
Access Control from an Intrusion Detection

Perspective1

Virginia Nunes Leal Franqueira
Centre for Telematics and Information Technology, University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands
franqueirav@ewi.utwente.nl

February 28, 2006

1This research is supported by the research program Sentinels (www.sentinels.nl).
Sentinels is being financed by Technology Foundation STW, the Netherlands Organi-
zation for Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.

Technical Report TR-CTIT-06-10

Contents

1 Motivation 1
1.1 From access control to intrusion detection 1
1.2 From intrusion detection to access control 2
1.3 Narrowing the gap between access control and intrusion detection 4
1.4 Organization of the report . 6

2 Access Control Policy Models 7
2.1 Discretionary Access Control . 7
2.2 Mandatory Access Control . 8
2.3 Role-Based Access Control . 9
2.4 Policy Models Comparison . 9

3 Comparison Framework 11
3.1 Types of Access Control Policy 12
3.2 Elements . 13
3.3 Constraints . 14
3.4 Comparison Structure . 15

4 Access control Languages 17
4.1 Ponder . 18

4.1.1 Ponder access control elements 18
4.1.2 Ponder permissions . 19
4.1.3 Ponder extensions . 20
4.1.4 Ponder access control models 21
4.1.5 Ponder comparison summary 21

4.2 Law-governed Interaction - LGI 22
4.2.1 LGI complementary concepts 23
4.2.2 LGI access control elements 23
4.2.3 Roles in LGI . 26
4.2.4 LGI permissions . 26
4.2.5 LGI access control models 28
4.2.6 LGI comparison summary 29

4.3 Security Policy Language - SPL 30
4.3.1 SPL access control elements 30

1

4.3.2 Grouping in SPL . 30
4.3.3 SPL permissions . 31
4.3.4 SPL access control models 33
4.3.5 SPL comparison summary 34

4.4 Policy Description Language - PDL 34
4.4.1 PDL comparison summary 35

5 Discussion 40

6 Conclusions 43

2

Abstract

Access control and intrusion detection are essential components for securing an
organization’s information assets. In practice, these components are used in iso-
lation, while their fusion would contribute to increase the range and accuracy
of both. One approach to accomplish this fusion is the combination of their
security policies. This report pursues this approach by defining a comparison
framework for policy specification languages and using this to survey the lan-
guages Ponder, LGI, SPL and PDL from the perspective of intrusion detection.
We identified that, even if an access control language has the necessary ingre-
dients for merging policies, it might not be appropriate due to mismatches in
overlapping concepts.

Chapter 1

Motivation

Is there a fuzzy area between intrusion detection and access control? We hypoth-
esize that the answer is yes and it motivates this report. We will discuss this
fuzzy area looking in two directions: from access control to intrusion detection
and from intrusion detection to access control.

1.1 From access control to intrusion detection

The three basic objectives of security, which are confidentiality, integrity and
availability, aim to guarantee that information is safeguarded from misuse, mod-
ification and denial of access, respectively. In order to achieve these objectives,
access control is not sufficient on its own and must be supported by two kinds of
mechanisms: authentication and auditing [Dam02, Sch03]. First, we have the
authentication process which is concerned with verifying the identity of a user,
by checking passwords, credit card numbers, PIN numbers and so on. Second,
we have access control itself which ”is concerned with limiting the activity of
legitimate users who have been successfully authenticated”, according to Dami-
anou et al. [DDLS00]. Finally, we have the auditing process which consists of
registering access data (user requests and activities) in an audit trail or audit
log for later analysis. However, this analysis can be performed automatically by
an Intrusion Detection System (IDS), not only in a passive way, by analyzing
audit records off-line, but also in an active way, by analyzing suspected security
violations in real-time.

Sandhu, in 1997 [SS97], has already made the connection between access con-
trol and intrusion detection. Figure 1.1 is an adapted combination of Sandhu’s
figures 1 and 10 [SS97]. Thus, it shows the sequence of four mutually support-
ing mechanisms1: subject’s authentication, control over subject’s access to an
object (according to authorization policies), logging of access data into an audit
log database and, finally, auditing i.e. log analysis performed by an IDS. As

1The mechanisms and databases are illustrated separately just to demonstrate their differ-
ent functionalities. In practice, it might not occur as shown.

1

a result of this analysis, the IDS issue alerts for administrators about security
policy violations2.

