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Systematic review and meta-analysis of
artificial intelligence in classifying HER2
status in breast cancer
immunohistochemistry

Check for updates

Daniel Arruda Navarro Albuquerque1, Matheus Trotta Vianna2 , Luana Alencar Fernandes Sampaio3,
Andrei Vasiliu4 & Eduardo Henrique Cunha Neves Filho5

The DESTINY-Breast04 trial has recently demonstrated survival benefits of trastuzumab-deruxtecan
(T-DXd) in metastatic breast cancer patients with low Human Epidermal Growth Factor Receptor 2
(HER2) expression. Accurate differentiation of HER2 scores has now become crucial. However, visual
immunohistochemistry (IHC) scoring is labour-intensive and prone to high interobserver variability,
and artificial intelligence (AI) has emerged as a promising tool in diagnosticmedicine.We conducted a
diagnosticmeta-analysis to evaluateAI’s performance in classifyingHER2 IHCscores, demonstrating
high accuracy in predicting T-DXd eligibility, with a pooled sensitivity of 0.97 [95% CI 0.96–0.98] and
specificity of 0.82 [95% CI 0.73–0.88]. Meta-regression revealed better performance with deep
learning and patch-based analysis, while performance declined in externally validated and those
utilising commercially available algorithms. Our findings indicate that AI holds promising potential in
accurately identifying HER2-low patients and excels in distinguishing 2+ and 3+ scores.

Breast cancer is the leading cause of cancer amongwomenworldwide and is
expected to result in ~1million deaths per year by 20401. Between 15% and
20% of cases exhibit overexpression of the Human Epidermal Growth
Factor Receptor 2 (HER2)2, which is associatedwith poor clinical outcomes.
The HER2 is a transmembrane tyrosine kinase receptor often found in
breast cancer cells, and its activation promotes cell cycle progression and
proliferation3. HER2 expression is routinely assessed semi-quantitatively by
pathologists using immunohistochemistry (IHC)-stained slides, where
HER2 is categorised based on the intensity and completeness of membrane
staining into negative (scores 0 and 1+), equivocal (score 2+), or positive
(score 3+). Equivocal cases undergo further testing with in situ hybridisa-
tion (ISH), and are subsequently classified as either positive or negative
depending on HER2 amplification status2.

Initially, the use of antibody-drug conjugates, such as trastuzumab-
deruxtecan (T-DXd), has been recommended for HER2-positive patients
with metastatic disease, corresponding to those with IHC scores of 3+, or
2+with gene amplification confirmed by ISH. Patients with scores of 0, 1+,
or 2+ with negative ISH were typically eligible for clinician’s choice
chemotherapy4. However, findings from the DESTINY-Breast04 (DB-04)5

trial demonstrated that T-DXd significantly improved both progression-
free and overall survival in individuals with low expression of HER2, with
the latter particularly remarkable in the context of metastatic disease. The
eligibility criteria for low HER2 expression in that study required an IHC
score of 1+, or 2+ with negative ISH, in patients with metastatic breast
cancer. This benefit in survival, observed in a subset of patients categorised
as “HER2-low”, a designation introduced by the DB-04 trial, has prompted
the American Society of Clinical Oncology/College of American Patholo-
gists (ASCO/CAP) to emphasise the importance of distinguishing between
scores 0 and 1+6, while maintaining the 20182 four-class classification
system.

Approximately 60%ofHER2-negativemetastatic breast cancers express
low levels of HER25. Accurate differentiation between scores 1+/2+/3+ and
0 has become critical, as it influences clinical decision-making and affects the
number of patients eligible for T-DXd.

Nevertheless, the standard IHC visual scoring of HER2 is time-con-
suming, labour-intensive, and subject to high inter-observer variability7,8.
Digital pathology has emerged as a promising tool in medical diagnostics,
aiding in thediagnosis andgradingof cancers suchasbreast, lung, liver, skin,
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and pancreatic cancers9. To address the subjective nature of IHC visual
scoring, artificial intelligence (AI) and deep learning (DL) have become
powerful options for analysing histological specimens, particularly for
HER2 scoring10.

