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Abstract
Path planning in autonomous driving systems remains a critical challenge, requiring al-
gorithms capable of generating safe, efficient, and reliable routes. Existing state-of-the-
art methods, including graph-based and sampling-based approaches, often produce sharp, 
suboptimal paths and struggle in complex search spaces, while trajectory-based algorithms 
suffer from high computational costs. Recently, meta-heuristic optimization algorithms 
have shown effective performance but often lack learning ability due to their inherent ran-
domness. This paper introduces a unified benchmarking framework, named Reda’s Path 
Planning Benchmark 2024 (RP2B-24), alongside two novel reinforcement learning (RL)-
based path-planning algorithms: Q-Spline Multi-Operator Differential Evolution (QSMO-
DE), utilizing Q-learning (Q-tables), and Deep Q-Spline Multi-Operator Differential Evo-
lution (DQSMODE), based on Deep Q-networks (DQN). Both algorithms are integrated 
under a single framework and enhanced with cubic spline interpolation to improve path 
smoothness and adaptability. The proposed RP2B-24 library comprises 50 distinct bench-
mark problems, offering a comprehensive and generalizable testing ground for diverse 
path-planning algorithms. Unlike traditional approaches, RL in QSMODE/DQSMODE is 
not merely a parameter adjustment method but is fully utilized to generate paths based 
on the accumulated search experience to enhance path quality. QSMODE/DQSMODE 
introduces a unique self-training update mechanism for the Q-table and DQN based on 
candidate paths within the algorithm’s population, complemented by a secondary update 
method that increases population diversity through random action selection. An adaptive 
RL switching probability dynamically alternates between these Q-table update modes. 
DQSMODE and QSMODE demonstrated superior performance, outperforming 22 state-
of-the-art algorithms, including the IMODEII. The algorithms ranked first and second in 
the Friedman test and SNE-SR ranking test, achieving scores of 99.2877 (DQSMODE) 
and 93.0463 (QSMODE), with statistically significant results in the Wilcoxon test. The 
practical applicability of the algorithm was validated on a ROS-based system using a four-
wheel differential drive robot, which successfully followed the planned paths in two driv-
ing scenarios, demonstrating the algorithm’s feasibility and effectiveness for real-world 
scenarios. The source code for the proposed benchmark and algorithm is publicly available 
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for further research and experimentation at:  h t t p s :  / / g i t  h u b . c o  m / M o  h a m e d  R e d a M  u / R P 2 B  2 
4 - B  e n c h m a r k and  h t t p s :  / / g i t  h u b . c o  m / M o  h a m e d  R e d a M  u / Q S M O  D E A l  g o r i t h m.

Keywords Path planning · Autonomous driving system (ADS) · Evolutionary 
algorithms · Reinforcement learning · Deep Q-network (DQN) · Cubic spline · Robotic 
operating system (ROS)

1 Introduction

1.1 Path planning in autonomous driving system (ADS)

Path planning is a crucial aspect of the ADS system, which is tasked with finding the optimal 
path for the vehicle while avoiding obstacles. The main objective of ADS is to develop a 
vehicle that can fully or at least partially operate without human driver (Buehler et al. 2009). 
The ADS pipeline consists of multiple stages including the perception, localization, map-
ping, path planning, and control tasks. The perception task is responsible for recognizing 
the obstacles in the surrounding environment such as traffic lights, road signs, and lanes 
(Velasco-Hernandez et al. 2020). The localization and mapping tasks generate a map of the 
environment using the sensor data while localizing the car within the generated map (Wong 
et al. 2020).

The path planning task generates a safe path from start point to the end point in the 
generated map while avoiding obstacles (Parekh et al. 2022). Finally, the next waypoint is 
converted to control actions to the vehicle’s motor based on the kinematics of the vehicles’ 
design (Reda et al. 2024). While many stages of the ADS system have been extensively 
researched, path planning and obstacle avoidance remain the most challenging (Yurtsever 
et al. 2020).

1.2 Challenges of the path planning problem

Numerous challenges in the path-planning problem demand continuous research to address 
them effectively. One of the biggest challenges is the conflicting multi-objective optimiza-
tion nature, which requires the algorithm to minimize path length while simultaneously 
avoiding collision with obstacles (Gul et al. 2021). Achieving this trade-off requires sophis-
ticated multi-objective optimization frameworks.

Environment complexity and the different representations of obstacles add more chal-
lenges to the path-planning problem. The obstacles can vary in shape, size, and representa-
tions that can be circular, rectangular, or grid-based (point-cloud) (Badrloo et al. 2022). 
These different representations require flexible path-planning algorithms that can adapt 
them without negatively affecting computational efficiency.

Accurate obstacle avoidance is another critical path-planning aspect that requires com-
plex mathematical frameworks. These frameworks must consider all collisions resulting 
from the path points, the line segments connecting successive path points, and obstacles 
(Kunchev et al. 2006). The problem becomes even more challenging in large-scale environ-
ments with multiple obstacles, as increasing the number of obstacles necessitates scalable 
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algorithms to handle long-range planning with multiple obstacles effectively. The imple-
mentation of these constraints adds significant complexity to the optimization problem.

Integrating the path planning algorithm with the other ADS components (e.g., perception, 
localization, and control) is another challenging task in real-time path planning. Moreover, 
the algorithm must seamlessly integrate with the control system, considering the hardware 
and firmware constraints for real-time processing (Butt et al. 2024). Practical execution of 
planned paths introduces an additional challenge that requires smooth paths to be executed 
by the ADS platforms to ensure maneuverability, passenger comfort, and mechanical effi-
ciency. Guaranteeing smoothness while avoiding obstacles and minimizing other costs is 
a nontrivial task that demands advanced smoothing techniques within the path-planning 
framework.

Another issue is the validation of path-planning algorithms across diverse benchmark 
scenarios. Despite the good performance of many algorithms in simulated environments, 
these algorithms can face significant difficulties when applied to real-world scenarios due 
to some factors, such as sensor noise and hardware limitations. Moreover, each algorithm 
category in the literature requires the path-planning problem to be formulated in a specific 
way. This disparity hinders direct comparisons among algorithms across a unified set of 
benchmark problems. This issue makes the evaluation process of the state-of-the-art algo-
rithms difficult, lacking the presence of comprehension comparative analyses among differ-
ent categories of path-planning algorithms (Reda et al. 2024). Addressing these challenges 
requires innovative frameworks, robust mathematical formulations, and comprehensive 
benchmark libraries.

1.3 Path planning state-of-the-art

Various and wide ranges of state-of-the-art algorithms for the path planning problem are 
categorized as shown in Fig. 1. Graph-based algorithms, such as A* and Dijkstra, model the 
environment as a graph of connected nodes, each representing a possible location to move 
from the start point to the endpoint (Sun et al. 2021). Sampling-based algorithms, such as 
RRT and RRT*, generate random samples in the search space starting from the start point to 
build a map incrementally until it reaches the goal (Orthey et al. 2023).

Fig. 1 Types of path planning algorithms
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Gradient-based algorithms, such as the artificial potential field (APF) algorithm, use 
potential fields to guide the robot from the starting point to the endpoint, avoiding obstacles. 
The APF algorithm generates attractive force towards the goal and repulsive force from the 
obstacles to generate the obstacle-free path. These algorithms suffer from the local mini-
mum traps because of the gradient behavior. Trajectory-based algorithms, like the Dynamic 
Window Approach (DWA), generate the path based on the robot’s dynamic constraints, such 
as position, velocity, and acceleration (Dobrevski and Skočaj 2024). The DWA algorithm 
considers the velocity, acceleration limits, and obstacle positions to generate the path. It is 
widely used in ROS-based built-in libraries as a path-planning algorithm (ROS Wiki Con-
tributors 2023).

Meta-heuristic optimization algorithms mimic principles from nature to solve opti-
mization problems. They have been widely used to solve the path-planning problem by 
generating an initial population of candidate paths and improving them iteratively. These 
algorithms are considered general problem solvers and have proven their efficiency in solv-
ing optimization problems (Sood and Panchal 2020). They are categorized into three main 
categories: swarm-based, nature-based, and evolutionary algorithms.

Swarm-based algorithms imitate animals’ natural behavior when searching for food in 
groups. The most popular Swarm-based algorithms in the path planning problem are the 
Artificial Bee Colony (ABC), Grey Wolf Optimization (GWO), Chicken Swarm Optimi-
zation (CSO), Particle Swarm Optimization (PSO), Cat Swarm Optimization Algorithm 
(CSOA) (Tang et al. 2021). The nature-based algorithms are inspired by natural phenomena 
that exist in humans and animals, such as the Firefly Algorithm (FA), the Moth-Flame Opti-
mization (MFO), the Teaching-Learning-Based Optimization (TLBO), the Beetle Antennae 
Search (BAS), the Whale Optimization Algorithm (WOA), and Harris Hawks Optimization 
(HHO) (Houssein et al. 2019).

Evolutionary algorithms (EAs) mimic the survival of the fittest principle. The most com-
mon evolutionary algorithms in the path planning problem are Differential Evolution (DE), 
Genetic Algorithm (GA), and the Covariance matrix adaptation evolution strategy (CMA-
ES) algorithm (Slowik and Kwasnicka 2020). The improved multi-operator differential 
evolution algorithm (IMODE) is an outstanding algorithm and the winner of the CEC2020 
competition, outperforming all the other algorithms (Yue et al. 2019).

Multiple studies in the literature combined reinforcement learning (RL) with meta-heu-
ristic optimization algorithms to improve the algorithm’s efficiency (Goyal et al. 2019). 
Sallam et al. proposed the IMODEII algorithm (Sallam et al. 2022), in which the RL is 
used to pick the nest mutation method in the original IMODE algorithm. The IMODEII 
outperformed the original IMODE algorithm and other state-of-the-art winners to prove its 
superiority in the literature.

The EAs and meta-heuristic optimization algorithms are characterized by their strong 
exploration capability, which makes them less likely to get stuck in a local minimum 
(Slowik and Kwasnicka 2020). However, the solutions generated by meta-heuristic opti-
mization algorithms are based on random behaviour in specific stages of the algorithms, 
which increases the computation time of the algorithm (Reda et al. 2024). Despite the trials 
of combining the RL with EAs, the RL is not fully utilized; it is just applied as an adaptive 
method to pick a rule or to tune a parameter in the original algorithm (Sallam et al. 2022). 
Therefore, the random behaviour in the EAs still dominates the performance without con-
sidering the ability to learn in the optimization problem.
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1.4 Contributions

The contributions of this research are summarized as follows, aligned with the high-level 
workflow shown in Fig. 2:

 – Development and integration of two reinforcement learning-based path-planning 
algorithms: Q-Spline Multi-Operator Differential Evolution (QSMODE), utilizing 
Q-learning (Q-tables), and Deep Q-Spline Multi-Operator Differential Evolution (DQS-
MODE), based on Deep Q-networks (DQN). Both algorithms are unified under a single 
framework and enhanced with cubic spline interpolation to improve path smoothness 
and adaptability.

 – Introduction of a novel reinforcement learning application in QSMODE/DQSMODE, 
where RL is directly employed to generate paths. Unlike existing literature, RL is not 
used just to update parameters; it is fully utilized to exploit accumulated experience dur-
ing the search process for path generation.

 – Proposal of a dual Q-table/DQN update mechanism:

 – Mode 1: Random action selection for path generation, enhancing population 
diversity.

 – Mode 2: A self-training method where Q-tables/DQNs are updated using candidate 
paths from the population, improving convergence and solution quality.

 – Development of an adaptive RL switching probability mechanism to balance explora-
tion (Mode 1) and exploitation (Mode 2) during Q-table/DQN updates, with sensitivity 
analysis recommending optimal bounds.

 – Creation of Reda’s Path Planning Benchmark 2024 (RP2B-24), a novel benchmark 
library comprising 50 diverse path-planning problems. This benchmark is generalizable 

Fig. 2 Proposed research workflow from literature review to algorithm development, validation, and prac-
tical implementation
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and compatible with any path-planning algorithm from any category, providing a com-
prehensive testing framework for comparative evaluation.

 – Design of an innovative objective function that frames path planning as an optimiza-
tion problem. The function considers collisions between obstacles, path points, and line 
segments connecting successive path points, supporting circular, rectangular, and grid-
based (point-cloud) representations of obstacles for real-world applications.

