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Abstract: Blockchain technology is increasingly being adopted across critical domains, such
as healthcare and finance, yet it remains susceptible to anomalies and malicious attacks.
Hence, robust anomaly detection is essential in these decentralized systems to maintain
integrity, trust, and reliability. However, anomaly detection is still challenging due to data
imbalances, adversarial resilience, and the lack of explanation in existing approaches. This
work presents ARCADE, a novel approach for adversarially resilient anomaly detection in
blockchain networks that leverages an optimized cost-sensitive stacking ensemble learning
combined with explainable artificial intelligence (XAI) techniques. Firstly, the proposed
approach uses cost-sensitive learning to address the data imbalance problem by optimizing
class weights that are integrated with stacking ensemble learning to enhance detection accu-
racy. Secondly, along with this, newly engineered features are employed to strengthen the
resilience of the model against malicious perturbations. Lastly, XAI techniques are applied
to provide comprehensive insights and explanations for model prediction. To evaluate
ARCADE, the Ethereum network transactions dataset is utilized to ensure a realistic case
study. The experimental results show the superiority of the ARCADE in several aspects,
achieving a high accuracy of 99.65%; strong resilience against adversarial perturbations,
achieving an accuracy of 99.38% for low-intensity attacks, 91.04% for moderate attacks,
and over 78% for extreme attacks; and surpassing existing techniques while also providing
explainability for domain users.

Keywords: blockchain; anomaly detection; stacking; cost sensitive; adversarial robustness; XAl

1. Introduction

In recent years, blockchain technology has witnessed significant proliferation across
various critical domains, including healthcare, finance, supply chain management, e-
governance, and the Internet of Things (IoT). Blockchain is inherently decentralized, trans-
parent, and immutable, making it a pivotal technology for building trust, reliability, and
security in the modern digital ecosystem [1]. Subsequently, this expansion has driven signifi-
cant market growth, with the blockchain market valued at approximately USD 17.57 billion
in 2023 [2]. It is projected to reach USD 825.93 billion by 2032, exhibiting an impressive
compound annual growth rate (CAGR) of 52.8% during the forecast period. Despite its
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growing popularity and widespread adoption, blockchain technology remains susceptible
to several challenges, i.e., anomalous transactions, security breaches, and cybersecurity
attacks [3,4]. Consequently, these challenges pose significant constraints on the blockchain
system’s integrity, reliability, and overall trustworthiness.

The blockchain architecture comprises multiple layers, where each layer is susceptible
to specific types of anomalies [5]. The data layer is vulnerable to double-spending and
market manipulation anomalies. The network layer is vulnerable to user anomalies, i.e.,
51%, and Sybil attacks. Likewise, the incentive layer is prone to risks such as selfish mining
and gas price manipulation. Finally, the contract layer is vulnerable to malicious smart
contracts. In this context, detecting anomalous transactions is of paramount importance to
mitigate the potential risks in blockchain systems. Therefore, the situation necessitates cross-
layer and cross-anomaly detection strategies to ensure the overall integrity and security of
the blockchain.

Several AI/ML techniques, including supervised learning [3,6-9] and unsupervised
learning [10-13], have been used for anomaly detection in blockchain networks. Addition-
ally, ensemble-learning-based approaches have been employed to develop a more robust
anomaly detection mechanism [14,15]. Nevertheless, anomaly detection in the blockchain
is a nontrivial task due to challenges such as data imbalances, the need for adversarial
resilience, and the lack of explainability of the existing approaches. Data imbalance arises
when the dataset is highly skewed toward the majority class (normal transactions) rather
than the minority class (anomalous transactions). Hence, it hinders the model’s ability
to learn the minority class (anomalous transactions) features and makes it difficult to
train a reliable model. The data imbalance problem is alleviated using sampling and
cost-sensitive learning techniques. Sampling methods adjust the distribution of classes,
either replicating the minority class (oversampling) or reducing the majority class (under-
sampling), which causes overfitting or risks discarding valuable information critical for
accurate detection [16,17]. Cost-sensitive learning places higher penalties on the model for
misclassifying the minority class and hence encourages the model to pay more attention to
the rare class (anomalous instances) [18] without overfitting or loss of valuable information.
These approaches enhance the model’s performance in detecting anomalies. However,
existing machine learning methods are prone to adversarial attacks, where even small mali-
cious perturbations can deceive the model [19]. Therefore, in the context of the blockchain,
adversarial resilience is imperative to make models robust against deceitful transactions
while maintaining high detection accuracy [20].

Notwithstanding the advancements in machine learning techniques for anomaly
detection, a crucial facet is the confidence in black-box models and how to create trust
in real-world scenarios. Explainable Al (XAI) has emerged as an integral component
of ML models to enhance the transparency and interpretability of Al systems [21]. XAI
plays an important role in situations where transparency and interpretability are required,
such as anomaly detection in blockchain systems. The Shapley Additive Explanations
(SHAP) is the most common method of XAI, which was utilized in this study to obtain
information about the feature contribution in model prediction. The utilization of an
XALI in blockchain anomaly detection enhances the interpretability, transparency, and
trustworthiness of detection models. It also improves the reliability of a decentralized
blockchain environment [22].

This study proposes ARCADE, which provides an analogy of a secure and structured
Al framework or model for blockchain anomaly detection. ARCADE is a novel approach
that utilizes optimized cost-sensitive stacking ensemble learning techniques, adversarial
resilience, and explainable Al method to address the challenges facing anomaly detection
in blockchain systems. The cost-sensitive learning method is used to deal with the class
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imbalance issue that is inherent in the blockchain anomaly dataset. A genetic algorithm [23]
is used to optimize the class weights, which enables the model to be more accurate in de-
tecting the minority class (anomalous transactions). Tree-based stacking ensemble learning
is used to combine multiple base learners with a meta-learner to boost anomaly detection
performance. The tree-based stacking ensemble learning with newly extracted features
strengthens the model against malicious perturbations. An XAI technique, SHAP analysis,
is applied to validate the ARCADE model’s predictions by obtaining information about the
feature contribution in the decision. This study evaluated the proposed method using the
Ethereum network transactions dataset. To validate the effectiveness of a proposed method
in terms of anomaly detection accuracy, adversarial resilience, and explainability, extensive
experiments were performed. The main contributions of this study can be summarized
as follows:

¢  Handling imbalanced data: we introduce genetic-algorithm-based cost-sensitive stack-
ing ensemble learning to address the data imbalance problem in blockchain datasets,
improving the detection of minority-class anomalies.

