
Multi-step Attack Modelling and Simulation
(MsAMS) Framework based on Mobile Ambients

Virginia N. L. Franqueira1 and Raul H. C. Lopes2 and Pascal van Eck1

1 University of Twente
Enschede, The Netherlands

{franqueirav,p.a.t.vaneck}@ewi.utwente.nl
2 Brunel University

London, England
raul.lopes@brunel.ac.uk

Abstract. Attackers take advantage of any security breach to penetrate
an organisation perimeter and exploit hosts as stepping stones to reach
valuable assets, deeper in the network. The exploitation of hosts is pos-
sible not only when vulnerabilities in commercial off-the-shelf (COTS)
software components are present, but also e.g. when an attacker acquires
a key (e.g. a password) on one host which allows him to exploit further
hosts on the network. Finding attacks involving the latter case requires
the ability to represent dynamic models.

In this paper we present MsAMS (Multi-step Attack Modelling and Sim-
ulation), an implemented framework, based on Mobile Ambients, to dis-
cover attacks in networks. The idea of ambients fits naturally into this
domain and has the advantage of providing flexibility for modelling. Ad-
ditionally, the concept of mobility allows the simulation of attackers ex-
ploiting opportunities derived either from the exploitation of vulnerable
as well as from the exploitation of non-vulnerable hosts, through the
acquisition of keys.

Keywords: Network Attack, Mobile Ambients, Attack Simulation, Vulnerabil-
ity Assessment, Attack Graph

1 Introduction

One single hole in the network perimeter is enough to allow an attacker to pen-
etrate the network and exploit hosts as stepping stones to reach valuable assets.
Defenders need to tune into the mindset of attackers [1] to track those possible
stepping stones and manage the trade-off between impact of attacks and cost
of countermeasures. This task is rather challenging due to the complexity and
size of current networks, and due to the variety of opportunities and strategies
used by attackers. For example, attackers do not necessarily only take advantage
of vulnerabilities in commercial off-the-shelf (COTS) software components but
can also take advantage of keys (e.g. passwords or private session keys) acquired



dynamically while the simulated attack is taking place. Such keys greatly in-
crease an attacker’s spectrum of possibilities since he gains the ability to exploit
safe, i.e. not vulnerable, hosts as well. However, static models, such as Attack
Graphs [2,3,4,5,6,7,8,9], are unable to represent this dynamic aspect.

We address this issue by proposing MsAMS, a framework for modelling and
simulation of network attacks, the design of which draws heavily on Cardelli’s
work on Mobile Ambients [10,11] and formal biology [12], and on Milner’s work
on bigraphs [13]. In this framework, a network is viewed as a so-called Ambi-
ent containing other ambients, such as subnets, hosts, and firewalls, on a tree
structure. As further explained in the paper, an Ambient defines a hyperedge [14]
which represents the idea that a communication performed over it is seen by each
ambient in that hyperedge, thus no link between sibling hosts (belonging to a
same ambient) is required. Besides, an ambient’s boundary may contain rules
which allow its reaction with other ambients, resulting in changes on the rules
of the ambients involved. After the modelling is complete, MsAMS simulates an
attacker (also an ambient) dynamically finding an attack path allowed by the
modelled ambients and their embedded rules. The consequence of this is that
the graph generated has as many nodes as the number of ambients modelled.
Thus, it is not subject to the problem of state explosion [15].

We see this framework very much as a working tool whose users are security
practitioners, such as network administrators. It allows them to gain knowledge
about their network. It also permits zooming in on some parts of the network
they want to investigate at the level of Access Control Lists, and zooming out to
a more abstract level of network as a whole. MsAMS is flexible enough to allow
the modelling of a network in different ways and with more or less details, at the
discretion of the person using it. MsAMS does not require complex sets of pre-
and postconditions to model the composition of vulnerabilities in consecutive
attack steps, as it happens with other approaches [4,16,17]. Modelling the input
requires (i) the network configuration, (ii) vulnerabilities in COTS present in
the network which can be obtained automatically from vulnerability scanning
tools such as Nessus [18], and (iii) their attributes, which can be obtained from
vulnerability databases such as the NVD [19].