In summary, from the access control point of view, access control and intru-
sion detection complement each other by tracking users’ misbehavior, misuse of
users’ privileges and security flaws which can be an indication of:

• Trojan Horse attacks, which occur when a malicious but apparently harm-
less program is installed in a host machine;

• host penetration3, used by intruders as a step towards a more sophisticated
attack;

• inside intruders4 attacks, such as password cracking, information theft
and falsification, system configuration changes used by intruders to set
backdoors5;

• intruder tracks covering (also called masquerading), achieved by altering
log entries and disguising the steps used to gain access.

1.2 From intrusion detection to access control

An IDS is a software sensor which detects malicious activity based on signatures,
i.e. patterns of known attacks, or based on unusual or abnormal user behavior.
The former is referred to as a signature-based IDS and the latter as an anomaly-
based IDS. Thus, we are talking here about malicious activity, unusual behavior,
abnormal behavior and attack. All these expressions involve the notion of threat.
Anderson [And80], in the 80’s, defined threat and attack as follows.

A threat is ”the potential possibility of a deliberate unauthorized attempt
to: access information, manipulate information, render a system unreliable or
unusable”.

An attack is ”a specific formulation or execution of a plan to carry out a
threat”.

Based on Anderson’s definitions, we can argue that an Intrusion Detection
System is a mechanism that detects attacks6 to mitigate or avoid threat. Be-
sides, a threat is directly related to unauthorized access and manipulation to
information and systems. Therefore, again we find a connection between access
control and intrusion detection. However, there are complications.

2Violation of a policy represents violation of a norm specified by a policy [WM93].
3Penetration is to ”obtain (unauthorized) access to files and programs or the control state

of a computer system” [McH01]
4We consider inside intruders anyone who has access to the Local Area Network of the

organization, being legitimate user or not.
5Backdoor is an open, but not evident, access to a host made available by an intruder for

later use when launching an attack.
6More recently, an attack has been differentiated from an intrusion [KVV05] as a successful

violation of a security policy. While an intrusion is a sequence of related actions that result
on a compromised state of a target system. However, for the purpose of this report these two
expressions will be used as synonyms.

2

Figure 1.1: Authentication, Access Control, Auditing and passive Intrusion
Detection

There are two main sources of data for an IDS: data collected from a single
host or single application, or from network traffic. An IDS that uses the former
is called a Host IDS (HIDS); an IDS that uses the latter is called a Network IDS
(NIDS). A hybrid IDS combines both approaches and can also combine different
detection methods. IDSs scan network traffic or also incoming and outgoing host
traffic to find potentially malicious packets. Thus, they analyze packets at OSI
layers 3 (Network) and 4 (Transport) but are unable to consider the semantics
of application protocols like HTTP, for example. As a consequence, IDSs are
usually ineffective to detect inside intruders who have access to more information
than external intruders and may even be familiar to the security controls of the
applications, but who could still be detected by closely inspecting the nature of
their interactions within the applications.

The use of application semantics to detect more subtle attacks can be found
in the literature since 1986 when Discovery [Ten86], a database IDS, was re-
ported [McH01]. Since then, three different types of application-based IDSs

3

have emerged [WH01]. In the first type, the IDS uses intercepted traffic going
in and out of the application. In the second type, the IDS relies on third-party
logs from Operating Systems, databases and firewalls [CGL99, Ten86]. Finally,
in the last type, the IDS directly uses internal application messages and library
calls [AJ01, AL01]. Thus, the last group provides the possibility of bidirectional
on-line interaction between the IDS and the application, and more precise IDS
response and analysis. However, although IDSs are increasingly taking advan-
tage of the application semantics, it seems to be possible to narrow even more
the gap between access control and intrusion detection.

1.3 Narrowing the gap between access control
and intrusion detection

Although a theoretical overlap exist between access control and intrusion de-
tection, as discussed in Sections 1.1 and 1.2, in practice there is a gap between
them. We present next three alternatives to narrow this gap, as shown in Fig-
ure 1.2.

Figure 1.2: Three alternatives to narrow to gap between intrusion detection and
access control

1. Violation as event7 (alternative number 1 in Figure 1.2). This alterna-
tive explores the combination of output from access control and intrusion
detection components. This combination can be acquired in two ways.

7The concept of event according to the Intrusion Detection Working Group (IDWG) is an
occurrence in the data source that is detected by the sensor and which may result in an alert
being transmitted. The IDWG is part of the Internet Engineering Task Force (IETF).

