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Frame-by-Frame Multi-object Tracking-Guided
Video Captioning

HuiLan Luo, Xia Cai, and Lik-Kwan Shark

Abstract—Video captioning through deep learning presents
a multifaceted challenge that encompasses the extraction of
complex spatio-temporal visual features and the synthesis of
meaningful natural language descriptions. Most of the exist-
ing deep learning models can be broadly grouped as either
convolution-based or transformer-based encoder-decoder net-
works, with video captions generated from features encoded at
the pixel level for the former, and from features encoded at
grid, frame, or video levels depending on encoder complexity for
the latter. This paper advocates frame-level features as a more
balanced and compact representation for fast caption generation,
and introduces the Tracking-guided Information Augmentation
for Captioning (Track4Cap) model, which integrates tracking-
guided information augmentation to enhance frame-level features
without relying on complex architectures or additional data
modalities. Specifically, Track4Cap employs the Frame-by-Frame
Multi-object Tracking module (FMoT) to identify the most rele-
vant objects in the input video and the Object Relation Encoder
(ORE) to model inter-object relationships as supplementary high-
level cues for caption generation. By avoiding time-consuming
end-to-end training and leveraging compact representations,
Track4Cap achieves computational efficiency while improving
captioning performance. Extensive experiments on two commonly
used benchmark datasets demonstrate that Track4Cap not only
achieves faster inference times but also outperforms state-of-the-
art convolution-based and transformer-based video captioning
models. The implementation of our method is publicly available
at https://github.com/ccc000-png/Tracker4Cap.

Index Terms—Video captioning, Natural language descriptions,
Deep learning, Spatio-temporal visual features, Frame-level fea-
tures.

I. INTRODUCTION

IN the early years of information transmission, images and
text were the main mediums. However, with the rapid

advancement of technology and multimedia, videos have be-
come a new and powerful way of transmitting information.
In this context, video captioning [1] came into being which
aims to generate meaningful and coherent descriptions for
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Fig. 1. Video captioning frameworks at different levels of information
granularity: (a) Convolution-based models using pixel-level and object-level
features; (b) Transformer-based models utilizing video-level, grid-level, or
frame-level features; and (c) Proposed Track4Cap leveraging frame-level
features with information augmentation.

video content. It plays an important role in daily life, with
various applications such as assisting the visually impaired
[2], enhancing human computer interaction [3], and improving
video retrieval [4], [5].

Although video captioning shares a common foundation
with image captioning [6] as both strive to capture and
describe the essence of visual content, they differ significantly
in terms of complexity, as video captioning expands upon
image captioning by moving from interpreting a single static
image to a sequence of frames over time. This shift requires
understanding not only objects and their relationships in the
spatial domain, but also their dynamic variations and contex-
tual interactions in the spatio-temporal domain. Consequently,
video captioning faces the added challenge of identifying the
most relevant objects and their interactions within dynamic
and intricate multi-component scenes, since the most salient
object in a single frame may not represent the primary object
of the entire video sequence, and not all object relationships
are relevant for caption generation.

Most existing video captioning methods follow an encoder-
decoder architecture. The encoder processes the input video to
extract features, which are then mapped to textual descriptions
by the decoder. These encoder-decoder frameworks can be
broadly categorized into convolution-based and transformer-
based models. Convolution-based models, as illustrated in
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Fig. 1(a), predominantly utilize pre-trained 2D and 3D convo-
lutional neural networks (CNNs) [7], [8], [9], [10] to extract
spatial and temporal features at the pixel level, where infor-
mation is derived directly from the intensity or color values
of individual pixels and their local neighborhoods. While pro-
viding detailed local appearance and motion information, they
often suffer from high computational costs due to the large
data volume and fine spatial granularity. Some convolution-
based methods incorporate object detection modules [11], [12],
[13] to extract salient object-level features, improving object-
centric descriptions. However, these methods further increase
computational overhead and are prone to errors in identifying
primary objects in cluttered scenes.

Transformer-based models, as shown in Fig. 1(b), encode
information at various levels of granularity depending on the
encoder’s complexity. Grid-level features represent coarse-
grained information derived from non-overlapping patches of
pixels, aggregating local details into compact representations
that balance spatial resolution and computational efficiency
[14], [15], [16]. Frame-level features capture the overall spatial
context of individual frames, summarizing their appearance
while disregarding temporal dependencies [17]. In contrast,
video-level features provide a holistic global representation by
integrating information across multiple frames, emphasizing
long-term dependencies and overall video context [18], [19],
[20].

While transformer-based models offer flexibility in pro-
cessing different levels of granularity, they face significant
challenges. Optimizing both encoder and decoder components
during end-to-end training can be computationally demanding,
and large-scale transformer-based models often require exten-
sive training data and resources to effectively learn interdepen-
dencies between video content and captions. These challenges
make it crucial to strike a balance between computational
efficiency and representation quality.

To achieve a balance between computational efficiency
and representation quality, this paper leverages frame-level
features, which provide a compact, low-dimensional represen-
tation that significantly reduces computational overhead com-
pared to pixel-, grid-, and video-level representations. Frame-
level features effectively capture high-level contextual infor-
mation but inherently lack the fine-grained spatio-temporal de-
tails necessary to model dynamic object interactions and gen-
erate accurate video captions. To address these limitations, we
propose the Tracking-guided Information Augmentation for
Captioning (Track4Cap) framework, as illustrated in Fig. 1(c).

Track4Cap integrates an intermediate information augmen-
tation stage designed to enhance frame-level features with
finer-grained spatio-temporal cues. This stage comprises two
key modules: the Frame-by-Frame Multi-object Tracking
(FMoT) module, which identifies and tracks salient objects
across frames, and the Object Relation Encoder (ORE) mod-
ule, which models inter-object relationships to provide high-
level semantic cues. By augmenting frame-level features with
dynamic and relational information, Track4Cap enables more
accurate and contextually aware caption generation while
maintaining computational efficiency.

The motivations for introducing the information augmen-

tation stage are threefold. First, it enriches frame-level fea-
tures with object-centric and relational information, effectively
bridging the gap between simple frame-level encoding and
the detailed modeling found in grid- or video-level repre-
sentations. Second, it reduces computational costs by focus-
ing on tracked objects rather than processing all pixel-level
information in video frames. Third, it enhances contextual
understanding by explicitly modeling interactions between
tracked objects, which are critical for generating accurate and
meaningful captions.

The main contributions of this paper are summarized as
follows:

• We propose Track4Cap, a novel encoder-decoder frame-
work that leverages frame-level features enriched with
tracking-guided information for efficient and accurate
video captioning.

• We introduce two core modules for information aug-
mentation: (i) the Frame-by-frame Multi-Object Tracking
(FMoT) module, which identifies and tracks salient ob-
jects, and (ii) the Object Relation Encoder (ORE), which
models inter-object relationships to enhance contextual
understanding.

• We demonstrate that Track4Cap achieves state-of-the-art
performance on benchmark datasets, with significant re-
ductions in inference time and computational complexity.
Extensive ablation studies validate the contributions of
individual components and their combinations.

II. RELATED WORKS

In this section, a review of the latest video captioning mod-
els is provided, categorized into convolution-based models and
transformer-based models based on their encoder architectures.