The paper is organised as follows. We provide an overview about network
modelling and simulation of attacks with the MsAMS framework in Sections 4
and 5, respectively. A running example, presented in Section 2, is used to support
the explanations. In Section 6, we introduce the concept of exposure and describe
acquisition of keys, using an insider attack example. An overview of the heuristic
algorithms implemented to find attacks is provided in Section 7, and results are
reported in Section 8. Finally, in Section 9, we conclude and list future work.

2 Running example

We use the network illustrated in Figure 1 from Ingols et al. [2] as the basis for in-
troducing core concepts and to give an overview about modelling and simulation
with MsAMS.



Fig. 1. An example network from [2]

B D E FA C

FW

net

internet

(a) The example network

A

sv_A

OS_admin_A

v_A

port_sv_A

(b) Zoom in host A

Fig. 2. Modelling the example network as Ambients

In this example-network the attacker is located on host A and wants to
reach either host E or F. The firewall only allows traffic from host C or D to
host E. Additionally, all hosts have a single open port with a vulnerable service
running. Each vulnerability is remotely exploitable and allows the attacker to
gain privileged access to the host.

The example network can be represented in terms of Ambient as illustrated
in Figure 2(a). In the figure, we see an ambient internet containing the ambient
net. The ambient net contains five ambients A, B,C, D, FW , which represent
hosts A to D and firewall FW . The firewall is viewed as a membrane protecting
ambients E,F , i.e. hosts E and F . Figure 2(b) provides a zoom view of ambient
A. This ambient contains an ambient representing a listening service sv A, con-
taining itself an ambient representing a vulnerability v A on that service. The
exploitation of v A results in the acquisition of privilege admin (OS admin A)
over host A’s Operating System. Furthermore, there is an ambient port sv A
providing access to service sv A from any ambient within the network net.

Notice that we presented above one intuitive way of modelling the example
network. However, this is not at all the only option since MsAMS is flexible. For
example, the firewall could be modelled as well as an ambient which interfaces
with two ambients representing subnets (A, B,C, D) and (E,F ).



3 Related work

The MsAMS framework has basically the same objective as an Attack Graph,
both show “the ways an attacker can compromise a network or host” [2]. There-
fore, we consider the latter as our main source of related work.

Ou et al. [20] use Datalog rules in the MulVAL tool for modelling the input
required for the generation of Attack Graphs. A Prolog reasoning engine then
captures the relationship among those with further rules and generates the graph.
Their framework, like ours, has a formal approach for input specification and for
reasoning. Recent work from Sawilla and Ou [21, Page 1-3] also uses the same
running example as we do, illustrated on Figure 1, and the graph produced by
MulVAL is shown in page 3. Thus, we were to compare theirs and ours approach
more closely. Their graph has 50 nodes while ours has 33 nodes 3. This difference
may be explained by the presence of redundant nodes in the former graph, such
as the ones related to firewall rules (C > E and D > E). Firewall rules, modelled
as “hacl” clauses in MulVAL, appear twelve times in the graph. In our approach
the Ambient firewall appears once in the graph and contains two filtering rules
at its boundary.

Ingols, Lippmann et al. [2] have the same approach, in NetSPA tool, as we
have for the modelling of vulnerabilities, based on an access-to-effect paradigm
(also adopted by others, e.g. [7]). Besides, they use a matrix (n × n, where n
is the number of hosts) to capture reachability among hosts, and apply collaps-
ing techniques to reduce its size. Thus, intra-subnet reachability is reduced to
one row in their matrix. Reachability is more naturally modelled when using
Ambients, since all ambients inside a same ambient can communicate among
themselves, and filtering rules can be embedded on ambients’ boundaries. Addi-
tionally, their multi-prerequisite graph accommodates the concept of credential
for what we call key. However, no example using credential is provided in their
paper. Nevertheless, because their model does not allow the dynamic acquisi-
tion of a credential (as ours), they may have to rely on the assumption that
an attacker has already a credential and will be able to access non-vulnerable
hosts which requires this credential as pre-requisite. Thus, we cannot speculate
further.

Jajodia, Noel et al. [4] rely on detailed pre- and postcondition rules to com-
pose attack steps. The specification of these conditions enables TVA tool to find
attacks composed both by vulnerable and non-vulnerable hosts (as illustrated
in example on page 258, where host ned is not vulnerable). However, this is
achieved as a consequence of the postcondition enabled by the exploitation of
the preceding vulnerability, requiring a detailed analysis of dependencies among
vulnerabilities. We have a different perspective and use a more simplistic ap-
proach, based on access-to-effect, to model vulnerabilities, but nevertheless con-
sider the possibility of an attacker acquiring keys which enable the compromise
of non-vulnerable hosts.