 – Achievement of superior performance by DQSMODE and QSMODE over 22 state-
of-the-art algorithms, including IMODEII, which outperformed winners of CEC com-
petitions. The algorithms ranked first and second in the Friedman test and SNE-SR 
ranking, achieving scores of 99.2877 (DQSMODE) and 93.0463 (QSMODE) out of 
100, with statistically significant p-values in all Wilcoxon signed rank tests across 50 
path-planning problems.

 – Validation of QSMODE in practical scenarios using a ROS-based autonomous driving 
system (ADS) on a four-wheel differential drive robot (4WD). The robot successfully 
followed planned paths in two distinct driving scenarios, demonstrating the real-world 
applicability and feasibility of the proposed framework.

1.5 Paper organization

The rest of the paper is organized as follows: Sect. 2 explores the state-of-the-art algo-
rithms that have been applied recently for the path-planning problem. Section 3 illustrates 
the proposed objective function for the path planning problem. Section 4 introduces the 
proposed benchmark library, which consists of 50 problems with different structures. Sec-
tion 5 explains the proposed QSMODE/DQSMODE algorithms and how reinforcement 
learning is integrated with the optimization algorithm. Section 6 explains the sensitivity of 
the switching probability parameter and the Q-learning impact. Section 8 presents the simu-
lation results of the proposed algorithm and the meta-heuristic state-of-the-art algorithms, 
while Sect. 9 discusses the other categories of the path-planning algorithms. Section 10 
demonstrates the practical validation of the proposed algorithm using a four-wheel differ-
ential drive car in two driving scenarios. Finally, the future work and overall summary are 
presented in Sect. 11.

2 Related work

This section explores the recent state-of-the-art algorithms applied to address the path 
planning problem. These algorithms are categorized as follows: graph-based algorithms, 
sampling-based algorithms, gradient-based algorithms, trajectory-based algorithms, and 
meta-heuristic optimization algorithms, as in Fig. 1 (Reda et al. 2024).

Li et al. applied the A* algorithm and the Dijkstra algorithm for the path planning of 
the automated guided vehicles (AGVs), and it was validated on two simulated types of 
obstacles, single and double-open obstacles (Li et al. 2020). Thoresen et al. applied the A* 
algorithm for unmanned ground vehicles (UGVs) with traversability to find the best path, 
and it is verified in real-time experiments in real terrain (Thoresen et al. 2021). Bhattacha-
ryya et al. used the Dijkstra algorithm to find the shortest path to reduce energy consumption 
(Bhattacharyya and Karmakar 2022). Wang et al. solved the path planning problem using 
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the Dijkstra algorithm to address the issue of localization drift error from the dead-reckon-
ing. The algorithm is validated on a simulated map of 12 rectangular obstacles (Wang et al. 
2022). Zhang et al. used the A* algorithm with a dynamic cost function for the automated 
guided vehicles (AGVs) (Zhang et al. 2024). Graph-based approaches obtain accurate paths 
for small search spaces. Nevertheless, they are sluggish for large search spaces and generate 
abrupt paths.

Niu et al. studied the path-planning of intelligent vehicles based on the RRT algorithm, 
which is validated on the robotic operating system (ROS)-based platform (Niu et al. 2021). 
Chen et al. integrated the RRT algorithm to reduce the search area in the path planning of 
autonomous vehicles (Chen et al. 2022). Shi et al. proposed an RRT algorithm for unmanned 
vehicles, in which the RRT algorithm generates the path, and the B-spline curve is applied to 
smooth it (Shi et al. 2022). Mao et al. proposed an RRT-based algorithm to address motion 
planning, where the RRT algorithm is used to find the path, and the cost is reduced using the 
elliptic sampling domain (Mao et al. 2023). Eshtehardian et al. applied the RRT* algorithm 
for mobile robots to find the path, and the algorithm is validated in a simulated environment 
of Webots (Eshtehardian and Khodaygan 2023). Sampling-based algorithms are faster than 
graph-based ones, but they generate too sharp solutions.

Hu et al. proposed a potential field-based algorithm for differential steering vehicles, and 
it was theoretically validated in an off-road environment with a single obstacle (Hu et al. 
2019). Iswanto et al. introduced an APF-based algorithm for quadrotor applications, and it 
was validated theoretically in single and double circular obstacle environments (Iswanto 
et al. 2019). Batinovic et al. presented an APF-based algorithm for aerial vehicles, where 
the APF algorithm corrects the paths to avoid obstacles (Batinovic et al. 2022). Xie et al. 
used the APF algorithm to address overtaking scenarios of autonomous vehicles in multi-
lanes, and it was validated in a simulation environment based on unreal engine (Xie et al. 
2022). Wu et al. proposed an APF algorithm with an annealing strategy to increase obstacle 
avoidance efficiency, and it was validated on two single obstacles, two multiple obstacles, 
and two maze-like simulated scenarios (Wu et al. 2023). Sung et al. presented an APF algo-
rithm for the ground forces environment, where the objective function implements possible 
enemy threads with penalty terms, and it was theoretically validated in an environment 
with six obstacles (Sung et al. 2023). Gradient-based algorithms can generate collision-free 
trajectories, but they are likely to get trapped at a local minimum due to gradient behavior.

Zhang et al. introduced a DWA-based algorithm for mobile robots, and it was validated 
in a ROS-based simulation platform using a two-wheel differential drive robot (Zhang et al. 
2019). Hua et al. presented a DWA algorithm with an adaptive objective function, and it was 
validated on one simulated scenario with 16 circular obstacles (hua Zhang et al. 2021). Liu 
et al. used the DWA algorithm for local path planning with obstacle avoidance for the smart 
four-wheel robots. It was validated on one simulated environment with three rectangular 
obstacles and experimentally validated on a smart car with a depth camera in ROS-based 
platform (Liu et al. 2021). Kobayashi et al. proposed a DWA algorithm for mobile robots, 
and it was validated on a two-wheel differential drive robot in a single obstacle environment 
(Kobayashi and Motoi 2022). DWA algorithm considers the vehicle dynamics, but it has 
very high time complexity because it validates all possible velocity pairs while generating 
the trajectory.

Li et al. proposed a GA for solving robot path planning, and it was validated in a ROS-
based platform in a simulated enterprise factory environment (Li et al. 2023). Zhang et al. 

1 3

Page 7 of 56   142 



M. Reda et al.

used the GA algorithm for mobile robots, where the environment is encoded in a grid-based 
format, and it was theoretically validated in one maze-like scenario with five rectangular 
obstacles (Zhang et al. 2023). Ab et al. proposed a GA-based algorithm for mobile robot 
global route planning, and it was theoretically validated on two scenarios: one with five 
rectangular obstacles and one with 20 rectangular obstacles (Ab Wahab et al. 2024). Yu et al. 
applied the DE algorithm for unmanned aerial vehicles as a constraint optimization problem, 
and it was theoretically validated on six scenarios (Yu et al. 2020). Chen et al. applied the 
DE algorithm for mobile robots with chaos initialization, and it was theoretically verified on 
one scenario with five circular obstacles and then validated on ROS-based simulation (Chen 
et al. 2020). Zhang et al. used the DE algorithm for autonomous underwater vehicles, where 
the problem is formulated as a constraint optimization problem (Zhang et al. 2022).

Zhao et al. applied the CMAES algorithm for unmanned ground vehicles, and it was 
theoretically validated on one scenario with four circular obstacles and practically validated 
on ROS-based four-wheel differential drive on one driving scenario (Zhao et al. 2021). Zhao 
et al. applied the CMAES to tracked robot terrains, and it was verified on a single scenario 
using the CoppeliaSim simulator (Zhao et al. 2023). Li et al. introduced a PSO-based algo-
rithm with adaptive inertia weights for mobile robots, and the algorithm is theoretically 
validated on two scenarios: one with five circular obstacles and the other with 11 circular 
obstacles (Li et al. 2020). Qiuyun et al. proposed a PSO-based algorithm for automated 
guided vehicles in smart manufacturing workshops, and it was validated on two simulated 
scenarios (Qiuyun et al. 2021). Toufan et al. introduced a GWO-based algorithm for mobile 
robots with an objective function based on a laser range finder, and it was verified on two 
scenarios in a simulated environment using a differential drive robot (Toufan and Niknafs 
2020). Kumar et al. proposed a GWO-based algorithm for autonomous robots, and it was 
theoretically validated vs. the PSO algorithm (Kumar et al. 2021).

Cheng et al. used the BAS algorithm in motion planning in robotic systems and proved 
reliable performance compared with PSO. GA, and FA (Cheng et al. 2020). Furthermore, 
Cui et al. applied the BAS algorithm for motion planning in industrial manipulators, and 
it proved its efficient performance (Cui and Li 2022). Lyu et al. applied the beetle swarm 
optimization, which was theoretically verified in a few scenarios (Lyu et al. 2023). Zan et 
al. applied the WOA algorithm for planning the robot’s path with the aid of computer per-
ception to map the surrounding environment (Zan 2022). Si and Li proposed a WOA-based 
algorithm, which is theoretically validated on two scenarios (Si and Li 2023). Similarly, 
Wang et al. proposed a WOA-based algorithm, which was validated on ten maze-like sce-
narios, outperforming the GWO and PSO algorithms (Wang et al. 2023). Chen et al. intro-
duced an MFO-based algorithm for intelligent vehicles for the parking scenarios, and it is 
practically valid on one parking scenario (Chen et al. 2022). Dai and Wei proposed an MFO 
algorithm with the best flame average for mobile robots, and it was theoretically validated 
on three narrow passages and maze-like scenarios (Dai and Wei 2021).

Patle et al. applied the FA algorithm for mobile robot navigation, and it was validated in 
four theoretical and three practical scenarios (Patle et al. 2018). Achouri et al. deployed the 
FA algorithm for the two-wheel differential drive robots, and it was theoretically validated 
on four scenarios (Achouri and Zennir 2024). Majumder et al. applied the TLBO algorithm 
for path planning and task management for mobile robots, and it was validated on one 
maze-like scenario (Majumder et al. 2021). Sabiha et al. deployed the TLBO algorithm for 
tracked vehicles, and it was validated on a ROS-based system with one scenario (Sabiha 
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et al. 2022). Shi et al. used the simulated annealing (SA) algorithm for path planning with 
boolean constraints for robotic systems (Shi et al. 2022). Yang and Vigneron applied the SA 
algorithm for the grid-based path planning for mobile robots (Yang and Vigneron 2022).

Xu et al. proposed an ABC-based algorithm guided by the global best path, and it was 
theoretically validated on two scenarios: one with two circular obstacles and the other with 
nine obstacles (Xu et al. 2020). Cui et al. applied the ABC algorithm for mobile robots’ 
path planning, and it was validated on scenarios with four to ten obstacles (Cui et al. 2023). 
Huang et al. applied the HHO algorithm for the robot path planning and validated it on 
two scenarios with three and four circular obstacles (Huang et al. 2023a). Huang et al. pro-
posed an ABC-based algorithm for grid-based path planning, and it was validated on three 
maze-like scenarios (Huang et al. 2023b). Fu et al. proposed a CSO-based algorithm for the 
hypersonic vehicles, validated on the PSOPT simulator with one scenario (Fu et al. 2019). 
Zhao et al. applied the CSOA algorithm for the navigation of the intelligent patrol car, and it 
was practically validated using a two-wheel differential drive car on one maze-like scenario 
(Zhao et al. 2020).

Sallam et al. proposed the superior improved multi-operator differential evolution 
(IMODE) algorithm (Sallam et al. 2020). The IMODE algorithm outperformed the entire 
meta-heuristic optimization algorithms, winning the CEC2020 competition (Yue et al. 
2019). Meta-heuristic optimization algorithms are problem-independent and general prob-
lem-solvers that can handle complex scenarios. Due to the exploration capability of the 
search spaces, they rarely get trapped at a local minimum.

Several studies have merged reinforcement learning (RL) with meta-heuristic optimiza-
tion algorithms to improve the RL performance (Goyal et al. 2019). Das et al. coupled the 
PSO algorithm with the Q-learning to reduce the RL’s computational complexity (Das et al. 
2016). Juang and Bui proposed an RL neural fuzzy surrogate-assisted model optimized 
with ant colony optimization (ACO) algorithm (Juang and Bui 2019). Tan et al. introduced 
a DE algorithm in which deep Q-network is used to pick the mutation rule from multiple 
DE mutation methods (Tan and Li 2021). Sallam et al. proposed a modified version of the 
IMODE algorithm, presented in (Sallam et al. 2020), called IMODEII (Sallam et al. 2022). 
In the IMODEII algorithm, the RL selects the best mutation method out of three based on 
a reward value and population state. IMODEII ranked first and outperformed the Spherical 
Search (SSA) algorithm, United Multi-operator EA (UMOEA) algorithm, IMODE-AGSK 
(winner of CEC2021 non-shifted), MadDE algorithm (winner of CEC2021), and IMODE 
algorithm (winner of CEC2020).