Briefly, theworkflowof anAI-basedHER2 scoringmodel involves pre-
processing digitalised whole slide images (WSI) by fragmenting the images
into smaller patches and selecting a region of interest (ROI) likely to contain
relevant neoplastic tissue. These patches are then split into a learning and
testing subsets to train and evaluate the algorithm’s performance, respec-
tively.An internal validationprocess is subsequently performed to assess the
model’s accuracy usingWSIs from the same training dataset. To assess the
algorithm’s reproducibility, some models undergo external validation,
where performance is testedwith an independent external dataset. The final
outcome is the overall HER2 score, which is derived from the scoring
aggregation of each individual patch10.

In the context of digital pathology, patches are cropped, fixed-size
image sections (typically square or rectangular) extracted from full-size
WSIs. These patches facilitate computational analysis of high-resolution
WSIs by breaking down the image intomanageable units11. For the purpose
of this review, the term “cases” refers to a set ofWSIs obtained from a single
patient.

In line with the challenges associated with HER2 scoring and the
advancements in AI, we conducted an updated and clinically focusedmeta-
analysis aimed at: (1) evaluating the performance of AI compared to
pathologists’ visual scoring in accurately identifying patients eligible for
T-DXd based on HER2 IHC score; and (2) assessing the accuracy of AI in
classifying each individual HER2 score.

Results
Study selection and characteristics
Our search yielded a total of 1581 records published from inception toApril
2024, which were reduced to 751 after the removal of 830 duplicates. One
relevant study12 was found through article’s bibliography search. The

remaining recordswere then screened for relevance based on their titles and
abstracts. Subsequently, 72 records were deemed suitable for inclusion and
were assessed in full text.Of these, 59 studieswere excluded,with the reasons
summarised in Fig. 1. Publications that grouped 0/1+ scores together and
those that reportedaccuracymetrics solely as percentageswithout providing
raw data were excluded. Corresponding authors were contacted in both
instances, but failed to provide the necessary data. Finally, a total of
13 studies were included in this review for meta-analysis.

Table 1 presents a summary of the included studies published
between 2018 and 2024, encompassing 1285 cases, 168 WSIs, and
24,626 patches collected from 25 contingency tables. Only Palm et
al.13 and Sode et al.14 specified the use of primary tumours, while the
others did not mention the source. All authors reported invasiveness
status, except for Fan et al.15. The type of tissue extraction (biopsy vs.
resection) was reported in only five studies. The IHC assay was
described in five studies, and Fan et al.15 failed to give scanner details.
The discrepancies in sample sizes observed in eight studies are
attributable to the use of patches as the data unit, as multiple patches
can be derived from a single WSI. Eight studies utilised, either wholly
or in part, the HER2 Scoring Contest (HER2SC)16 database, which
may have resulted in some overlap of sample sizes. However,
quantification of this was not possible, as authors did not specify
which cases were used in their analyses. Ten studies employed DL, all
of which utilised convolutional neural networks (CNN) algorithms.
Only two studies exclusively utilised pathologist-assisted algorithms.
In Pham et al.17, pathologists manually selected an ROI before AI
classification, while in Sode et al.14, the final scoring required a
pathologist’s review. Palm et al.13 and Jung et al.18 tested the same
algorithm for both automated and pathologist-assisted modes. One
contingency table from Qaiser et al.16 was excluded, as it used hae-
matoxylin and eosin (H&E)-stained images as inputs for training the
algorithm. Oliveira et al.12 reported performance metrics using pat-
ches obtained from IHC-stained WSIs as an input for further

Fig. 1 | PRISMA flow diagram. The flowchart
illustrates the process of identifying and screening
studies, from database searches to the final selection
of studies meeting the eligibility criteria. H&E hae-
matoxylin and eosin, IHC immunohistochemistry.
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prediction of HER2 status on H&E-stained WSIs, and as such, it was
included in this meta-analysis.

Pooled performance of AI and heterogeneity
Toassess the clinical relevanceofAI indetermining eligibility forT-DXd,we
evaluated its performance in distinguishing scores 1+/2+/3+ from score 0
with data obtained from 25 contingency tables. When the threshold of
positivity was set at score 1+, 2+, or 3+, with score 0 considered negative,
the meta-analysis showed a pooled sensitivity of 0.97 [95% CI 0.96–0.98], a
pooled specificity of 0.82 [95% CI 0.73–0.88], and an area under the curve
(AUC) of 0.98 [95% CI 0.96–0.99] (Fig. 2).