3 eight nodes illustrated in Figure 2(a) and additional four nodes for each host, as
illustrated for host A in Figure 2(b), plus one attacking node



Sheyner and Wing [9] provide a toolkit based on symbolic model checker.
Like other model checker-based approaches [22], state explosion [15] is an issue.
These graphs represent a path for every single possible combination of attack
steps, thus its complexity becomes exponential. Our approach does not suffer
from this problem since the graph only represents nodes (i.e. Ambients) and
links which occur in practice, and the composition of attack steps relies on the
matching of rules embedded on the ambients’ boundaries. Sheyner also models
trust relations among hosts. It means that the key for a host h1 gives the attacker
access to host h2 as well, if these two hosts trust each other. MsAMS permits
the specification of these relations at the level of users, thus a user u1 may be
trusted by h2 while u2 may not.

Ha, Chinchani et al. [23,24] propose a type of graph which allows not only the
modelling but also the simulation of an attacker searching through the graph.
Nodes are associated with tokens and edges associated with minimum and maxi-
mum costs. Like it happens in MsAMS, nodes can be of many kinds e.g. firewall,
vulnerability, service, accounts. During the simulation process, the attacker ac-
quires tokens, and if he has a token he incurs on minimum cost to traverse an
edge, otherwise on maximum cost. This approach has many characteristics sim-
ilar to ours, e.g. it allows modelling insiders which “hold” tokens (i.e. keys) at
the beginning of an attack, but it does not allow the representation of Access
Control Lists, and the possibility of modelling nodes which release key while
others not.

Gorodetski and Kotenko [25] have a grammar-based approach for the simula-
tion of attacks in networks. A family of grammars for each attacker intention has
to be specified which, when specialised by substitution, generates attack paths.
Among other characterists, their approach differ from ours because they do not
have the objective of discovering attacks given a network model.

4 Modelling with the MsAMS framework

We have seen in Section 2 the network topology of the running example repre-
sented in terms of ambients. In essence Ambients are environments where any
computing activity will happen. They are abstractions introduced to represent
hosts, services, vulnerabilities, networks, users and even keys. Each ambient can
possibly react with other ambients in its neighbourhood, depending on its and
theirs capabitities.

Definition 1 An Ambient Amb is a tuple (Amb′, R), where Amb′ is a list of
Ambients contained in Amb, and R is a list of static rules defining the dynamic
behaviour of ambient Amb.

Definition 2 Each ambient Amb has an unique name N such that N = name(Amb).

The ambients of the network example, illustrated in Figure 2, are specified
in MsAMS as follows.



1 internet: ["net"] []

2 net: ["A" "B" "C" "D" "FW"] [Repeat (Accept "internet")]

3 FW: ["E" "F"] [Repeat (AllowIn "C" "E"), Repeat (AllowIn "D" "E")]

3 port_sv_A: [] [Repeat (Accept "net")]

4 A: ["sv_A" "OS_admin_A"] []

5 sv_A: ["v_A"] [Repeat (Accept "port_sv_A")]

7 OS_admin_A: [] [Repeat (Accept "v_A")]

8 v_A: [] []

The primitive Repeat allows the execution of the rule which follows, on a
infinite loop.

The primitive Enter allows one ambient to move into another ambient, given
that this last ambient accepts it via an Accept.

The AllowIn primitive allows one ambient to define which ambient is allowed
to cross its boundaries towards another ambient. Although this rule can be
modelled using Enter and Accept, it has been explicitly included for convenience
when modelling firewalls.

We now look into more details the specification of ambients provided above.
Line 1 specifies the ambient internet. It contains the ambients net and no action
rules.

Line 2 specifies the ambient net. It contains five other ambients and is con-
tinuously accepting that any ambient within the ambient internet enters its
perimeter. Note that net could restrict this access via an external firewall for
example, as it happens in practice.

