
Towards alignment of architectural domains in
security policy specifications

Virginia N. L. Franqueira
University of Twente

Information Systems Group
Enschede, The Netherlands
franqueirav@ewi.utwente.nl

Pascal van Eck
University of Twente

Information Systems Group
Enschede, The Netherlands
p.a.t.vaneck@ewi.utwente.nl

Abstract— Large organizations need to align the security ar-
chitecture across three different domains: access control, network
layout and physical infrastructure. Security policy specification
formalisms are usually dedicated to only one or two of these do-
mains. Consequently, more than one policy has to be maintained,
leading to alignment problems. Approaches from the area of
model-driven security enable creating graphical models that span
all three domains, but these models do not scale well in real-world
scenarios with hundreds of applications and thousands of user
roles. In this paper, we demonstrate the feasibility of aligning all
three domains in a single enforceable security policy expressed in
a Prolog-based formalism by using the Law Governed Interaction
(LGI) framework. Our approach alleviates the limitations of
policy formalisms that are domain-specific while helping to reach
scalability by automatic enforcement provided by LGI.

I. I NTRODUCTION

As organizations are becoming more and more complex,
with more sophisticated information systems and information
technology (IT), enterprise architecture is becoming propor-
tionally more important as an instrument to deal with this
complexity. Complexity in an organization has two sources:
internal and external. Internally, organizations need to manage
their daily operational activities while focusing on business
development. Externally, organizations must comply with best
practices and standards such as Cobit [1] for IT governance
and control, ITIL [2] for IT delivery and support, and ISO
9000 [3] for quality management. In addition to this internal
and external pressure, traditional business drivers like cost
cutting, increasing customer satisfaction and time-to-market
are also important drivers for managing enterprise architecture.

We consider architecture as “some logical construct for
defining and controlling the interfaces and the integration of all
of the components of the system“, as stated by Zachman [4].
All of these components, however, do not belong to a unique
domain but instead belong to several architectural domains [4],
[5], such as the infrastructure, application and business process
domains [6]. As a consequence, an integration problem arises
because each domain involves (i) different elements, entities
and concepts, (ii) different nature and concerns, and (iii)
different stakeholders and perspectives. Therefore, a one-to-
one mapping between architectural domains is not feasible
and eventually connecting architectural domains evolves into
an alignment problem.

In this paper, we study this alignment problem for one
specific aspect: IT security. The alignment problem in terms
of security relates to the connection of three architectural do-
mains. First, there is the access-control domain which involves
aspects like people structured in terms of roles, objects, sub-
jects and actions that subject can perform over objects. Second,
there is the network domain which involves communication,
usage and configuration of network resources. Finally, there
is the physical domain which involves aspects like hardware,
location and mobility. Figure1 shows a representation of
these three domains and relationships between them. It aims
to provide an insight on the amount of interactions involved
in aligning security domains, since the diagram looks already
polluted with arrows while only a tiny number of entities is
represented.

A. Other approaches to the alignment problem

Existing approaches to the alignment problem in security
can be categorized in two main streams. The first stream
approaches alignment from the perspective of policy specifi-
cation languages. These languages tend to be domain-specific:
a specific language is limited to expressing concerns for only
one domain. A possible reason for this is that the scope of
access control, network and also the physical domain is so
broad and diverse. Consequently, for an integrated architecture,
more than one language is needed. Therefore, the alignment
is not really achieved unless a mapping process between these
languages is used and, as a result, consistency between them
can become an issue. The other stream relies on model-
driven security [7]. It models the connections between all the
elements from different domains with the support of graphical
tools and then derives security policies through refinement
between levels. One drawback of this approach is the com-
plexity of the model in real scenarios and as a consequence, it
becomes hard to analyze, considering the number of elements
and connections involved.

B. Contribution of this paper

This paper demonstrates the possibility to combine the
three architectural domains that are relevant for security in
a single policy. We do so by applying the Law Governed
Interaction (LGI) framework [8] which provides means for

User 1

User 3 User 4

User 2

192.168.1.3

Socket 1

Socket 2
Socket 3

Object 2

Object 3

Object 1

192.168.1.2 192.168.1.4

firewall

192.168.1.1

192.168.1.x 192.168.1.x 192.168.1.x 192.168.1.x

HTTPSMTP Server A

Access
control
domain

Network
domain

Physical
domainRoom A

Room B

Has a

Has access

Uses

Is located

Pluggable in

Legend:
Role BRole A

Is stored

Fig. 1. A model: three domains involved in security and example interactions

the formal specification of policies in a semantically flexible
way. In this way, we show how LGI can be used to provide
a means to enforce cross-domain policies in a distributed
environment. Our approach enables architectural alignment
without interfaces or connections between domains and thus
avoids drawbacks of current approaches.

C. Organization of this paper

We proceed presenting a motivating example in SectionII ,
an overview of LGI in SectionIII and then our LGI implemen-
tation of the example in SectionIV. In SectionV we discuss
our approach while in SectionVI we review related work.
Finally, in SectionVII we summarize our contribution.