¢  Cross-layer and cross-anomaly detection: we detect both transaction- and user-level
anomalies across the data layer and network layer of blockchain architecture.

*  Adpversarial resilience: we develop a model resilient to adversarial attacks, enhancing
blockchain anomaly detection by defending against intentional input data manipulations.

*  Explainable Al integration: we use SHAP analysis to explain the model predictions,
offering transparent insights into the features influencing decision making and en-
hancing trustworthiness.

¢  Comprehensive evaluation: we exhibit the efficiency of the proposed approach
through extensive experiments on the Ethereum network transaction dataset.

This paper is composed as follows: Section 2 reviews existing ensemble-based anomaly
detection methods, highlighting their strengths and limitations. Section 3 describes the
proposed methodology. Section 4 presents an evaluation of the proposed model, discussing
its results and performance metrics. In Section 5, a comparative analysis is presented.
Section 6 outlines ARCADE interpretability using explainable Al Section 7 concludes this
paper, summarizing the findings. Finally, Section 8 suggests directions for future scope and
extensions. A list of the acronyms used in this paper and their descriptions is presented in
Table 1.

Table 1. List of acronyms and descriptions.

Acronym Description
Al Artificial Intelligence
XAI Explainable Artificial Intelligence, Explainable Al
CAGR Compound Annual Growth Rate
ARCADE Adversarially Robust Cost-Sensitive Anomaly Detection
ML Machine Learning
SHAP Shapley Additive Explanations
DT Decision Tree
RF Random Forest
ETs Extra Trees
GA Genetic Algorithm

SES Sequential Forward Selection
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Table 1. Cont.

Acronym Description
IoT Internet of Things
SMOTE Synthetic Minority Oversampling Technique
ADASYN Adaptive Synthetic Sampling
RUS Random Undersampling
CNN Convolutional Neural Network
LST™M Long Short-Term Memory
Bi-LSTM Bidirectional Long Short-Term Memory
AUC Area Under the Curve
ROC Receiver Operating Characteristic

2. Literature Review

Recent studies have explored several techniques to detect anomalies in blockchain
networks. This literature review delves into state-of-the-art ensemble-based anomaly
detection methods for blockchain, examining the strengths and limitations of the existing
methods. An efficient blockchain addresses classification [24] through a cascading ensemble
learning approach with bitcoin transaction analysis and user behavior classification using
machine learning techniques for deanonymization and user-type identification. However,
the method has issues like data scarcity, bitcoin users’ partial anonymity, and limited focus
on specific anomalous behaviors, potentially reducing generalizability. This model lacks
cross-layer detection capabilities, model interpretability, and adversarial resilience.

Another method, the BCEAD bagging ensemble-based method by X. Yang et al. [25],
focuses on improving wireless sensor network security using a blockchain-based ensemble
anomaly detection system. It integrates the blockchain with the isolation forest algorithm
for distributed anomaly detection, ensuring trust and resistance to internal attacks. It
achieves 94-96% accuracy and reduces storage overhead. However, the system lacks cross-
layer detection capabilities and does not address interpretability and adversarial resilience.
Further, EnLFADE [26] addresses the detection of fraudulent accounts on the Ethereum
blockchain using ensemble learning techniques. It balances the dataset with SMOTE, selects
key features using correlation analysis, and compares individual and ensemble classifiers,
achieving 99.2% accuracy. However, limitations persist, including reliance of SMOTE for
data balancing, which can introduce synthetic data bias as well as the lack of cross-layer
detection capabilities, model interpretability, and adversarial resilience.

R. Saxena et al. [27] classified bitcoin transactions as normal and anomalous using
ensemble learning. They used a dataset of 4 million transactions and achieved 98.45%
accuracy through models like XGBoost and random forest, with hyperparameter tuning
and class balancing performed using SMOTE. However, limitations arise due to the depen-
dency on SMOTE, which can introduce synthetic data bias and model complexity as well
as lacks cross-layer detection capabilities, model interpretability, and adversarial resilience.
S. Hisham et al. [28] proposed anomaly detection in smart contracts based on optimal rele-
vance hybrid feature analysis in the Ethereum blockchain, focusing on detecting anomalies
in Ethereum smart contracts using a hybrid feature approach. It combines opcode, ABI
code, and transaction data, reducing feature size with the SULOV and MRMR methods.
The proposed ensemble model achieves 92.99% accuracy. However, the method faces
limitations such as reliance on small datasets. Additionally, the model lacks cross-layer
detection capabilities, interpretability, and resilience against adversarial attacks.

The boosting ensemble approach by Q. Umer et al. [29] detects fraud within cryptocur-
rency ecosystems by combining CNN and LSTM models to handle sequential and structural
data. The model achieves an accuracy of 96.4%. However, it faces several limitations, in-
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cluding data scarcity and inefficient data-balancing techniques. The lack of cross-layer
detection capabilities and interpretability methods also reduces its generalizability and
transparency. Further, the authors did not consider model adversarial resilience, making it
vulnerable to intentional data perturbations. In another paper, C. Jatoth et al. [30] classified
risky and non-risky blockchain blocks. The authors used correlation-based feature selection
and combined classifiers through boosting and stacking. The authors claimed a 2-3%
improvement in accuracy and a 7-8% increase in F1 score. This method lacks cross-layer
detection capabilities, is not resilient to adversarial attacks, and is not interpretable.