Line 3 specifies the ambient FW which contains two other ambients. It re-
stricts the broadcasting of messages from hosts A-D towards its children ambi-
ents, allowing only ambients C and D to communicate with ambient E. AllowIn
AmbientSource AmbientDestination may restrict communication between any
pair of ambients. For example, if we had defined that ambients A to D were
inside ambient “dmz”, we could have firewall rules of the type: AllowIn dmz F
or AllowIn ssh− tcp− 22 E.

Line 4 specifies an empty ambient port sv A. It accepts communication com-
ing from ambient internet.

Line 5 specifies ambient A containing two other ambients, a listening service
sv A and a privileged account OS admin A, but no action rules.

Line 6 specifies ambient sv A, containing a vulnerability represented by the
ambient v A. The latter is continuously accepting ambient port sv A.

Line 7 specifies an empty ambient OS admin A. This ambient is continuously
accepting ambient v A.

Line 8 specifies an empty ambient v A. On the one hand, since this vulnera-
bility is remotely exploitable, it does not require an attacker to be authenticated
as a user of the host to enable its exploitation. Thus, it is exploitable by anyone
entering its parent ambient sv A. On the other hand, since this vulnerability has
the effect admin, it contains a link with OS admin A and it accepts it.



network
configuration

vulnerabilities

in COTS and

their attributes

Modelling

engine

exposures
and ACLs
(optional)

network as
ambients

Simulation

engine

attacker’s
trace

location
attacker’s

ambients’
rules

Fig. 3. Architecture of the MsAMS framework

4.1 Matching Enter/Accept

In Cardelli’s Bioware Languages [12], an Ambient (called membrane in that
paper) can possibly contain other Ambients inside it. In that sense, an Ambient
has a set of children and a parent. Cardelli defines two conditions that must
both be satisfied for an Ambient X to move into an Ambient Y :

– X is a sibling of Y or X and Y are children of sibling parents.
– X has an action request entry into Y , which we denote Enter Y, and Y

allows the entry movement with an action Accept X.

We replace in MsAMS framework the first condition with:
X is a sibling of Y or X and Y are children of sibling parents, or an edge

exists connecting X and Y .

5 Simulations with the MsAMS framework

The architecture of the MsAMS framework and where the simulation engine fits
is illustrated in Figure 3.

The simulation engine receives as input (i) a hypergraph defining the network
topology as ambients (similar to Figure 2), (ii) a set of static rules determin-
ing Capabilities and Actions, as shown in Section 4. These can be used by the
ambient and can be performed at the boundary that the ambient defines. The
set of actions implicitly defines a non-deterministic choice of action to perform,
and (iii) a set of computing Agents, i.e. one or more attacker ambients (i.e. the
location of attackers). The engine then performs two basic tasks using heuristics,
as described in Section 7. First, it assigns automatically value to ambients and
cost to links of the hypergraph. Second, it computes possible steps an attacker
can perform on the ranked hypergraph. Each of these steps can either be ac-
cepted, if the attacker’s actions and the ambients’ action match, as described in
Section 4.1, or rejected if the actions do not match. This match is achieved via
reduction rules [10]. A match means that the attack can actually perform the



step, and this is recorded. In the end, we have the attacker’s complete trace until
a target, i.e. a host of high value, is reached. This trace is a possible multi-step
attack on the modelled network. An attacker trace for the running example (see
Figure 1) is illustrated next.

Enter "net"

Enter "port_sv_A"

Enter "sv_A"

Enter "v_A"

Enter "OS_admin_A"

Enter "port_sv_D"

Enter "sv_D"

Enter "v_D"

Enter "OS_admin_D"

Enter "port_sv_E"

Enter "sv_E"

Enter "v_E"

Enter "OS_admin_E"

This trace shows the possible attack ADE. Other possibilities which can
be obtained by executing the simulation several times are ACE, ABCE, and
ABDE.

6 Acquisition of keys

In this section we use an insider attack example, more appropriate for illustrating
the acquisition of keys in MsAMS. However, first we introduce the concept of
exposure.

6.1 Exposures

We use exposures to represent stealthy ways to acquire keys. An attacker can
get remote or local access to a host by means of vulnerabilities but, most of the
times, he does not automatically obtain keys (e.g passwords) for that host. Thus,
an exposure is an abstraction to model the disponibility of keys. It corresponds to
the real situation of passwords saved locally, social engineering or even passwords
acquired using key logging mechanisms. However, exposures can also be used for
modelling Public Key Infrastructure (PKI), as shown in Section 6.2.