We also examined the performance of AI in distinguishing scores 1+,
2+, and 3+ individually from their counterparts. In this case, the test was
considered positive if the respective score was identified by the models and
negative if any other score was detected. Figure 3 and Supplementary Fig. 1
present the corresponding summary receiver operating characteristics
(SROC) curves and forest plots, respectively. Notably, the performance
improved with higher HER2 scores (2+ and 3+). The pooled sensitivity for
score 1+ was 0.69 [95% CI 0.57–0.79], with a specificity of 0.94 [95% CI
0.90–0.96] and an AUC of 0.92 [95% CI 0.90–0.94] (Fig. 3a). For score 2+,
AI achieved a pooled sensitivity of 0.89 [95% CI 0.84–0.93], a pooled spe-
cificity of 0.96 [95% CI 0.93–0.97], and an AUC of 0.98 [95% CI 0.96–0.99]
(Fig. 3b). Finally, for score 3+, the AI demonstrated near-perfect perfor-
mance,with a sensitivity of 0.97 [95%CI 0.96–0.99], specificity of 0.99 [95%
CI 0.97–0.99], and an AUC of 1.00 [95% CI 0.99–1.00] (Fig. 3c).

Our results indicate substantial heterogeneity, with Higgins incon-
sistency index statistic (I2) values ranging from 94% to 98% for both sen-
sitivity and specificity (Fig. 2a and Supplementary Fig. 1). In all analyses, no
significant threshold effect was identified (Supplementary Table 3).

Figure 4 provides a heatmap with a visual representation of the
agreement betweenAI and pathologists across all HER2 scores. The highest
agreement was observed at score 3+, with a concordance of 97% [95% CI
96–98%], while AI performed less accurately at score 1+ (88% [95% CI
86–90%]) (Table 2).

Subgroup analysis and meta-regression
To investigate sources of heterogeneity in the 1+/2+/3+ vs. 0 analysis, we
conducted meta-regression utilising potential covariates, including: (1) DL
(present vs. not present); (2) transfer learning (present vs. not present); (3)
commercially available (CA) algorithms (present vs. not present); (4)
autonomy (assisted vs. automated); (5) type of internal validation (random
split sample vs. k-fold cross-validation); (6) external validation (present vs.
not present); (7) sample size (≤761 vs. >761, where 761 is themedian across
studies); (8) data unit (WSIs/cases vs. patches); and (9) dataset (own vs.
HER2SC). The performance estimates corresponding to each covariate and
the meta-regression results is outlined in Supplementary Table 4. Two
studies13,14 failed to provide information about the type of internal validation
and were not included in this subgroup analysis.

Considering sensitivity alone, we identified statistically significant
differences across studies usingDL, CA algorithms, and external validation.
Studies incorporating DL achieved greater sensitivity (0.98 [95% CI
0.97–0.99] vs. 0.94 [95% CI 0.93–0.95]). In contrast, CA algorithms
exhibited lower sensitivity (0.93 [95% CI 0.90–0.95]) relative to
experimental-only algorithms (0.98 [95% CI 0.97–0.99]). Similarly, studies
employing external validationhave alsoperformedworse (Sensitivity of 0.96
[95% CI 0.95–0.97] vs. 0.98 [95% CI 0.96–0.99]) (Supplementary Table 4).

Regarding specificity, only the covariates sample size and data unit
demonstrated significant differences. Analyses with sample sizes greater
than 761 showed improved specificity (0.88 [95% CI 0.81–0.93]) compared
to those with sample sizes ≤761 (0.70 [95% CI 0.55–0.82]). When patches
were used as the data unit, specificity was significantly higher (0.87 [95%CI
0.79–0.92]) in contrast to 0.70 [95% CI 0.53–0.83] for WSIs/cases (Sup-
plementary Table 4). The covariates transfer learning, autonomy, type of
internal validation, anddatasetdidnot showa statistically significant impact
on either sensitivity or specificity.T
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Publication bias and sensitivity analysis
To assess publication bias, we performedDeek’s funnel plot asymmetry test
for all threshold analyses. The studies showed reasonable symmetry around
the regression lines, with a non-significant effect, indicating a low likelihood
of publication bias (Supplementary Fig. 2). Sensitivity analysis revealed no
significant changes in performance estimates for the 1+/2+/3+ vs. 0meta-
analysis (Supplementary Table 5).