N. Nayyer et al. [31] detects anomalous bitcoin transactions using stacking-based
ensemble model. The model achieved 97% accuracy. The imbalanced bitcoin heist ran-
somware dataset was used in this study, and ADASYN-TL resampling technique was
used to deal with the class imbalance problem. They also utilized the random search and
Bayesian optimization methods to tune the hyperparameters of the model. However, their
method has several limitations, such as dependency on data-balancing techniques, which
may introduce synthetic data bias. This model also lacks cross-layer detection capabilities,
resilience against adversarial attacks, and interpretability. A. Q. Md et al. [32] proposed
fraud detection in Ethereum transactions using a stacking-based ensemble model. In
their ensemble model, they combined multinomial naive Bayes and random forest as base
learners with logistic regression as the meta-learner. Their proposed model achieved an
accuracy of 97.18% and an F1 score of 97.02%. However, their proposed method is not
interpretable and not resilient to adversarial attacks. Their method also lacks cross-layer
detection capabilities.

A study [33] proposed a method of analyzing fraud detection in the Ethereum
blockchain using machine learning and ensemble methods. The proposed hard voting
ensemble model achieved 99% accuracy. The study also integrated XAI to enhance trans-
parency and trust in the detection process. However, the method is limited by dependency
on dataset quality and algorithm-specific constraints. Additionally, the model lacks cross-
layer detection capabilities and adversarial resilience. AHEAD [20] proposed an ensemble
learning model with stratified random sampling to enhance resilience against adversarial
attacks. They used hybrid feature selection and ADASYN for data balancing. However, the
study addressed only low-intensity adversarial attacks and did not explain the model. In
another study, R. O. Ogundokun et al. [34] proposed a deep-learning-based framework to
detect phishing attacks in Ethereum blockchain transactions. The authors use dLSTM, Bi-
LSTM, and CNN-LSTM models combined through ensemble voting techniques. However,
it has high computational complexity, which restricts its scalability. Additionally, the model
lacks cross-layer detection capabilities and does not incorporate adversarial resilience or in-
terpretability methods, limiting its robustness and transparency in real-world applications.
A summary of the existing work is presented in Table 2.

It has been observed from the literature review that most of the research work carried
out focuses on a single layer and single anomaly detection, limiting the scope of anomaly
detection. Furthermore, most models have relied on traditional data-balancing techniques
like SMOTE and ADASYN, which can lead to overfitting or loss of important informa-
tion [16,17,20,26,32,33]. Furthermore, the absence of XAI techniques in many existing
approaches reduces transparency and trust in decision-making processes, which is critical
for real-world adoption [21,22]. Lastly, the existing machine learning models for anomaly
detection remain susceptible to adversarial attacks, which can exploit their vulnerabilities
and undermine the overall security and integrity of blockchain networks [24,25,28,29,34].
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Table 2. Summary of existing works on anomaly detection using ensemble methods.
Existing Work Year Dataset Elclsemble Cross- XAI Iml;;}::: ced Featu.re Adversarial
ethod Anomaly Handli Selection Defense
andling
KDD . Feature
BCEAD [25] 2021 CUP'99 Bagging X X X extraction X
Ethereum
Detection of Fraudulent 2024 Fraud Voting X v SMROI:T[SE & Manual X
Transactions with XAI [33] Detection
Ethereum Boosting + Pearson
Ensemble Learning-Based 2023 Fraud Bagoi & X X X lati X
Anomalous Transaction Detection 488G correlation
Detection [29]
Blockchair, Boosting +
Blockchain ~ Addresses 2023 WalletEx- Ba ing X X X X X
Classification [24] plorer 881Ng
Improved Classification of 2022 ]}:E)lhptlc Stack1r.1g * X X X Correlation- X
Blockchain Transactions ataset Boosting based
[30]
L ADASYN-
Bitcoin TL +
Fraud Detection in Bitcoin 2023 Heist Ran- Stacking X v SMOTE- Manual X
Transactions [31] somware ENN
. Ethereum . Correlation-
Fraud in Ethereum Trans- 2023 (Kaggle) Stacking X X SMOTE based X
actions Using Stacking asge ase
[32]
- . . Ethereum .
Phishing Detection in 2023 Darkli Voting X X X Manual X
. . arklist
Blockchain Transactions
[34]
Ethereum Bagging + Pearson
EnLFADE [26] 2023 Dataset Boosting x x SMOTE Correlation x
Blockchair,
Blockchain Transaction 2024 WalletEx- Bagging X X SMOTE Manual X
Deanonymization [27] plorer
Ahead [20] 2024 Ethereum Voting v X ADASYN Hybrid Partial
Ponzi & Bageine +
Anomaly Detection in 2023 Non-Ponzi Bogz)gs tiI% X X X Manual X
Smart Contracts [28] (Etherscan) &
Cost- Sequential
Proposed ARCADE 2025 Ethereum Stacking v v Sensitive Forward v
Learning Selection

3. Proposed Methodology

This section presents the ARCADE methodology for anomaly detection in blockchain

networks. The ARCADE methodology consists of three main components: (i) the pre-

processing part introduces newly engineered features that enhance the performance of

the model against both normal inputs and adversarially perturbed inputs; (ii) a novel

ensemble approach that combines cost-sensitive learning with stacking and uses a genetic

algorithm to optimize class weights for base learners that handle imbalanced dataset, fur-

ther enhancing the model’s performance; and, (iii) finally, by integrating XAI, ARCADE

provides transparent and interpretable model predictions, giving actionable insights to

domain experts for the decision-making process.

subsections.

The ARCADE methodology is presented in Figure 1 and detailed in the following
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Figure 1. Proposed ARCADE methodology.

3.1. Dataset Preprocessing

The dataset used in our study was derived from the Ethereum network transaction [35]
and consists of 71,250 transactions. Each transaction has 18 features. Among the transac-
tions, 57,000 are normal, and 14,250 are anomalous. The dataset has transactional data that
helps in detecting anomalies at the data layer and user-related data that helps in detecting
anomalies at the network layer. The description of the dataset is presented in Table 3.