To the authors’ best knowledge, the IMODEII is yet to be applied to the path planning 
problem. The usage of the RL in the meta-heuristic optimization algorithm in the litera-
ture is just picking one rule from a mixed pool of operators, which does not utilize the 
concept of learning using the RL. Nevertheless, the solutions generated by meta-heuristic 
optimization algorithms are based on random behaviour in specific stages of the algorithms, 
which increases the computation time of the algorithm. Therefore, the proposed QSMODE/
DQSMODE algorithms utilize the RL method to generate solutions, using Q-learning 
(QSMODE) and DQN (DQSMODE) to build experience during the search process. The 
proposed algorithms modify the IMODE algorithm and integrate it with RL to add the abil-
ity to learn and decrease the response time in familiar scenarios while maintaining the explo-
ration capability to avoid getting trapped in a local minimum in the path planning problem.

1 3

Page 9 of 56   142 



M. Reda et al.

3 The proposed fitness-reward function of the path planning problem

The path starts at a starting point (xs, ys), ends at an endpoint (xt, yt), and includes n way-
points. Each point on the path is denoted as (xi, yi), where i ranges from 1 (start) to n (end). 
The objective is to solve a constraint optimization problem to find the shortest safe path 
between the start and endpoints. The shortest path minimizes the total Euclidean distance, a 
common metric in path planning, between successive points, as it represents the most direct 
route in Euclidean space (Sánchez-Ibáñez et al. 2021).

Beyond minimizing distance, the path must satisfy two constraints. First, all path points 
must remain within the boundaries, where xmin ≤ xi ≤ xmax and ymin ≤ yi ≤ ymax. 
Second, the path must avoid obstacles, enforced by the condition g(xi, yi, b) ≥ 0, where 
g(xi, yi, b) is a general constraint function that evaluates the collision condition with the b-
th obstacle and ensures no collision occurs (Nossier et al. 2021). The optimization problem 
is formulated as shown in Eq. (1).

 
minimize f(x, y) =

n−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 (1)

 

xmin ≤ xi ≤ xmax, ∀i ∈ {1, ..., n}
ymin ≤ yi ≤ ymax, ∀i ∈ {1, ..., n}

g(xi, yi, b) ≥ 0, ∀i ∈ {1, ..., n}, ∀b ∈ Obstacles,

The fitness (cost) function evaluates the quality of a given path by considering both the 
path’s total distance and any penalties that arise from collisions with obstacles. The pen-
alty consists of two components: point-based penalties occur from collisions between path 
points and obstacles; segment-based penalties represent collisions between line segments 
connecting successive waypoints and obstacles. This formula ensures the path is both short 
and safe, guiding the optimization process effectively (Ma et al. 2020). The proposed cost 
function is designed to accommodate diverse obstacle types, with a primary focus on grid-
based obstacles due to their generality and practical applicability.

The segment-based penalty is crucial in identifying issues that a point-based penalty can-
not detect. Even if all waypoints lie outside obstacles, individual path segments may still 
intersect with them; hence, segment-based penalties are crucial for capturing these viola-
tions that a purely point-based check would overlook. Although a segment-based penalty 
can be enough to detect obstacle collisions, point-based checks are performed to assess or 
penalize the individual waypoints. Any waypoint within an obstacle indicates a high viola-
tion as the waypoint is unreachable and renders the path infeasible.

In contrast, if all waypoints are located outside the obstacles but some line segments 
connecting them intersect with obstacles, the path can still be considered a good candidate. 
These paths often require only minor refinements in subsequent iterations to eliminate the 
intersections. This combination of penalties ensures that paths with unreachable waypoints 
are penalized more heavily, while paths with minor issues can still be refined. Moreover, 
point-based penalties allow for a quick preliminary check, helping bypass unnecessary com-
putations for segment-based penalties when a path is clearly invalid due to a waypoint being 
inside an obstacle, which decreases the computational complexity.
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The cost function comprises two main components: the path length L and the total pen-
alty pT , as shown in Eq. (2). The path length L represents the Euclidean distance between 
all points on the path, defined in Eq. (3). The total penalty pT  accounts for collisions and 
is scaled by the weight β, set to 100 to prioritize safety by heavily penalizing unsafe paths 
For a collision-free path, the total cost equals the path length L, representing the minimum 
achievable cost.

The total penalty pT  represents the average penalty across all obstacles, including point- 
and line-segment-based penalties, as shown in Eq. (4), where B is the total number of obsta-
cles For each obstacle b, the penalty includes two terms: 

∑n
i=1 pb

i , which evaluates penalties 
for collisions involving the n path points (xi, yi), and 

∑n−1
j=1 pb

line,j , which evaluates pen-
alties for collisions involving the n − 1 line segments Lj = [(xj , yj), (xj+1, yj+1)]. The 
penalty is normalized by dividing by B, the total number of obstacles, to ensure the penalty 
reflects the overall distribution and severity of collisions.

 cost =L ∗ (1 + βpT )  (2)

 
L =

n−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2  (3)

 
pT = 1

B

B∑
b=1

(
n∑

i=1

pb
i +

n−1∑
j=1

pb
line,j

)
 (4)

For grid-based obstacles, the two components pb
i  and pb

line,j  are calculated using a grid rep-
resentation. The search space is represented as a grid-based environment, where the grid is 
defined by its origin (xg, yg) and resolution (xres, yres). The x-coordinate ranges from xmin 
to xmax in steps of xres, while the y-coordinate is discretized from ymin to ymax in steps of 
yres. Each point on the path, (xi, yi), is mapped to a corresponding cell in the grid with indi-
ces (xci, yci), calculated using Eq. (5). Each cell in the grid is assigned a cost M(xci, yci)
, where 0 represents a free cell, and 100 indicates a fully occupied cell, as determined by 
mapping algorithms such as SLAM. These occupancy values reflect the proximity of the 
cell to obstacles. For the point-based penalty pi, the cost M(xci, yci) of the cell correspond-
ing to the point (xi, yi) is normalized by dividing by 100, yielding a penalty in the range 
[0, 1], as shown in Eq. (6).

 
xci =round

(
xi − xog

xres

)
, yci = round

(
yi − yog

yres

)
 (5)

 
pi =M(xci, yci)

100
 (6)

The segment-based penalty pline,j  is calculated by identifying all grid cells intersected by a 
line segment Lj  connecting two consecutive waypoints. Bresenham’s line algorithm deter-
mines these cells, where nj  is the number of these cells. Figure 3 illustrates the intersection 
between the line segment and the grid cells. The penalty is then aggregated across these 
intersected cells by averaging their normalized occupancy costs, as shown in Eq. (7). Equa-
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tion (4) is modified to calculate the overall path penalty pT  in the grid-based environment 
as shown in Eq. (8), where the cost is not refereed to the obstacles because it is obtained 
directly from the grid. During the practical validation, the LiDAR sensor collects distance 
information, and then the SLAM algorithm is used to generate the occupancy grid that is 
used to evaluate the path cost.

 
pline,j = 1

nj

nj∑
k=1

M(xck, yck)
100  (7)

 
pT =

n∑
i=1

pi +
n−1∑
j=1

pline,j  (8)

The proposed cost function supports various obstacle types, focusing here on grid-based 
obstacles for their generality and practical validation via SLAM-generated occupancy grids. 
Detailed formulations and calculations for pb

i  and pb
line,j  related to circular (Sect. S2.1) and 

rectangular (Sect. S2.2) obstacles, as well as conversion mechanisms between these types 
(Sect. S2.3), are provided in the supplementary materials, highlighting the framework’s 
versatility.

4 The proposed library for path planning scenarios (RP2B-24)

This section introduces a proposed library of path-planning scenarios with different configu-
rations that will be used in the path-planning comparative analysis. Bench-MR is an open-
source benchmarking framework that generates path-planning scenarios. It is designed 
especially for sampling-based motion planning algorithms such as RRT and RRT* algo-
rithms (Heiden et al. 2021). Arena-bench is another benchmark platform for generating path 
planning and obstacle avoidance scenarios based on neural networks (Kästner et al. 2022). 
These libraries are effective in generating the scenarios. Still, it is complex to integrate with 
the other algorithms to be tested on it, where each algorithm needs to be manually integrated 
into the library to be tested on it, which is time-consuming.

Therefore, a library of 50 challenging path-planning scenarios is proposed, called Reda’s 
Path Planning Benchmark 2024 (RP2B-24). RP2B library evaluates the algorithm in a 

Fig. 3 Illustrative figure shows the segment-based cost in grid-based environment
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unified architecture that can be easily deployed for any path-planning algorithm. In the 
proposed library, the Bench-MR and Arena-bench benchmark platforms generate multi-
ple scenarios as an initial configuration. Then, the obstacle configuration is collected and 
fine-tuned to make it more challenging. In addition, more complicated scenarios have been 
designed to create more challenging scenarios. These configurations have been structured 
into a proposed data structure that formulates a simple unified architecture that can be called 
with any path-planning algorithm.

Path planning with obstacle avoidance scenarios is categorized into five types in the pro-
posed library: open field, single obstacle, multiple obstacle, narrow passages, and maze-like 
scenarios. For each type, there are multiple configurations: One for the open-field, two for 
the single obstacle, 13 configurations for the multiple obstacles case, 21 configurations for 
the narrow passage scenarios, and 13 configurations for the maze-like scenarios. The total 
number of configurations is 50, labeled from M1 to M50. Each configuration has three main 
attributes: the start point, the endpoint, and the configuration of the obstacles. In the open 
field, obstacles have smooth circular outlines and single-obstacle and multiple-obstacle 
scenarios. In the narrow passages and maze-like scenarios, obstacles have sharp rectangle 
shapes.

All the obstacles in this library are assumed to have the same priority and type. How-
ever, due to the dynamic structure of the proposed library, another attribute can be added to 
the obstacles to give more priority to some obstacles over others. The priority of obstacles 
requires an image processing layer that can identify the type of obstacle and assign a prior-
ity level based on its severity or danger. This point is beyond this study. However, this can 
be extended to the dynamic structure of our proposed architecture, and all the obstacles are 
assumed to have high priority and must be avoided.

The open field case is the simplest case, where there are no obstacles at all. It is required 
to find the path between the start point and the endpoint. This simple case shows how the 
algorithms perform in the basic simple scenario. In autonomous driving, the default sce-
nario is the open field one because the car is supposed to move in a straight line in its lane. 
The obstacle avoidance case is the exception, where an object hinders the car’s path. The 
shortest path between any two points in the open field is a straight line. However, some 
algorithms generate a curved path in this simple case. Therefore, it is crucial to consider the 
open-field scenario during testing.

The single obstacle case has only one obstacle between the start and endpoints. On the 
other hand, the multiple obstacle scenarios have more than one obstacle between the start 
and endpoints. The narrow passage scenarios have rectangle obstacles where they are too 
close to each other, making the path routing more challenging. The maze-like scenarios 
have thin, sharp barriers between the start and the endpoints. The boundaries for all 50 mod-
els are the same, where the x-coordinates lie between − 10 and 10, and the y-coordinates lie 
between -10 and 10.

Figure 4 illustrates the distribution of the start points, endpoints, and obstacles for 
selected models in the proposed library. The complete set of configurations (M1-M50) and 
their detailed descriptions are available in the supplementary materials (Sect. S1; Fig. S1 
and Table S1).
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5 The proposed path planning algorithm

This section explains the basis of the proposed QSMODE/DQSMODE algorithms for the 
path planning problem. Two significant aspects have been addressed here to solve two major 
issues for the state-of-the-art algorithms that deal with the path planning problem. First, the 
sharp solutions obtained from the algorithms in the literature have been addressed by add-
ing a cubic-spline interpolation technique to fine-tune the paths generated by the algorithm. 
Second, the lack of the ability to learn in meta-heuristic optimization algorithms has been 
addressed by merging the reinforcement learning techniques in a novel manner with the 
proposed QSMODE and DQSMODE algorithms.

