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Density determination of CO2-Rich fluids within CCUS processes

A R T I C L E I N F O
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A B S T R A C T

Since accurate density determination is a crucial parameter for carbon dioxide (CO2) fluid measurement and
transportation pipeline designing, this study focuses on predicting the density of CO2-rich fluids in transportation
pipelines for carbon capture, utilisation, and storage (CCUS) processes. In this regard, two supervised machine
learning (ML) models, including the extra trees regressor (ETR) and Gaussian process regression (GPR), were
developed using a diverse database of field-scale simulation samples. The models were compared based on their
accuracy using statistical and graphical analysis. The GPR model performed better than the ETR model,
achieving a smaller root mean square error (RMSE). The GPR model provides valuable insights for pipeline
design, flow meter reliability, and uncertainty assessment in carbon storage. Experimental validation confirmed
the robustness and practical applicability of the GPR model. This study demonstrates the potential of ML
techniques to enhance the efficiency and reliability of CO2-rich fluid transportation in CCUS processes.

1. Introduction

In recent decades, global warming has become a major concern
globally due to the significant increase in greenhouse gases, particularly
CO2. Carbon capture utilisation and storage (CCUS) plays a crucial role
in mitigating CO2 emissions by capturing and compressing CO2 at plants
and transporting it through pipelines to subsurface reservoirs for stor-
age. However, designing CO2 pipelines makes challenges due to oper-
ational variability, fluid phase variations, and impurities in CCUS
processes, complicating fluid characterisation.

Efficient CO2 transport to geological storage sites requires well-
designed pipelines considering fluid thermophysical properties. The
variability in pressures, temperatures, and CO2-rich stream composi-
tions affects fluid characterization, including density, phase behaviour,
and viscosity which are critical for accurate fluid characterization in
CCUS processes. Due to challenges and cost of density measurements,
limited experimental data on CO2 fluids with impurities are available in
the literature which necessitates new data collection to evaluate ther-
modynamic models [1].

On the other hand, modelling of CO2 density in CCUS processes is
also complex due to variations of fluid’s composition, process condi-
tions, and data availability. Particular software, databases, and expert
advice improve accuracy, while machine learning (ML) techniques
provide an alternative for predicting fluid behaviour, especially in CO2-
rich streams in pipelines.

Ali Mazari et al. [2] used different ML models including GPR and
support vector regression (SVR) to predict CO2 thermophysical prop-
erties (e.g., CO2 solubility), and they found that GPR has the minimal
error percentage compared to other models that were used to predict
CO2 solubility among them. Also, Hung Vo Thanh a.et al. [3] used

extreme gradient boosting (XGBoost), random forest (RF), and SVR to
estimate both the solubility trapping index and residual trapping index
in deep saline aquifers. XGBoost provided the most accurate prediction
for CO2 trapping with R2 = 0.9998 and RMSE = 0.0041, performing
better than RF and SVR models. The XGBoost model offers a reliable,
efficient approach for CO2 storage predictions. Hung Vo Thanh et al. [4]
applied GPR, support vector machine (SVM), and RF to predict CO2
trapping efficiency in saline formations, and the results showed that GPR
has the highest prediction accuracy (R2 = 0.992, RMSE = 0.00491).
These findings suggest that GPR, SVM, and RF can be effective ML
models for estimating CO2 trapping performance in deep saline forma-
tions. ML techniques also show promising results for predicting CO2
mixture thermophysical properties, but there is a lack of precise density
data for CCUS process due to limited experimental data.

Thorough validation is crucial for accurate predictions, particularly
for diverse CO2 compounds, and comparing multiple ML models is vital
for optimal CO2 density predictions [5,6]. ETR and GPR are popular for
complex data of regression in CCUS. ETR performs better in predicting
CO2 fluid properties, while GPR adapts to intricate data patterns
without fixed parameters. ML models can generalize and scale their
predictions of CO2 compound densities to diverse scenarios and pipeline
configurations, eliminating the need for additional experiments.
Therefore, our study uses ETR and GPR models for precise density pre-
diction of CO2 and SO2 binary mixtures in transportation pipelines,
aiding informed decisions in CCUS process.

2. Methods and procedures

In this section provides data collections and description, followed by
explaining the ML algorithms used in this study, and concludes with the
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methodology for creating predictive models based on ML methods.

2.1. Data preparation

Different data of density measurements were gathered from testing
laboratories containing CO2 and SO2 binary mixtures at varying tem-
peratures and pressures. Table 1 provides the details of the input and
output parameters utilized in this study which have been used for
developing the ML models.