Table 3. Dataset features’ description.

S. No. Feature Name Description
1 Hash Transaction hash
2 Nonce Sender’s transaction count
3 Transaction_index Transaction’s index in block
4 From_address Sender’s address
5 To_address Receiver’s address
6 Value Transaction value in Wei
7 Gas Gas used by transaction
8 Gas_price Gas price set by sender
9 Input Transaction data payload
10 Receipt_cumulative_gas_used Total gas used in block
11 Receipt_gas_used Gas used by transaction
12 Block_timestamp Block’s timestamp
13 Block_number Block’s number
14 Block_hash Block’s hash
15 From_scam Flag if sender is anomalous
16 To_scam Flag if receiver is anomalous
17 From_category Sender anomaly type
18 To_category Receiver anomaly type
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3.1.1. Data Cleaning

The dataset contains missing values in the ‘from_category” and ‘to_category’ columns.
These columns were too noisy and redundant for our model’s objectives. We excluded
them to maintain data integrity and minimize potential bias.

3.1.2. Feature Engineering

Firstly, data aggregation was performed strategically to enable the model to perform
cross-layer and cross-anomaly detection. We introduced a new target attribute class derived
from the ‘to_scam’ and ‘from_scam’ columns. This splits transactions into three classes:

Class 0: Normal transaction with a normal user.
Class 1: Anomalous transaction with an anomalous sender.
Class 2: Anomalous transaction with an anomalous receiver.

Class 0 represents a normal transaction with the normal user, while 1 and 2 represent
an anomalous transaction with an anomalous sender and an anomalous transaction with
an anomalous receiver, respectively. The ‘from_scam” and ‘to_scam’ columns were ex-
cluded because their information was encapsulated in the derived target attribute, making
them redundant.

Further temporal feature decomposition was performed. The ‘block_timestamp’ fea-
ture was decomposed into more detailed components: year, month, day, hour, minute, and
second. These time-based features help identify potential temporal anomalies in transaction
patterns and reveal recurring or abnormal transaction behaviors across different periods.

Lastly, we engineered several new features to enhance model accuracy further and
strengthen resilience against adversarial attacks. First, we introduced transaction time
difference features and the gas_to_value_ratio feature. Finally, we developed unique
counterparty features to identify abnormal transaction patterns by analyzing repeated or
large-scale interactions between specific blockchain addresses. The details of the newly
engineered features are provided below:

i.  Time Since Last Sender Transaction: This measures the time in hours since the last
transaction for each sender, calculated using the difference between consecutive
transaction timestamps for each sender, as shown in Equation (1). This feature helps
to capture activity frequency and detect unusually long or short intervals that may
indicate anomalous behavior.

Tcurrent — Tprevious

3600 @

time_since_last_sender_transaction =

ii.  Time Since Last Receiver Transaction: This feature captures the time since the last
transaction for receiver, as shown in Equation (2).

Teurrent — Tprevious

3600

time_since_last_receiver_transaction = (2)

iii. Gas to Value Ratio: It represents the ratio of gas used to the transaction value, as
shown in Equation (3). This helps in detecting anomalies in transactions where the
gas used is disproportionate to the transaction value. The formula applied is

gas
value

gas_to_value_ratio = 3)
iv.  Unique to Counterparties: This feature represents the cumulative count of distinct
‘to_address’ values that each sender ‘from_address” has interacted with over time, as
shown in Equation (4). This feature captures the diversity of recipients that a sender
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interacts with, and a sudden change in its pattern may indicate anomalous behavior,
such as a compromised account attempting multiple fraudulent transactions.

unique_to_counterparties = count(unique(to_address)) 4)

v.  Unique from Counterparties: similarly, this feature captures the cumulative count of
distinct ‘from_address’ values that each receiver ‘to_address” has engaged with.

unique_from_counterparties = count(unique(from_address)) (5)

3.1.3. Encoding and Scaling

To address categorical features, i.e., ‘from_address’, ‘to_address’, and ‘input’, we used
label encoding to convert string categories into numerical values. Further, normalization
was performed using a standard scaler on all numerical features to ensure the features
contribute to the anomaly detection model.

3.1.4. Feature Selection

We employed Sequential Forward Selection (SFS) for feature selection, an iterative
method that begins with no features and incrementally adds the most significant ones
based on their contribution to model performance. Feature importance was evaluated using
an extra tree classifier. The dataset was split into 70% training and 30% testing sets. SFS
identified an optimal combination of 12 features, validated through 5-fold cross-validation
to ensure robustness and prevent overfitting, achieving an accuracy of 99.21%. The se-
lected features included nonce, to_address, gas, gas_price, input, receipt_gas_used, month,
day, hours_since_last_sender_transaction, gas_value_ratio, unique_to_counterparties, and
unique_from_counterparties.

3.2. Stacking Ensemble with Cost-Sensitive Learning and Optimization Using Genetic Algorithm

We integrated stacking ensemble learning with cost-sensitive learning, optimizing class
weights using a genetic algorithm (GA) to address class imbalance by assigning different
misclassification costs. The stacking ensemble includes three base learners: decision tree
(DT), random forest (RF), and extra trees (ET). Classifiers were selected through extensive
experiments to obtain optimal performance. The meta-learner is an extra tree classifier,
chosen for its ability to handle complex data distributions and mitigate overfitting. Let
h1(x), ha(x), h3(x) represent the base learners, and let imeta (¥) represent the meta-learner.
The stacking model can be represented by Equation (6):

J = hmeta(h1(x), ha2(x), h3(x)) (6)

where hmeta takes the outputs of the base learners as input and produces the final prediction
7. Next, we explain how cost-sensitive learning and the genetic algorithm are applied in
our approach.