5.1 Population encoding

The proposed QSMODE/DQSMODE algorithm starts by generating an initial population of 
candidate solutions. These solutions must be encoded first to represent the solutions for the 
optimization problem being solved. In the path planning problem, the population P consists 
of a set of individuals Ii, each representing the candidate path from the start to the endpoint, 
as in Eq. (9), where npop is the number of individuals in the population.

Each individual Ii represents the candidate path, with pairs of waypoints as x and y coor-
dinates. The path’s waypoints dynamically change with the number of obstacles, as in Eq. 
(10), where the rate β is the waypoints rate (set to 1), and nobst is the number of obstacles. 
The number of waypoints nd represents the dimension size of the optimization problem. The 
proposed QSMODE and DQSMODE algorithms are typically applied to the population like 
any other optimization problem.

 
P =

{
Ii =

{
(xi

j , yi
j)

}nd

j=1

}npop

i=1
 (9)

Fig. 4 Samples of model configurations for the proposed library of the path planning scenarios. The ob-
stacles are blue in colour, the start point is a yellow circle, and the endpoint is a green square
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 nd = max(round(β × nobst), 1)  (10)

5.2 Smoothing technique using cubic spline interpolation

Path planning algorithms in the literature suffer from sharp paths, especially in tight corners 
and turns. These path-planning scenarios are challenging, and sharp paths are not feasible 
for the car to follow as they may lead to a collision. In the proposed algorithms, a cubic 
spline technique is used to make the path generated by the algorithm smoother. In practice, 
the waypoints generated from the QSMODE/DQSMODE algorithms are the main points to 
be followed. Additionally, the spline’s smooth path is stored for use in case of sharp turns 
and corners. This advantage gives the proposed algorithm more reliability when dealing 
with more challenging scenarios.

The cubic spline interpolation method creates a smooth path through a set of waypoints 
Li et al. (2020). The generated path from the QSMODE/DQSMODE algorithms consists 
of nd waypoints, including the start and endpoints. This path is smoothed by breaking it 
into two groups of segments. The first group represents the main segments that define the 
knots and the junction points between each piece of the cubic spline curve, defining the 
main structure of the path. The number of main segments is nd − 1, which consists of the 
main waypoints of the path (Lian et al. 2020). The main segments of the entire path have an 
evaluation parameter T that ranges from 0 to 1. This parameter is broken into a set of nd − 1 
continuous segments ti, such that the main waypoints are uniformly distributed within the 
whole range of parameter T, as in Eq. (11).

The second group is the secondary segments representing the discrete spline segments 
over the entire path from the start to the endpoints. The entire path is discretized into a set 
of ns spline points, dividing into ns − 1 segments. The entire path will have another evalua-
tion parameter, K, that ranges from 0 to 1. This parameter is broken into ns − 1 continuous 
segments ki such that the spline points are uniformly distributed within the whole range of 
parameter K, as in Eq. (12).

Each secondary segment Si(k) parameterized by ki is expressed by the cubic spline 
piecewise polynomial function in Eq. (13), where (ai, bi, ci, di) are the coefficients defining 
the cubic polynomial of the i-th segment of the spline. This function interpolates between 
the spline points by obtaining the coefficient of each secondary segment. These segments 
generate a smoother path than the originally generated path, giving more flexibility in han-
dling the tight and sharp turns.

Figure 5 illustrates the difference between the primary segments and their evaluation 
parameter ranges and the secondary spline segments and their corresponding range. The 
number of the main waypoints nd is assumed to be 3, while the number of spline points ns 
is assumed to be 6.

 
T = {ti}nd−1

i=1 , where ti ∈
[

i − 1
nd − 1

,
i

nd − 1

]
.  (11)

 
K = {ki}ns−1

i=1 , where ki ∈
[

i − 1
ns − 1

,
i

ns − 1

]
.  (12)

 Si(k) =ai(k − ki)3 + bi(k − ki)2 + ci(k − ki) + di  (13)
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5.3 Reinforcement learning: Q-learning and deep Q-network (DQN) techniques

The proposed QSMODE and DQSMODE algorithms enhance the optimization process by 
integrating reinforcement learning techniques, enabling them to learn iteratively from the 
population experience and adapt to complex scenarios. This learning ability distinguishes 
them from traditional optimization methods, where each run starts afresh without prior 
experience. In contrast, QSMODE and DQSMODE accumulate experience, improving 
convergence speed for real-time applications and their ability to handle challenging path 
planning scenarios.

5.3.1 Formulation of states, actions, and rewards in QSMODE and DQSMODE

Reinforcement learning in both QSMODE and DQSMODE is modeled using the Markov 
Decision Process (MDP), which comprises a set of states S, a set of actions A, and a reward 
function R(s, a). If an action a ∈ A is taken at a state s ∈ S, the system transitions to a new 
state sn ∈ S, which is evaluated using the reward function R(s, a). The reward value is 
represented by Q(s, a), which quantifies the long-term expected reward of taking action a 
at state s, guiding the agent to optimize decision-making (Jang et al. 2019). For QSMODE, 
these Q(s, a) values are stored in a Q-table, accumulating knowledge over iterations. For 
DQSMODE, the Q-table is replaced by a deep Q-network (DQN), which approximates the 
same knowledge as a neural network.

In the path-planning problem, the state s represents the car’s location as (x, y) coordi-
nates. The state space is discretized into a grid with resolutions (xres, yres), where each 
grid cell corresponds to a unique state. The complete set of states S is defined in Eq. (14), 
where xmin and ymin are the lower bounds of the grid, while xmax and ymax are the upper 
bounds. The total number of grid cells along the x- and y-axes are ncx = xmax−xmin

xres
 and 

ncy = ymax−ymin
yres

, respectively.

 S = {(xi, yj) | xi = xmin + i · xres, yj = ymin + j · yres}i=ncx,j=ncy

i=1,j=1  (14)

Fig. 5 The ranges of the evaluation parameters in the cubic spline interpolation
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In QSMODE, this discrete grid representation is more suitable for the state-action mapping 
in the Q-table. For DQSMODE, the input space can represent discrete or continuous (x, y) 
coordinates, offering more flexibility. However, using a discrete input space accelerates the 
process and aligns with real-time maps generated by SLAM algorithms, making it suitable 
for real-time path planning applications.

The set of actions A represents discrete rotation angles θ that control the car’s steering 
direction, as in Eq. (15), where na is the number of possible actions. Each action θi specifies 
the car’s direction to reach the next state. The resolution of na balances decision precision 
and computational complexity, enabling effective path planning for both QSMODE and 
DQSMODE.

 
A =

{
θi = i · 360

na

}na

i=1
 (15)

The reward function in the Q-learning framework is designed to encourage progress toward 
the goal while penalizing obstacle violations. It is derived from the fitness function in Eq. 
(2) and reformulated to maximize the reward by negating the cost. The reward for taking an 
action a from the current state s = (x, y) is expressed in Eq. (16), where d(sn, st) denotes 
the Euclidean distance between the next state sn = (xn, yn) (after taking action a) and the 
goal st = (xt, yt), as in Eq. (17). The term pT (s, a) represents the total penalty associated 
with the action a from state s Eq. (18), where pb

i (sn) accounts for the sn point-collision 
with obstacles, and pb

line,j(s, sn) penalizes collision between the line segment (s, sn) and 
obstacles. These terms are computed as described in Sect. 3.

 r(s, a) = −
(
d(sn, st) + pT (s, a)

)
,  (16)

 d(sn, st) =
√

(xn − xt)2 + (yn − yt)2,  (17)

 
pT (s, a) =

B∑
b=1

(
pb

i (sn) + pb
line,j(s, sn)

)
.  (18)

5.3.2 QSMODE: Q-table structure and update

QSMODE incorporates a Q-table to store and update the Q-values for all state-action pairs. 
The Q-table in QSMODE is a two-dimensional matrix, where each row corresponds to a 
state s = (x, y), and each column corresponds to a possible action a = θ. The table’s entries 
Q(s, a) store the long-term expected rewards for taking action a at state s.

First, the agent (car) selects the action a ∈ A with the highest Q-value at the current state 
s ∈ S, where the Q-value Q(s, a) is retrieved from the Q-table. This action corresponds to 
the steering angle θ that directs the car from its current location s = (x, y) to the next loca-
tion sn = (xn, yn), and its direct reward r is calculated using Eq. (16). Figure 6 illustrates 
the concept and the relationships among s, a, and r.

The Q-value for the current state-action pair Q(s, a) is updated based on the Q-learn-
ing update rule Eq.(19), where α ∈ [0, 1] is the learning rate, which controls how much 
of the new information overwrites the old Q-value, and γ ∈ [0, 1] is the discount factor, 
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which balances the immediate reward r and the future reward maxan Q(sn, an). The term 
maxan Q(sn, an) represents the maximum future reward achievable from the new state sn 
for all possible actions an (Clifton and Laber 2020).

 
Q(s, a) = Q(s, a) + α

[
r + γ max

an
Q(sn, an) − Q(s, a)

]
. (19)

5.3.3 DQSMODE: deep Q-network (DQN) structure and update

DQSMODE incorporates the deep learning concept by replacing the Q-table in the 
QSMODE algorithm with a deep Q-network (DQN). The QSMODE algorithm’s Q-table 
explicitly lists all states and their possible actions, leading to significant memory consump-
tion in complex search spaces. The DQSMODE algorithm addresses this issue using a 
DQN, which approximates the entire Q-table as a neural network. This approach enables 
continuous state representation, reduces memory requirements, and eliminates the scalabil-
ity challenges associated with the Q-table (Fan et al. 2020). DQSMODE preserves the RL 
fundamentals of QSMODE while extending its capability to address larger and more com-
plex problems. This improvement allows the DQSMODE to manage expansive state-action 
spaces effectively, ensuring both efficient learning and high-quality solutions.

5.3.4 DQN structure

The DQN receives the current state and predicting the expected reward (Q-value) for each 
possible action in that state. The structure of the proposed DQN is illustrated in Fig. 7. The 
input layer accepts the state (position) represented by continuous x and y coordinates, with 

Fig. 7 The DQN network architecture for the proposed DQSMODE algorithm

 

Fig. 6 Concept of reinforcement learning based on state s, action a, and reward r
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x ∈ [xmin, xmax] and y ∈ [ymin, ymax]. This approach avoids the discrete indices (required 
by a Q-table) and can be adapted for both continuous and discrete state spaces, enabling 
flexibility in representing various environments.

Two hidden layers are employed, with the size of the first hidden layer NH1 determined 
as 2

3 × Input size + na, where na is the number of possible actions. For the second hidden 
layer, the size NH2 is set to approximately half of the first hidden layer to balance compu-
tational efficiency and model generalization (Heaton 2008). The ReLU activation function 
is used for both hidden layers to enhance the network’s ability to capture non-linear rela-
tionships while maintaining computational efficiency (Lv et al. 2019). This configuration 
minimizes training complexity while ensuring suitability for real-time path planning and 
balancing computational efficiency and learning capability. The output layer predicts the 
Q-value for each possible action, with the number of outputs corresponding to the set of 
actions defined in Eq. (15).

5.3.5 DQN training

The DQN is trained iteratively, using a replay memory to store the history of state transi-
tions during optimization. Each entry in the replay memory contains the current state s, the 
selected action a, the next state sn, and the immediate reward r obtained after taking action 
a in state s. A replay memory of size nm ensures adequate history without excessive com-
putational overhead (Liu and Zou 2018).

During training, a subset (batch) of replay memory of size nb, is sampled randomly, serv-
ing as the training dataset for each cycle. For every state s in the batch, predicted Q-values 
for all possible actions are computed using the primary Q-network Qmain(s, a). Future 
Q-values for the next states sn are predicted using a target Q-network Qtarget(sn, an), 
which is updated less frequently to stabilize learning (Halat and Ebadzadeh 2021). Using 
separate networks to predict future Q-values enhances stability and avoids the moving target 
problem. Since the primary network undergoes frequent updates, relying on it to evalu-
ate future Q-values would lead to inconsistent results for the next states sn. Conversely, 
updated less frequently, the target Q-network provides a stable reference for evaluating 
future Q-values (Halat and Ebadzadeh 2021).

The training data consists of input–output pairs, in which the inputs are the (x, y) coor-
dinates of the states in the batch, resulting in a dataset of nb × 2 dimensions. The outputs 
represent the Q-values for all possible actions at each state, with a size of nb × na. For 
each state s, one action a ∈ A is selected, while the remaining actions, denoted as A∗ ⊂ A 
where a /∈ A∗, are updated separately. For each action a∗ in the remaining actions set A∗

, the Q-values, represented as Qoutputs(s, a∗), are directly computed using the primary 
Q-network Qmain(s, a∗) (second branch in Eq. (20)), reflecting the predictions made by the 
primary Q-network during the current training cycle.