In this context, an exposure is an empty Ambient that is forever repeating the
action of releasing a key. To illustrate this concept let’s consider there is a host
protected by a key (ambient k). The host contains an exposure which releases
this key. If a (malicious) agent, by simulation, happens to have the capability
described next, then a match between AcquireKey and ReleaseKey is possible.

host: [exposure] []

exposure: [] [Repeat (ReleaseKey "k")]

alice: [] [Repeat (AcquireKey "k")]



This match represents the acquisition of a key. It occurs by means of reduction
rules [10], when agents are computed. After the computation, alice and exposure
ambients have their capabilities updated, allowing alice to enter the host and
behave like its legitimate user.

host: [] [Repeat (Accept "alice")]

alice: [] [Repeat (Enter "host")]

After being captured, a key is forever kept in a set of Keys which can be
used by the ambient, in this case by ambient alice. This list of keys can be seen
as an abstraction of a “bag of keys” which an attacker can accumulate along
a multi-step attack. We assume that the monotonicity property [26] holds (as
many other researchers [2,3,4,7] do) and, therefore, once acquired a key is never
lost, i.e. the attacker does not need to backtrack to re-acquire a key.

6.2 An example of insider attack

Figure 4 shows an example of key acquisition using a Public Key Infrastructure
(pki). This example has been adapted from [24].

The environment is a Bank with a set of teller hosts, represented by teller0
and teller1, a manager host, and a database, DB. There is a key to access the
manager host, manager.key. The DB ambient has a user ambient, dbUser, that
users can access through In/Out sequences. Primitives “In” and “Out” estabish
communication between two ambients, representing for example the ability to
read and write. There is also a file system, dbFS, and an administrator account,
DBA. Outside the bank, a PKI ambient gives a ticket for a DB session. Only
the manager has access to the pkiKey.

The general rule for each ambient is that an ambient is a hyperedge connect-
ing each ambient inside it. Notice that a list of actions denotes a nondeterministic
choice.

The actions in the example are:

1 Bank: ["teller0" "teller1" "managerVuln" dbUserKey" dbaKey"

"manager.Key" "manager" "DB"] []

2 DB: ["dbFS" "dbUser" "DBA"] []

3 PKI: ["pkiKey" "exp.dbaKey"] []

4 dbFS: [Repeat (Accept "DBA"),

(Repeat (Prefix (In "dbUser") (Out "dbUser")]

5 dbUser: [Repeat (Accept "dbUserKey")]

6 dbUserKey: [] []

7 DBA: [Repeat (Accept "managerVuln"), Repeat (Accept "dbaKey")]

8 managerVuln: [] []

9 dbaKey: [Repeat (Accept "Bank")]

10 manager: [Repeat (Accept "managerKey")]

11 pkiKey: [Repeat (Accept "manager")]

12 exp.dbaKey: [Repeat (ReleaseKey "dbaKey")]

Notice that the DBA can be entered through a vulnerability or by having a
Enter dbaKey capability. This capability can be acquired by:



Fig. 4. Modelling the insider attack example (adapted from [24]) as Ambients

– using a capability AcquireKeyFrom ”expdbaKey”, or
– giving some ambient the capability Enter ”dbaKey” from the start.

7 Heuristics used to find attacks

In a previous paper [27], we introduced the idea of representing attacks using a
language based on CSP [28]. In that paper, we assumed that a network model
was a graph with values assigned to nodes and costs assigned to edges. Searching
for an attack was treated as an optimisation problem.

In the present approach we still assume that values are assigned to ambients
and we still have a cost measure for moves from ambient to ambient. However,
we have developed algorithms for assigning values and costs. Borrowing from
social network analysis [29] and page ranking we assign value to an ambient
proportional to the value assigned to other ambients that point to it. An ambient
A points to an ambient B when a move from the former into the latter is possible.

An algorithm based on pageRank [30] computes a score for each ambient
in a network model. That score, authority, can be considered as the value for
the ambients. Starts with a square matrix where cell (i, j) contains a zero when
there is no link from i to j. This algorithm runs a fixed number of iterations,
computing a matrix multiplication in each, giving a O(n2) time algorithm, where
n is the number of nodes.