II. EXAMPLE - OVERVIEW AND FORMALIZATION

We use part of the IT infrastructure of a large Dutch
government organization as an example in this paper (see
Figure21). Traditionally, this organization employs a number
of mainframes for batch-oriented transaction processing (de-
picted on the right-hand side of Figure2). Since a few years,
in addition to these mainframes, the organization employs a
modern infrastructure for Internet-based information exchange
with outside parties such as other government organizations,
companies and private citizens. With this new infrastructure,
these outside parties (represented by a browser at the left-hand
side of Figure2) can directly use, via various electronic chan-
nels, the services provided by the government organization.

1Based on M.Sc. thesis by Allard Hoeve, University of Twente.

The nature of the business for which the government
organization is responsible is such that the data maintained by
the mainframes is highly confidential even for the employees
of the government organization. Therefore, the infrastructure
is organized in terms of protection perimeters which filters
external, internal and maintenance accesses to the area inside
the perimeters. The maintenance personnel is responsible for
keeping the network infrastructure, hardware and software
up-and-running 24 hours a day. Their work is governed by
policy F partially quoted below, which we formulated based
on the policy description we found in the internal security
manuals of the organization.

Maintenance work shall be restricted to mainte-
nance personnel, in accordance to job function,
and limited to trusted hosts located on physically
secured areas.

We look at this scenario focusing on the aspect of accessing
the inner perimeters area by maintenance personnel, i.e. cross-
ing the maintenance and also the internal perimeters which
are regulated by packet filter devices such as firewalls. The
filtering process is based on fixed rules that allow or deny
access to the delimited area by individual Internet Protocol
(IP) addresses. In our case however, maintenance personnel
should be able to overcome these rules and have these barriers
automaticallyopendepending upon the personnel’s role and
location to enable them to do maintenance work. The location
here is represented by the combination of (i) room where

IBM Edge
Server

(Caching Proxy)
HTTP Server

Browser

IBM Websphere
Application

Server 2

IBM Websphere
Application

Server 1HTTP
HTTPS

IBM Directory
Service

LDAP

Broker

Mainframe
(storage)

Legacy EDI
interface

MQ
MQ

Email traffic

E
xternal perim

eter protection

Internal perim
eter protection

Maintenance perimeter protection

Maintenance environment

Application data
(DB2)

JDBCJDBC

Legend:

Information flow

Applications

Fig. 2. Network diagram for a large Dutch government organization

the workstation to be used by the maintenance personnel is
located and (ii) socket used to plug-in the workstation into
the network. Although role and location are static during a
maintenance session, on the next session a same employee can
represent another role and use a different workstation from a
pool, i.e. another location. As long as the employee provides
a valid digital certificate authenticating his current role and
workstation location and as long as an exception rule matches
the employee’s role, location and the server he wants to access,
the filtering rule is bypassed and the access is granted in the
basis of an exception to the rule.

The enforcement of policyF comprehends entities
belonging to different security domains, as described in
SectionI. Figure 3 shows a model representation of entities
relevant to our example and their interactions. These entities
are (i) employee, server and role from the access control
domain (ii) TCP/IP(v4) packet from the network domain and
(iii) location from the physical domain. These entities are
formalized in a Prolog-like2 notation as atoms. Note that the
entities related to maintenance personnel and server to be
serviced are implicitly represented inside the packet notation
by source and destination IP (ips and ipd) and port (Ps and
Pd). Thus, we restrict ourselves to the representation of role,
packet and location.

role(RoleName).
packet(ips(IPs1,IPs2,IPs3,IPs4),
Ps,ipd(IPd1,IPd2,IPd3,IPd4),Pd).
location(Room,Socket).

As an example, the atoms can be instantiated as follows.

role(adminDatabase).
packet(ips(130,89,148,26),11,
ipd(192,168,1,157),1050).
location(zi4026,1).

2The choice for Prolog notation is bound to LGI framework we use.

Besides entities as atoms, we represent the filtering rules
and exceptions to the rules as Prolog-like facts. Rules can
be stated in terms of (i) wild card atomsanyIP and anyPort,
(ii) atoms ips and ipd for IP source and IP destination, re-
spectively, and (iii) atoms ipRangeD(, , ,rangeFrom,rangeTo)
and portRangeD(rangeFrom,rangeTo) for ranges of IP and port
destination, respectively. Exceptions can be stated in terms
of roles, IP and port destination, location and a permission
which opposes to a rule, either in the form of allow or deny.
Note that these rules combine concepts from all three domains
mentioned in SectionI.

ruleSet(anyIP,anyPort,ipRangeD(192,168,1,0,254),
portRangeD(1023,16384),allow).
ruleSet(anyIP,anyPort,ipd(192,168,1,1),
anyPort,deny).
ruleSet(anyIP,anyPort,ipd(192,168,1,2),25,allow).

ruleException(role(adminDatabase),
ipd(192,168,1,1),1000,location(zi3067,2),allow).

In the next section we set the basis of LGI for the imple-
mentation of the example.