In contrast, the Q-value for the selected action a, denoted as Qoutputs(s, a), is updated 
using the Bellman update rule (first branch in Eq. (20)) to incorporate the learning dynam-
ics of reinforcement learning (Zhao 2022). Where r represents the immediate reward 
after taking action a in state s, γ is the discount factor (a value between 0 and 1), and 
maxan

(
Qtarget(sn, an)

)
 denotes the maximum predicted Q-value of the next state sn 

across all possible actions an as evaluated by the target Q-network.
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Qoutputs(s, a) =

{
r + γ maxan

(
Qtarget(sn, an)

)
, Where a is the selected action,

Qmain(s, a = a∗), ∀a∗ ∈ A∗, a∗ ̸= a, a /∈ A∗.
 (20)

The Mean Squared Error (MSE) loss is obtained for all current states in the batch (Lv 
et al. 2019). For each state s, the error is calculated for the selected action a by comparing 
the predicted Q-value Qmain(s, a), obtained from the primary Q-network with the Q-value 
Qoutputs(s, a), computed using the Bellman update rule. The MSE loss is given by Eq. 
(21), where nb is the batch size, si denotes the state for the ith sample, and ai is the selected 
action for that state.

 
MSE = 1

nb

nb∑
i=1

(Qmain(si, ai) − Qoutputs(si, ai))2 (21)

The Adam gradient descent algorithm is applied to minimize the MSE loss by updating the 
weights of the primary Q-network (Vieillard et al. 2020). The overall training process is 
illustrated in Algorithm 1. The proposed DQSMODE algorithm retains the core structure of 
the QSMODE algorithm, as shown in Fig. 8, with the Q-table replaced by a Q-network and 
the iterative training process integrated.

Fig. 8 The flowchart of the proposed QSMODE/
DQSMODE algorithm
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Algorithm 1 Training process of the DQN network

5.3.6 Updating the Q-table/DQN in the QSMODE/DQSMODE algorithms

The primary objective of integrating the QSMODE and DQSMODE algorithms with rein-
forcement learning is to enable the proposed frameworks to learn and adapt to improve 
the optimization process. The training process differs slightly for QSMODE, which uses a 
Q-table, and DQSMODE, which uses a DQN network. Both processes are controlled by an 
exploration probability Prl to dynamically balance exploration and exploitation.

The exploration probability Prl governs the balance between two modes during the train-
ing process: Mode 1 for exploration and Mode 2 for exploitation. Notably, Prl does not 
determine whether the Q-network or Q-table is updated but rather the updating mode. At 
every iteration, the reinforcement learning process generates a solution to accelerate conver-
gence, particularly in real-time path planning scenarios.

Initially, Prl is set to a value Prl,init and decreases linearly over iterations until it reaches 
a minimum value Prl,min. The Prl is updated using Eq. (22), where Prl,init is the ini-
tial probability, Prl,min is the minimum probability, t is the current iteration number, and 
max_iter is the maximum number of iterations. This linear decay ensures a smooth transi-
tion from exploration to exploitation as training progresses.

 
P t

rl = Prl,min + (Prl,init − Prl,min)
(

1 − t

max_iter

)
 (22)

A random number is generated and compared to Prl at each iteration. If the random number 
is less than Prl, Mode 1 is activated, focusing on exploration by randomly selecting actions. 
Otherwise, Mode 2 is activated, emphasizing exploitation by utilizing the population gener-
ated by the optimization process to train the Q-table or Q-network. Algorithm 2 illustrates 
the proposed RL-learning update approach for both QSMODE and DQSMODE, showing 
the interaction between exploration (Mode 1) and exploitation (Mode 2).

Mode 1 emphasizes exploration by randomly selecting actions a ∈ A for the current state 
s to generate the next state sn. Mode 2, on the other hand, focuses on exploitation by utiliz-
ing paths generated during the optimization process to train the Q-table or Q-network. For 
each waypoint s and its following waypoint sn in the path, the action a is computed as the 
angle between s and sn using Eq. (23).
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θr = tan−1

(
yn − yr

xn − xr

)
 (23)

The transition from s to sn using the action a is evaluated with a reward r(s, a) using 
Eq.(16), which considers the distance to the goal and obstacle penalties. In QSMODE, the 
transition tuple (s, a, r, sn) is directly used to update the Q-table using the Q-learning rule 
in Eq. (19). In DQSMODE, the tuple (s, a, r, sn) is stored in the replay memory, and the 
Q-network is trained using a subset of this memory.

Mode 1 is designed for exploration; it expands the search space by exploring new states 
and actions to ensure a diverse search space for reinforcement learning. On the other hand, 
Mode 2 is designed for exploitation; it exploits the optimization-generated data to train the 
model toward goal-oriented solutions, enhancing convergence efficiency. Moreover, there 
is a difference in the update mechanism between QSMODE and DQSMODE; QSMODE 
depends on direct Q-table update, while DQSMODE relies on replay memory and Q-net-
work for training. Algorithm 2 integrates both modes, dynamically balancing exploration 
and exploitation using the switching probability Prl.
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Algorithm 2 Training stage in QSMODE and DQSMODE (Mode 1 and Mode 2)

5.3.7 Generating the path using Q-learning in QSMODE/DQSMODE

In the QSMODE and DQSMODE algorithms, Q-learning is employed to generate a can-
didate path from the start point to the endpoint. The process begins by initializing the path 
with the start point and setting it as the current state s = (xr, yr). The main loop continues 
until a path is found, the goal state is reached, or the maximum number of iterations is 
exceeded. At each iteration, the action a with the maximum Q-value for the current state s 
is selected, as in Eq. (24). This action represents the optimal rotation angle θr to transition 
from the current state s to the next state sn = (xn, yn). The next state is computed using 
Eq. (25).
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a = arg max

a∈A
Q(s, a)  (24)

 

xn =xr + cos(θr),
yn =yr + sin(θr),  (25)

For QSMODE, the Q-table is directly used to determine the best action. In DQSMODE, the 
Q-network predicts the Q-values, and the action with the highest predicted value is chosen. 
The path is returned if the new state matches the goal state. Otherwise, the new state is 
appended to the path vector, set as the current state, and the loop proceeds. Algorithm 3 
outlines the detailed steps for generating a path in both QSMODE and DQSMODE.

Algorithm 3 Path generation using Q-learning in QSMODE/DQSMODE

5.3.8 The overall proposed QSMODE/DQSMODE algorithm

The QSMODE and DQSMODE algorithms enhance the original MODE framework by 
incorporating reinforcement learning and cubic spline interpolation to improve path quality 
and adaptability. RL integrates either Q-learning (QSMODE) or deep Q-networks (DQS-
MODE) for iterative learning, while cubic spline interpolation smoothens paths for better 
applicability in real-world scenarios. The high-level workflow of the algorithm is shown in 
Algorithm 4 and Fig. 8.

The algorithm begins with parameter initialization, including the Q-learning parameters 
and the Q-table or Q-network. The main loop iterates until the termination condition is 
met. In each iteration, standard optimization phases (mutation, crossover, and optional local 
search) are applied to improve the population. Next, a candidate path is generated using 
Q-learning (for QSMODE) or a DQN-based approach (for DQSMODE) using Algorithm 3. 
This path is evaluated using the defined cost function in Eq. (2), and if it improves upon the 
worst path in the population, it replaces it.

The global best path is updated after each iteration to refine the global solution, and cubic 
spline interpolation is applied to ensure smoothness. Finally, RL is applied to update the 
Q-table or train the Q-network using Algorithm 2, adapting the algorithm to learn from the 
population experience that enhances its convergence and solution quality.
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Algorithm 4 The overall QSMODE/DQSMODE algorithm

6 Sensitivity and convergence analysis of the DQSMODE and 
Q-learning effect

This section examines the role of reinforcement learning (RL) in the DQSMODE algorithm, 
focusing on its impact on convergence and parameter tuning for the switching probability 
Prl. The Prl parameter governs the balance between exploration (Mode 1) and exploitation 
(Mode 2) in updating the Q-network/table. Importantly, Prl does not control whether the 
Q-network/table is updated but rather dictates the mode of updating. Regardless of the value 
of Prl, the RL process produces a solution at every iteration, ensuring accelerated conver-
gence in real-time path planning scenarios.

6.1 Sensitivity analysis of Prl

A sensitivity analysis was conducted on Prl,init ([0.1, 0.3, 0.5, 0.7, 0.9]) and Prl,min 
([0, 0.01, 0.05, 0.1]) with 20 configurations tested on 50 benchmark problems from the 
RP2B-24 library. Each configuration was run independently 8 times, with a Friedman 
test performed on median error results. Results, visualized using heatmaps and bar charts 
(Fig. 9), show that the best configuration is Prl,init = 0.5 and Prl,min = 0, achieving the 

Fig. 9 The heatmap and the bar chart for the sensitivity analysis
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minimum mean rank in the Friedman test. This configuration balances exploration (Mode 
1) and exploitation (Mode 2) early in the learning process while prioritizing exploitation 
during later iterations.

Larger values of Prl,min result in higher mean ranks, indicating the importance of priori-
tizing Mode 2 during later stages for effective learning and convergence. As Prl decreases 
linearly over iterations, the Q-table/network updates increasingly rely on Mode 2. Further-
more, the DQSMODE algorithm incorporates an archive to preserve population diversity, 
ensuring that the learning process remains robust and avoids premature convergence to local 
minima, even when Prl,min = 0.

6.2 Convergence comparison: DQSMODE vs. MODE

Reinforcement learning plays a dual role in enhancing the DQSMODE algorithm. For 
unfamiliar scenarios, it accelerates convergence by deploying evolutionary operators (from 
differential evolution) alongside Q-learning updates. The combination of population-based 
search and reinforcement learning enables faster identification of optimal paths than tra-
ditional evolutionary algorithms. For familiar scenarios, the pre-trained Q-network/table 
can generate paths more efficiently by bypassing the need to explore the search space. It is 
highly effective in scenarios requiring long-term learning and rapid, accurate path planning.

The Page test results further validate the superior convergence of DQSMODE com-
pared to the baseline MODE algorithm. The test examines the median error differences over 
N = 19 cut points across iterations and k = 10 benchmark problems (Carrasco et al. 2020). 
Statistical significance (p-value < 0.05) and an increasing trend in performance differences 
demonstrate that DQSMODE achieves faster convergence rates, as shown in Fig. 10 (More 
details are in the supplementary materials, Sect. S3). This advantage is due to the RL-guided 
exploitation of learned knowledge, which directs the optimization process more effectively 
than random evolutionary exploration.

An additional strength of DQSMODE is its hybrid capability, combining the general 
problem-solving nature of evolutionary algorithms with the learning-based adaptability of 
reinforcement learning. While traditional machine-learning models rely on pre-existing 
training data and struggle with unknown environments, and conventional evolutionary 
algorithms require more time and rely on random search strategies for unfamiliar scenarios, 

Fig. 10 Page test convergence trend graph 
between the DQSMODE and MODE 
algorithms
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DQSMODE excels in both. It can effectively address entirely new problems while simulta-
neously retaining and leveraging knowledge for similar future tasks.

This flexibility allows DQSMODE to function as both a general solver for unknown 
challenges and a specialized solver for recurring scenarios. The convergence plots in Fig. 11 
(and additional figures in the supplementary materials, Figure S3) further highlight this 
strength, demonstrating DQSMODE’s ability to generate solutions almost instantaneously. 
In cases where prior learning is applicable, it effectively transforms the problem into a near-
deterministic one. This adaptability positions DQSMODE as an ideal solution for real-time 
path planning, offering a unique combination of speed, accuracy, and long-term learning 
within a single robust framework.

7 Parameters settings of the path planning algorithms

In this validation phase, the algorithm will be validated on path-planning problems. DQS-
MODE and QSMODE will be compared with six other path-planning algorithms in the lit-
erature to evaluate its performance in path-planning scenarios, including A*. Dijkstra, RRT, 
RRT*, APF, and DWA algorithms. The DQSMODE and QSMODE will also be compared 
with 16 meta-hectic optimization algorithms for the path-planning problems, including GA, 
DE, SA, PSO, ABC, CSO, CSOA, FA, BAS, TLBO, GWO, MFO, WOA, HHO, CMAES, 
and IMODEII algorithms. Table 1 summarizes the parameters settings recommended in the 
original work for all the 22 state-of-the-art path planning algorithms used in the comparison.