Quality assessment
The Quality Assessment Tool for Artificial Intelligence-Centered
Diagnostic Test Accuracy Studies (QUADAS-AI) assessment of the
included studies is summarised in Supplementary Fig. 3, with a detailed
description of the questionnaire outlined in Supplementary Table 2.
Briefly, 11 studies demonstrated a high risk of bias in the “patient
selection” domain due to unclear reporting of eligibility criteria, such as
the modality of tissue extraction (biopsy vs. resection), tumour inva-
siveness, and failure to specify whether the tumours were primary or

metastatic. In the same domain, two studies13,14 that utilised CA algo-
rithms did not provide a clear rationale neither a detailed breakdown of
their training and validation sets. The “index test” domain exhibited
high risk of bias in eight studies, as they lacked external validation.
Furthermore, eight studies that evaluated AI performance using patches
were deemed to have high applicability concerns regarding their index
tests, as the use of WSIs/cases instead, would be more representative of
real-world practice.

Discussion
In this meta-analysis, we found that AI demonstrated high performance in
distinguishing HER2 scores of 1+/2+/3+ from 0, a critical cut-off with
significant clinical importance. Considering the 1+, 2+ and 3+ scores
individually, the AI models showed increasing sensitivity and specificity as
scores rose, with particularly strong performance at higher scores. For score
3+, AI had almost perfect concordance with pathologist’s visual scoring.
Meta-regression revealed that the use ofDL, larger sample sizes, andpatches

Fig. 2 | Pooled performance of AI in identifying HER2-low individuals from 25
contingency tables. aForest plot of paired sensitivity and specificity forHER2 scores
1+/2+/3+ vs. 0. b SROC curves for HER2 scores 1+/2+3+ vs. 0. The combined
performance and summary operating point were calculated using the bivariate

random-effectsmodel. Scoring 1+, 2+ or 3+ indicates eligibility for T-DXd therapy.
AUC area under the curve, CI confidence interval, SENS sensitivity, SPEC specifi-
city, SROC summary receiver operating characteristics.

Fig. 3 | Summary receiver operating characteristics curves for individual
HER2 scores. a score 1+ vs. non-1+. b score 2+ vs. non-2+. c score 3+ vs. non-3.
Sensitivity and specificity increased with higher HER2 scores, demonstrating near-
perfect performance at score 3+. The summary operating points were calculated

using the bivariate random-effects model. Heterogeneity is graphically represented
by the 95% prediction contour and is more pronounced at lower HER2 scores. AUC
area under the curve, SENS sensitivity, SPEC specificity, SROC summary receiver
operating characteristics.
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positively influenced AI performance, while the use of externally validated
and CA models showed less favourable outcomes.

To the best of the authors’ knowledge, only one meta-analysis,
conducted by Wu et al.19, has been published on the use of AI for
HER2 scoring in breast cancer. However, this review included a limited
number of studies, leading to performancemetrics with a widemargin of
uncertainty. Additionally, sources of heterogeneity were not explored,
given the small sample size. These authors assessed AI-assisted
HER2 status based on four studies differentiating scores 1+/2+/3+
from 0, finding a pooled sensitivity of 0.93 [95% CI 0.92–0.94], a pooled
specificity of 0.80 [95% CI 0.56–0.92], and an AUC of 0.94 [95% CI
0.92–0.96]. It is noteworthy that, for comparison purposes, we swapped
the values of sensitivity and specificity, as the original criterion for
positivity in their study was set to score 0, whereas in this review the
positivity threshold was set to score 1+, 2+, or 3+. Despite the broad
95% CI observed in that review, we found a significantly higher sensi-
tivity (Fig. 2). In contrast, our findings for specificity were similar, and
AUCs were borderline comparable (Fig. 2b). The less availability of
studies in their analysis likely explains the discrepancy in sensitivity.
While they applied similar inclusion criteria and a broader search
strategy, yielding four times more studies than this review, five of our
included studies were published after their search period concluded.
Interestingly, these studies were released after the 2023 ASCO/CAP
updated recommendations on HER2-low6 were made public, indicating
a growing demand for more accurate AI models since then.