III. L AW GOVERNED INTERACTION (LGI) - OVERVIEW

Law-Governed Interaction (LGI) [8]–[11] is a coordination
mechanism developed by Naftaly Minsky and colleagues at
Rutgers University. LGI can be viewed as a decentralized
architecture that offers middleware components for interaction
between agents. These components actively monitor message
exchange by checking compliance with a formal policy set,
called thelaw. This policy takes the form of ECA-rules, which
can be represented in either a Prolog-based or Java-based lan-
guage. In this paper, we use the Prolog-based representation. It
is important to note that Prolog rules in LGI should not be read
as if-then rules. Instead, each Prolog rule in LGI represents an
ECA pattern [12] of the form:e :- c1, ..., cn, do(o1), ..., do(on),
where e is an event,c1, ..., cn is a possibly empty list of
conditions anddo(o1), ..., do(on) is a list of operations (i.e.

Paul
Betty Pat

Peter

Admin
mainframe

Object 2 Object 3Object 1

Access
control
domain

Network
domain

Admin
datasbase

Socket 1

Socket 2
Socket 3

Physical
domainRoom 3025

Room 2043

IBM Edge
Server

(Caching Proxy)
HTTP Server

Browser

IBM Websphere
Application

Server 1HTTP
HTTPS

IBM Directory
Service

LDAP

Broker

Mainframe
(storage)

Legacy EDI
interface

MQ
MQ

Email traffic

E
xternal perim

eter protection

Internal perim
eter protection

Maintenance perimeter protection

Application data
(DB2)

JDBCJDBC

Has a

Has access

Uses

Is located

Pluggable in

Legend:

Is stored

Information flow

Applications

Fig. 3. The large Dutch government organization model: interactions between security domains

actions). Besides the concepts of event and operation, LGI
also incorporates the concept of state (called Control State or
CS) as a snapshot of an agent. The conditions in the Prolog
rules can refer to (i) the CS of agents involved in the event,
(ii) the contents of the event, i.e. the contents of messages
exchanged, (iii) Prolog facts, and (iv) parameters of Prolog
procedures.

A. Local and distributed aspects of LGI

LGI makes available a set of regulated events and a set
of primitive operations that are triggered by events. Figure4
shows an example of interaction between two computational
nodes that LGI calls agents. Suppose agentx wants to send a
message to agenty. This triggers asent event at the local
controller (a middleware component that is part of LGI).
When an agent triggers asent event containing a message,
the controller useslaw LF to assess whether agentx is
allowed to contact agenty. If this is the case, it is forwarded
by its controller to agenty. When the message arrives at
the other agent’s controller, anarrived event is triggered
and its controller actually delivers the message if thelaw
allows it. The sent and arrived events in the controller are
interpreted such that the event is considered a Prolog goal.
If the conditions are satisfied, this goal generates a to-do list
with operations provided by the commanddo(op), whereop
represents an operation. To check a condition, a controller
can consult the so-called control state of the agent (CSx and

CSy in Figure4) by a process of unification between a given
term in the formatt@CS and the content of its state. This
interpretation of thelaw, called in LGI theruling of the law,
is therefore locally performed by individual controllers.

LGI controllers can enforce well-formed and availablelaws
under the context of each agent’s CS. They run as independent
processes and thus can be placed in any host or server in the
network. Agents engage themselves at their own discretion
under a law which can regulate an entire community of so
called LGI-agents. Besides, a single controller can be shared
by several agents. LGI scalability is discussed elsewhere [13].

In summary, LGI provides a distributed enforcement of laws
although their ruling is performed locally.

B. Flexibility of LGI

The control state of an agent can contain any Prolog term,
including atoms, lists, and the combination of both. The se-
mantic of these terms will be given by thelaw being enforced.
The same happens with the message exchanged between
agents since the semantic of its content is determined by the
law under which the agents are operating. This characteristic
allows LGI to be a very flexible coordination mechanism.
Additionally, conditions under the ECA rules can be Prolog
procedures which are goals that will be satisfied or not. These
procedures take advantage of the full power of a declarative
language (Prolog) and enable sophisticated reasoning over the
policy [14]–[16].

L
I

CSx

L
I

CSx

L
I

CSy

L
I

CSy

Tx (controller)

actor x actor y

agent xagent x agent yagent y

communication
network

events

arrived

Ty (controller)

sent forward deliver

operations

Fig. 4. LGI-agents interacting

IV. EXAMPLE - IMPLEMENTATION IN LGI

We implemented in LGI a firewall rule set subject to
exceptions, as described in SectionII , compliant with policy
F . As policy F involves all three domains, i.e. (i) the access
control domain for the job function (role) of employees, (ii) the
network domain for the message being sent which is subject of
network access control via firewall rules and (iii) the physical
domain for room and socket which represent trusted hosts
located in secured areas, this firewall ruleset demonstrates how
use LGI for cross-domain policies. Exceptions are also cross-
domain since they are based on the role, location of the user
(i.e. maintenance employee) at the time he engages himself
in the law LF and the message being sent. For our example
scenario, we wrap maintenance utilities such as telnet into LGI
messages. We discuss next some implementation details based
on the two aspects of LGI emphasized in SectionIII .

A. Local and distributed aspects of LGI

Figure 5 shows how LGI needs to be employed to control
the network environment of the government organization. Ex-
ample LGI controllers, highlighted in the diagram, enforcelaw
LF which allows access by maintenance personnel to servers
to be serviced based on exceptions to general firewall rules.
LGI firewall agents placed on the perimeters are responsible
for filtering the requests, in the format of packets, and decide if
they should be (i) allowed to reach the destination, (ii) denied
with notification sent to the sender and entry recorded in the
firewall audit log or (iii) discarded with an audit log entry.