4

• Correlation of log events (alternative number 1a in Figure 1.2). This
approach relies on the correlation of log entries, i.e. alerts, to ab-
stract attack scenarios. Different data models for alert correlation
have been proposed in the literature to allow interoperability be-
tween different kinds of security sensors such as IDSs, firewalls and
routers. One of these data models is the Intrusion Detection Message
Exchange Format (IDMEF) [DCF06] proposed by the Intrusion De-
tection Working Group (IDWG) [WE02]. It is a standard represen-
tation of intrusion alerts based on the Extensible Markup Language
(XML) syntax. Many correlation engines [CCM02, GG05] build up
correlation engines based on IDMEF format logs. Other data models
have also been proposed along with correlation methods such as the
one by Kruegel [KVV05] which comprehends steps of alert normal-
ization, aggregation, correlation and prioritization.

• Correlation of real-time events (alternative number 1b in Figure 1.2).
This approach relies on the correlation of events as soon as they
happen to abstract attack scenarios. The correlation of events in real-
time is a difficult task because of the huge amount of events which
occur everyday in large networks. One approach to analyze real-
time events is the splitting of the data stream into smaller and more
manageable streams [KVVK02]. Another approach is to have real-
time event sensors scattered across the network feeding a centralized
correlation engine. However, this approach has the draw back of
sensors control and coordination.

2. Extra information (alternative number 2 in Figure 1.2). Access control
policies can be used as extra information when modeling normal behav-
ior on a specification-based anomaly detector [SGF+02, KRL97]. The
combination of policies (signature detection), and anomaly detection al-
lows decreasing the main problem of the latter, i.e. the high rate of false
alarms, while preserving the ability to detect unknown attacks, the main
problem of the former approach.

3. Merged policy (alternative number 3 in Figure 1.2). This alternative ex-
plores the combination of input from access control and intrusion detection
components, assuming that both input are in the format of policies. We
notice in the literature that these two research fields are particularly apart
in terms of policy specification. The distance between these two domains
may have a probable explanation: while access control involves concepts
from the organizational domain, such as subjects, objects and permitted
actions, intrusion detection involves concepts from a much more technical
domain, such as the network infra-structure, network nodes, protocols and
packets. This report focus on this alternative, as outlined in Section 1.4.

5

1.4 Organization of the report

We have discussed in Section 1.3 three ways to narrow the existing gap between
intrusion detection and access control. This report, however, focus in only
one alternative, the ”Merged policy”. Therefore, an evaluation framework is
proposed to (1) investigate if the syntax of access control languages support
expressing some basic elements needed for intrusion detection policies and to
(2) identify if the access control languages meet a set of criteria that will be
described in section 3. These criteria identify which policy types and constraints
are relevant from the perspective of an IDS.

We motivate our choices for the access control languages after we have pre-
sented the comparison criteria in Chapter 3.

Therefore, Chapter 2 gives a comparative overview of the generic security
policy models found in the literature, Chapter 3 discusses the comparison crite-
ria which will be used to analyze the policy specification languages. Chapter 4
presents the chosen access control policy specification languages and a compar-
ison summary table for each language. Chapter 5 discusses the applicability of
the found most promising access control language in terms of merging policies
for the specification of attack scenarios. Finally, in Chapter 6, conclusions and
future work is presented.

6

Chapter 2

Access Control Policy
Models

The languages compared in Chapter 4 allow the specification of access con-
trol policies. However, access control policies can follow three different security
models. In the current chapter, we provide an overview of these models: Dis-
cretionary Access Control (DAC), Mandatory Access Control (MAC)1 and Role
Based Access Control (RBAC) [PP03]. DAC, MAC and RBAC have all been
recognized as official standards, the first two models by the U.S. Department of
Defense Orange Book [SS97] and the last model as a NIST2 standard [FSG+01].

2.1 Discretionary Access Control

As we have seen in Chapter 1, access control is about controlling which subjects
(active entities, such as users or systems) have authorized access, depending
on access rights and modes, to which object (passive entities, such as files,
bank accounts or printers). In the Discretionary Access Control (DAC) model,
access is granted or denied based on the triple (s, o, m), where s is the set of
subjects, o is the set of objects and m is the set of access modes (e.g. read,
write and execute). An access matrix uses this triplex information to obtain
authorizations, as shown in the example 2.1. Thus, the state of the matrix
at a point in time represents the authorization state of a subject over objects.
The size of the matrix can become very large because of empty spaces (i.e. no
permissions for a subject on an object) and because a single user can represent
several subjects, depending for example, on which project he is working on.
Therefore, in practice this matrix is usually implemented as Access Control Lists
(linked lists headed by object, used in Unix OS), Capabilities Lists (linked lists
headed by subject) or Relations (table with a single authorization per row, used

1The Chinese Wall model [BN89] is considered part of the MAC model because both are
lattice-based model [San92]. Thus, is not presented as a separate model in this report.