The classification of scores 0 and 1+ is often challenging for
pathologists, leading to significant inter-observer variability. A survey by
Fernandez et al.8, conducted across 1452 laboratories over two years,
found that pathologists agreed on the differentiation of scores 0 vs. 1+ in
only 70% of cases or fewer. Given the findings of the DB-04 trial, our
analysis primarily focused on the distinction between scores 1+/2+/3+
and 0, as patients scoring 1+, 2+ or 3+ are potentially eligible for T-DXd
therapy, irrespective of ISH amplification status. Clinically, it is crucial to
minimise the number of patients who might miss the opportunity to
benefit from T-DXd and those who might be inappropriately treated.
The pooled performance metrics found in this work, however, may not
be readily intuitive. Put simply, for every 100 patients diagnosed with
metastatic breast cancer, AI missed three eligible patients for T-DXd
therapy, while eighteen patients would be erroneously treated (Fig. 2),
experiencing the drug’s adverse effects without a clear therapeutic
benefit. This is especially relevant given the potential life-threatening
side effects associated with antibody-drug conjugates. For instance, in
the T-DXd armof theDB-04 trial, 45 patients (12.1%) experienced drug-
related interstitial lung disease or pneumonitis, leading to the death of
three patients (0.8%).

Meta-regression indicated that DL improved significantly the
sensitivity in identifying patients eligible for T-DXd (Supplementary
Table 4). DL is an AI tool that offers higher accuracy and robustness
compared to traditional machine learning (ML) models. It has been
widely applied in diagnostic medicine, particularly in histopathology20,
due to its effectiveness in analysing visual data. In this review, all studies
that employed DL used CNN, a type of DL model that automatically
learns and extracts image features, requiring minimal human inter-
vention. CNN can automatically identify features such as texture, colour
intensity, and shape with little need of pathologists’ annotations or
selection of ROIs21. In contrast, traditional ML models are heavily
dependent on pathologists’ expertise and experience, usually requiring
human inputs for maximum effectiveness. The higher sensitivity
observed in the DL subgroup is likely explained by its ability to identify
image features that may have been overlooked by the human eye.
However, DL automation requires large datasets and high-performance
computing infra-structure for optimal performance22, which can be a
limitation in practice, as laboratories may not be equipped with such
resources.

We also found significantly better specificity in the subgroupswith a
sample size >761 and those that used patches as the primary unit of
analysis. These results are likely interrelated, as both subgroups showed
similar disparities in specificity (Supplementary Table 4). Patches are
small, localised segments of a larger WSI, designed to facilitate the
analysis of WSIs with extremely high resolution20, therefore studies that
reported performance metrics using patches are expected to have larger
sample sizes. In HER2 scoring, models typically analyse each patch
separately and then aggregate the results into a patient-level overall
score, taking into account spatial distribution and the relative weight of
scores across individual patches. Although patches can be utilised at
some point during AI training, the overall WSI score is the most
applicable in practice. However, studies that reported performance
outcomes using patches lacked an overall aggregated score. From a
practical perspective, the higher specificity observed in the patches
subgroup suggests that the real-world performance of these models may
be overestimated, as the ability to reliably aggregate individual patch
scores into a comprehensive patient-level score was not fully evaluated.

Studies that underwent external validation and utilised CA models
showedpoorer sensitivity. SinceCA algorithms rely on pre-designed and
pre-trained models, their testing datasets are inherently external to the
training data, leading to similar outcomes across both subgroup analyses
(Supplementary Table 4). Indeed, to ensure that models generalise
beyond the training set, it is necessary to use samples from an external
dataset. This accounts for variations in WSIs across different settings,
such as distinct staining protocols, scanner resolutions, and imaging
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Fig. 4 | Concordance of AI vs. pathologists’ visual scoring. The heatmap displays
the frequency of accurate and inaccurate AI predictions compared tomanual scoring
for eachHER2 score. Cell values represent the cumulative sample sizes derived from
25 contingency tables corresponding to each prediction. Colour intensity reflects the
proportion of correct predictions, with higher intensity indicating greater accuracy.
The highest agreement was observed at score 3+, while AI demonstrated lower
accuracy at score 1+, with most incorrect predictions skewed towards score 0.

Table 2 | Concordance ratios of correct vs. incorrect
predictions across different HER2 scores

HER2 score Concordance [95% CI]

0 93% [90–94%]

1+ 88% [86–90%]

2+ 93% [91–94%]

3+ 97% [96–98%]

Overall 93% [92–94%]

Pooled concordance ratios were estimated using a random-effects meta-analysis of proportions,
applying the DerSimonian and Laird method. CI confidence interval, HER2 Human Epidermal
Growth Factor Receptor 2.
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artefacts. As a result, algorithms tested on the same training dataset were
expected to perform significantly better, but not necessarily would be a
viable option in practice.