A. Convolution-based Models

The development of video captioning in deep learning began
with stage-wise encoder-decoder frameworks that combined
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). Typically, pre-trained 2D/3D CNNs were
employed in the encoder to extract video features at the pixel
level, with or without auxiliary object detection using models
such as Region-based Convolutional Neural Networks (R-
CNN) [11]. These pixel-level features were then used by RNN-
based decoders, such as Long Short-Term Memory networks
(LSTMs) [21], to generate captions.

Despite the effectiveness of 2D/3D CNNs in capturing local
appearance and motion features, the lack of semantic repre-
sentation in these features has been a significant limitation.
Consequently, efforts have been directed toward enhancing
spatial and temporal semantic representations within the en-
coder. For example, the Semantic Grouping Network (SGN)
[22] improves spatial semantics by aligning video frames with
partially decoded subtitles, reducing visual redundancy and
aiding the decoder in more accurate word prediction. Similarly,
the Motion Guided Region Message Passing (MGRMP) model
[23] enhances temporal semantics by employing 3D CNNs
to extract regional temporal features and model inter-regional
relationships across frames.
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On the decoder side, research has focused on refining
low-level semantic information using high-level cues through
knowledge distillation. For instance, the Decoder Refined
Semantic enhancement towards Frequency Diffusion (RSFD)
[24] employs frequency-aware diffusion to capture critical
low-frequency semantic details, thereby improving caption-
ing performance. The Two-Step Transformer-based Polishing
Network (TSTPN) [25] combines 2D/3D CNNs with a gen-
eration transformer and a polishing transformer to enhance
cross-modal sequence mapping via cross-modal attention and
knowledge distillation.

Integrated improvements targeting both encoder and de-
coder architectures have also gained traction. The Hierarchical
Representation Network with Auxiliary Tasks (HRNAT) [26]
reconstructs visual content through auxiliary tasks such as
cross-modality matching and syntax-guided learning, resulting
in linguistically and grammatically accurate captions. Stay-in-
Grid Video Captioning (SGCAP) [16] incorporates a bilinear
sequential attention encoder for spatial-temporal modeling,
complemented by a cross-modal sequential attention decoder
for dynamic region representation.

Object detection has been another effective strategy to im-
prove captioning by incorporating high-level cues about object
relationships and interactions. For instance, the Object Re-
lational Graph with Teacher-Recommended Learning (ORG-
TRL) [27] leverages graph learning to represent object interac-
tions, integrating these cues with an external language model
through a teacher-recommended learning mechanism. The
Spatio-Temporal Graph with Knowledge Distillation (STG-
KD) [28] models object interactions across space and time,
providing interpretable links while enhancing stability with a
knowledge distillation framework. Transitive Visual Relation-
ship Detection (TVRD) [29] introduces a novel action detec-
tion mechanism to extract deep semantic relationships between
objects through object-action and object-object graphs. Addi-
tionally, the Long Short-Term Relation Transformer (LSRT)
[30] captures both short-term spatial relations and long-term
dependencies among objects, employing a global gating unit
to regulate information flow.

While graph-based approaches effectively capture interac-
tion information, they often introduce redundant connections
that can reduce computational efficiency. To address this,
some methods incorporate language semantics to refine object
interactions. For example, Syntax-Aware Action Targeting
(SAAT) [31] associates sentence structure with the actions
of detected objects, providing precise action representations.
Similarly, the Textual-Temporal Attention Model (TTA) [32]
aligns visual tags of detected objects with descriptive words,
improving the alignment of visual and textual information.

Recently, hierarchical and multi-branch networks have fur-
ther advanced video captioning by integrating object-level se-
mantics with scene-level information. For example, Reinforce-
ment Learning with Hierarchical Modular Network (RLHMN)
[33] learns multi-level visual representations—spanning enti-
ties, predicates, and sentences—thereby reducing ambiguities
caused by polysemous verbs. Element-aware Video Captioning
(EvCap) [34] integrates object, action, and scene features via
a multi-branch encoder-decoder, enhancing the perception of

specific elements through a post-fusion mechanism.
Despite these advancements, convolution-based approaches

face significant computational challenges in capturing global
spatio-temporal semantic features. However, their strength lies
in their ability to extract fine-grained spatial and temporal
details, which remain a crucial foundation for video captioning
tasks.

B. Transformer-based Models

Transformers, known for their exceptional sequence pro-
cessing capabilities, have transitioned successfully from nat-
ural language processing to image and video processing,
establishing themselves as a dominant framework for video
captioning. By extending the Swin Transformer originally de-
signed for images, the Video Swin Transformer (VidSwin) in-
corporates the temporal dimension, enabling grid-level feature
encoding [35]. VidSwin serves as the encoder backbone for
several transformer-based video captioning models, including
SwinBERT [1], Diverse Video Captioning by Adaptive Spatio-
temporal Attention (VASTA) [36], and the Concept-aware and
Task-specific model (CAT) [14], all of which employ Bidi-
rectional Encoder Representations from Transformers (BERT)
[37] as the decoder.

SwinBERT employs an end-to-end training strategy that
integrates VidSwin and leverages sparse attention mechanisms
to process video data efficiently, reducing redundancy during
feature extraction. VASTA further optimizes encoding by dy-
namically selecting keyframes to minimize redundant informa-
tion entering VidSwin. CAT enhances semantic representation
by introducing a concept parser to extract high-level cues and
a multi-modal graph to model relationships among visual,
semantic, and textual features, enabling richer and deeper
semantic representations in generated captions.

To capture more holistic spatio-temporal features, the Uni-
fied Video and Language Pre-training model (UniVL) [38]
leverages large-scale pre-training to establish connections be-
tween videos and text, focusing on video-level representations.
However, transformer-based video-level models face signifi-
cant computational challenges, particularly during end-to-end
training, where optimizing both encoder and decoder on large
datasets often leads to slow convergence and inefficient loss
utilization. To address these issues, the MEta Loss TRans-
former (MELTR) [19] was introduced as a plug-in module that
dynamically integrates multiple loss functions to improve the
optimization balance between the encoder and decoder. While
MELTR enhances performance, its additional computational
overhead increases overall complexity. To alleviate these com-
putational demands, CoCap [20] directly utilizes compressed
video data, extracting video-level information from I-frames,
motion vectors, and residuals. This approach significantly
reduces the data volume and inference time, offering a more
efficient alternative for video-level processing.

Recent advancements in cross-modal learning have spurred
the development of transformer backbones for encoding
features at various levels of granularity. The Contrastive
Language-Image Pre-training model (CLIP) [39], built on
the Vision Transformer (ViT) [40], specializes in frame-level
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feature generation through extensive pre-training to associate
images and text. CLIP-based video captioning models, such
as CLIP4Clip [41] and Expectation-Maximization Contrastive
Learning (EMCL) [42], demonstrate the utility of CLIP as
an encoder. CLIP4Clip identifies the most relevant frames by
comparing frame-level features with captions, while EMCL
iteratively optimizes CLIP’s feature space, yielding compact
representations. Both methods have shown significant im-
provements across multiple evaluation metrics.