B. Flexibility of LGI

In law LF we have two kinds of agents. First, the worksta-
tions of the maintenance personnel who provide their current
role and location (i.e. room and socket) when engaging into
the law. (The information is recorded in the agentCS when
the agent adopts thelaw.) Second, the firewall and the servers
which do not need to provide special information. Listing6
shows an extract of lawLF . In this listing we use LGI’s variant
of Prolog. This variant provides a number of extensions to

Prolog, only one of which is used in this paper: the@CS
operator. The meaning of it is as follows: a termt@CS
evaluates to true ift is present in the control state of the agent
for which the rule is evaluated. The clauses follow the format
of ECA rules what means that when the event is triggered and
the conditions are met, the operations described by thedo()
atoms are executed.

By clause R2, only agents that have role and location on
its CS are able to send messages (e.g. for telnet access to a
server for maintenance). In this case, information related to
the sender (i.e. role, room and socket he is using) and the
destination are re-directed to the firewall.

When the message arrives at the firewall, exceptions are
checked through the procedurecheckRuleExceptions. Clauses
R3 and R4 represent an if-the-else structure where R3 will
evaluate to true if an exception applies, and therefore the
permission will be retrieve from the exception fact, and R4
will evaluate to true if no exception applies, and the permission
will be ’none’. Once more the list of information previously
received, now attached with the permission and packet in case
an exception applies, is forwarded to the firewall.

Clauses R5, R6 and R7 refer to the case where permission
unifies with ’none’. Thus, the procedurecheckRuleSetselects
the applicable firewall rule based on the subject and destina-
tion of the message and returns the permission and packet.
Based on the permission returned, appropriate operations will
be taken depending on if the packet is allowed, denied or
discarded.

Because of lack of space, clauses R8, R9 and R10 are not
shown in Listing6. They are, however, similar to clauses R5,
R6 and R7 although they refer to the case where permission is
already received from the exception rule. So again, depending
on the permission, the packet is allowed, denied or discarded.

As an end to the chain of forward and arrived pairs, any
message arrived from the firewall is delivered by means of
clause R11.

We demonstrated by this extract of code how LGI is flexible
in terms of content and semantics of agents’ CS and messages

IBM Edge
Server

(Caching Proxy)
HTTP Server

Browser

IBM Websphere
Application

Server 2

IBM Websphere
Application

Server 1HTTP
HTTPS

IBM Directory
Service

LDAP

Broker

Mainframe
(storage)

Legacy EDI
interface

MQ
MQ

Email traffic

E
xternal perim

eter protection

Internal perim
eter protection

Maintenance perimeter protection

Maintenance environment

Application data
(DB2)

JDBCJDBC

LGI

LGI

LGI

LGI

LGI

Legend:

Information flow

Applications

Fig. 5. LGI middleware components controlling network perimeters

R2 . s e n t (Source , Message , Dest) :− r o l e (Role)@CS,
l o c a t i o n (Room , Socke t)@CS,
do (fo rward (Source , [Message , Dest , Role , Room , Socke t] , f i r e w a l l)) .

R3 . a r r i v e d (Source , [Message , Dest , Role , Room , Socke t] , f i r e w a l l) :−
checkRu leExcep t i ons (Source , Dest ,
[r o l e (Role) , l o c a t i o n (Room , Socke t)] , Pe rm iss ion , Packe t) ,
do (fo rward (Source , [Message , Packet , Dest , Role , Room , Socket , P e r m i s s i o n] ,
f i r e w a l l)) .

R4 . a r r i v e d (Source , [Message , Dest , Role , Room , Socke t] , f i r e w a l l) :−
no t (checkRu leExcep t i ons (Source , Dest ,
[r o l e (Role) , l o c a t i o n (Room , Socke t)] , Pe rm iss ion , Packe t)) ,
do (fo rward (Source , [Message , Dest , Role , Room , Socket , none] , f i r e w a l l)) .

R5 . a r r i v e d (Source , [Message , Dest , Role , Room , Socket , none] , f i r e w a l l) :−
checkRu leSe t (Source , Dest , Pe rm iss ion , Packe t) ,
(P e r m i s s i o n = a l l ow) ,
do (fo rward (f i r e w a l l , Message , Dest)) .

R6 . a r r i v e d (Source , [Message , Dest , Role , Room , Socket , none] , f i r e w a l l) :−
checkRu leSe t (Source , Dest , Pe rm iss ion , Packe t) ,
(P e r m i s s i o n =deny) ,
do (add (a u d i t R e c o r d ([packe tDen ied , Packe t]))) ,
do (fo rward (f i r e w a l l , [packe tDen ied , Packe t] , Source)) .

R7 . a r r i v e d (Source , [Message , Dest , Role , Room , Socket , none] , f i r e w a l l) :−
checkRu leSe t (Source , Dest , Pe rm iss ion , Packe t) ,
no t (P e r m i s s i o n = a l l ow) , no t (P e r m i s s i o n =deny) ,
do (add (a u d i t R e c o r d ([packe tD i sca rded , Packe t]))) .
.
.
.