Despite the poorer performance observed in externally validated and
CA algorithms, regulatory agencies typically do not require a predefined
minimum performance threshold for commercialisation approval, with
quality assessments conducted on a case-by-case basis. The assessment of
models’ reproducibility is a crucial aspect of the regulatory process, as it
ensures that their performance generalises beyond the dataset they were
trained on. In the US and Europe, for such technologies to be approved for
commercial use, it must be demonstrated that their benefits outweigh the
risks and that they are effective and safe for their intended purpose23. There
is no specific regulatory framework for the use ofAI inmedical applications;
such technologies are generally categorisedand regulatedasmedical devices.
However, initiatives have been undertaken to address those reproducibility
issues. A collaboration between the US Food and Drug Administration
(FDA), Health Canada, and the UK Medicines and Healthcare Products
Regulatory Agency (MHRA) established guiding principles for Good
Machine Learning Practice24, highlighting the importance of external vali-
dation to ensure model reproducibility across different settings. Addition-
ally, an FDA action plan25 proposed methodologies to mitigate the
limitations of biased datasets and encouraged the use of real-world training
data to enhance algorithm robustness. The European Union Medical
Devices Regulation 2017/74526 requires software validation and testing in
both in-house and simulated or actual user environments prior to final
release (Annex II, Section 6.1b). While our subgroup analysis revealed that
externally validated CA algorithmsmay exhibit reduced performance, their
certificationby regulatorybodies is justifiedby their superior generalisability
and reliability in real-world settings beyond their development
environment.

The individual analysis of scores 1+, 2+, and 3+ vs. their counterparts
showed that sensitivity, specificity and concordance improved as scores
increased (Figs. 3 and 4; Supplementary Fig. 1; Table 2). This trend aligns
with the similar meta-analysis by Wu et al.19. Unlike the analysis of T-DXd
eligibility, where patient management and classification in HER2-low were
clinician-driven, AI’s performance in classifying individual HER2 scores is
more relevant in a histopathology context, as the classic four-class HER2
recommendations remain in effect6. The lower sensitivity in score 1+may
reflect AI’s limitations in detecting subtle immunohistochemical changes,
particularly at the 10% threshold of faint membranes between scores 0 and
1+ as per ASCO/CAP2,27. This may suggest that either the detection or
counting of faint/barely perceptible membranes is downregulated, as most
incorrect predictions were biased towards score 0 (Fig. 4). Conversely, the
high specificity for score 2+ indicates that only a small number of false
positives (FP)s would undergo unnecessary ISH testing, thereby reducing
turnaround time for clinical decision-making.

The intra- and inter-observer concordance rates for IHC manual
HER2 scoring vary significantly across the literature. Concordance studies
differ in methodology, as pathologists’ performance can be assessed either
through agreement with peers or with more advanced lab assays. Addi-
tionally, factors such as the number of raters, wash-out period, variations in
IHC assays, and the accuracy of the reference standard test used as the
ground truth introduce further heterogeneity to these studies. A multi-
institutional cohort study conducted with 170 breast cancer biopsies across
15 institutions reported an overall four-class (0, 1+, 2+, and 3+) con-
cordance among pathologists as low as 28.82% [95%CI 22.01–35.63%]28. In
contrast, another study found a markedly better figure of 94.2% [95% CI
91.4–96.5%]29. Studies comparing pathologists’ performance in IHC vs.
other techniques reported concordance rates of 93.3%30, 91.7%31, 82.9%32

with RT-qPCR, and 82%33 with ISH. Based on these metrics, the overall
concordance rate of 93%[95%CI92–94%] (Table 2) identified in this review
implies that AI may hold the potential to achieve performance comparable
to pathologists’ visual scoring.

However, the findings of this work have limitations. The exclusion
of studies that used grouped 0/1+ scores and those that did not report

sufficient performance outcomes may have influenced our pooled
metrics. This is likely because, in earlier studies, separating 0/1+ scores
was not relevant for T-DXd eligibility at that time, and DL technology
had not yet become as widespread and advanced as it currently is. The
notably high heterogeneity found in our analyses suggests that AI may
lack standardisation, due to inherent differences inmodels design as well
as pre-analytical factors, such as IHC assay, WSI scanner resolution,
tumour heterogeneity, and tissue artefacts. The design of a standardised
testing protocol is likely tomake the variousAImodelsmore comparable
to each other. Moreover, the high risk of bias and applicability concerns
identified in QUADAS-AI (Supplementary Fig. 3) represent an addi-
tional limitation. Since some included studies failed to report important
sample characteristics, such as tumour invasiveness, method of extrac-
tion (biopsy vs. resection), or whether tumours were metastatic or pri-
mary, we cannot extrapolate our findings to samples that differ in these
aspects. For instance, it cannot be ignored that algorithms may perform
differently if non-breast cells are present inmetastatic samples or if slides
vary in size depending on the method of extraction. It remains essential
that upcoming validation studies in AI provide a more detailed
description of the samples, taking pre-analytical clinical and factors into
account.