The Concept-awARE video captioning framework (CARE)
[17] addresses the limitations of frame-level features by in-
corporating additional modalities, such as audio and text,
and employing multimodal-driven concept detection to un-
cover latent video themes, thereby enhancing decoding perfor-
mance. Hierarchical Semantic Representation and Aggregation
(HSRA) [43] complements frame-level features by integrating
finer-grained pixel-level visual information. HSRA reconfig-
ures visual semantics into a hierarchical ”object-action-event”
structure, effectively capturing key object details and dynamic
global context.

The proposed Track4Cap model distinguishes itself from
existing transformer-based frame-level approaches through its
simplicity and computational efficiency. Unlike CLIP4Clip,
EMCL, and HSRA, Track4Cap does not rely on additional
ground-truth captions for feature enhancement learning. It
also avoids using additional modalities, such as audio or
text, integral to CARE, and does not incorporate finer-grained
pixel-level visual information, as employed by HSRA. Instead,
Track4Cap exclusively utilizes frame-level features and adopts
a stage-wise framework that leverages a pre-trained CLIP
model as the decoder without requiring additional fine-tuning.
By integrating a high-level information augmentation module,
Track4Cap enhances frame-level features with salient object-
relation cues, effectively addressing the limitations of frame-
level representations. This design achieves an optimal trade-off
between computational efficiency and captioning performance,
eliminating the need for complex encoders to model temporal
dependencies or additional data modalities for caption quality
improvement.

III. METHODOLOGY

A. Overall Architecture

As illustrated in Fig. 2 (a), the proposed Tracking-guided
Information Augmentation for Captioning (Track4Cap) frame-
work follows an encoder-decoder structure with an interme-
diate information augmentation stage. This design aims to
balance computational efficiency and captioning performance
by leveraging frame-level features enriched with tracking and
relational information.

The encoder utilizes the ViT-L/14 variant of the pre-trained
CLIP model to extract frame-level features, which capture
the overall appearance of each video frame and map it to
a compact latent space. This approach significantly reduces
dimensionality compared to video-level or grid-level represen-
tations while preserving context-rich information.

For a video uniformly sampled into L frames, denoted as
I = {I1, I2, ..., IL}, the frame-level features are computed as:

F = {fv
i }Li=1 = CLIP (I) (1)

where fv
i ∈ RD represents the visual features of the i-

th frame, D is the dimensionality of the latent space, and
F ∈ RL×D denotes the feature representation for all frames.
The pre-trained CLIP model is used without fine-tuning,
ensuring computational efficiency and leveraging its robust
feature extraction capabilities.

Despite their efficiency, frame-level features have inherent
limitations, including the inability to capture temporal object
dynamics and inter-object relationships—critical for generat-
ing coherent and descriptive captions. Additionally, they may
include redundant or irrelevant information due to the lack of
explicit mechanisms for prioritizing salient objects. To address
these shortcomings, an intermediate information augmentation
stage is introduced.

The information augmentation stage comprises two comple-
mentary modules:

• Frame-by-Frame Multi-object Tracking (FMoT): This
module dynamically identifies and tracks salient objects
across frames using attention-based mechanisms. By fo-
cusing on relevant objects and updating their representa-
tions over time, FMoT ensures temporal coherence and
minimizes redundancy.

• Object Relation Encoder (ORE): This module models
inter-object relationships, capturing high-level semantic
cues to enhance contextual understanding and enrich
frame-level features with interaction information.

The enhanced features from FMoT and ORE are passed
to a lightweight Caption Decoder, which generates coherent
and contextually accurate captions. The decoder’s streamlined
design further ensures computational efficiency while main-
taining high-quality outputs.

By effectively integrating tracking and relational informa-
tion, Track4Cap addresses the limitations of frame-level fea-
tures and achieves a superior trade-off between computational
efficiency and captioning performance, as demonstrated in
subsequent experiments.

B. Frame-by-Frame Multi-object Tracking (FMoT)

Video scenes often involve multiple objects interacting
dynamically within complex and diverse environments. Not
all objects or their parts are relevant for caption generation,
and the most salient object in a single frame may not represent
the primary object of the entire video. Furthermore, primary
objects can exhibit significant variations in position, size, and
visual characteristics across frames and may not appear consis-
tently throughout the video sequence. These challenges hinder
the direct use of frame-level features for accurate captioning,
as they lack the mechanisms to dynamically focus on the most
relevant objects while accounting for their temporal evolution.

To address these challenges, the proposed FMoT module
is designed to track salient objects across frames, ensuring
that their temporal and contextual significance is captured.
The motivation behind FMoT lies in the need to bridge
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Fig. 2. Overview of the proposed Track4Cap framework and its key modules: (a) Overall architecture with a stage-wise design; (b) Frame-by-Frame Multi-
object Tracking (FMoT) module for identifying and tracking salient objects; (c) Object Relation Encoder (ORE) module for modeling inter-object relationships;
and (d) Caption Decoder, a lightweight BERT-based module with a single masked self-attention layer and no cross-attention layers for improved efficiency.

the gap between static frame-level representations and the
dynamic nature of video content. By incorporating attention-
based tracking mechanisms, FMoT selectively propagates and
updates object features across frames, enabling a more precise
and coherent understanding of object relevance over time. This
approach not only reduces redundancy by focusing on key
objects but also mitigates the effects of short-term dynamic
variations in appearance.

As illustrated in Fig. 2 (b), FMoT operates as a loop iterating
over a single Track Decoder for L frames. At the i-th iteration,
the input to the Track Decoder consists of the frame-level
features of the i-th frame, fv

i , and the tracked object features
from the previous frame, denoted as {Oi−1

k }Nk=1 ∈ RN×D.
Here, N represents the number of tracked objects. To initialize
tracking, the frame-level features of the first frame are repeated
N times to generate the initial object features.

The Track Decoder utilizes the standard query-key-value
mechanism to perform self-attention and cross-attention op-
erations. The self-attention mechanism identifies relevance
and dependencies among tracked object features, emphasizing

their significance for caption generation. To enhance focus
on relevant objects, a randomly initialized learnable matrix,
M = {mk}Nk=1 ∈ RN×D, acts as a feature memory, storing
statistical variations of feature patterns learned during training.
During inference, M biases the relative importance of tracked
object features. The track query for self-attention at the i-th
iteration of the Track Decoder is defined as:

Ti =

{
{fv

1 }×N ⊕M, i = 1

{Oi−1
k }Nk=1 ⊕M, i = 2, 3, ..., L

(2)

where ⊕ denotes element-wise addition.
The query, key, and value matrices for the track query

are given by Q = WqTi, K = WkTi, and V = WvTi,
respectively, where Wq , Wk, and Wv are learnable matrices
optimized during training to minimize captioning errors. The
self-attention output at the i-th iteration is computed as:

Ai
s = softmax

(
QKT

√
D

)
V (3)

where D is the dimensionality of the track query.
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The cross-attention mechanism updates the tracked object
features by associating them with the current frame-level
features. Let Q

′
, K

′
, and V

′
denote the query, key, and

value matrices of cross-attention. These matrices are derived
as Q

′
= W

′

qA
i
s, K

′
= W

′

kf
v
i , and V

′
= W

′

vf
v
i , where W

′

q ,
W

′

k, and W
′

v are learnable matrices. The cross-attention output
at the i-th iteration is expressed as:

{Oi
k}Nk=1 = softmax

(
Q

′
K

′T

√
D

)
V

′
(4)

The cross-attention output is fed back into the next it-
eration, enabling the progressive tracking and updating of
object features across frames. After L iterations, the final
output of FMoT, denoted as {OL

k }Nk=1, encapsulates the most
relevant object features by considering long-term dependencies
and relationships while remaining robust to short-term dy-
namic variations. By dynamically focusing on key objects and
propagating their relevance across frames, FMoT addresses
the limitations of static frame-level representations, thereby
enhancing the contextual accuracy of video captions.