3.2.1. Cost-Sensitive Learning in Handling Class-Imbalanced Data

In cost-sensitive learning, different penalties (costs) are assigned for misclassifying
instances from different classes, ensuring the model prioritizes correctly classifying mi-
nority class instances (anomalies). For our problem, we define class weights wy, w1, wy for
classes 0 (normal transactions), 1 (anomalous transactions and sender), and 2 (anomalous
transactions and receiver), respectively. We aim to maximize the following cost-sensitive
loss function:

L(y,9) =Y wy, - Uy, 9i) )
=
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where y; is the true class label for the i-th sample, §; is the predicted class label, wy, is the
cost assigned to class y;, and ¢(y;, ;) represents the individual cross-entropy loss function.
For each classifier in the stacking model, class weights are assigned using the following
class weight vectors:

CWpr=1{0:1,1: wgDT),Z : wéDn};

C Wer = {0:1,1:0{®,2: w{fy;

2
C_Wgr={0:1,1: wEET),z : wéET)}_

3.2.2. Genetic Algorithm for Optimizing Class Weights

Further, we use a genetic algorithm (GA) to optimize class weights for cost-sensitive
learning. Based on the principles of natural selection, the GA evolves candidate solutions
(individuals) over generations to maximize the weighted F1 score of the stacking ensemble
model. The detailed process is outlined below:

i.  Representation of individuals: Each individual (I) in the GA represents a candidate
solution, defined as a set of class weights for the stacking ensemble model. Specifically,
each individual is represented as a vector of six real-valued numbers, as presented

in (8):
DT DT RF RF ET ET
= o), ), o, ), o, ) ®
where w§DT) and wgDT) are the class weights for the decision tree, while w%RF), ngF)

and ngT), wéET) represent the class weights for the random forest and extra tree

classifier, respectively.
ii.  Fitness function evaluates the performance of each individual by computing the
weighted F1 score, weighted according to class frequencies as in (9):

Zce{0,1,2} we - F1c
Zce{o,l,z} We

F 1weighted = ©)
where F1, is the F1 score for class ¢, and w, is the corresponding class weight.

iii. Genetic algorithm operations: The genetic algorithm evolves a population using
three operations: selection, performed via tournament selection to choose the fittest
individuals; crossover, which combines parent class weights using blend crossover
with a blending parameter «; and mutation, introducing diversity by adding Gaussian
perturbations with mean 0 and standard deviation ¢ to the class weights.

iv.  Early stopping and optimization results: the genetic algorithm terminates if the
weighted F1 score shows no significant improvement over five consecutive genera-
tions or reaches a maximum of 30 generations. The optimal class weights obtained are

C_ Wpr={0:1,1:-10.2719,2 : 11.0265},
C Wrr=1{0:1,1:82.1375,2 : 46.9380},
C_Wgr =1{0:1,1:14.2535,2 : 88.0345}

3.3. Adversarial Robustness Evaluation Methodology

To evaluate the adversarial robustness of the anomaly detection model in blockchain
systems, we analyzed the impact of varying the input feature perturbations, simulating
adversarial attacks. These perturbations, applied as multiplicative factors to a random
subset of 1 to 7 features, tested the model’s sensitivity to minor and significant changes.
Perturbation ranges and their characteristics are presented in Table 4.
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Table 4. Perturbation ranges and their characteristics.
Perturbation Change Perturbation Adversarial
S. No. Range Percentage Level Attack

8 (Max) Strength
1 (0.95, 1.05) £5% Mild Low
2 (0.85,1.15) +15% Moderate Moderate
3 (0.75,1.25) +25% Moderate Moderate
4 (0.65,1.35) £35% Strong High
5 (0.55, 1.45) +45% Strong High
6 (0.45,1.55) £55% Very Strong Very High
7 (0.35,1.65) +65% Very Strong Very High
8 (0.25,1.75) +75% Extreme Extreme

The perturbed test data were evaluated using the trained stacking model, with per-
formance measured by accuracy, precision, recall, and F1 score. We identified thresholds
where the model’s robustness degraded by analyzing performance across different pertur-
bation ranges. These findings highlight the importance of designing models with strong
adversarial resilience for effective anomaly detection in blockchain applications.

3.4. Explainable Al for Model Interpretability

To ensure transparency and interpretability in the proposed anomaly detection frame-
work ARCADE, we integrated the XAI technique SHAP to explain the predictions made by
the stacking ensemble model. After training the stacking ensemble on the blockchain trans-
action dataset, we analyzed both global and local model behaviors. Global interpretability
was achieved through SHAP summary plots, which rank features based on their average
impact on predictions, highlighting the most influential factors for anomaly detection.
Local interpretability is provided through SHAP force plots, which offer detailed insights
into individual predictions by visualizing the feature’s positive and negative contributions.
They ensure the interpretability of a model and make the model more reliable for real-time
deployment in decentralized environments.

4. Evaluation of the ARCADE Model

This study evaluated the proposed ARCADE model using the two key areas. First,
this study evaluated the model’s ability for cross-layer and cross-anomaly detection to
detect transactional and user anomalies at the data and network layers. Secondly, this study
evaluated the model’s resilience against adversarial attacks. The performance of the model
was evaluated using the following metrics:

*  Accuracy: measures the overall correctness of the model.

¢  Precision: evaluates the proportion of correctly identified anomalies out of all pre-
dicted anomalies.

*  Recall: measures the model’s ability to detect all actual anomalies.

*  F1 Score: the harmonic mean of precision and recall, providing a balanced measure.

*  AUC: quantifies the model’s ability to distinguish among different classes.

*  ROC: presents the trade-off between the true and false positive rates, which shows the
model’s classification performance across different decision boundaries.

4.1. Cross-Layer and Cross-Anomaly Detection Evaluation

The model used a train—test split method with 30% of the data were used for testing,
while the remaining 70% were used for training. The experimental result showed that the
model achieved near 99.65% accuracy. The proposed method achieved high performance
by utilizing advanced preprocessing techniques, feature engineering, sequential forward
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feature selection, and cost-sensitive learning. These steps enhanced the prediction accuracy
of the learning model.