In light of the current ASCO/CAP recommendations, the pooled
performance findings in this meta-analysis apply to the HER2-low
population, though ongoing research may prompt changes in the HER2
classification system. Despite the FDA34 and the European Medicines
Agency35 approvals of T-DXd for metastatic breast cancer following the
DB-04 trial, it is widely agreed amongASCO/CAP and European Society
of Medical Oncology (ESMO) that HER2-low does not represent a
biologically distinct entity, but rather a heterogeneous group of tumours
influenced by HER2 expression6,36. We acknowledge that the 2023
ASCO/CAP update reaffirms the 2018 version of the HER2 scoring
guideline, with no prognostic value attributed to HER2-low and no
changes recommended in reporting HER2 categories. The term HER2-
low was used as an eligibility criterion in the DB-04 trial and should
guide clinical decision-making only. To date, HER2 classification
remains as negative (0 and 1+), equivocal (2+), and positive (3+). This
is primarily because theDB-04 trial did not include patients with score 0,
and the possibility that some patients in the 0-1+ threshold spectrum
might benefit from T-DXd should not be ignored. Addressing this
uncertainty, the recently published phase 3 DESTINY-Breast0637 trial
found a survival benefit in HER2-ultralow patients, i.e., a subset of
patients within the IHC category 0 who express faintmembrane staining
in ≤10% of tumour cells. Accordingly, HER2-ultralow hormone
receptor-positive patients who had undergone one or more lines of
endocrine-based therapy had longer progression-free survival when
treated with T-DXd compared to those receiving chemotherapy. These
findings align with the interim outcomes of the ongoing phase 2 DAISY
trial38. The grey zone within the 0-1+ threshold has several implications
for this review’s outcomes. All AI algorithms included in this analysis
used the conventional four-class HER2 scoring system (0, 1+, 2+, 3+),
and it is clear that this classification may need to be revised. Subsequent
AI algorithms will need to be trained using inputs that account for
staining intensity and the proportion of stained cells within the 0–1+
spectrum.

In conclusion, the results of this meta-analysis, encompassing 25
contingency tables across thirteen studies, suggest that AI achieved
promising outcomes in accurately identifying HER2-low individuals
eligible for T-DXd therapy. Our findings indicate that, to date, AI
achieves substantial accuracy, particularly in distinguishing higher
HER2 scores. Future validation studies using AI should focus on
improving accuracy in the 0–1+ range and provide more detailed
reporting of clinical and pre-analytical data. Lastly, this review high-
lights that the progressive development of DL is steering towards greater
automation, and pathologists will need to adapt to effectively integrate
this tool into their practice.
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Methods
Protocol registration and study design
This systematic review adhered to the Preferred Reporting Items for Sys-
tematic Reviews andMeta-Analysis ofDiagnostic TestAccuracy (PRISMA-
DTA) guidelines (Supplementary Table 1) and was registered in the
International Prospective Register of Systematic Reviews (PROSPERO)
under the identification number CRD42024540664. This research utilised
publicly accessible data, thus ethical approval and informed consent were
not applicable.

Eligibility criteria
Inclusion in this meta-analysis was limited to studies that fulfilled all
of the following criteria: (1) studies that utilised primary or meta-
static breast cancer tissues in the form of digitalised WSIs, from
female patients at any age, irrespective of tumour stage, histological
subtype and hormone receptor status, employing conventional 3,3’-
diaminobenzidine (DAB) staining; (2) studies evaluating the per-
formance of AI algorithms as an index test; (3) studies comparing
these algorithms to pathologists’ visual scoring as the reference
standard; and (4) studies that reported AI performance metrics. Only
original research articles published in English in peer-reviewed
journals were included. No limitations were imposed on the
publication date.