The search space for all 50 benchmark problems varies between -10 and 10 in the x- and 
y-coordinates. The path-planning algorithms are validated in two stages. First, the DQS-
MODE and QSMODE are compared with 16 meta-heuristic optimization algorithms. All 
the meta-heuristic optimization algorithms have the same principle of operation, where the 
termination condition is set to a maximum function of evaluations (maxFEs) equals 10000 
multiplied by the number of obstacles of the model.

Second, the DQSMODE and QSMODE are compared with the six path-planning algo-
rithms (A*. Dijkstra, RRT, RRT*, APF, and DWA). These algorithms work differently to 
generate the path. Therefore, the primary termination condition is based on convergence, 
where the algorithm terminates when the best path is not improving for 100 successive 
iterations.

A trial run is performed for each algorithm for all 50 path planning scenarios to estimate 
the maximum number of iterations required to generate a path for each problem. The A*, 
RRT, and RRT* require 12000 iterations, the APF requires 50000 iterations, the Dijkstra 
needs 25000 iterations, and the DWA algorithm requires 1000 iterations. The DQSMODE, 

Fig. 11 Convergence plots after Q-learning for the median error between MODE and DQSMODE
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Algorithm Parameters
A* Grid resolution = 0.15
 Dijkstra Grid resolution = 0.15
 RRT Step size = 0.15
 RRT* Step size = 0.15, rewire radius = 1.5 * stepSize
 APF Yao et al. (2020) Step Size ∆t = 0.005, attractive force coeff. katt = 1

repulsive force coeff. krep = 20, influence range of repulsive force ρ0 = 3
 DWA Kong and Cheng 
(2023). Chang et al. (2021)

vmax = 1, vmin = −0.5, linear velocity resolution =0.01
ωmax = π/4, ωmin =−π/4, angular velocity resolution = 0.1, ∆t = 0.1

 GA Koohi et al. (2018) selection: tournament, tournament size = 3
Pc = 0.8, Pm =0.3, mutation rate µ = 0.02

 DE Simon (2008) CR = 0.5, F = 0.5
 SA Heris (2015), Fischetti 
and Stringher (2019)

T0 = 0.1, α = 0.99, mutation rate µ = 0.5
No. of neighbors per individual = 5, max no. of sub-iteration = 20

 PSO Heidari et al. (2019), 
Simon (2008)

w = 0.3, c1 = 1, c2 = 1

 ABC Koohi et al. (2018) a = 1, No. of onlooker bees = popSize
abandon limit = 0.6 * dimSize * popSize

 CSO Meng et al. (2014) roosters NR = 20%, hens NH = 60%, chicks NC = 20%
mothers NM = 10%, G = 10%, F Lmin = 0.5, F Lmax = 0.9

CSOA Thomas et al. 
(2018)

c = 2.05, wmax = 0.9, wmin = 0.4, MR = 0.8, SMP = 15
CDC = 0.8, SRD = 0.1, initial cat velocity = 25% of problem bounds

FA Koohi et al. (2018) γ = 1, β0 = 2, α = 0.2, damping ratio = 0.98
exponential constant m = 2, uniform mutation range = 0.05 * ( ub - lb)

BAS Jiang and Li (2017) initial step size δ1 = 0.5, ηδ  = 0.95, δ0 = 0.00
initial antennae length d1 = 2, ηd = 0.95, d0 = 0.01

 TLBO Rao et al. (2011) teacher factor TF = 1 or 2 (randomly chosen)
 GWO Mirjalili et al. 
(2014)

convergence parameter a: linearly decreases from 2 to 0

 MFO Mirjalili (2015) b = 1, convergence parameter a: linearly decreases from -2 to -1
 WOA Mirjalili and Lewis 
(2016)

b = 1, convergence parameter a: linearly decreases from 2 to 0

 HHO Heidari et al. (2019) escaping energy randomly varies between [-2,2]
 CMAES Hansen and 
Ostermeier (2001)

µ = popSize/2, damping rate dσ  = c−1
σ + 1

Cc = 4
nd+4 , ccov  = 2

(nd+
√

2)2

IMODEII Sallam et al. 
(2022)

Ninit = 10 ∗ nd, Nmin = 4, CRinit = Finit = 0.2
A = 1.4, H = 18 ∗ nd, Pls = 0.1
for RL: γ = 0.85, α = 0.25

QSMODE maximum spline points (ns) = 100, number of actions na = 8
α = 0.6, γ = 0.9, Prl = 0.5 to 0
C1max = 20, C2max = 500, xres = yres = 0.15

 DQSMODE maximum spline points (ns) = 100, number of actions na = 8
α = 0.6, γ = 0.9, Prl = 0.5 to 0
C1max = 20, C2max = 500, xres = yres = 0.15
Replay memory size nm = 1000, Batch size nb = 32,, Nfreq  = 5

Population size nPop = 30, all meta-heuristic alg. except CMAES, IMODEII, (D)QSMODE

Table 1 Summary of parameter settings for path planning algorithms
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QSMODE and the other meta-heuristic optimization algorithms need 500 iterations to guar-
antee a path for all the problems.

8 Simulation results part 1: meta-heuristic optimization algorithms

The DQSMODE and QSMODE algorithms are compared with 16 other state-of-the-art 
meta-heuristic optimization algorithms: GA, DE, SA, PSO, ABC, CSO, CSOA, FA, BAS, 
TLBO, GWO, MFO, WOA, HHO, CMAES, and IMODEII algorithms. All these algorithms 
have been executed for 30 independent runs on the 50 path-planning problems of the RP2B-
24 library. All the paths generated from each algorithm have been evaluated using the same 
cost function proposed in Eq. (2).

8.1 Results collection and graphical representation via box and violin plots

The best, worst, mean, median, and standard deviation (SD) metrics for the path costs gener-
ated by each algorithm across 30 runs have been calculated for all 50 path-planning models 
(M1 to M50). These results are included in the Supplementary Materials (Table S3). The 
violin plots for the models (M14, M20, M37, and M46) are shown in Fig. 12, providing 
a concise visual representation of the results. These models are selected to demonstrate 
diverse scenarios, including multiple obstacles (M14), narrow passages (M20 and M37), 
and maze-like environments (M46). The BAS, CMAES, and PSO algorithms have been 
excluded because their costs are higher than those of the other algorithms, causing the plots 
to be unclear for the rest of the algorithms.

The violin plots highlight the distribution of results for each algorithm. The black line 
within each violin represents the mean value, while the dashed red line indicates the median 
(Molina et al. 2022). The QSMODE and DQSMODE algorithms show compact distribu-
tions with tightly aligned mean and median values, indicating high repeatability and reli-
ability. The violin plots clearly demonstrate the ability of QSMODE and DQSMODE to 
produce consistent and repeatable results across varied path-planning challenges. Full 
results, including all box and violin plots for the 50 models, are available in the Supplemen-
tary Materials (Figs. S4 and S5).

8.2 Statistical analysis of the results: group comparisons

The performance of the DQSMODE and QSMODE algorithms are evaluated using the 
Friedman test and the SNE-SR ranking method to compare all 18 algorithms across 50 
path-planning models, providing a comprehensive evaluation of the algorithms, ranking 

Algorithm Parameters
 Models Number of models (scenarios) = 50

Range of the x-coordinate = [-10,10]
Range of the y-coordinate = [-10,10]

Termination Cond. Convergence ( successive number of iterations) = 100
Max. function evaluations (MaxFEs) = 10000 * max( nObstacles, 1)

Table 1 (continued) 
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them based on median and mean path cost metrics. The Friedman test results, summarized 
in Table 2, show the ranks of the algorithms based on median costs (Derrac et al. 2011). The 
DQSMODE ranks first with a mean rank of 2.71, followed by QSMODE at 3.11. The top 
seven algorithms are DQSMODE, QSMODE, IMODEII, TLBO, ABC, DE, and FA. The 
p-value in the Friedman test (2.12E − 114) confirms the statistical significance of these 
rankings, emphasizing the superior performance of the proposed algorithms (QSMODE 
and DQSMODE).

The SNE-SR ranking method evaluates the algorithms using two metrics: sum normal-
ized best error/cost (SNE) and mean cost sum ranks (SR), each contributing 50% to the total 
score, as introduced (Yue et al. 2019; Kumar et al. 2021). DQSMODE achieves the highest 
total score (99.29%), followed by QSMODE (93.05%) and IMODEII (77.82%), as shown 
in Table 2. The top seven algorithms align with those obtained from the Friedman test, fur-
ther emphasizing the significant performance of DQSMODE and QSMODE.

8.3 Statistical analysis of the results: paired comparisons

The Wilcoxon test was conducted for paired comparisons between the proposed DQS-
MODE algorithm and each of the other algorithms across 50 models. This test evaluates 
not only which algorithm has better mean values but also the magnitude of the differences 
(Divine et al. 2013). Positive differences (+) indicate that DQSMODE performs better, 
negative differences (−) indicate the other algorithm is better, and ties (=) show no signifi-
cant difference.

Fig. 12 Violin plots for all the algorithms in 30 runs for M14, M20, M37, and M46
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Differences are ranked, with the smallest receiving rank 1 and the largest receiving rank 
50. The ranks are summed for positive (R+) and negative (R−) differences, and the p-value 
is calculated to determine statistical significance at a threshold α = 0.05 (Woolson 2007). 
Table 2 shows that DQSMODE consistently achieves a p-value below 0.05, significantly 
outperforming all other algorithms, including IMODEII. Notably, there is no significant dif-
ference between DQSMODE and QSMODE, confirming their similar performance.

Figures 13 and 14 illustrate the detailed Wilcoxon test results. From an algorithm per-
spective, DQSMODE demonstrates superior performance across the 50 models, achiev-
ing consistently better costs in multi-obstacle, narrow-passage, and maze-like scenarios. 
In open-field cases, DQSMODE ties with competitive algorithms such as DE, PSO, MFO, 
IMODEII, and QSMODE.

For single-obstacle cases, DQSMODE outperforms most algorithms, achieving signifi-
cant wins against GA, CMAES, and BAS. In multi-obstacle scenarios, DQSMODE excels 
in all 13 models, outperforming IMODEII in 10 models. In comparison, QSMODE outper-
forms DQSMODE in 7 multi-obstacles models. For narrow passages, DQSMODE is in the 
lead for most cases, with QSMODE and IMODEII as its closest competitors. In maze-like 
cases, DQSMODE outperforms all algorithms in 12-13 cases, with IMODEII performing 
slightly better in some scenarios. These results confirm the robustness and reliability of 
DQSMODE in various path-planning scenarios, especially in challenging environments 
with obstacles.

8.4 Convergence graphs

Figure 15 illustrates the convergence behavior of the top seven algorithms (DQSMODE, 
QSMODE, IMODEII, TLBO, ABC, DE, and FA) on models representing diverse scenarios: 
multiple obstacles (M12), narrow passages (M25 and M34), and maze-like environments 
(M43). The vertical axis displays the logarithmic median cost across 30 runs, while the hori-
zontal axis represents the logarithmic value of function evaluations, indicating algorithm 
iterations.

The DQSMODE algorithm shows a superior convergence performance compared to the 
top seven algorithms, where it starts with the highest cost compared with the other algo-
rithms. Then, it improves until it reaches a cost equal to or better than the other algorithms. 
The DQSMODE algorithm demonstrates superior convergence performance, starting with 
the highest initial cost compared to the other algorithms and rapidly improving to achieve a 
final cost equal to or better than its competitors.

In most models, the algorithm can achieve low cost in shorter function evaluations, show-
ing its fast convergence. QSMODE shows a similar convergence pattern, which DQSMODE 
slightly advantages. The convergence performance of the DQSMODE and QSMODE are 
balanced, as they are sometimes slower than the other algorithms in complex scenarios to 
avoid premature convergence, resulting in superior final costs compared to other algorithms. 
Convergence graphs for all 50 models are available in Supplementary materials (Figure S6) 
for further analysis.
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8.5 Path plots

This section shows the path found by each algorithm, from the start point to the goal, in 
some selected path planning problems (M22 and M49), as shown in Fig. 16. In this figure, 
the median path for each algorithm is plotted to visualize the actual path. These plots give 
an intuition about the feasibility of the path because the cost of the path is not enough to 
evaluate the path’s feasibility and smoothness, and any collision can be noticed as well.