The confusion matrix, shown in Figure 2, demonstrates the effectiveness of the model
in accurately detecting anomalies while minimizing false positives and negatives. Table 5
presents the class-wise AUC score, precision, recall, and F1 score, providing a detailed eval-
uation of the model’s performance for each class. This analysis underscores the robustness
and reliability of ARCADE in detecting anomalies across different classes.

16000

2 14 14000
12000
1%] |
@ 10000
o)
8 a- 12 766 10
) - 8000
2
l_
- 6000
- 4000
~ 34 2 3451
-2000
0 1 2

Predicted Labels

Figure 2. Confusion matrix for cross-layer and cross-anomaly detection model.

Table 5. ARCADE class-wise AUC, precision, recall, and F1 score.

Class AUC Precision (%) Recall (%) F1 Score (%)
0 0.998 99.73 99.91 99.82
1 0.997 99.48 97.21 98.33
2 0.997 99.31 98.97 99.14

Figure 3 presents the ROC curve for ARCADE across three classes. The AUC values
for all classes are 1.00, indicating optimal classification performance. The separation from
the random guessing baseline (dashed line) indicates ARCADE’s ability to distinguish
between classes effectively. The cost-sensitive learning strategy with a genetic algorithm in
ARCADE ensured that the classifier was well trained to the imbalanced nature of the dataset,
indicating its effectiveness in blockchain anomaly detection, making it a reliable tool for
fraud detection, security monitoring, and risk assessment in decentralized environments.

Furthermore, Figure 4 presents a cost-annotated confusion matrix where the values in
each cell represent the penalty for misclassification rather than the raw counts. For instance,
misclassifying an anomalous receiver as normal incurs a penalty of 170 (the highest cost),
the most critical. During training, ARCADE prioritizes minimizing these critical errors by
optimizing class weights through genetic algorithms, ensuring that the model learns to
avoid costly misclassifications. As a result, the cost-sensitive approach enhances ARCADE'’s
ability to handle imbalanced data and detect high-risk anomalies effectively.
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Figure 3. Multi-class ROC curve For ARCADE.
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Figure 4. Cost-annotated confusion matrix.

4.2. Adversarial Robustness Evaluation

We assessed the adversarial robustness of our blockchain anomaly detection model by
applying controlled perturbations to the input features at varying levels of attack intensity.
These perturbations, implemented as multiplicative factors, ranged from minimal noise
(0.95-1.05) to severe manipulations (0.25-1.75). Additionally, the number of modified
features was progressively increased from one to seven, simulating different levels of
adversarial attacks to evaluate the model’s resilience.
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The results demonstrate the model’s strong resilience to adversarial attacks, with
performance evaluated across varying attack intensities, as detailed in Table 4. For low-
intensity attacks, accuracy remains between 99.38% (one feature modified) to 97.24%
(seven features modified), effectively handling minor perturbations. For moderate-intensity
attacks, accuracy ranges from 98.61% to 91.04%. Under high-intensity attacks, accuracy
drops from 97.52% to 83.80%, and for very high-intensity attacks, it ranges from 97.04%
to 80.32%.

As the intensity of the attack and the number of modified features increase, the model
remains robust, particularly in detecting anomalies. Even under the extreme perturbation
range of 0.25-1.75 and with seven features modified, the model maintains an accuracy of
78.02% and a stable recall of 80.35%. This shows its strong ability to identify anomalies in
challenging adversarial scenarios.

The model’s adversarial robustness comes from newly engineered features for de-
tecting subtle patterns along a stacking ensemble framework that enhances performance.
Table 6 presents the significant improvement in adversarial resilience with engineered
features in ARCADE. This demonstrates the effectiveness of the engineered features in
improving the robustness of the model against adversarial attacks, making a more reliable
anomaly detection system.

Table 6. Adversarial resilience performance comparison: impact without vs. with engineered features
(ARCADE).

One Feature Modified Four Features Modified Seven Features Modified
Without Wlth Without Wlth Without Wlth
Noise Range Engineered Engineered Engineered Engineered Engineered Engineered
8 & Features & Features 8 Features
Features Features Features
(ARCADE) (ARCADE) (ARCADE)
(0.95, 1.05) 98.55 99.38 96.69 98.00 94.56 96.75
(0.85,1.15) 96.89 98.43 89.40 94.74 81.11 91.04
(0.75,1.25) 95.66 97.87 84.88 92.57 74.01 86.85
(0.65,1.35) 95.01 97.52 82.03 90.76 70.02 84.14
(0.55, 1.45) 94.55 97.38 81.02 89.91 67.22 82.20
(0.45, 1.55) 94.36 97.12 79.27 88.70 64.77 81.16
(0.35, 1.65) 93.89 96.93 77.71 88.00 63.35 79.51
(0.25,1.75) 92.33 96.65 77.10 87.49 62.52 79.00

Note: all values in the table represent accuracy percentages (%).

The heatmaps of accuracy in Figure 5, precision in Figure 6, recall in Figure 7, and
F1 score in Figure 8 present the detailed performance trends across feature ranges and
perturbation levels. Overall, the results show that the model is highly robust to low- and
moderate-intensity adversarial attacks and remains effective under extreme conditions,
highlighting its reliability for real-world applications involving adversarial scenarios.
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Figure 8. F1 Score: impact of feature range and number of features modified.

5. Comparison of ARCADE Model with Existing Approaches

In this section, we first compare ARCADE with prevalent ensemble learning tech-
niques to evaluate its overall performance. Then, we compare the adversarial robustness of
ARCADE with that of ML models.

5.1. Comparing ARCADE with Other Ensemble Learning Techniques

The proposed ARCADE model outperforms existing ensemble learning approaches,
achieving 99.65% accuracy. This enhanced performance is driven by several key innovations.
Firstly, ARCADE addresses imbalanced data using cost-sensitive learning, optimized with
a genetic algorithm that improves minority-class detection without overfitting and bias due
to resampling methods that create synthetic data. Secondly, advanced feature engineering
includes the temporal decomposition of the transaction timestamps and the creation of
new insightful features, such as transaction time differences and unique counterparty
features, that improve the model’s ability to detect complex anomaly patterns even under
adversarial perturbations, a critical requirement for real-world blockchain security.