Studies were excluded if they lacked sufficient data to build a 2 × 2
contingency table of true positives (TP), FP, true negatives (TN), and false
negatives (FN) across each HER2 category (0, 1+, 2+, and 3+). Addi-
tionally, studies that combined 0/1+ scores were excluded, given the clinical
significance of this distinction for the purposes of this review. Studies
conducted using animal tissues, those employing H&E staining, multi-
omics approaches, as well as reviews, letters, preprints, and conference
abstracts, were excluded.

Literature search
A comprehensive literature search was conducted inMEDLINE, EMBASE,
Scopus, and Web of Science from inception up to 3 May 2024 using the
following terms: (“artificial intelligence” OR “machine learning” OR “deep
learning”OR “convolutional neural networks”) AND “breast cancer”AND
“HER2”. We also examined the reference lists of studies to identify relevant
articles. Two independent authors screened titles, abstracts, and full texts for
eligibility. Disagreements were resolved through consensus with a senior
pathologist.

Data extraction
The following data were collected using a pre-designed spreadsheet: study
characteristics (author, year, and country), participant details (tumour
features, sample size, data unit, and dataset), index test (algorithm specifi-
cations, deep learning, transfer learning, autonomy, external validation, type
of internal validation, and the use of CA algorithms), reference standard
(manual scoring and classification system), and 2 × 2 contingency tables for
TP, FP, FN, and TN for each 0, 1+, 2+, and 3+ score. Supplementary data
were requested from corresponding authors when necessary. Performance
metrics were calculated using three distinct data units: cases, WSIs, and
patches, which varied across the included studies. A second independent
reviewer cross-checked all the collected data. If studies provided multiple
contingency tables representing various outcomes for a single AI algorithm,
only the data reflecting the best performance were collected. In cases where
studies presented results evaluating different types of automation (assisted
vs. automated) or different data units for the same algorithm, these tables
were treated as independent.

Outcomes
The primary outcome was the AI pooled sensitivity, specificity, AUC, and
concordance in distinguishing HER2 scores of 1+/2+/3+ from 0. The cut-
off for positivity was defined as a score of at least 1+, since the decision to
initiateT-DXd treatment is basedon this threshold.The secondary outcome

was to estimate the same pooled performance metrics for each individual
score of 1+, 2+, and 3+ compared to their counterparts.

Each study contributed with at least four contingency tables, cor-
responding to the performance of each individual score. Importantly,
the term “positivity,” as used here, applies solely to defining the cut-off
for the meta-analysis and is not related to the histological classification
of HER2.

Statistical analysis
Meta-analysis was conducted using the bivariate random-effects model
to calculate the pooled sensitivity and specificity, as significant hetero-
geneity was expected. SROC curves with 95% CI and 95% prediction
region (PR) were employed for visual comparisons andAUC estimation.
Heterogeneity was evaluated using the I2, with 50% defined as moderate
and ≥75% defined as high. Pooled concordance was calculated using a
random effects meta-analysis of proportions, following the DerSimo-
nian and Lairdmethod. Potential sources of heterogeneity were explored
through subgroup analysis andmeta-regression, utilising covariates that
were most likely to contribute to heterogeneity. A “leave-one-out”
sensitivity analysis was performed by sequentially excluding one study at
a time. Publication bias was evaluated using Deek’s funnel plot asym-
metry test. Statistical analysis was conducted using STATA (version
17.0, StataCorp LLC, Texas, USA) with midas, metandi and
metaprop modules. To assess the threshold effect, the Spearman
correlation coefficient was calculated using Meta-DiSc (version 1.4,
Ramón y Cajal Hospital, Madrid, Spain). A p < 0.05 was considered
significant for the meta-analysis, meta-regression, and threshold effect
evaluation. For the assessment of publication bias, a significance cut-off
of p < 0.10 was applied.

Quality assessment
The risk of bias and applicability concerns in the included articles were
meticulously evaluated independently by two authors using the adapted
QUADAS-AI39 across four domains: patient selection, index test, reference
standard, and flow and timing. The detailed questionnaire is provided in
Supplementary Table 2.

Declaration of generative AI and AI-assisted technologies in the
writing process
During the preparation of this work the authors used ChatGPT 4o version
1.2024.227 in order to improve readability and language. After using this
tool, the authors reviewed and edited the content as needed and take full
responsibility for the content of the publication.

Data availability
The datasets used and/or analysed during the current study are available
from the corresponding author upon reasonable request.
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