Figure 16a shows the paths for a narrow-passage case (M22). The QSMODE algorithm 
got the best median path with a cost of 9.2716, and DQSMODE got the second best path 
with a cost of 9.2734, where these paths are smooth compared to the ones obtained by 
the other algorithms. DE, FA, IMODEII, and TLBO algorithms achieved similar routes 
with challenging costs of 12.3940, 12.4140, 123940, and 12.3940, respectively. However, 
these paths have higher costs and are sharper than those obtained by the DQSMODE and 
QSMODE algorithms.

Figure 16b is a challenging maze-like scenario with a larger number of obstacles. This 
scenario shows the superiority of the DQSMODE algorithm in dealing with one of the 
most challenging scenarios, achieving the best path with a cost of 9.9618, followed by the 
QSMODE with a cost of 9.9623, both maneuvering through the maze. The BAS, CMAES, 
CSO, CSOA, GWO, HHO, IMODEII, MFO, PSO, and WOA algorithms solved the maze 
by hitting the obstacles. The GA algorithms found an overlapping route, which is collision-
free but infeasible with higher distance due to cycles. The ABC, DE, FA, SA, and TLBO 
algorithms solved the maze by leaving it and returning following an outer route. These 
results prove the superiority of the QSMODE and DQSMODE algorithms compared with 

Fig. 13 Detailed Wilcoxon test results distributions for all the 50 models for the algorithms vs. the DQS-
MODE algorithm (Algorithm perspective)
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Fig. 14 Detailed Wilcoxon test results distributions for all the 50 models for the algorithms vs. the DQS-
MODE algorithm for each category of the models (Model categories perspective)
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the other algorithms in the literature by achieving the best cost and a feasible smooth path. 
The path plots for all the 50 models obtained by all the algorithms are presented in the 
supplementary Materials (Fig. S9).

9 Simulation results part 2: path-planning algorithms

The QSMODE and DQSMODE algorithms are compared with state-of-the-art algorithms: 
A*, Dijkstra, RRT, RRT*, DWA, and APF algorithms. All these algorithms have been exe-
cuted for 30 independent runs on the 50 path-planning problems of the RP2B-24 library. All 
the paths generated from each algorithm have been evaluated using the same cost function 
proposed in Eq. (2).

9.1 Results collection and graphical representation via box and violin plots

The results of the eight path-planning algorithms (A*, Dijkstra, RRT, RRT*, DWA, APF, 
QSMODE, and DQSMODE) are collected for all 50 models from M1 to M50 across the 30 
runs. These results are provided in the Supplementary Materials (Table S6). The violin plots 
for the models (M14, M26, M34, and M43) are shown in Fig. 17, providing a concise visual 
representation of the results. These models are selected to demonstrate diverse scenarios, 

Fig. 15 Convergence plots for the median error of the top seven algorithms in 30 runs for M12, M26, 
M34, and M43
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Fig. 16 Median Path plots for all the 18 meta-heuristic optimization algorithms. Median Path plots for all 
the 18 meta-heuristic optimization algorithms
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Figure 16 (continued)
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including multiple obstacles (M14), narrow passages (M26 and M34), and maze-like envi-
ronments (M43).

The plots show that the proposed QSMODE and DQSMODE algorithms have the best 
compact distribution of the results across the 30 runs compared to the other six algorithms. 
It shows a high degree of repeatability similar to the A* and Dijkstra algorithms, but 
QSMODE and DQSMODE outperform them with better path costs and fewer path way-
points. Full results, including all box and violin plots for the 50 models, are available in the 
Supplementary Materials (Figs. S7 and S8).

Table 3 shows the success rate for each algorithm across the 30 runs and the best number 
of waypoints for each model. The A*, Dijkstra, RRT, RRT*, QSMODE, and DQSMODE 
algorithms achieved a 100% success rate to obtain a path in all 30 runs for all 50 models. 
The APF algorithm achieved a 100% success rate in only M2 and M11. APF achieved vari-
able success rates of 50%, 80%, 90%, and 86.67% for the models M1, M4, M6, and M18, 
while it failed in all the other models with a 0% success rate. The DWA algorithm achieved 
a 100% success rate for all models of types: open-field, single obstacle, multiple obstacles, 
and maze-like models. In contrast, DWA achieved 0% success rate for some of the narrow 
passages models M19, M21, M22, M24, M25, M30, M37, and M38.

The QSMODE and DQSMODE algorithms show the minimum number of path way-
points in all the models compared to the other algorithms. The RRT and RRT* come third 
and fourth after the proposed algorithms, with slightly fewer points for the RRT* algorithms 
than the RRT algorithm. The Dijkstra and A* algorithms come in the fifth and sixth places, 

Fig. 17 Violin plots for all the 8 path-planning algorithms in 30 runs
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M SR/n A* DJ RRT RRT* APF DWA QS DQS
M1 SR 100 100 100 100 50 100 100

n 136 136 30 28 0 272 3
M2 SR 100 100 100 100 100 100 100

n 51 51 27 26 5 142 3
M3 SR 100 100 100 100 0 100 100

n 54 54 26 28 0 148 3
M4 SR 100 100 100 100 80 100 100

n 92 92 36 32 0 232 4
M5 SR 100 100 100 100 0 100 100

n 102 102 35 31 0 238 5
M6 SR 100 100 100 100 90 100 100

n 49 48 26 25 0 142 5
M7 SR 100 100 100 100 0 100 100

n 155 155 41 40 0 357 7
M8 SR 100 100 100 100 0 100 100

n 70 70 27 28 0 185 6
M9 SR 100 100 100 100 0 100 100

n 157 157 44 39 0 360 6
M10 SR 100 100 100 100 0 100 100

n 101 101 37 34 0 239 6
M11 SR 100 100 100 100 100 100 100

n 98 98 34 31 6 224 7
M12 SR 100 100 100 100 0 100 100

n 119 119 34 32 0 293 8
M13 SR 100 100 100 100 0 100 100

n 168 168 44 40 0 364 7
M14 SR 100 100 100 100 0 100 100

n 125 125 33 32 0 296 9
M15 SR 100 100 100 100 0 100 100

n 130 130 38 34 0 309 11
M16 SR 100 100 100 100 0 100 100

n 125 125 38 35 0 279 13
M17 SR 100 100 100 100 0 100 100

n 23 23 13 12 0 110 5
M18 SR 100 100 100 100 86.67 100 100

n 93 93 25 29 0 214 6
M19 SR 100 100 100 100 0 0 100

n 29 29 21 20 0 0 4
M20 SR 100 100 100 100 0 100 100

n 36 36 15 15 0 104 4
M21 SR 100 100 100 100 0 0 100

n 35 35 22 21 0 0 5
M22 SR 100 100 100 100 0 0 100

n 90 90 41 32 0 0 6
M23 SR 100 100 100 100 100 100 100

n 78 78 30 29 5 185 6

Table 3 Success rate (SR) and the best number of waypoints (n) for eight algorithms across 30 runs for all 
models (M1-M50)
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M SR/n A* DJ RRT RRT* APF DWA QS DQS
M24 SR 100 100 100 100 0 0 100

n 57 57 22 26 0 0 7
M25 SR 100 100 100 100 0 0 100

n 50 50 30 25 0 0 7
M26 SR 100 100 100 100 0 100 100

n 75 75 29 27 0 189 7
M27 SR 100 100 100 100 0 100 100

n 90 90 35 32 0 217 11
M28 SR 100 100 100 100 0 100 100

n 69 69 30 30 0 559 7
M29 SR 100 100 100 100 0 100 100

n 70 70 30 24 0 564 8
M30 SR 100 100 100 100 0 0 100

n 55 55 35 31 0 0 9
M31 SR 100 100 100 100 0 100 100

n 122 122 32 33 0 470 8
M32 SR 100 100 100 100 0 100 100

n 89 89 27 26 0 212 10
M33 SR 100 100 100 100 0 100 100

n 89 89 37 36 0 587 14
M34 SR 100 100 100 100 0 100 100

n 108 108 35 36 0 256 12
M35 SR 100 100 100 100 0 100 100

n 101 95 30 27 0 253 16
M36 SR 100 100 100 100 0 100 100

n 41 41 16 20 0 152 12
M37 SR 100 100 100 100 0 0 100

n 74 73 30 33 0 0 16
M38 SR 100 100 100 100 0 0 100

n 79 78 35 33 0 0 4
M39 SR 100 100 100 100 0 100 100

n 95 95 34 31 0 227 8
M40 SR 100 100 100 100 0 100 100

n 72 69 28 28 0 189 8
M41 SR 100 100 100 100 0 100 100

n 88 82 28 28 0 206 12
M42 SR 100 100 100 100 0 100 100

n 72 72 30 28 0 191 10
M43 SR 100 100 100 100 0 100 100

n 89 89 32 29 0 222 10
M44 SR 100 100 100 100 0 100 100

n 85 85 31 23 0 863 14
M45 SR 100 100 100 100 0 100 100

n 107 107 34 30 0 254 16
M46 SR 100 100 100 100 0 100 100

n 61 61 24 21 0 174 16

Table 3 (continued) 
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where the number of waypoints of the A* and Dijkstra algorithms is the same in all models 
except M6, M35, M37, M38, M40, M41, M47, and M49 with slightly more waypoints for 
the A* compared to Dijkstra. The DWA algorithm has the maximum number of waypoints; 
for example, the number of waypoints in M18 is 6 and 214 for the QSMODE/DQSMODE 
and DWA, respectively.

9.2 Statistical analysis of the results: group comparisons

The statistical analysis for all eight algorithms ( A*, Dijkstra, RRT, RRT*, DWA, APF, 
QSMODE, and DQSMODE) are summarized in Table 4. The Friedman test results show 
that the DQSMODE ranks first with a mean rank of 2.31, followed by QSMODE at 2.69. 
The ranks of the eight algorithms are DQSMODE, QSMODE, Dijkstra, DWA, A*, RRT*, 
RRT, and APF. The p-value in the Friedman test (1.06203E − 36) confirms the statistical 
significance of these rankings, emphasizing the superior performance of the proposed algo-
rithms (QSMODE and DQSMODE).

In the SNE-SR ranking method, DQSMODE achieves the highest total score (99.9258%), 
followed by QSMODE (92.9368%) and Dijkstra (80.6348%), as shown in Table 4. The 
ranks of the eight algorithms are DQSMODE, QSMODE, Dijkstra, RRT*, RRT, A*, DWA, 
and APF. The DWA algorithm falls from fourth place in the Friedman test to seventh place 
in the SNE-SR ranking test because this test partially considers the best cost, and DWA fails 
in multiple models with a 0% success rate. The DQSMODE and QSMODE achieved top 
ranks in both tests, outperforming the other six algorithms.

9.3 Statistical analysis of the results: paired comparisons

The Wilcoxon test in Table 4 shows that DQSMODE consistently achieves a p-value below 
0.05, significantly outperforming all other algorithms. Notably, there is no significant dif-
ference between DQSMODE and QSMODE (p-value > 0.05), confirming their similar per-
formance. Figures 18 and 19 illustrate the detailed Wilcoxon test results. The DQSMODE 
significantly outperforms the APF algorithm in all 50 comparisons.

In all the open-field and single-obstacle scenarios, the DQSMODE performs significantly 
compared to all the other algorithms (except QSMODE). In the 13 multi-obstacle models, 
the DQSMODE performs better in 12 models compared with (A*, Dijkstra, and RRT*) 
algorithms, 13 models compared with RRT, and eight models compared with DWA. In the 
narrow-passages case, DQSMODE achieves better results in 14 models compared with the 

M SR/n A* DJ RRT RRT* APF DWA QS DQS
M47 SR 100 100 100 100 0 100 100

n 63 62 19 18 0 203 16
M48 SR 100 100 100 100 0 100 100

n 79 79 23 25 0 206 19
M49 SR 100 100 100 100 0 100 100

n 60 59 21 21 0 189 19
M50 SR 100 100 100 100 0 100 100

n 69 69 22 17 0 195 22
Here, DJ refers to Dijkstra, QS is the proposed QSMODE, and DQS is the proposed DQSMODE

Table 3 (continued) 
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(RRT* and DWA), better in 15 compared with RRT, better in 13 models compared with 
A*, and better in 12 models compared with the Dijkstra algorithm. In the maze-like case, 
the DQSMODE is better than all the other algorithms in 12 to 13 cases out of the 13 cases 
compared with all the algorithms. For the overall performance, the QSMODE achieved a 
p-value less than 0.05 in all the paired comparisons, significantly outperforming all the other 
algorithms.