2.2. Machine learning algorithms

We developed a reliable predictive model to compute the density of
CO2 and SO2 binary mixtures by applying two powerful and robust ML
methods, namely ETR and GPR to build a reliable prediction model. The
following sections describe the theory of these ML methods in detail.

2.2.1. Extra trees regressor (ETR)
The ETR is known for its high level of accuracy, efficiency, and

adaptability when performing regression tasks. This ensemble learning
method excels in capturing intricate relationships within data and is an
enhanced variant derived from the RF model [5,7].

The ETR performs better in capturing nonlinear relationships be-
tween input variables and CO2 density, making it particularly suitable
for modelling complex thermodynamic properties. It is capable of
effectively handling multiple input variables simultaneously, such as
temperature, pressure, and composition, thereby facilitating compre-
hensive predictions of CO2 density in CCUS. Furthermore, it is appro-
priate for identifying and diagnosing measurement errors or anomalies
that may be present in CCUS experimental or simulation data.

2.2.2. Gaussian process regression (GPR)
The GPR is a type of supervised learning technique that is employed

to tackle regression and probabilistic classification problems. In the field
of thermophysical properties, GPR is utilised to make predictions about
properties like density, viscosity, and phase behaviour [8]. It plays a
crucial role in accurately modelling heat transfer, fluid dynamics, and
phase behaviour, thereby driving advancements in fields such as ther-
mal management, chemical engineering, and phase behaviour calcula-
tions. By employing GPR, researchers and engineers are able to leverage
a flexible and probabilistic framework that captures intricate relation-
ships within thermophysical properties, providing valuable insights for
both research and engineering applications.

2.3. Workflow of developing ML models

The ML model framework for predicting the density of CO2 and SO2
binary mixtures in CCUS transportation pipelines involves several key
steps for model development as described in Fig. 1.

The development of the ML models starts with data collection and
exploratory data analysis (EDA) which includes reviewing, analysing

statistical, and pre-processing of features. Then, random subsampling is
performed through data splitting to create training and testing subsets.
Data splitting is an essential stage in ML model development. It involves
dividing the database into training and testing subsets. The testing
subset evaluates model performance, while the training subset builds
knowledge bases. This dataset splitting boosts confidence in external
predictions and shows the model’s reliability across different datasets
[9]. The data within the training subset were considered for the training
model. ML methods are applied to the target data through specific al-
gorithms and statistical models. Finally, the performance of each
developed model is analysed and evaluated to identify the potential
minimum error model among the two ML algorithms. The chosen model
is then deployed to predict the CO2 and SO2 binary mixtures’ densities
at conditions similar to CCUS transportation.

In this study, the whole database was split into four training/testing
subsets: 60 %–40%, 70 %–30%, 80 %–20%, and 90%–10%. The initial

Table 1
Explanation of the inputs and outputs for ML models.

Properties Unit Description Type Min Max

Temperature K Tunning temperature
of CO2 and SO2
mixture

float 263.15 304.21

Pressure MPa Tunning pressure of
CO2+So2 mixture

float 0.1 20.0

Phase
Behaviour

– It has two values, 1
refers to gas and 2
refers to liquid

integer 1 2

Experimental
Density

(kg/
m3)

Measuring Density
base on temperature
and pressure

float 1.80 1086.34

Fig. 1. The study’s approach to create machine learning (ML) models.
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subset was used for training, while the second one was designated for
testing. However, the main challenge was related to selecting the most
precise ML model. To overcome this, a statistical metric called RMSE
was employed. RMSE is one of the criteria for evaluating regression
problems [10]. It is shown using the following equation in (1):

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(yi − ŷi)2

n

√

(1)

Where yi indicates CO2 compound density measured in the laboratory;
ŷi shows predicted density by ML method. N denotes the total number of
instances used for evaluation.

3. Results and discussion

This section presents the prediction outcomes achieved using two
machine learning techniques: ETR and GPR as previously described. It
also discusses the evaluation of various hyperparameters (described
below) and their influence on the model’s performance.

3.1. Hyperparameter tuning

Hyperparameter is a parameter that controls the learning process in
ML models. Hyperparameters are used to fine-tune model performance
and control model complexity. The performance of a model is signifi-
cantly impacted by its hyperparameters. This section explains the se-
lection of optimal hyperparameters using a grid search method to
prevent overfitting. In this study, we employed grid search to select the
best tuning hyperparameter by assessing the RMSE value for each ML
method. The specific tuning parameters for constructing the two pre-
dictive ML models can be found in Table 2. Training and testing were
performed using the Scikit-learn Python package, which is a widely used
open-source tool.