The search for an attack uses the values assigned to all ambients in the
network model, computed using pageRank, and an initial set of suspicious ambi-
ents, the ambients where the attacker would be located. The algorithm can also
be given a set of ambients that could be considered as hints in the sense that



we expect that an attack would use them. This can be useful when a network
administrator wants to know if the network is subject to a specific attack, as
e.g. the massive RealPlayer exploit via SQL injection, reported by the press in
January 2008 [31].

The search algorithm computes in each step the set of all possible moves,
ordering them by a priority scheme, that is akin to the cost value used in [27].
To compute the value of a move, the pageRank algorithm is extended with the
concept of hub, borrowed from [32]. A hub is an ambient that can be source of
a move. An ambient A has high hub score when it is possible to move from A to
ambients with high value. In a local network, the filesystem where every user has
her home directory should have a high asset (authority) rank. Assuming that
each user gets access to the home directory using NFS, an ambient modelling
the NFS would have both high authority (accessed by all users) and high hub
score, because the NFS uses the filesystem to satisfy each user request. The
HITS algorithm assigns both authority and hub score to a set of ambients, given
their neighbourhood, and an initial set of values for them. It also runs a fixed
number of iterations that can be computed in O(m2) each, where m is the
number of ambients in iteration. The search algorithm selects a fixed subset of
the hubbiest e proceeds in depth-first search, giving priority to moves into high
scoring authorities or hubs. More details will be left out due to lack of space.

8 Performance and scalability of MsAMS framework

The time for computing an attack is dominated by the computation of assets’
ranks. This is perforformed by an algorithm based on the pageRank [30] algo-
rithm. A näıve implementation in Haskell can take O(n3). An efficient imple-
mentation in C of the matrix multiplication performed in each cycle can take
advantage of the sparse matrix that is generated to produce a O(n). Our imple-
mentation precomputes the matrix in O(n2) and then applies ranking algorithm
in O(n2). We do not run, at least in the present version, ranking algorithms, up
to convergence. They executed for a fixed number of steps. However, experiments
have shown [30] that fixed number of iterations is adequate in practice.

Figure 5 shows the time for experiments with a variation on our running
example, where the network consisted of the hosts shown in Figure 1 and up to
8192 nodes evenly split between the subnet behing the firewall and the subnet
outside the firewall. All experiments assumed the atacker positioned initially
inside host A.

It is fair to notice that when we double the number of nodes from 4096
to 8192 the time multiplies by 6, when we would expect it to multiply by 4,
given that we claim that our algorithm is quadratic. We attribute that to the
garbage collection of Haskell due to the heavy use we make of lists for collecting
intermediate results, but we admit that more extensive testing could identify
more important performance bottlenecks in our algorithms. We know that our
implementation of the ranking algorithms could be greatly improved by using



● ●
●

●

●

0 2000 4000 6000 8000

0
50

10
0

15
0

20
0

25
0

30
0

Number of Hosts

C
om

pu
tin

g 
T

im
e 

(s
ec

on
ds

)

Fig. 5. Performance of the MsAMS framework

effient matrix multiplication libraries and we know that the heavy use of lists
might be replaced with local updates in vectors or matrices.

9 Conclusion and further work

We presented in this paper the MsAMS framework based on Mobile Ambients
theory. It allows the modelling of a network in an intuitive way as Ambients, and
the specification of static rules defining the dynamic behaviour of each ambient.
Then, an engine based on heuristics, simulates attackers’ steps to find attacks
which are possible, given the network modelled. The dynamic aspect of MsAMS
allows the simulation of an attacker with the ability to compose attack steps
either from the exploitation of vulnerable and non-vulnerable hosts.

The scalability of the approach has been demonstrated by experimental tests
with up to 8192 hosts. We are aware that further testing is needed and, therefore,
this topic is our priority for future work. We believe that our implementation,
even in Haskell, can be greatly improved. In addition, we are planning for an
implementation in C of both the Asset Ranking and the Hub Ranking algorithms.

One advantage of the framework is its flexibility. It is up to its users to
decide which level of details is needed. He/she can decompose the network at
his discretion and model fine grained entities and their relationships, including
ACLs (Access Control Lists), or abstract to a higher level and only model the
minimum which still allows him to find possible attacks on the network modelled.