R11 . a r r i v e d (f i r e w a l l , Any , Any) :− do (d e l i v e r) .

Fig. 6. Extract fromlaw LF

R14 . checkRu leSe t (S ,D, PE , PA) :−
dnsPor tLookup (S , IPs1 , IPs2 , IPs3 , IPs4 , Ps) ,
dnsPor tLookup (D, IPd1 , IPd2 , IPd3 , IPd4 , Pd) ,
PA= p a c k e t (i p s (IPs1 , IPs2 , IPs3 , IPs4) , Ps ,
i pd (IPd1 , IPd2 , IPd3 , IPd4) , Pd) ,
r u l e S e t (A1 , A2 , A3 , A4 , PE) ,
compareA1 (PA , A1) ,
compareA2 (PA , A2) ,
compareA3 (PA , A3) ,
compareA4 (PA , A4) , ! .

R15 . compareA1 (p a c k e t (i p s (IPs1 , IPs2 , IPs3 , IPs4) ,X,Y, Z) , anyIP) .

R16 . compareA1 (p a c k e t (i p s (IPs1 , IPs2 , IPs3 , IPs4) ,X,Y, Z) , i p s (IPs1 , IPs2 , IPs3 , IPs4)) .

R17 . compareA1 (p a c k e t (i p s (IPs1 , IPs2 , IPs3 , IPs4) ,X,Y, Z) ,
ipRangeS (IPs1 , IPs2 , IPs3 , IPs4From , IPs4To)) :−
(IPs4 => IPs4From) , (IPs4=< IPs4To) .

R18 . compareA2 (p a c k e t (W, Ps ,Y, Z) , anyPo r t) .

R19 . compareA2 (p a c k e t (W, Ps ,Y, Z) , Ps) .

R20 . compareA2 (p a c k e t (W, Ps ,Y, Z) , por tRangeS (PsFrom , PsTo)) :−
(Ps > PsFrom) , (Ps< PsTo) .

Fig. 7. Extract fromlaw LF - procedurecheckRuleSet

exchanged. Next we see another extract of code in Listing7,
this time containing an extract of the procedurecheckRuleSet.

Clause R14 contains the goalcheckRuleSet(S,D,PA,PE). S
and D, which are of the format S@domainS and D@domainD,
respectively, unify with the subject and destination of the
message and will be used to retrieve their IP and port informa-
tion. PA unifies with the packet that is formed with S and D
information and PE unifies with a permission, to be retrieved
from the rule set. Each rule set has four arguments A1 to A4
in thecheckRuleSetprocedure: A1 corresponding to IP source
ips, A2 corresponding to source portPs, A3 corresponding to
IP destinationipd and finally A4 corresponding to destination
port Pd, as seen in SectionII . Therefore, for each rule set,
compareA1 to compareA4 are performed to compare each
rule argument with the packet. When all arguments unify,
the cut applies and the permission is returned to the main
code. Listing7 only contains compareA1 (R15, R16 and R17)
and compareA2 clauses (R18, R19, R20), for brevity. The
remaining six other clauses for A3 and A4 are similar to the
ones presented.

In summary, LGI is flexible enough to accept any well-
formed Prolog procedure as conditions in its ECA rules.
Whether access is granted is determined dynamically in real
time depending on the physical location of the workstation
used (physical domain), the role of the maintenance employee
(access control domain) and the message being sent (network
domain). It is not needed to manuallyopena firewall to allow
maintenance.

V. D ISCUSSION

As shown in the previous section, the middleware architec-
ture and policy specification framework provided by LGI can
be used to describe the security architecture for our example in
one integrated way across the three domains identified in the
introduction. This is done in a declarative style using event-
condition-action rules expressed in Prolog. In our example,
the infrastructure is described directly in the form of Prolog
facts, but it is also possible to use external databases as fact
bases, allowing the adaptability of laws upon changes to the
filtering and exception rules. With the appropriate interfaces,
existing configuration databases and user directories can be
used. Arbitrarily complex routines can then be built to deal
with the inherent complexity of the security setup of a large
organization. Using Prolog also provided the ground for a
formal representation of policies. In addition to this, LGI
provides the ability to automatically enforce policies in a
distributed environment although at the expenses of installing
its middleware on all computational nodes that need to be
subjected to a policy.

According to our previous survey [17], LGI is able to
express other access control policy models such as the Manda-
tory Access Control (MAC) and the Discretionary Access
Control (DAC), in addition to the Role-Based Access Control
Model (RBAC). Besides, it is able to express different types of
access control policies such as obligation that triggers deadline
events and sanction operations automatically, authorization
and delegation. Thus, although not the focus of the present
paper, LGI is potentially able to express cross-domain policies
involving other models and types of access control as well.

Future work in this direction is in our plans.
LGI, as a coordination framework, binds the specification

of policies to the concept of message exchange. On the one
hand, this way of thinking fits well with an important type
of middleware; namely message-oriented middleware. Also
modern approaches such as SOA/Web Services are often used
in a message-oriented way. On the other hand, LGI forces
everything to be specified in terms of message exchange, even
when this is not intuitive. For instance, local access control
(e.g. a workstation accessing its own resources) has to be
modeled in terms of message exchange, where procedure call
are more intuitive.