C. Object Relation Encoder (ORE)

The Object Relation Encoder (ORE) module enhances the
tracked object features from FMoT by extracting high-level
relational cues that model inter-object relationships, addressing
the limitations of frame-level features in capturing dynamic
interactions. By enriching the contextual representation of
object interactions, ORE plays a critical role in generating
coherent and descriptive video captions.

The motivation for ORE stems from the need to bridge
the gap between static frame-level representations and the
dynamic nature of video content. Frame-level features alone
lack explicit modeling of spatial and semantic relationships
among objects, which are essential for understanding complex
scenes. To address this, ORE utilizes tracked object features
to infer inter-object dependencies, augmenting the frame-level
features with relational information that better reflects the
interactions within a scene.

ORE is designed with computational efficiency as a priority.
It employs parameter-free matrix operations to model inter-
object relationships, avoiding the additional overhead associ-
ated with learnable parameters. This design not only ensures
minimal computational complexity but also facilitates seam-
less integration into the Track4Cap framework. By augmenting
frame-level features with object-centric and relational informa-
tion, ORE enhances the contextual understanding necessary for
accurate video captioning.

As illustrated in Fig. 2 (c), ORE consists of two key matrix
multiplication operations (denoted as MatMul). The first op-
eration computes the matrix multiplication of the normalized
tracked object features, followed by a softmax function to
derive an object relation weight matrix:

RO = softmax

(
MatMul(OL, (OL)T )

||OL|| · ||OL||

)
(5)

where OL = norm{OL
k }Nk=1 represents the normalized

tracked object features from FMoT, and RO ∈ RN×N is an

affinity matrix. Each element RO(i, j) quantifies the relational
strength between objects i and j in the frame-level latent
space.

Objects with strong semantic relationships—those that fre-
quently co-occur during training—are mapped to nearby re-
gions in the joint embedding space of visual and textual data.
This proximity reflects their semantic ties, allowing RO to
encode the relative strength of pairwise inter-object relation-
ships. Consequently, RO captures the contextual importance
of object interactions, enriching the representation of tracked
object features for improved video captioning.

The second matrix multiplication aggregates the relation-
ships encoded in RO to provide supplementary cues for
interaction inference. Specifically, the matrix multiplication
between RO and OL is computed, followed by a max-pooling
operation that selects the most significant value for each
feature dimension across all objects:

AO = maxpool(MatMul(RO, O
L)) ∈ R1×D (6)

This operation performs a weighted aggregation, where each
row represents the influence of other objects on the tracked
object features based on their relationships in RO. The max-
pooling step extracts the most salient features from these ag-
gregated relationships, providing high-level semantic cues that
enhance the contextual understanding of object interactions.

ORE enriches frame-level features with dynamic relational
information, enhancing video captioning performance while
maintaining efficiency by avoiding additional learnable param-
eters.

D. Caption Decoder

The structure of the Caption Decoder, shown in Fig. 2 (d),
is based on the BERT [37] architecture and is designed to
iteratively generate the video caption Y = {y1, y2, . . . , yT }
of length T word by word. At each time step, the word yt is
produced based on (a) the frame-level feature representation
from the encoder, (b) the augmented object relation features
from ORE, and (c) the previously generated words denoted by
Y<t, leveraging masked self-attention.

To ensure computational efficiency, the Caption Decoder
employs a lightweight design by retaining only one masked
self-attention layer while removing cross-attention layers from
the original BERT structure. This streamlined approach signif-
icantly reduces the computational overhead while preserving
the ability to model dependencies between visual features and
textual inputs.

Specifically, the frame-level feature representation and ob-
ject relation features from ORE are concatenated to form a
unified visual representation Ṽ ∈ R(L+1)×D:

Ṽ = [AO;F ] (7)

where AO represents the aggregated object relation features,
and F denotes the frame-level features.

Both the previously generated text and the visual repre-
sentation are passed through separate feedforward networks,
each consisting of a fully connected layer and a rectified
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linear unit (ReLU) activation function. This provides enhanced
embeddings for text (T

′
) and visual features (Ṽ

′
) as follows:

T
′
= ReLU(WT · δ(Y<t) + bT ) (8a)

Ṽ
′
= ReLU(WV · Ṽ + bV ) (8b)

where δ(Y<t) represents one-hot vectors of the previously
generated words, and WT , WV , bT , and bV are learnable
parameters.

The text and visual embeddings are concatenated to form a
combined representation:

X = [Ṽ
′
;T

′
] + Ep + Et (9)

where Ep and Et represent positional and type embeddings,
respectively, to distinguish between visual and textual inputs.

Masked self-attention is applied to the combined represen-
tation to compute the hidden state at time step t:

ht = softmax

(
QmKT

m +M√
D

)
Vm (10)

where M masks subsequent words, and Qm = W
′

qX , Km =

W
′

kX , and Vm = W
′

vX are the query, key, and value matrices
with learnable weights.

The hidden state ht is passed to a classification head
consisting of a feedforward layer and a softmax function to
generate a probability distribution over the vocabulary:

P (yt|Y<t, Ṽ ) = softmax(W clsht) (11)

where P (yt|Y<t, Ṽ ) ∈ R|w| is the probability of each word in
the vocabulary, |w| is the vocabulary size, and W cls ∈ RD×|w|

is a learnable parameter matrix.
The word with the highest probability is selected as the next

word in the caption. This process is repeated iteratively until
the entire caption is generated. By simplifying the architecture
and removing redundant layers, the Caption Decoder achieves
a balance between efficiency and performance, aligning with
the lightweight design principles of the Track4Cap framework.

E. Optimization

The proposed model employs stage-wise training to enhance
computational efficiency, with the pre-trained encoder parame-
ters kept frozen during training. The model is optimized using
the standard cross-entropy loss, which measures the divergence
between the generated caption and the ground-truth caption.
The loss function is defined as:

Lcap = −
T∑

t=1

δ(y∗t ) logP (yt | Y<t, Ṽ ) (12)

where y∗t represents the t-th word of the ground-truth caption,
and δ(y∗t ) ∈ R|w| is its one-hot encoding. Here, P (yt | Y<t, Ṽ )
denotes the probability of generating the word yt given the
previously generated words and the visual representation Ṽ .

IV. EXPERIMENTS
This section outlines the experimental setup, evaluates

the proposed Track4Cap model against recent state-of-the-art
methods discussed in section II, and presents ablation studies
to analyze the contributions of individual modules.