For instance, AHEAD [20] achieves 98.85% accuracy, falling short by 0.80%. AHEAD
is not interpreted using XAI techniques and relies on ADASYN for data balancing, which
introduces synthetic data bias. Furthermore, the improved classification of transactions [30],
which employs stacking, achieves an accuracy of 98%, falling short by 1.65%. Similarly, the
accuracy in detecting fraud in Ethereum transactions [32] is 97.18%, which is 2.47% lower
than ARCADE. Both of these techniques are not adversarial-resilient, dependent on SMOTE
for imbalanced data handling, and are not explainable. Lastly, the EnLFADE [26] model,
which uses bagging, achieves 99.2%; ARCADE surpasses it by 0.45%. EnLFADE also lacks
adversarial resilience and model interpretability. A detailed comparison of ARCADE with
existing state-of-the-art ensemble learning techniques is presented in Table 7.

ARCADE's performance further stems from its stacking ensemble framework, com-
bining decision tree, random forest, and extra tree classifiers as base learners with extra tree
as a meta-learner, and improves accuracy by leveraging diverse perspectives. Lastly, the
integration of XAl techniques further enhances transparency and interpretability, providing
actionable insights to domain users for an actionable decision-making process. This compar-
ison validates ARCADE as a state-of-the-art advancement in blockchain anomaly detection.
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Table 7. Comparison of ARCADE with existing methods.
. . . Imbalanced
Method Acc(tlracy Precolslon Recall (%) F1 Sncore Adve.rs'arlal- XAI Data
(%) (%) (%) Resilient .
Handling
AIEIZ%?D 98.85 98.85 98.85 98.85 Partial X ADASYN
EnLS?]DE 99.20 99.00 99.00 99.00 x « SMOTE
Fraud in
Ethereum 97.18 97.03 97.04 97.02 x X SMOTE
Transac-
tions [32]
Improved
Classifica-
tion of 98.00 98.00 93.00 95.00 X X X
Transac-
tions [30]
Cost-
A(Ro(iﬁgE 99.65 99.65 99.65 99.65 v v Sensitive
Learning

5.2. Adversarial Robustness Analysis: Comparison with ML Models

ARCADE demonstrates resilience against adversarial attacks compared to traditional
models. Adversarial robustness testing involved applying controlled perturbations across
varying intensity ranges (e.g., 0.95-1.05 to 0.25-1.75) and progressively modifying up to
seven features in the test dataset. We present three figures: Figure 9 illustrates a performance
comparison for mild to extreme adversarial attack intensity ranges with one feature altered;
Figure 10 shows the performance comparison with four features altered. Finally, Figure 11
highlights the performance comparison with seven features altered.
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Figure 9. Performance comparison across range of adversarial attacks with one feature altered.
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Figure 10. Performance comparison across range of adversarial attacks with four features altered.
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Figure 11. Performance comparison across range of adversarial attacks with seven features altered.

Figures 9-11 reveal interesting performance trends under varying adversarial noise
levels and numbers of altered features. Figure 9 shows that ARCADE demonstrates superior
performance in the low-, medium-, and high-noise ranges when only one feature is altered,
while random forest comes second and maintains relatively comparable performance to
ARCADE in the medium-noise ranges of (0.75, 1.25), (0.65, 1.35), and (0.55, 1.45). This is
due to its ensemble nature. Xgboost performs relatively worse than ARCADE and random
forest but is stable in all noise ranges, followed by decision tree. KNN and Adaboost have
low performance across all noise ranges. Figure 10 shows that ARCADE outperforms
the other methods in all noise ranges when four features are altered. Random forest and
Xgboot have the next-best performance. Decision tree performs well in the low-noise range,
but performance declines as noise ranges increase. Adaboost has stable performance across
all noise ranges, and KNN comes last. Figure 11 shows that ARCADE also outperforms
the other methods across the entire noise range when seven features are altered, followed
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by random forest and Xgboost. The next best-performing Adaboost model has stable
performance across all noise ranges, while the KNN and decision tree have the same
performance at low noise but decrease as the noise range increases.

The comparison performed in this section shows that traditional algorithms, such as
KNN and decision tree are not resilient to adversarial attacks and that ensemble-natured
algorithms like random forest perform better than traditional algorithms. ARCADE out-
performs the others by integrating cost-sensitive learning with a genetic algorithm for
optimized weights, new engineered features, and an advanced ensemble strategy. This
highlights the effectiveness of ARCADE in handling adversarial noise, ensuring reliable
anomaly detection in challenging scenarios.

6. ARCADE Model Interpretability Using Explainable Al

This section describes the global and local interpretability of the ARCADE model
using the XAI SHAP technique.

6.1. Global Interpretability of ARCADE Model

The SHAP summary plot provides a detailed ranking of features based on their aver-
age impact on the model’s predictions, offering valuable insights into the factors driving
anomaly detection across different classes. For Class 0 (normal transactions), the top five fea-
tures include ‘month’, ‘unique_from_counterparties’, ‘nonce’, “‘unique_to_counterparties’,
and ‘receipt_gas_used’. These features highlight the importance of temporal patterns
and transactional behaviors, such as the diversity of counterparties and gas usage, in
distinguishing normal blockchain activity.

For Class 1 (anomalous sender transactions), key features include ‘nonce’, ‘unique_to
_counterparties’, ‘unique_from_counterparties’, and ‘hours_since_last_sender_transaction’.
This indicates that irregularities in sender activity, such as unusually frequent or infre-
quent transactions and interactions with diverse counterparties, are critical indicators
of anomalies.