Maybe he can adopt the latter option first as a way to prioritise a sub-graph of
interest, and then adopt the former to zoom in this sub-graph.

Usability is an aspect that needs to be improved and, therefore, is listed for
future work. We plan to build an user interface to allow the graphical manip-
ulation of Ambients, when modelling, and the visualisation of possible attacks
discovered by the framework, when simulating.

Acknowledgements

This research is supported by the research program Sentinels (www.sentinels.nl). Sen-

tinels is being financed by Technology Foundation STW, the Netherlands Organisation

for Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.

References

1. Schneier, B.: The Ethics of Vulnerability Research. Information Security Magazine
(2008) http://www.schneier.com/essay-211.html.

2. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for
network defense. In: ACSAC ’06: Proc. of the 22nd Annual Computer Security
Applications Conference on Annual Computer Security Applications Conference,
Washington, DC, USA, IEEE Computer Society (2006) 121–130

3. Ammann, P., Pamula, J., Street, J., Ritchey, R.: A host-based approach to network
attack chaining analysis. In: ACSAC ’05: Proc. of the 21st Annual Computer
Security Applications Conference, Washington, DC, USA, IEEE Computer Society
(2005) 72–84

4. Jajodia, S., Noel, S., O’Berry, B.: Topological Analysis of Network Attack Vulnera-
bility. In: Managing Cyber Threats: Issues, Approaches and Challenges. Springer-
Verlag, Germany (2005)

5. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchi-
cal aggregation. In: VizSEC/DMSEC ’04: Proc. of the 2004 ACM workshop on
Visualization and data mining for computer security, New York, NY, USA, ACM
(2004) 109–118 http://doi.acm.org/10.1145/1029208.1029225.

6. Swiler, L.P., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph gener-
ation tool. In: DISCEX II’01: DARPA Information Survivability Conference and
Exposition Conference and Exposition. Volume 2., Washington, DC, USA, IEEE
Computer Society (2001) 307–321

7. Li, W., Vaughn, R.B., Dandass, Y.S.: An approach to model network exploitations
using exploitation graphs. Simulation 82(8) (2006) 523–541

8. Ou, X., Boyer, W.F., McQueen, M.A.: A Scalable Approach to Attack Graph
Generation. In: CCS ’06: Proc. of the 13th ACM Conf. on Computer and Commu-
nications Security, New York, NY, USA, ACM (2006) 336–345 people.cis.ksu.

edu/~xou/publications/ccs06.pdf.
9. Sheyner, O., Wing, J.: Tools for Generating and Analyzing Attack Graphs. In: In

Proc. of Workshop on Formal Methods for Components and Objects. LNCS 3188,
Germany, Springer-Verlag (2004) 344–371

10. Cardelli, L., Gordon, A.D.: Mobile Ambients. In: Foundations of Software Sci-
ence and Computation Structures: First International Conference, FOSSACS ’98.
Volume 1378 of LNCS., Berlin Germany, Springer-Verlag (1998)

http://www.schneier.com/essay-211.html
http://doi.acm.org/10.1145/1029208.1029225
people.cis.ksu.edu/~xou/publications/ccs06.pdf
people.cis.ksu.edu/~xou/publications/ccs06.pdf


11. Cardelli, L., Gordon, A.D.: Types for Mobile Ambients. In: Symposium on Prin-
ciples of Programming Languages. (1999) 79–92

12. Cardelli, L.: Bioware Languages. In: Computer Systems: Theory, Technology, and
Applications. Monographs in Computer Science. Springer, New York (2004) 59–65

13. Milner, R.: Pure bigraphs. Technical Report UCAM-CL-TR-614, University of
Cambridge (2005)

14. Jukna, S.: Extremal Combinatorics. Springer (2000)
15. Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoe-

belen, P.: Systems and software verification: Model-checking techniques and tools.
Springer-Verlag, Berlin (2001)

16. Cuppens, F., Ortalo, R.: Lambda: A language to model a database for detection
of attacks. In: RAID’00: Proc. of the Third Int. Workshop on Recent Advances in
Intrusion Detection, London, UK, Springer-Verlag (2000) 197–216

17. Templeton, S.J., Levitt, K.: A requires/provides model for computer attacks. In:
NSPW’00: Proc. of the 2000 Workshop on New Security Paradigms, New York,
NY, USA, ACM (2000) 31–38

18. Nessus: (Tenable network security: The Nessus Security Scanner) www.nessus.org.
19. NVD: (National vulnerability database v2) http://nvd.nist.gov/.
20. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: a logic-based network security

analyzer. In: SSYM’05: Proc. of the 14th Conf. on USENIX Security Symposium,
Berkeley, CA, USA, USENIX Association (2005) www.cs.princeton.edu/~appel/
papers/mulval.pdf.