A. Experimental Setup

1) Datasets: Experiments were conducted on two bench-
mark datasets: Microsoft Video Description Corpus (MSVD)
[44] and Microsoft Research Video to Text (MSRVTT) [45].
MSVD comprises 1,970 video clips with approximately 80K
captions, divided into 1,200, 100, and 670 clips for training,
validation, and testing, respectively, following prior works
[16], [20], [33], [43]. MSRVTT contains 10,000 open-domain
video clips, split into 6,513, 497, and 2,990 clips for training,
validation, and testing, respectively, using the official split.

2) Evaluation metrics: Performance was evaluated using
four standard metrics: BLEU-4 (B4) [46] for syntactic accu-
racy, METEOR (M) [47] for semantic relevance, ROUGE-L
(R) [48] for word overlap, and CIDEr (C) [49] for overall
relevance. Metric scores were computed using the Microsoft
COCO Assessment Server.

3) Implementation details: Videos were scaled to 1,600
frames, and 16 frames were uniformly sampled per video
(hyperparameter L = 16 in section III) to ensure consistent
representation across varying durations. Uniform sampling
mitigated biases by evenly capturing content throughout the
video, avoiding overemphasis on specific segments. The ViT-
L/14 variant of CLIP was used as the encoder, extracting
frame-level features with a fixed feature dimension of 768
(hyperparameter D = 768 in section III). The encoder param-
eters were frozen to utilize the pre-trained CLIP model without
fine-tuning.

The number of tracked objects (hyperparameter N in sec-
tion III) was set to 3 for MSVD (single-activity videos)
and 4 for MSRVTT (multi-activity videos), as determined
by ablation studies. The Caption Decoder utilized a word
embedding dimension of 768 to align with the frame-level
features, and the vocabulary size was set to 49,408.

Training was conducted using the Adam optimizer [50] with
an initial learning rate of 10−4, a batch size of 128, and 20
epochs.

B. Performance Comparison with State-of-the-Art Methods

Table I compares the video captioning performance of
the proposed Track4Cap model with recent state-of-the-art
(SOTA) methods, categorized into convolution-based mod-
els (with or without object detection) and transformer-based
models, evaluated on the MSVD and MSRVTT datasets. The
comparison highlights both similarities and differences in
performance trends across approaches, as well as the unique
advantages of Track4Cap. The results are summarized below.

1) Comparison with convolution-based models without
object detection: The proposed Track4Cap model achieves
first place on seven out of eight metric scores across the
MSVD and MSRVTT datasets, with the exception of a lower
BLEU-4 (B4) score on the MSRVTT dataset compared to
TSTPN [25]. Among convolution-based models without object
detection, TSTPN achieves the best performance on both
MSVD and MSRVTT, leveraging its combination of 2D/3D
CNNs with a generation transformer and a polishing trans-
former to enhance cross-modal sequence mapping. Similar to
TSTPN, Track4Cap focuses on efficient feature representation
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TABLE I
COMPARISON OF VIDEO CAPTIONING PERFORMANCE ON THE MSVD AND MSRVTT DATASETS IN TERMS OF BLEU-4 (B4), METEOR (M), ROUGE-L

(R), AND CIDER (C) SCORES; AND MODEL EFFICIENCY IN TERMS OF THE NUMBER OF PARAMETERS (PARAMS), COMPUTATIONAL COMPLEXITY
(FLOPS), AND INFERENCE TIME (TIME). RED INDICATES THE BEST SCORE, AND CYAN INDICATES THE SECOND-BEST SCORE.

Method Visual Encoder Model Efficiency MSVD MSRVTT
Params ↓ FLOPs ↓ Time ↓ B4 ↑ M ↑ R ↑ C ↑ B4 ↑ M ↑ R ↑ C ↑

Convolution-based Models Without Objection Detection
SGN (2021) [22] R101 + C3D 15M 1.047G 0.094s 52.8 35.5 72.9 94.3 40.8 28.3 60.8 49.5
MGRMP (2021) [23] IRV2+3D-RX - - 0.410s 55.8 36.9 74.5 98.5 41.7 28.9 62.1 51.4
HRNAT (2022) [26] IRV2+I3D 53M 2.729G 0.056s 55.7 36.8 74.1 98.1 42.1 28.0 61.6 48.2
TSTPN (2022) [25] RNX+ECO - - - 60.6 38.9 75.7 110.2 48.3 29.9 64.3 54.1
SGCAP (2023) [16] IRV2+C3D - - 0.340s - - - - 44.5 28.7 62.6 51.6
RSFD (2023) [24] R101+3D-RX 29M 1.646G 102.8s 51.2 35.7 72.9 96.7 43.4 29.3 62.3 53.1
Convolution-based Models With Object Detection
ORG-TRL (2020) [27] IRV2+C3D+Faster - - 0.250s 54.3 36.4 73.9 95.2 43.6 28.8 62.1 50.9
SAAT (2020) [31] IRV2+C3D+Faster 29M 4.018G 0.032s 46.5 33.5 69.4 81.0 39.9 27.7 61.2 51.0
STG-KD (2020) [28] R101+I3D+Faster - 60.00G - 52.2 36.9 73.9 93.0 40.5 28.3 60.9 47.1
TTA (2021) [32] R152+C3D+Faster - - - 51.8 35.5 72.4 87.7 41.4 27.7 61.1 46.7
TVRD (2022) [29] IRV2+C3D+Faster 226M 190.3G - 50.5 34.5 71.7 84.3 43.0 28.7 62.2 51.8
LSRT (2023) [30] IRV2+I3D+Faster - - - 55.6 37.1 73.5 98.5 42.6 28.3 61.0 49.5
RLHMN (2024) [33] IRV2+C3D+Faster 76M 34.00G 0.043s 59.9 36.2 74.2 104.7 45.1 28.8 63.6 54.2
EvCap (2024) [34] R101+I3D+Faster - 0.780G - 53.6 36.7 74.3 107.2 45.5 29.4 64.5 53.8
Transformers-based Models
SWINBERT (2022) [1] VidSwin 225M 1154G 0.498s 55.7 39.6 75.7 109.4 41.9 29.8 62.1 53.7
VASTA (2022) [36] VidSwin - - - 56.0 39.1 74.5 106.3 43.4 30.2 62.5 55.0
CAT (2023) [14] VidSwin - - - 59.9 41.7 78.4 122.9 42.1 30.2 62.5 54.5
MELTR (2023) [19] UniVL 199M 24.40G 0.079s - - - - 44.2 29.3 62.4 52.8
CoCap (2023) [20] H.264+CLIP 441M 102.5G 0.259s 60.1 41.4 78.2 121.5 44.4 30.3 63.4 57.2
EMCL (2022) [42] CLIP - - - - - - - 45.3 30.2 63.2 54.6
HSRA (2024) [43] CLIP+C3D+Faster 128M - 0.190s 62.2 39.2 78.4 110.1 46.9 30.9 64.8 55.3
Track4Cap CLIP 91M 1.322G 0.022s 62.1 42.5 79.8 127.2 44.6 30.5 63.6 57.7

• C3D: Convolutional 3D, I3D: Inflated 3D ConvNet, IRV2: Inception Resnet V2, RNX: ResNeXt, R101: ResNet-101, R152: ResNet-152, 3D-RX: 3D
ResNeXt, Faster: Faster R-CNN, H.264: Advanced Video Coding (AVC), a widely used video compression standard.

but extends this with its information augmentation modules,
enabling it to better capture object interactions and achieve
higher overall relevance.