Despite the beneficial aspects of Prolog and LGI, the task
of debugging Prologlaws can be complex. Prolog supports
debugging aids in the format of predicates like trace, spy and
even print [12]. The LGI toolkit Moses supports debugging
and testing operations like show, discloseCS and enterTest [8]
and also provides a Law Tester module. However, including
working Prolog code into a LGIlaw code does not necessarily
result in a guaranteed success. Other sources of problem can
turn into confusing situations. As a first example, syntax errors
on commands specific to LGI such as primitive operations are
not detected and causes rules after the one which contains the
problem to be ignored at run-time. As a second example, we
found out in our example that Prolog operators like=> and
=< are ignored in LGI laws3 so, to avoid this, the interval
inside a range must be tested with> and< and then bounds
must be tested separately. As a last example, problems in a
law usually disable the debugging aiding operations and it can
turn into a deadlock until the source of the problem is found.

VI. RELATED WORK

Our work is both related to security policy specification
languages and to model-driven security.

In the security policy specification literature, most lan-
guages are domain specific. Thus, we have the domain of ac-
cess control e.g. Security Policy Language [18], Authorization
Specification Language [19] and Temporal Role-Based Access
Control [20] and the domain of network e.g. Path-based Policy
Language [21], Routing Policy Specification Language [22]
and Clark’s Policy Term [23]. However, we also have some
overlaps between domains. Ponder [24] policies, for example,
can combine parameters of Quality of Services (QoS) within
networks with access control elements. Additionally, a recent
stream of research is looking into physical conditions such
as the location of a user considered in access control poli-
cies [25]–[27]. Furthermore, formal methods have also been
used to map the physical world (in terms of mobility aspects
for example) and the abstract world of policies [28]. However,
although we can identify languages that allow interceptions
between two domains, we are not aware of any language that
provides the ability to combine all these three domains in a
single policy, like it is possible with LGI.

3Listing 7 contains the operators=> and=< for simplicity.

Model-driven security uses graphic models to make the
connection between architectural domains explicit. Luck et
al. [29] propose a graphical tool which allows linking elements
from different domains resulting in configuration files that can
be implemented by the Linux kernel extension IPchains. Their
approach has two drawbacks. The first drawback is visual pol-
lution which compromises administration and scalability when
representing real-life network environments. Albuquerque et
al. realized this gap and proposed an intermediate level of
abstraction to their model [7], [30]. However, still a one
to one relationship between the number of objects in this
level and the number of users remains. Therefore, probably
in large organizations the number of connections between
objects and users would not be understandable graphically.
Second, it seems that the rules generated automatically [7]
by the model will be imported as files to be enforced by
IPchains. Therefore, if the model changes, rule files will have
to be changed manually. Furthermore, rules at the level of
IPchains do not understand the abstractions of the upper levels
of the model, thus in the model-based approach we have
a refinement process and not an alignment of domains in
the sense that we cannot use elements of different domains
concurrently in a combined policy. In summary, by looking at
available model-driven security approaches we observe that:
(i) they tend to be not scalable in terms of the amount of
cross-domain connections to be represented graphically, (ii)
they are not enforced in terms of automatic configuration of
network resources and (iii) they are based on refinement and
so policies are derived at the lower level and cannot combine
elements from the upper levels. Our approach, however, avoids
a high level of granularity by dealing directly with roles in
the sense that each agent holds the information of which role
it has. Additionally, the policy can be enforced on any node
across the network, considering LGI controllers are installed
on all computational nodes involved. Finally, we can deal with
elements from three domains without restrictions.

VII. C ONCLUSION

IT security in large organizations spans three architectural
domains: access control, network layout and physical infras-
tructure. It is important that these domains are kept aligned as
a way to manage the growing complexity of organizations.
Current approaches in the area of policy specification and
model-driven security either do not allow for the combination
of elements from all these different domains in a single policy
or suffer from the scalability of a graphical representation.
We have demonstrated in this paper the ability to specify and
enforce a cross-domain policy using a framework called Law
Governed Interaction (LGI), which provides a modeling frame-
work that alleviates these problems. LGI is flexible enough
while still preserving the benefits of formal specification and
automatic enforcement.

As future work, we intend to compare LGI, as a formal
specification language based on Prolog, with Alloy [31], a
first-order formal specification language. The goal is to discuss
benefits and drawbacks of each approach based on examples

involving interactions between agents. More specifically, we
want to investigate the preventive characteristic of LGI at
policy run-time, achieved by governing agents according to
a law, against the detective characteristic of Alloy at policy
design-time, achieved by the possibility to reason about policy
inconsistencies for example.

Acknowledgments

This research is supported by the research program Sentinels
(www.sentinels.nl). Sentinels is being financed by Technology
Foundation STW, the Netherlands Organization for Scientific
Research (NWO), and the Dutch Ministry of Economic Af-
fairs.

REFERENCES

[1] IT Governance Institute, “CobiT 4.0 - Control Objectives for Information
and related Technology,” 2005,http://www.itgi.org.

[2] Office of Government Commerce, “IT Infrastructure Library (ITIL),”
2000,www.itil.co.uk/.