21. Sawilla, R., Ou, X.: Googling Attack Graphs. Technical Report TM-2007-205, De-
fense Research and Development Canada (2007) http://www.ottawa.drdc-rddc.

gc.ca/html/tm_2007_205_e.html.
22. Ritchey, R.W., Ammann, P.: Using Model Checking to Analyze Network Vulner-

abilities. In: SP’00: Proc. of the 2000 IEEE Symposium on Security and Privacy,
Washington, DC, USA, IEEE Computer Society (2000) 156–165

23. Ha, D., Upadhyaya, S., Ngo, H.Q., Pramanik, S., Chinchani, R., Mathew, S.: In-
sider threat analysis using information-centric modeling. In: Advances in Digital
Forensics III. IFIP International Federation for Information Processing. Springer,
Boston (2007) 55–73

24. Chinchani, R., Iyer, A., Ngo, H.Q., Upadhyaya, S.: Towards a Theory of Insider
Threat Assessment. In: DSN 2005: Int. Conference on Dependable Systems and
Networks, IEEE Publishing (2005) 108–117 http://ieeexplore.ieee.org/iel5/

9904/31476/01467785.pdf.
25. Gorodetski, V., Kotenko, I.: Attacks against computer network: Formal grammar-

based framework and simulation tool. In A.Wespi, G.Vigna, L.Deri, eds.: RAID
2002: Proc. of the Fifth Int. Symposium on Recent Advances in Intrusion Detection.
Volume 2516 of LNCS., Springer (2002) 219–238

26. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnera-
bility analysis. In: CCS ’02: Proceedings of the 9th ACM conference on Computer
and communications security, New York, NY, USA, ACM (2002) 217–224

27. Franqueira, V.N.L., Lopes, R.H.C.: Vulnerability Assessment by Learning Attack
Specifications in Graphs. In: IAS’07: Proc. of the 3rd Int. Symposium on Informa-
tion Assurance and Security). (2007)

28. Hoare, C.A.R.: Communicating Sequential Processes. Second edn. Prentice Hall
International (2004) online version at http://www.usingcsp.com/cspbook.pdf.

29. Seeley, J.R.: The net of reciprocal influence: A problem in treating sociometric
data. Canadian Jounal of Psychology (3) (1949)

www.nessus.org
http://nvd.nist.gov/
www.cs.princeton.edu/~appel/papers/mulval.pdf
www.cs.princeton.edu/~appel/papers/mulval.pdf
http://www.ottawa.drdc-rddc.gc.ca/html/tm_2007_205_e.html
http://www.ottawa.drdc-rddc.gc.ca/html/tm_2007_205_e.html
http://ieeexplore.ieee.org/iel5/9904/31476/01467785.pdf
http://ieeexplore.ieee.org/iel5/9904/31476/01467785.pdf
http://www.usingcsp.com/cspbook.pdf


30. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton Universty Press (2006)

31. Keizer, G.: Mass hack infects tens of thousands of sites. (Computerworld, Jan-
uary 07, 2008) http://www.computerworld.com/action/article.do?command=

viewArticleBasic&taxonomyId=16&articleId=9055858&intsrc=hm_topic.
32. Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. In: In Proc.

Ninth Ann. ACM-SIAM Symp. Discrete Algorithms, New York, ACM Press (1998)
668–677

http://www.computerworld.com/action/article.do?command=viewArticleBasic&taxonomyId=16&articleId=9055858&intsrc=hm_topic
http://www.computerworld.com/action/article.do?command=viewArticleBasic&taxonomyId=16&articleId=9055858&intsrc=hm_topic

	Multi-step Attack Modelling and Simulation (MsAMS) Framework based on Mobile Ambients
	Virginia N. L. Franqueira and Raul H. C. Lopes and Pascal van Eck