2) Comparison with convolution-based models with
object detection: The proposed Track4Cap model achieves
first place in six out of eight metric scores across the MSVD
and MSRVTT datasets, with a slightly lower ROUGE-L (R)
score on the MSRVTT dataset compared to EvCap [34]
and a slightly lower BLEU-4 (B4) score than both EvCap
and RLHMN [33]. Among convolution-based models with
object detection, EvCap integrates object, action, and scene
features through a multi-branch encoder-decoder and achieves
the best ROUGE-L (R) and CIDEr (C) scores on the MSVD
dataset and the highest BLEU-4 (B4), METEOR (M), and
ROUGE-L (R) scores on the MSRVTT dataset. Interestingly,
as shown in Table I, compared with convolution-based mod-
els without explicit object detectors, incorporating object-
level information via explicit detection does not necessarily
guarantee performance improvements. Track4Cap achieves
superior results without relying on explicit object detection,
instead leveraging its Frame-by-Frame Multi-object Tracking
(FMoT) and Object Relation Encoder (ORE) modules to infer
relationships dynamically, which avoids the dependency on
pre-detected object features seen in EvCap.

3) Comparison with transformer-based models: The
proposed Track4Cap model stands out as the only transformer-
based approach to achieve the best performance in four

evaluation metrics and the second-best performance in two
metrics across the MSVD and MSRVTT datasets. Track4Cap
consistently attains the highest CIDEr scores, a metric strongly
aligned with human judgment, highlighting its ability to
generate captions of superior overall quality. Furthermore,
Track4Cap is the most efficient among transformer-based
models, requiring fewer parameters, lower FLOPs (Floating
Point Operations Per Second), and shorter inference times.
In comparison, the second-best method, HSRA [43], inte-
grates pixel-level information with frame-level features and
uses ground-truth captions for hierarchical feature supervision.
While HSRA achieves the highest performance in three out
of eight metrics, its reliance on additional pixel-level details
and caption supervision contrasts with Track4Cap’s simpler
yet effective design.

As observed in Table I, transformer-based models generally
outperform convolution-based models due to their superior
capacity to model long-range dependencies. Among grid-
level feature methods utilizing the VidSwin encoder, CAT
[14] performs better on MSVD compared to SWINBERT [1]
and VASTA [36], highlighting the benefits of multi-modal
semantic representations. However, MELTR [19], despite em-
ploying a more complex video-level encoder, demonstrates
the lowest METEOR (M) and CIDEr (C) scores among
transformer-based models, suggesting diminishing returns for
excessive architectural complexity. CoCap [20], leveraging
H.264 video compression to extract video-level features with
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Fig. 3. Comparison of overall performance (BLEU-4 (B4), METEOR (M), ROUGE-L (R), and CIDEr scores) and computational complexity (parameters
(Params), FLOPs, and inference time (Time)) across the MSVD and MSRVTT datasets, as well as the averaged scores across the two datasets. All metrics
were normalized to a scale of 0–1 for comparability, with higher values indicating better performance.

CLIP, achieves better results across four metrics on MSRVTT
compared to MELTR and the three grid-level feature methods
using VidSwin. This emphasizes the practicality and efficiency
of compressed video representations. Track4Cap, in contrast,
adopts a simpler framework but achieves better results by
focusing on efficient frame-level representations augmented
with relational cues.

Additionally, EMCL [42], by iteratively optimizing CLIP’s
feature space, achieves superior BLEU-4 (B4) scores on
MSRVTT compared to the three grid-level feature methods
using VidSwin and the two video-level feature methods, under-
scoring the effectiveness of enhancing frame-level representa-
tions for compactness and accuracy. In contrast, Track4Cap
outperforms EMCL on all metrics by leveraging a more
direct augmentation strategy with fewer preprocessing steps,
streamlining the feature extraction process.

In summary, Track4Cap demonstrates that leveraging frame-
level features with efficient information augmentation can out-
perform more complex models that rely on additional modal-
ities, hierarchical features, or compressed representations.
These results reinforce the advantages of a well-optimized
design in balancing computational demands with high-quality
performance, achieving top accuracy and efficiency simulta-
neously.

C. Computational Performance
The computational complexity of the proposed Track4Cap

model was quantitatively compared with recent state-of-the-
art (SOTA) methods, as summarized in Table I. Track4Cap
demonstrates the fastest inference speed, along with relatively
low parameter counts and computational demands. Specifi-
cally, among transformer-based methods, Track4Cap achieves
the lowest parameters, FLOPs, and inference times. Parameters
(Params) represent the model size and its inference capac-
ity, while FLOPs indicate the computational cost, offering
insights into hardware requirements. Inference time mea-
sures the model’s runtime efficiency during inference. These
metrics collectively highlight the computational efficiency of
Track4Cap.

To evaluate the trade-off between effectiveness and effi-
ciency, a comprehensive comparison of captioning perfor-
mance and computational metrics was conducted. A radar
chart in Fig. 3 illustrates the effectiveness in terms of BLEU-4
(B4), METEOR (M), ROUGE-L (R), and CIDEr scores, along-
side efficiency metrics, including parameters (Params), FLOPs,
and inference time (Time), on the MSVD and MSRVTT
datasets, as well as the averaged scores across the two datasets.
Track4Cap was compared with five convolution-based models
[22], [24], [26], [31], [33] and four transformer-based models
[1], [19], [20], [43].

To ensure direct comparability in the radar chart, all met-
rics were normalized to a scale of 0–1, with higher values
indicating better performance. As shown in Fig. 3, Track4Cap
outperforms current SOTA methods in the overall trade-off
between captioning performance and inference efficiency on
the MSVD dataset, achieving the highest overall generation
quality with the lowest computational cost. On the MSRVTT
dataset, both Track4Cap and HSRA [43] demonstrate strong
performance, with Track4Cap achieving higher CIDEr scores
and lower FLOPs and inference times. When averaging across
the two datasets, Track4Cap achieves the best overall trade-off,
highlighting its effectiveness in balancing captioning quality
with computational efficiency.

D. Ablation Study

This section presents a series of ablation experiments to
evaluate the impact of the proposed modules, the number of
tracked objects, different configurations, and types of visual
features on video captioning performance. The ablation anal-
ysis aims to highlight the contributions of each component
and their roles in enhancing the overall effectiveness of the
Track4Cap model.

1) Proposed Modules: The contributions of the proposed
FMoT and ORE modules were evaluated through ablation ex-
periments, with results summarized in Table II. The inclusion
and exclusion of each module are indicated by “✓” and “×,”
respectively.
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Fig. 4. Qualitative analysis of the impact of augmented information from FMoT and ORE on the proposed Track4Cap model’s video captioning performance
using examples from the MSVD dataset. Each example includes six extracted video frames, the ground truth caption, and generated captions produced under
different module configurations: (a) without FMoT and ORE (w/o FMoT and ORE), (b) with ORE only (w/o FMoT), (c) with FMoT only (w/o ORE), and
(d) with both FMoT and ORE (Full Model).