[3] International Organization for Standardization, “ISO 9000: Quality Man-
agement,” 2003,http://www.bsi-global.com/Global/iso9000.xalter.

[4] J. A. Zachman, “A framework for information systems architecture,”
IBM Syst. J., vol. 26, no. 3, pp. 276–292, 1987.

[5] P. van Eck, H. M. Blanken, and R. Wieringa, “Project GRAAL: Towards
Operational Architecture Alignment,”International Journal Cooperative
Information Systems, vol. 13, no. 3, pp. 235–255, 2004,http://dx.doi.org/
10.1142/S0218843004000961.

[6] M. Lankhorst,Enterprise Architecture at Work - Modeling, Communi-
cation and Analysis. Springer-Verlag, April 2005.

[7] J. P. de Albuquerque, H. Krumm, and P. L. de Geus, “Policy modeling
and refinement for network security systems,” inPOLICY ’05: 6th IEEE
Int. Workshop on Policies for Distributed Systems and Networks. IEEE
Computer Society, 2005, pp. 24–33,http://dx.doi.org/10.1109/POLICY.
2005.24.

[8] N. Minsky, “Law governed interaction (LGI): A distributed coordination
and control mechanism, version 0.9.2,” October 2005,http://www.moses.
rutgers.edu/documentation/manual.pdf.

[9] V. Ungureanu and N. H. Minsky, “Establishing business rules for
inter-enterprise electronic commerce,” inDISC’00: Proc. 14th Int.
Symp. on Distributed Computing, ser. LNCS 1914. Springer-Verlag,
October 2000, pp. 179–193. [Online]. Available:citeseer.ist.psu.edu/
ungureanu00establishing.html

[10] X. Ao and N. H. Minsky, “On the role of roles: from role-based to role-
sensitive access control,” inSACMAT ’04: Proc. 9th ACM Symp. on
Access control models and technologies. New York, NY, USA: ACM
Press, 2004, pp. 51–60.

[11] X. Ao, N. Minsky, and T. D. Nguyen, “A hierarchical policy specification
language and enforcement mechanism for governing digital enterprises,”
in POLICY’02: Proc. 3rd IEEE Int. Workshop on Policies for Distributed
Systems and Networks. Washington, DC, USA: IEEE Computer
Society, June 2002, pp. 38–49,http://doi.ieeecomputersociety.org/10.
1109/POLICY.2002.1011292.

[12] I. Bratko, Prolog Programming for Artificial Intelligence, 2nd ed.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[13] N. H. Minsky and V. Ungureanu, “Law-governed interaction: a coordi-
nation and control mechanism for heterogeneous distributed systems,”
ACM Transactions on Software Engineering and Methodology, vol. 9,
no. 3, pp. 273–305, 2000,citeseer.ist.psu.edu/minsky00lawgoverned.
html.

[14] R. F. Stark, “The theoretical foundations of LPTP (a logic program
theorem prover),”Journal of Logic Programming, vol. 36, no. 3, pp.
241–269, 1998.

[15] N. Lindenstrauss, Y. Sagiv, and A. Serebrenik, “Termilog: A system
for checking termination of queries to logic programs,” inCAV ’97:
Proceedings of the 9th International Conference on Computer Aided
Verification. London, UK: Springer-Verlag, 1997, pp. 444–447.

[16] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia, “Inte-
grated program debugging, verification, and optimization using abstract
interpretation (and the ciao system preprocessor),”Science of Computer
Programming, vol. 58, no. 1-2, pp. 115–140, 2005,http://dx.doi.org/10.
1016/j.scico.2005.02.006.

[17] V. N. L. Franqueira, “Access control from an intrusion detection per-
spective,” University of Twente, Tech. Rep. TR-CTIT-06-10, February
2006,http://eprints.eemcs.utwente.nl/2753/.

[18] C. Ribeiro and P. Guedes, “SPL: An access control language for security
policies with complex constraints,” INESC, Lisboa, Portugal, Tech. Rep.
RT-0001-99, January 1999,citeseer.ist.psu.edu/ribeiro99spl.html.

[19] S. Jajodia, P. Samarati, and V. S. Subrahmanian, “A logical language for
expressing authorizations,” inSP ’97: Proceedings of the 1997 IEEE
Symposium on Security and Privacy. Washington, DC, USA: IEEE
Computer Society, 4-7 May 1997, pp. 31–42.

[20] E. Bertino, P. A. Bonatti, and E. Ferrari, “TRBAC: a temporal role-
based access control model,” inRBAC ’00: Proceedings of the fifth ACM
workshop on Role-based access control. New York, NY, USA: ACM
Press, 2000, pp. 21–30,http://doi.acm.org/10.1145/344287.344298.

[21] G. N. Stone, G. Lundy, and G. G. Xie, “Network policy languages: A
survey and a new approach,”IEEE Network, vol. 15, no. 1, pp. 10–
21, January-February 2001,http://www.cs.nps.navy.mil/people/faculty/
xie/papers/PPL-survey-IEEENework01.pdf.

[22] D. Meyer, J. Schmitz, C. Orange, M. Prior, and C. Alaettinoglu, “Using
RPSL in Practice,” August 1999, network Working Group Request for
Comments: 2650 -http://www.rfc-archive.org/getrfc.php?rfc=2650.