3.2. Performance evaluation of each ML methods

Four database subsets scenarios were analysed to determine the best
ML method with the smallest RMSE. Table 3 displays the prediction
outcomes of two studied ML models using the collected data samples to
forecast the density of CO2 and SO2 binary mixtures, effectively. As
demonstrated in 3, for 60%–40% subset the developedmethods showed
achieving RMSE values of 1.749 and 3.550 by ETR and GPR, respec-
tively which illustrate better performance of ETR method than GPR due
to smaller value of RMSE (RMSEETR = 1.749 < RMSEGPR = 3.550).
However, the obtained RMSE values for the other subsets including 70
%–30 %, 80 %–20 %, and 90 %–10 % show different trends where the
RMSE values of the GPR model were smaller than RMSE values of ETR
Table 3.

By evaluating the overall performance of ML models across other
data splitting, it becomes evident that in the three out of four data
splitting subsets, the GPR technique demonstrates smaller prediction
error compared to ETR according to statistical metrics. The best result of
using GPR model for predicting density values obtained for the 90 %–10
% subset where RMSE calculated as 0.036 and 0.071 for training and
testing subsets respectively. So, generally GPR performed better than
ETR for both the training and testing subsets Table 3.

Fig. 2 visually represents the achieved accuracy using the 90 %–10 %
subset by both models which has been used for predicting the density of
CO2 and SO2 binary mixtures. The purpose of this function is to
calculate performance metrics for both regression models on test data.
First each model uses the input test data to make predictions output
values for evaluating the model’s accuracy and effectiveness on the test
dataset. Second the performance metrics such as RMSE is calculated by
comparing the predicted values with the test data values and The ob-
tained number is calculated as a percentage and is considered as the
accuracy of the model.

This study found GPR over ETR, especially in the subset of 90 %–10
% which results in better accuracy of the predicted density values. The
comparison of results also highlights the importance of selecting an
optimal data splitting subset for ML performance in regression-based
problems.

4. Conclusions

In this study, ML algorithms were used to estimate the density of
binary CO2 and SO2 mixtures based on temperature, pressure and phase
behaviour characteristics. This paper presents the potential application
of two ML models named GPR and ETR algorithms in predicting the
density of CO2-rich fluids in CCUS processes. Experimental data on CO2
and SO2 mixtures were collected to train and test ML models, where the

Table 2
The tuning parameter used to optimize the ML models.

model parameter Specific search range optimal value

ETR criterion squared_error, absolute_error,
friedman_mse

squared_error

max_depth 1–3 10
min_samples_split 1–3 2
min_samples_leaf 1–3 1
n_restarts_
optimizer

190, 200, 220 5

GPR kernel 1.0 * RBF(length_scale =
length_scale) for length_scale
in [0.1, 1.0, 10.0]

1**2 * RBF
(length_scale =
0.1)

alpha 0.1, 0.01, 0.001 0.001
normalize_y True, False False
n_restarts_
optimizer

1–10 4

Table 3
The effectiveness of two ML models in predicting the density of CO2 and SO2
binary mixtures based on RMSE value for each database splitting, ML model,
training subset and testing subset.

Dataset
Splitting

Model RMSE

training testing

60 %–40 % ETR 0.132 1.749
GPR 5.344 5.358

70 %–30 % ETR 0.193 2.046
GPR 0.044 0.244

80 %–20 % ETR 0.180 2.490
GPR 0.035 0.197

90 %–10 % ETR 0.193 1.459
GPR 0.036 0.071

Fig. 2. To compare the performance criteria of each RMSE model, the pre-
diction results of the models are calculated on the test data with two decimal
places, converted to percentages, and then displayed in ascending sort on a
horizontal plot.

S. Gholami et al. Measurement: Sensors xxx (xxxx) xxx 

e3 



RMSE criterion was used to evaluate the performance of the developed
ML models, and result of which showed that the GPR method performs
better than the ETR in the density prediction which results in higher
accuracy by fine-tuning hyperparameters. The developed methods
showed appropriate prediction results, achieving appropriate RMSE
values. This paper emphasized that regression-based methods often
provide optimal performance. So, development of ML models can
significantly improve estimating the values of various thermophysical
properties within CCUS process e.g., density across a wider range of
operational conditions with a focus on improving CCUS process
performance.
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