9.4 Path plots

This section shows the median path plot found by each algorithm in some path planning 
problems selected from each category: M1, M16, M24, and M48, as shown in Fig. 20. Fig-
ure 20a shows the path generated for the model M1 of the open-field scenario. Despite being 
a straightforward scenario, the QSMODE and DQSMODE are the only algorithms that 
successfully found a straight-line path with a minimum median cost of 20.0250. Figure 20b 
shows the problem M16 as a multi-obstacles scenario, where the QSMODE obtained the 
shortest smoothest paths followed by the DQSMODE with the minimum number of path 
waypoints and a median costs of 21.1119 and 21.2073. The APF failed in M16 due to the 
increased complexity of the model.

Figure 20c presents the path of M24 as a narrow-passage scenario, where APF and DWA 
failed to find a path. The A*, Dijkstra, RRT, and RRT* algorithms found a path by mov-
ing around the obstacles, following the outer path. In contrast, the DQSMODE succeeded 
in finding the shortest and smoothest path from the start to the end by moving through the 
obstacles with a median cost of 5.6842. The QSMODE achieved the second shortest path 
with a median cost of 6.0994.

Figures 20d shows the paths for a maze-like scenario (M48). The QSMODE, DQS-
MODE, and DWA algorithms achieve smooth paths compared to the A*, Dijkstra, RRT, and 
RRT*, but the DQSMODE and QSMODE achieve these paths with fewer path waypoints 
than the DWA algorithm. The QSMODE and DQSMODE have a success rate of 100% in 
all the models, while DWA failed in some models: M19, M21, M22, M24, M25, M30, M37, 
and M38. The results proved that the DQSMODE and QSMODE demonstrate the shortest, 
smoothest collision-free path compared with the A*, Dijkstra, RRT, RRT*, APF, and DWA 
algorithms. The path plots obtained by all the algorithms for all 50 models are presented in 
the supplementary materials (Fig. S9).

10 Practical validation using 4WD robot

This section deploys the proposed algorithm within a ROS-based ADS to validate the path-
planning algorithm using a four-wheel differential drive (4WD) robotic car. The car is vali-
dated on two simulated scenarios, built using chicanes, falling under the narrow passages 
category in the RP2B-24 library but with different configurations to test the algorithm’s 
adaptability to real-world environments. The main objective of this experiment is to validate 
the integration of the path-planning algorithm with the ADS, demonstrating its feasibility in 
real-time navigation tasks.
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Fig. 18 Detailed Wilcoxon test results distributions for all the 50 models for the algorithms vs. the DQS-
MODE algorithm for each category of the models (Model categories perspective)
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10.1 Hardware of the 4WD car

The system is validated on a 4WD with hardware indicated in Fig. 21. This car is based 
on the chassis of the Elegoo smart car V4 (ELEGOO Inc 2021). The car consists of 4 DC 
motors powered by a 7.4 lithium battery. Four motor drivers of type L298N have been used 
to generate the required signals for the DC motors (STMicroelectronics, L298N Dual Full-
Bridge Driver (n.d.)). Four incremental encoders have been mounted in the car to measure 
the RPM speed of each motor (JOY-IT, KY-040 Rotary Encoder Datasheet (n.d.)). IMU 
sensor of type MPU-6050 is used to measure the car’s orientation (InvenSense Inc. Mpu-
6050 six-axis (gyro + accelerometer) mems motiontrackingdevices (n.d.)). A LiDAR of 
type HOKUYO UTM-30LX is used to gather distance data about the surroundings, which 
are used to generate the map (HOKUYO 2018). The LiDAR is powered with a dedicated 
11.1 Lipo battery with a capacity of 2000 mAh (Allbattries 2023).

Two microcontrollers have been used in the car: Arduino Mega and Raspberry Pi 4B. 
The Arduino is responsible for low-level control such as motor direction control, speed 
control, and reading IMU and encoder data (Arduino, Arduino Mega 2560 Datasheet (n.d.)). 
The Raspberry Pi controller is responsible for the high-level control, and the ROS system 
is installed on it to implement the ADS stages in the form of ROS nodes (Raspberry Pi 
Foundation, Raspberry Pi 4 Model B specifications (n.d.)). The Raspberry Pi is powered 
by a UPS circuit (X728 V2.3), supplied by two 18650 batteries (GEEKWORM 2022). The 
Arduino communicates with the Raspberry Pi via UART protocol and USB cable.

10.2 ROS software nodes

This section explains the ROS software that implements the ADS system in the form of 
ROS nodes, and it is installed on the Raspberry Pi controller. Figure 22 shows the overall 
connections between all the ROS nodes. The Arduino node represents the Arduino firmware 
written in C++ and installed on the Arduino. It is responsible for reading the IMU and the 
encoder sensors data, and it also receives the desired velocities and applies PID control to 

Fig. 19 Detailed Wilcoxon test results distributions for all the 50 models for the algorithms vs. the DQS-
MODE algorithm (Algorithm perspective)
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Fig. 20 Median path plots for all the 8 path-planning algorithms. Median path plots for all the 8 path-
planning algorithms
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Figure 20 (continued)
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the motors to reach the desired velocities. Finally, it publishes the current encoders and the 
IMU readings. The encoder odometry node determines the car’s location based on the dead 
reckoning of the encoder readings, publishing the raw odometry data. A Madgwick filter 
node merges the gyroscope and the accelerometer frames to generate a filtered IMU signal. 
This node is implemented using the imu_filter_madgwick node (Dryanovski and Günther 
2022).

A LiDAR node reads the distances and data from the LiDAR sensors. The LiDAR node 
is implemented using the urg_node (Baltovski et al. 2024). A Kalman filter node is used 
to merge the raw odometry data from the encoder node and the filtered IMU data from the 
Madgwick filter node to generate the car’s location for refined odometry. This node is imple-
mented using robot_localization node (Moore 2024). Hector SLAM mapping is applied to 
the LiDAR data and the odometry data to generate the occupancy grid map, and it is imple-
mented using the hector_slam node (Kohlbrecher et al. 2022). The AMCL node is used to 
estimate the car’s location within the map using the map generated from the hector SLAM 

Fig. 22 The ROS block diagram 
of ADS
 

Fig. 21 The block diagram of the 4WD car’s hardware
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and the laser scan data from LiDAR, which produces the refined position of the car. This 
node is implemented using the AMCL node (ROS Wiki Contributors 2020a).

The move base node is responsible for path planning and generating the required veloci-
ties for the car to reach the desired goal. This node is implemented using the move_base 
node (ROS Wiki Contributors 2020b). The move_base node receives the position from the 
AMCL node and a desired goal point, and it runs a path planning algorithm (A* by default) 
to generate the path. Then, a local planner converts this path, and the following way is to 
point to the required velocities that will be sent to the Arduino node. In this node, the default 
path planning algorithm is replaced by the proposed QSMODE algorithm to validate its 
integration with the ADS system.

10.3 Validation on driving scenarios

The ADS system is validated using the 4WD car in two simulated scenarios built using chi-
canes as presented in Fig. 23. The main objective of this experiment is to ensure that the car 
can follow the route generated by the QSMODE algorithm to show the integration between 
the QSMODE and the other nodes.

RViz is a ROS node used to visualize real-time data published by the ROS nodes, such 
as the map from the Hector SLAM and the pose of the car (ROS Wiki Contributors 2023a). 
This data is visualized on a PC connected to the vehicle’s Raspberry Pi. The Raspberry Pi is 
connected to the PC via an SSH connection. The PC and Raspberry Pi must be connected to 
the same WiFi, and the ROS must be installed on both. The ROS Master is a central service 
that enables the communication between ROS nodes on different devices (ROS Wiki Con-
tributors 2023b). On the Raspberry Pi, the nodes publish the topics such as the pose of the 
car, the map, and the waypoints. On the PC, the RViz node is running to visualize the data 
received from the Raspberry Pi nodes via the ROS Master.

The path followed by the 4WD is visualized on RViz for scenarios 1 and 2, as seen in 
Figs. 24a and 24b, respectively. The PC received the laser scan topic from the LiDAR node, 
the map topic from the Hector SLAM node, the pose from the AMCL node, and the way-
points from the move base node. The car’s final path is represented by the blue line, which 
is divided into equally spaced waypoints denoted by red circles.

Fig. 23 The simulated scenario for validation
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The real-time scan data from the LiDAR is displayed as red curves that surround the 
outer sides of the obstacles (chicanes) facing the LiDAR sensor. The car’s current location is 
visualized as a frame attached to a green circle to indicate the position and orientation of the 
vehicle. The occupancy grid of the map is displayed with different colours based on the cost 
value for each grid cell. The highest cost is 253, representing a collision with probability 
100%, while the lowest cost is zero, representing a free empty cell. The map’s colours vary 
from red to black, corresponding to costs from 253 to 0.

The final path followed by the 4WD car in both scenarios proved the car’s successful 
overtaking of the chicanes, following a collision-free path generated by the proposed algo-
rithm. Therefore, these results showed the successful integration among all the ROS nodes, 
including the QSMODE algorithm, proving the feasibility of the proposed algorithm.

11 Conclusion

This study introduced two novel reinforcement learning RL-based algorithms, QSMODE 
and DQSMODE, to address path-planning challenges in autonomous driving systems 
(ADS). By integrating Q-learning and DQN with the cubic spline smoothing technique, 
QSMODE/DQSMODE overcomes the limitations of classical algorithms, such as sharp 
paths and high computational demands, while addressing the randomness issues in meta-
heuristic optimization methods. RL in QSMODE/DQSMODE generates paths based on 
accumulated experience, improving path quality and reliability. The proposed algorithms 
feature a self-training update mechanism for the Q-table and DQN, an adaptive RL switch-
ing probability, and a secondary update method to enhance population diversity. This study 
also proposed a unified benchmarking framework, RP2B-24, providing 50 challenging 
comprehensive scenarios with diverse configurations, including open fields, obstacles, and 
maze-like paths, as a robust and generalizable testing platform.

Fig. 24 Final path and cost map of the proposed system on the driving scenarios
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In extensive validation, QSMODE and DQSMODE consistently outperformed 16 state-
of-the-art meta-heuristic optimization algorithms, achieving top ranks in Friedman and 
SNE-SR tests with scores of 99.2877% (DQSMODE) and 93.0463 % (QSMODE). They 
also outperformed classical path-planning algorithms such as A*, Dijkstra, RRT, RRT*, and 
DWA, achieving superior SNE-ranking scores of 99.9258% (DQSMODE) and 92.9368% 
(QSMODE). Their RL framework enhanced search-space exploration, enabling faster and 
more reliable pathfinding with minimal waypoints. Moreover, the algorithm was practically 
validated in a ROS-based ADS system consisting of eight nodes using a four-wheel differ-
ential drive robot. The successful navigation through two driving scenarios demonstrated 
the algorithm’s feasibility, with the car completing collision-free paths, showcasing the 
integration capabilities of QSMODE/DQSMODE within ADS frameworks. These results 
highlight the significant contributions of QSMODE and DQSMODE to the field of path 
planning, offering robust performance, generalizability, and practical applicability.

The proposed algorithms in this study achieved significant results compared to the state-
of-the-art algorithms, leading to improved ADS performance. However, they also open the 
door to various opportunities for future research direction in ADS and artificial intelligence. 
In the future, the RL strategy in the DQSMODE algorithm can be improved further. One 
improvement is to perform long-term training for the DQN in the DQSMODE to see the 
effect of long-term training on the performance of the path planning of the DQSMODE algo-
rithm. This point can pave the way for a general AI-based path-planning platform with the 
DQSMODE as its core. In addition, more mutation operators can be tested in the QSMODE/
DQSMODE, and their effect can be studied compared to the original DQSMODE algorithm. 
Moreover, deploying alternative deep reinforcement learning models, such as actor-critic 
methods, could address the challenges of continuous action spaces, enhancing the flexibility 
and scalability of the algorithm. The sensitivity analysis can also be extended to further 
parameters in the QSMODE/DQSMODE algorithms. Finally, hybridizing QSMODE/DQS-
MODE with other algorithms may yield more advanced variants, broadening its applicabil-
ity beyond ADS to other robotic and industrial optimization challenges.
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