For Class 2 (anomalous receiver transactions), the most significant features are ‘month’,
‘unique_from_counterparties’, ‘nonce’, ‘unique_to _counterparties’, ‘day’, and ‘to_address’.
These features emphasize the role of temporal patterns, receiver-specific behaviors, and
address-level interactions in identifying suspicious activity.

The insights provided by these rankings, visualized in Figures 12-14, are highly ac-
tionable for various stakeholders in blockchain-integrated domains. These results provide
valuable insights for designing more robust anomaly detection systems by emphasizing im-
pactful features like transaction diversity and temporal patterns. The findings can support
the development of advanced fraud detection tools tailored to specific blockchain layers,
enabling the effective monitoring of sender and receiver behavior to prevent malicious
activities such as double-spending or phishing. Additionally, these insights can be used
for innovative feature engineering techniques and the refinement of existing models to
improve anomaly detection in decentralized systems. They also highlight high-risk behav-
iors, offering a foundation for creating strategies and interventions to mitigate fraud and
enhance trust and security in blockchain networks.
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Figure 12. Global interpretation for Class 0.
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6.2. Local Interpretability of ARCADE Model

We use force plots to present features that influence individual predictions for local
interpretability. The red arrows indicate positive contributions, and the blue arrows show
negative ones. The arrow lengths represent the magnitude of each feature’s impact, and
the final prediction is the sum of the base value and all contributions.

Figure 15 presents the force plot for Class 0 (normal transactions), where the ‘month’
feature significantly reduces the model output, followed by ‘unique_from_counterparties’
and ‘input’. Minor contributions from ‘receipt_gas_used’ and ‘day’ further refine the
prediction. This indicates that temporal patterns and transactional diversity play a critical
role in identifying normal behavior, which can help developers and analysts optimize
blockchain systems for routine operations.
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Figure 15. Local interpretation for Class 0.

Figure 16 presents the force plot for Class 1 (anomalous sender transactions),
showing a balance of positive and negative contributions. Features like ‘nonce” and
‘hours_since_last _sender_transaction’ reduce the output, while ‘unique_to_counterparties’
and ‘unique_from _counterparties’ provide smaller positive contributions, resulting in
a prediction close to 0.00. This indicates the importance of monitoring sender activity
patterns and transactional diversity to detect anomalies, which is particularly useful for
fraud detection and compliance monitoring.
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Figure 16. Local interpretation for Class 1.

Figure 17 highlights the force plot for Class 2 (anomalous receiver transactions), where
positive contributions from ‘to_address’, ‘receipt_gas_used’, ‘unique_to_counterparties’,
and ‘input’ dominate, pushing the prediction to 1.00. The ‘month’ feature offers minimal
opposing influence. These results indicate the significance of receiver-specific behaviors
and gas usage patterns in identifying suspicious transactions, providing valuable insights
for designing targeted anomaly detection mechanisms.
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Figure 17. Local interpretation for Class 2.

These insights are critical for improving blockchain security, enabling stakeholders
to identify and address specific patterns of anomalous behavior. For researchers, this
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interpretability can guide the development of more effective anomaly detection models,
while companies and developers can use these findings to enhance fraud detection systems
and ensure the reliability of blockchain networks.

Furthermore, the XAl results highlight the strong influence of newly engineered fea-
tures, such as “unique_to_counterparties’, ‘unique_from _counterparties’, and ‘hours_since
_last_sender_transaction’, in anomaly detection across all classes. These features help to
capture critical patterns and improve detection accuracy, which show the practical impact
of this research in the detection of anomalies in the blockchain.

7. Conclusions

This study presents an ARCADE, a novel approach to anomaly detection in blockchain,
combining stacking ensemble learning, adversarial resilience, and XAI techniques. This
research adopts a multifaceted strategy to address key challenges in anomaly detection,
including data imbalance, adversarial resilience, model interpretability and cross-layer
and cross-anomaly detection. By employing stacking ensemble architecture combined
with cost-sensitive learning optimized via the genetic algorithm, the ARCADE enhances
the prediction accuracy up to 99.65% in identifying anomalous transactions and users.
Some existing ensemble-based classifiers achieve an accuracy comparable to ARCADE
because of their ensemble nature and dependence on synthetic data resampling techniques
(e.g.,, SMOTE/ADASYN), introducing biases. In addition, they fail against adversarial
attacks. In ARCADE, adversarial training combined with newly engineered features signif-
icantly reinforced the model’s robustness against malicious perturbations. Subsequently,
when experimentally evaluated on the Ethereum network transactions dataset, the model
achieved accuracies of 99.38%, 91.04% and 78% for low-intensity attacks, moderate attacks
and extreme attacks, respectively. In addition, the amalgamation of SHAP analysis plays a
pivotal role in quantifying individual characteristic contributions to model predictions.

8. Future Scope and Extension

ARCADE demonstrated high performance and adversarial resilience in detecting
anomalies using advanced feature engineering, cost-sensitive learning, and explainable AL
Future research may extend ARCADE to multiple blockchain platforms, such as Hyper-
ledger Fabric, Solana, and emerging distributed ledger technologies, to address platform-
specific vulnerabilities and validate generalizability. Additionally, we can utilize tree-based
and statistics-based feature selection methods to select the relevant features from the
data. Traditional deep learning and deep tabular models can also be utilized to enhance
anomaly detection. Advanced adversarial training techniques, including graph-based
neural networks and reinforcement learning, can further enhance the adversarial resilience
of ARCADE. The detection of previously unseen or evolving anomalies remains an open
challenge. To address this, future work may integrate unsupervised or semi-supervised
learning approaches to enhance existing supervised methods. In the blockchain network,
data are transmitted in real time. In the future, we will utilize the continual or lifelong
learning method to learn new data anomalies by fine-tuning the ARCADE model. Finally,
expanding the interpretability of the model through alternative explainable Al techniques,
such as LIME or counterfactual explanation, can also provide deeper insights into decision-
making processes. These directions would enhance the robustness and utility of blockchain
anomaly detection systems in dynamic and real-world scenarios.
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