TABLE II
ABLATION STUDIES OF THE PROPOSED MODULES ON THE MSVD AND

MSRVTT DATASETS IN TERMS OF BLEU-4 (B4), METEOR (M),
ROUGE-L (R), AND CIDER (C) SCORES.

Module MSVD MSRVTT
FMoT ORE B4 M R C B4 M R C

× × 60.5 41.6 79.2 122.8 42.1 29.8 59.7 54.9
× ✓ 61.3 41.6 79.0 124.1 43.2 30.2 62.8 56.0
✓ × 61.3 42.0 79.5 125.8 44.0 30.4 63.5 57.4
✓ ✓ 62.1 42.5 79.8 127.2 44.6 30.5 63.6 57.7

The first row in Table II corresponds to the baseline model
without FMoT and ORE, where captions are generated di-
rectly from frame-level features without supplementary cues.
This configuration yields the lowest scores across all metrics
for both datasets, emphasizing the necessity of information
augmentation.

The second row represents the inclusion of ORE without
FMoT, using object relation features derived from the last
encoded frame as supplementary cues. While this improves
performance over the baseline, particularly on MSRVTT, it
shows limitations in METEOR and ROUGE scores on MSVD,
likely due to single-frame-derived object relations lacking
temporal coherence.

The third row demonstrates results for FMoT without ORE,
utilizing tracked object features across multiple frames. This
configuration achieves higher scores than ORE-only across all
metrics, highlighting the importance of FMoT in capturing
relevant object features for meaningful video captioning.

The last row of Table II shows the inclusion of both FMoT
and ORE, achieving the best performance across all metrics
for both datasets. This result underscores the complementary
nature of the two modules and the efficacy of the proposed
information augmentation approach.

To further illustrate the impact of the FMoT and ORE mod-

ules, Fig. 4 presents qualitative results based on examples from
the MSVD dataset. Each example includes six extracted video
frames, the ground truth caption, and captions generated under
different module configurations. The following observations
can be made:

• When neither FMoT nor ORE is included (w/o FMoT and
ORE), the model struggles to correctly identify subjects
and objects in the videos. For instance, in the bottom-
left video, the object “phone” is misidentified instead of
the correct “microwave”, and in the bottom-right video,
both the subject “baby animal” and the object “baby” are
incorrectly identified instead of “person” and “animal”,
respectively.

• Including only ORE (w/o FMoT) results in improved
captions with fewer subject-object errors. For example,
in the bottom-right video, subject-object identification
improves, but the object identification issue persists in
the bottom-left video, where “microwave” remains un-
recognized.

• When FMoT is included without ORE (w/o ORE), the
generated captions exhibit further improvement, accu-
rately identifying subjects and objects across all exam-
ples. However, interaction descriptions remain imprecise
in all videos, with verbs such as “dancing” used instead
of “walking” or “playing” instead of “washing”.

• The inclusion of both FMoT and ORE (Full Model)
achieves the most accurate captions, effectively ad-
dressing both subject-object identification and interaction
description. This result highlights the complementary
strengths of FMoT, which captures relevant object fea-
tures through tracking, and ORE, which enriches contex-
tual understanding by modeling inter-object relationships.

2) Number of Tracked Objects: The number of objects
tracked by FMoT is a key hyperparameter that influences both
computational overhead and video captioning performance. To
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Fig. 5. Impact of the number of tracked objects on performance (BLEU-4 and CIDEr scores) for MSVD and MSRVTT datasets. Performance trends show
that tracking 3 objects yields optimal results for MSVD, while tracking 4 objects is best for MSRVTT. The results highlight the balance required to avoid
incomplete relationships with fewer objects and interference from irrelevant objects with more.

investigate the sensitivity of performance to this parameter,
ablation experiments were conducted by varying the number
of tracked objects from 1 to 8. Fig. 5 presents the BLEU-4
and CIDEr scores for both datasets under these configurations.

The BLEU-4 and CIDEr metrics were specifically chosen
for their complementary strengths in evaluating video caption-
ing performance. BLEU-4 measures n-gram overlaps between
generated captions and ground truth, emphasizing syntactic
accuracy and the structural coherence of captions. CIDEr, on
the other hand, prioritizes semantic relevance by incorporating
human judgment of the importance of words and phrases.
Together, these metrics provide a comprehensive evaluation of
caption quality from both syntactic and semantic perspectives.

Consistent performance trends are observed across both
metrics and datasets. For MSVD, optimal performance is
achieved when tracking 3 objects, while for MSRVTT, which
contains more objects and complex interactions, the best re-
sults are observed with 4 tracked objects. Inferior performance
with fewer tracked objects is attributed to incomplete modeling
of object relationships, while tracking more objects degrades
performance due to interference from less relevant objects.

Notably, even with a single tracked object, the proposed
model demonstrates competitive performance. On MSVD, it
outperforms existing models listed in Table I in terms of
CIDEr scores, highlighting its superior ability to generate
captions aligned with human judgment. On MSRVTT, the
model achieves the second-highest CIDEr score, closely fol-
lowing CoCap. These results underscore the effectiveness of
the FMoT module in identifying and focusing on the most
significant object within a video, enabling accurate caption
generation even with minimal computational settings.

3) Configurations of FMoT: To evaluate the effectiveness
of the proposed FMoT, designed with the proposed Track
Decoder, ablation experiments were conducted to compare
its performance against two alternative implementations: a
standard encoder-decoder transformer and a Bi-LSTM archi-
tecture.

Table III presents the performance results for the three
FMoT configurations. In Table III, “Transformer” refers to the
FMoT implementation using a conventional encoder-decoder
transformer architecture. This configuration consists of a stack
of 6-layer encoders followed by another stack of 6-layer
decoders, which process the inputs to yield the object features
as the FMoT output.

“Bi-LSTM” denotes the FMoT implementation based on

TABLE III
ABLATION STUDIES OF FMOT CONFIGURATIONS ON MSVD AND
MSRVTT, COMPARING THE PROPOSED TRACK DECODER WITH

TRANSFORMER AND BI-LSTM ARCHITECTURES.

FMoT Params MSVD MSRVTT
B4 M R C B4 M R C

Transformer 44M 61.3 41.6 79.0 124.1 43.3 30.2 62.8 56.5
Bi-LSTM 29M 61.9 41.9 79.4 124.2 43.5 30.4 62.9 56.7

Track Decoder 3M 62.1 42.5 79.8 127.2 44.6 30.5 63.6 57.7

a standard Bi-LSTM architecture. This design incorporates
temporal context from both forward and backward directions.
Bi-LSTM models are known for capturing temporal and long-
term dependencies due to their sequential structure, whereas
transformer encoder-decoder models excel at modeling com-
plex relationships across frames using attention mechanisms.
The performance of these two architectures is competitive,
with small differences across all metrics for both datasets, as
shown in Table III. Notably, the Bi-LSTM-based implementa-
tion achieves slightly higher scores compared to the encoder-
decoder transformer.