2National Institute of Standards and Technology

7

in database management). A review of different implementation is provided by
Sandhu [SS97] and Samarati [SdV01].

Access rights, in the DAC model, are administrated in an owner-based fash-
ion. This administration has three variations: (1) In a Strict DAC model, the
owner of an object can propagate access rights to other subjects but not transfer
ownership; (2) In a Liberal DAC model, the owner can delegate the authority to
propagate access rights to other subjects; (3) In a DAC with ownership change,
the owner can transfer ownership to other subjects.

The DAC model is also known as Commercial Security Policy. Clark and
Wilson [CW87] uses policies based on ”well-formed transactions”, which em-
bodies the concept of access matrix for deriving authorizations based on the
triplex (user, data items, transactions procedure) to introduce the concept of
separation of duties [FSG+01] later on incorporated to the RBAC model.

Object 1 Object 2 Object 3
Subject 1 read read

write
execute

Subject 2 read read
write
execute

Subject 3 read
write

read
write
execute

Table 2.1: Access Matrix example

2.2 Mandatory Access Control

The Mandatory Access Control (MAC) model differs from the DAC model be-
cause, while the latter enforces access based on subject discretion, the former
enforces access based on mandatory rules determined by an authority. There-
fore, in the MAC model the access is granted or denied based on: the subject’s
clearance level and the object’s security level. Both these levels are determined
by (1) the confidentiality of the information (hierarchically defined) such as
Top Secret, Secret and Confidential and by (2) a project3 such as Nuclear,
Crypto, and Alpha. Access to information (i.e. to objects) is based on the
”need-to-know” principle and, therefore, a subject can only access an object
with confidentiality level below or equal to his clearance level and belonging
to the the same project4. Moreover, two other properties, called *-Property,
are required to hold: (1) read-down property defines that a subject’s clearance

3The concept of projects can be replaced by categories or compartments.
4This basic access rule is called Simple Security Property [Dam02].

8

must dominate the object’s security level5; (2) write-up property defines that a
subject’s clearance must be dominated by the object’s security level6.

The MAC model, also known as Military Security Policy, was initially for-
malized by Bell and La Padula [BP73] and enforces data confidentiality. Biba’s
model followed the same theory but enforces data integrity [Bib77]. There-
fore, Biba’s model defines integrity levels (e.g. Crucial, Important, Unknown)
analogous to Bell-LaPadula confidentiality levels. Both Bell-LaPadula and
Biba models enforce that MAC is a lattice-based model since they provides
a ”one-direction information flow in a lattice of security labels”7, according to
Sandhu [SS94].

2.3 Role-Based Access Control

The Role-Based Access Control model (RBAC) combines the strengths of both
the DAC and MAC models: it grants access to subjects on objects (such as in
DAC) but allows regulations on the use and assignment of authorizations (such
as in MAC). Subjects are assigned to roles and permissions are also assigned
to roles, therefore, access is granted or denied based on roles. The RBAC
core model [FSG+01] defines five basic elements: (1) user : human beings; (2)
role: job function empowering authority and responsibilities which are extended
to the user assigned to the role; (3) object : entity that contains or receives
information; (4) operation: actions or functions which can be invoked by a user;
(5) permission: approval to perform an operation on objects. Furthermore,
RBAC defines the concept of session as mapping between a user and a set of
activated roles assigned to the user. Therefore, a user can play different roles
and hence have different permissions in different sessions.

The RBAC model has been first introduced in the mid 90’s and, since then,
became a standard security model widely spread among different applications
and domains. For a history line on RBAC, refer to [FSG+01, Sch03, Dam02].

2.4 Policy Models Comparison

Table 2.2 shows a parallel summary of the models presented in sections 2.1, 2.2
and 2.3.

5It means that the object’s confidentiality level must be less than or equal to the subject’s
confidentiality level and also that the object’s project or category must be a sub-set of the
subject’s project. For example, an object with security level <Secret,Nuclear> could be read
by someone with clearance level <Top Secret, [Nuclear,Alpha]> but not by someone with
clearance level <Top Secret,Alpha>

6It means that the subject’s confidentiality level must be less than or equal to the object’s
confidentiality level and also that the subject’s project must be a sub-set of the object’s project
or category. For example, someone with clearance level <Secret,Nuclear> could write to an
object with security level <Top Secret,[Nuclear, Alpha]> but not to an object with security
level <Confidential,Nuclear>.