[23] D. Clark, “Policy Routing in Internet Protocols,” May 1989, network
Working Group Request for Comments: 1102 -http://www.rfc-archive.
org/getrfc.php?rfc=1102.

[24] L. Lymberopoulos, E. Lupu, and M. Sloman, “An Adaptive Policy Based
Framework for Network Services Management,”Journal of Network and
Systems Management, vol. 11, pp. 277–303, 2003.

[25] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati, and
P. Samarati, “Supporting location-based conditions in access control
policies,” in ASIACCS ’06: Proceedings of the 2006 ACM Symposium
on Information, computer and communications security. New York,
NY, USA: ACM Press, 2006, pp. 212–222,http://doi.acm.org/10.1145/
1128817.1128850.

[26] I. Ray and M. Kumar, “Towards a Location-Based Mandatory Access
Control Model,” Computers & Security, vol. 25, no. 1, pp. 36–44,
February 2006.

[27] I. Ray and L. Yu, “Short paper: Towards a location-aware role-based
access control model,” inSECURECOMM’05: Proceeding of the First
International Conference on Security and Privacy for Emerging Areas
in Communications Networks. New York, NY: IEEE Computer Society
Press, 2005, pp. 234–236,http://doi.ieeecomputersociety.org/10.1109/
SECURECOMM.2005.50.

[28] P. H. Hartel, P. van Eck, S. Etalle, and R. Wieringa, “Modelling
mobility aspects of security policies.” inConstruction and Analysis of
Safe, Secure, and Interoperable Smart Devices: International Workshop,
CASSIS 2004, ser. LNCS, G. Barthe, L. Burdy, and M. Huisman, Eds.,
vol. 3362. Springer-Verlag, March 2004, pp. 172–191.

[29] I. Luck, C. Schafer, and H. Krumm, “Model-based tool-assistance for
packet-filter design,” inPOLICY ’01: Proc. Int. Workshop on Policies
for Distributed Systems and Networks, ser. LNCS 1995. London, UK:
Springer-Verlag, 2001, pp. 120–136.

[30] J. P. de Albuquerque, H. Krumm, and P. L. de Geus, “On scalability
and modularisation in the modelling of network security systems,”
in ESORICS ’05: Proceedings of the 10th European Symposium on
Research in Computer Security, ser. Lecture Notes in Computer Science,
vol. 3679. Springer, 2005, pp. 287–304.

[31] D. Jackson, I. Shlyakhter, and M. Sridharan, “A Micromodularity
Mechanism,” inESEC/FSE-9: Proceedings of the 8th European software
engineering conference held jointly with 9th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering. New York,
NY, USA: ACM Press, 2001, pp. 62–73,http://doi.acm.org/10.1145/
503209.503219.

http://www.itgi.org
www.itil.co.uk/
http://www.bsi-global.com/Global/iso9000.xalter
http://dx.doi.org/10.1142/S0218843004000961
http://dx.doi.org/10.1142/S0218843004000961
http://dx.doi.org/10.1109/POLICY.2005.24
http://dx.doi.org/10.1109/POLICY.2005.24
http://www.moses.rutgers.edu/documentation/manual.pdf
http://www.moses.rutgers.edu/documentation/manual.pdf
citeseer.ist.psu.edu/ungureanu00establishing.html
citeseer.ist.psu.edu/ungureanu00establishing.html
http://doi.ieeecomputersociety.org/10.1109/POLICY.2002.1011292
http://doi.ieeecomputersociety.org/10.1109/POLICY.2002.1011292
citeseer.ist.psu.edu/minsky00lawgoverned.html
citeseer.ist.psu.edu/minsky00lawgoverned.html
http://dx.doi.org/10.1016/j.scico.2005.02.006
http://dx.doi.org/10.1016/j.scico.2005.02.006
http://eprints.eemcs.utwente.nl/2753/
citeseer.ist.psu.edu/ribeiro99spl.html
http://doi.acm.org/10.1145/344287.344298
http://www.cs.nps.navy.mil/people/faculty/xie/papers/PPL-survey-IEEENework01.pdf
http://www.cs.nps.navy.mil/people/faculty/xie/papers/PPL-survey-IEEENework01.pdf
http://www.rfc-archive.org/getrfc.php?rfc=2650
http://www.rfc-archive.org/getrfc.php?rfc=1102
http://www.rfc-archive.org/getrfc.php?rfc=1102
http://doi.acm.org/10.1145/1128817.1128850
http://doi.acm.org/10.1145/1128817.1128850
http://doi.ieeecomputersociety.org/10.1109/SECURECOMM.2005.50
http://doi.ieeecomputersociety.org/10.1109/SECURECOMM.2005.50
http://doi.acm.org/10.1145/503209.503219
http://doi.acm.org/10.1145/503209.503219

	Introduction
	Other approaches to the alignment problem
	Contribution of this paper
	Organization of this paper

	Example - overview and formalization
	Law Governed Interaction (LGI) - overview
	Local and distributed aspects of LGI
	Flexibility of LGI

	Example - implementation in LGI
	Local and distributed aspects of LGI
	Flexibility of LGI

	Discussion
	Related work
	Conclusion
	References