The proposed Track Decoder, which combines the trans-
former’s attention mechanism with an iterative looping struc-
ture akin to LSTM, integrates the strengths of both architec-
tures. This hybrid design achieves significantly higher scores
across all metrics for both datasets, as evidenced in Table III.
Furthermore, the Track Decoder demonstrates a substantial
reduction in parameters compared to the other configurations,
highlighting its computational efficiency while delivering su-
perior captioning performance.

4) Feature types on caption generation: The proposed
model provides three feature types as visual inputs for the Cap-
tion Decoder: frame-level feature representation F , tracked
object features {OL

k }Nk=1 (abbreviated as OL), and object
relation features AO. Ablation experiments were conducted
to analyze the impact of different combinations of these
features on video captioning performance, implemented via
Equation (7) by including and excluding OL and AO in
concatenation with F . The results, shown in Table IV for both
datasets, are summarized below.

The first row in Table IV corresponds to the configuration
using only F , yielding the lowest scores across all metrics.
This highlights the limitations of relying solely on frame-
level features, as they lack the detailed context provided by
object-level features. The second row, using Ṽ = [OL;F ],
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TABLE IV
ABLATION STUDIES EVALUATING THE IMPACT OF DIFFERENT FEATURE

TYPES ON CAPTION GENERATION FOR THE MSVD AND MSRVTT
DATASETS. THE CONFIGURATIONS INCLUDE FRAME-LEVEL FEATURE

REPRESENTATION (F ), TRACKED OBJECT FEATURES (OL), AND OBJECT
RELATION FEATURES (AO ), USED INDIVIDUALLY AND IN COMBINATION.

Input Features MSVD MSRVTT
B4 M R C B4 M R C

[F ] 60.5 41.6 79.2 122.8 42.1 29.8 59.7 54.9
[OL;F ] 61.3 42.0 79.5 125.8 44.0 30.4 63.5 57.4
[AO;F ] 62.1 42.5 79.8 127.2 44.6 30.5 63.6 57.7

[AO;OL;F ] 60.8 42.5 79.6 125.8 43.7 30.2 63.2 57.6

shows improved performance, emphasizing the importance
of tracked object features in enhancing captioning accuracy
by capturing temporal coherence and key object information.
The third row with Ṽ = [AO;F ] demonstrates the highest
performance across all metrics for both datasets, underscoring
the informativeness of object relation features in capturing
inter-object relationships crucial for generating meaningful
captions.

Interestingly, the configuration combining all three feature
types (Ṽ = [AO;O

L;F ]), as shown in the last row of Ta-
ble IV, yields inferior performance compared to Ṽ = [AO;F ].
It performs similarly to Ṽ = [OL;F ], with the same CIDEr
score for MSVD and a higher CIDEr score for MSRVTT.
The increased model complexity from including all feature
types does not result in better performance, likely due to
feature overlap between F and OL. This overlap may cause the
model to lose appropriate focus on AO, the most distinct and
informative feature type for caption generation. These findings
highlight the critical importance of balancing feature diversity
and avoiding redundancy to optimize model performance.

E. Qualitative Analysis

To better illustrate the performance advantages of the pro-
posed Track4Cap model, qualitative comparisons of the gener-
ated captions are provided against two other transformer-based
models, using video examples from (a) the MSVD dataset and
(b) the MSRVTT dataset, as shown in Fig. 6. The baseline
model corresponds to Track4Cap with FMoT implemented
as a standard encoder-decoder transformer, while SwinBERT
[1] is included as a reference for being the earliest end-to-
end transformer-based video captioning model. The following
advantages of the proposed Track4Cap model emerge from
these examples:

• More accurate subject and object descriptions: Tracked
object features from FMoT based on the track decoder en-
able Track4Cap to generate captions with precise subject
and object details. For instance, SwinBERT misidentifies
“eggs” as “pie” in the first video of Fig. 6(a), and
the baseline model inaccurately describes “two men” as
“a man” in the first video of Fig. 6(b). These results
highlight the effectiveness of the proposed track decoder
in improving object recognition.

• Improved caption quality: The integration of tracked
object features from FMoT and object relation features

from ORE allows Track4Cap to generate longer and
more detailed sentences compared to the short and simple
captions produced by the baseline model and SwinBERT.
For example, in the first video of Fig. 6(a), Track4Cap
describes interactions among three entities (“A woman is
cooking eggs in a pan”), whereas the baseline model pro-
vides only a basic description (“A woman is cooking”).
Similarly, for the second video in Fig. 6(a), Track4Cap
highlights the key action of scoring in soccer, surpassing
the ground truth and other models that only describe
playing football. These examples demonstrate the ability
of the proposed track decoder and ORE to enrich caption
quality.

• Enhanced scene context awareness: Track4Cap incorpo-
rates scene context into captions, such as mentioning
“video game” and “kitchen” in the captions for the
two videos in Fig. 6(b). These details are absent in the
captions produced by the baseline model and SwinBERT,
further showcasing the contributions of the proposed
Track4Cap framework to detailed and contextually aware
captioning.

V. CONCLUSION

This paper presents Track4Cap, a novel framework for
video captioning designed to achieve an optimal balance
between computational efficiency and high performance. By
leveraging frame-level features and incorporating two com-
putationally efficient modules—Frame-by-Frame Multi-object
Tracking (FMoT) and Object Relation Encoder (ORE)—the
proposed framework identifies salient object features across
frames and captures inter-object relationships to enhance cap-
tioning performance. Track4Cap avoids the need for com-
plex architectures, additional data modalities, or end-to-end
training, making it practical for real-world applications with
constrained computational resources.

Extensive ablation studies highlight the contributions of
the proposed modules and the impact of different types of
augmented information on performance improvement. Results
demonstrate that Track4Cap achieves significant performance
gains on the MSVD dataset, excelling in scenarios involving
single-activity videos with simpler activity structures. On the
more complex MSRVTT dataset, Track4Cap remains highly
competitive despite the inherent challenges posed by multi-
activity videos and intricate object relationships. These find-
ings emphasize the robustness and adaptability of Track4Cap
across datasets with varying levels of complexity.

The implications of this research extend to several practical
domains, including video indexing, automated content gener-
ation, and accessibility solutions, where both computational
cost and caption quality are critical. Future studies could
explore ways to further improve Track4Cap’s performance on
multi-activity videos, such as integrating advanced relational
modeling techniques or utilizing external knowledge bases
to enhance context understanding. Additionally, the modular
design of Track4Cap provides opportunities for adaptation to
related tasks, such as video summarization and event detection,
enabling broader applications in video understanding. These
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Fig. 6. Qualitative comparisons of generated captions for video examples from (a) the MSVD dataset and (b) the MSRVTT dataset. Each example includes
selected video frames, the corresponding ground truth caption, and captions generated by three models: the baseline model (Track4Cap with FMoT implemented
as a standard encoder-decoder transformer), SwinBERT, and the proposed Track4Cap model. These comparisons demonstrate the superior ability of Track4Cap
to accurately identify subjects and objects, describe interactions in detail, and produce contextually rich captions.

directions pave the way for advancing efficient and effective
video captioning solutions.
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