PO4)2), and
boron phosphates (BPO4) [178,179], and in intumescent coating sys-
tems upon addition of boric acid [180,181] and zinc borate [182,183].
Aluminium hydroxide (Al(OH)3) and APP are reported to form
aluminium orthophosphate (AlPO4) and cyclic aluminium meta-
phosphate ([Al(PO3)3]n) [184]. Similar products are obtained from re-
action between APP and magnesium oxide (MgO) or magnesium
hydroxide (Mg(OH)2) [185,186]. Mixtures of manganese dioxide
(MnO2) and APP form Mn2P4O12 at around 600 ◦C [115]. Further,
thermal reaction of APP with talc (3MgO⋅4SiO2⋅H2O) revealed a com-
bination of Mg2P4O12, Si5O(PO4)6, and SiP2O7 at 800 ◦C while heating
above 1000 ◦C resulted in formation of a magnesium silicon phosphate
glass [187]. Other phosphate–based glasses have been obtained with
silicon dioxide and silicates [188–190], zirconia [191,192], and calcium
carbonate [193,194].

6. Ongoing developments

APP is a nontoxic, biodegradable additive for food, fire retardancy
and fertilisers. However, for fertilisers, APP degradation via various
biogeochemical pathways is still largely unknown [195]. This knowl-
edge could provide better control of orthophosphate release in fertilisers
to a matched uptake in specified crops to improve phosphorus utilisation
[196]. Fertilisers with biobased coatings have been proposed to mini-
mise accumulation of residual or undegraded synthetic polymers in
nature [81]. Likewise in fire chemistry, functionalised APP with bio-
–based molecules have gained increased attention [197–200]. Other
research ventures include APP based products tailored for specific sys-
tems (e.g. epoxy resins, [145,148,201–203], or PP [204–207]) and
developed into single–component intumescent additives [208,209].

Lastly, inorganic polyphosphates hold medical potential for treat-
ment of bone and blood diseases [90,210,211].

As an alternative to mining phosphate rock, recovery, recycling and
re–manufacture of P–compounds must be considered. The increasing
world population leads to increased fertiliser demand to secure agri-
cultural productivity. As phosphate rock is a finite resource located
unevenly in the world (predominantly in Morocco, Western Sahara,
China, and US), recycling of phosphate is inevitable in the near future
[39,212,213]. Human disruption of the biogeochemical P–cycle has
caused increased nutrient content in surface water and wastewaters
[214], leading to eutrophication. Hence, the feasibility of P–recovery
from wastewater, sewage sludge, and alike have been extensively
researched [215–217]. The mineral, struvite (magnesium ammonium
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phosphate (MgNH4PO4⋅6H2O) and calcium analogues are being inves-
tigated as fire retardants [218]; P–rich ash from incineration of meat and
bonemeal have been proposed to obtain minerals like phosphate rock
[219,220]; mechanical recycling of end–of–life FR plastics [221]; and
in–line quantification of APP in plastic waste streams [222]; are just
some of the ongoing initiatives in these fields.

7. Conclusions

As inorganic polymers, the different types of APP offer versatile so-
lutions to a wide variety of problems. The range of APPs commercially
available provides additional options for formulation. In scientific
studies, it is necessary to identify the APP product used, and ideally to
characterise its structure and composition. APP–I is ideally suited to
fertiliser applications because of its high nitrogen and phosphorus
content, its water solubility, its relative immobility and its slow rate of
hydrolysis, maximising the chance that it will be released where it is
needed. As a fire retardant additive in intumescent formulations, APP–II
acts as both the blowing agent and as the acid source, promoting char
formation. It is crucial to recognise that these two phases, APP–I and
APP–II, have very different structures and properties. In both major
applications, its polymeric nature and relatively low water solubility
give it advantages over other additives. The prospect of tailoring these
properties through different phases offers exciting possibilities for
further development.
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Glossary: Normal typography: An overview of what has become a
convoluted terminology across different application fields

Ammonium phosphate: IUPAC name for triammonium phosphate. Conventionally, any of the
following: (NH4)H2PO4, (NH4)2HPO4, (NH4)3PO4.

Ammonium dihydrogen phosphate: IUPAC name for the monoammonium hydrogen phosphate
(MAP). Sometimes also abbreviated ADP in agriculture.

Ammonium polyphosphate (APP): (NH4)n+2PnO3n+1, where n is larger than 18. More than 20

phosphate monomers linked with oxygen atoms and with ammonium ions as counter
ions. Confusingly, in some scientific fields also ammonium phosphates with more than
3 monomers.

Condensed phosphates: Compounds containing phosphates linked together with shared
oxygen atoms.

Diammonium hydrogen phosphate: IUPAC name for diammonium phosphate.
Diammonium phosphate (DAP): (NH4)2HPO4, disubstituted phosphate monomer. IUPAC

name is diammonium hydrogen phosphate.
Dimetaphosphate: P2O6

2-, cyclic anion. IUPAC name is cyclodiphosphate.
Cyclodiphosphate: IUPAC name for dimetaphosphate.
Cyclotriphosphate: IUPAC name for trimetaphosphate.
Cyclophosphate: (PO3)nn–, all phosphates with ring structure regardless counter ion.
Diphosphate: IUPAC name for pyrophosphate.
Gramham’s salt: A water-–soluble glass mainly consisting of chains with molecular weight

12 000–18 000 Da and with up to 10 % ring metaphosphates and some crosslinked
material.

Hexametaphosphate: P6O18
6- , a cyclic phosphate with six phosphate monomers. Commer-

cially, the name often covers linear chains of variable chain length [223].
Linear polyphosphate: All chain phosphates containing more than 20 phosphate monomers.

(NH4)n+2PnO3n+1
Monoammonium phosphate (MAP): (NH4)H2PO4, salt between the phosphate monomer and

a single ammonium as counter ion.
Oligophosphate: Compounds containing from 4 to 20 phosphate monomers.
Orthophosphate: PO4

3-, the simplest phosphate anion, thus the monomer unit in poly-
phosphates. In cell biology, traditionally abbreviated Pi (i: inorganic).

Phosphate: IUPAC name for orthophosphate.
Polyphosphate: Polymers containing more than 20 phosphate monomers linked with shared

oxygen atoms. Conventionally, only linear polyphosphates.
Pyrophosphate: P2O7

4-, linear anion consisting of two monomers, thus diphosphate. In cell
biology, traditionally abbreviated PPi

Tetraphosphate: P4O13
6- , linear anion consisting of four monomers, sometimes named

tetrapolyphosphate.
Trimetaphosphate: P3O9

3-, cyclic anion. IUPAC name is cyclotriphosphate
Triphosphate: P3O10

5- , linear anion consisting of three monomers, sometimes named
tripolyphosphate

Triammonmium phosphate (TAP): (NH4)3PO4, trisubstituted phosphate monomer. IUPAC
name is ammonium phosphate.

Superphosphate: Ca(H2PO4)2 ⋅ H2O or Ca(H2PO4)2, also known as single or triple super-
phosphate, respectively. Commercial phosphate fertilizer also used in backing powder
and as mineral supplement for food and feeds

Ultraphosphate: Condensed phosphate with a least one PO4 tetrahedra sharing three corner
atoms to obtain crosslinking.

Vitreous phosphates: Glasses of long–chain sodium polyphosphates or ultraphosphates,
depending on Na2O to P2O5 ratio.
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