7Labels refer to the classification in Top Secret, Secret, etc and in projects.

9

D
is

cr
et

io
n
a
ry

A
cc

es
s

C
o
n
tr

o
l

M
a
n
d
a
to

ry
A

cc
es

s
C

o
n
tr

o
l

R
o
le

-B
a
se

d
A

cc
es

s
C

o
n
tr

o
l

A
cc

es
s

A
cc

es
s

to
o
b
je

ct
s

is
re

g
u
la

te
d

b
y

th
e

su
b
je

ct
’s

ow
n

d
is

cr
et

io
n

o
r

ju
d
g
m

en
t,

if
th

e
o
b
je

ct
is

ow
n
ed

b
y

th
e

su
b
je

ct
.

A
cc

es
s

to
o
b
je

ct
s

is
re

g
u
la

te
d

b
y

m
a
n
d
a
to

ry
ru

le
s

im
p
o
se

d
b
y

a
ce

n
tr

a
l
a
u
th

o
ri

ty
.

A
cc

es
s

to
o
b
je

ct
s

is
re

g
u
la

te
d

b
y

th
e

su
b
je

ct
’s

a
u
th

o
ri

ty
a
n
d

re
-

sp
o
n
si

b
il
it

ie
s

in
a
n

o
rg

a
n
iz

a
ti

o
n
.

A
u
th

o
ri

za
ti

o
n

A
cc

es
s

m
o
d
es

g
ov

er
n

th
e

a
cc

es
s

o
f
su

b
je

ct
s

to
o
b
je

ct
s.

S
ec

u
ri

ty
le

v
el

s
g
ov

er
n

th
e

a
cc

es
s

o
f
su

b
je

ct
s

to
o
b
je

ct
s.

R
o
le

s
g
ov

er
n

th
e

a
cc

es
s

o
f

su
b
-

je
ct

s
to

o
b
je

ct
s.

W
ea

k
n
es

se
s(

-)
a
n
d

S
tr

en
g
th

s(
+

)
(-

)
p
ro

p
a
g
a
ti

o
n

o
f

a
cc

es
s

ri
g
h
ts

ca
n

b
ec

o
m

e
a

sa
fe

ty
p
ro

b
le

m
,

es
p
ec

ia
ll
y

L
ib

er
a
l

D
A

C
a
n
d

D
A

C
w

it
h

ow
n
er

sh
ip

ch
a
n
g
e

a
p
p
ro

a
ch

es
.

(-
)

p
er

m
is

si
o
n
s

m
a
n
a
g
em

en
t

is
ti

m
e

co
n
su

m
in

g
b
ec

a
u
se

ch
a
n
g
-

in
g

a
se

t
o
f

p
er

m
is

si
o
n
s

re
q
u
ir

es
d
el

et
in

g
o
ld

o
n
es

a
n
d

en
te

ri
n
g

n
ew

o
n
es

in
d
iv

id
u
a
ll
y.

(+
)

a
cc

es
s

m
a
tr

ix
im

p
le

m
en

ta
ti

o
n

is
si

m
p
le

a
n
d

eff
ec

ti
v
e

fo
r

li
n
-

ea
r
a
cc

es
s
ri

g
h
ts

b
et

w
ee

n
su

b
je

ct
s

a
n
d

o
b
je

ct
s.

(-
)

in
a
d
eq

u
a
te

to
en

fo
rc

e
in

fo
rm

a
-

ti
o
n

fl
ow

p
o
li
ci

es
.

(-
)

u
se

o
f

p
ro

g
ra

m
s

th
a
t

cr
ea

te
s

a
u
to

m
a
ti

c
co

p
ie

s
o
f
a
n

o
b
je

ct
ca

n
re

p
re

se
n
t

a
T
ro

ja
n

H
o
rs

e
se

cu
ri

ty
b
re

a
ch

(r
ef

er
to

S
a
n
d
h
u

[S
a
n
9
3
,

p
a
g
e

8
])

.

(-
)

a
p
p
ro

p
ri

a
te

o
n
ly

fo
r

en
fo

rc
in

g
se

cu
ri

ty
in

a
o
n
e-

d
ir
ec

ti
o
n
a
l

in
-

fo
rm

a
ti

o
n

fl
ow

la
tt

ic
e.

(+
)

ca
n

b
e

a
p
p
li
ed

to
a
lm

o
st

a
n
y

si
tu

a
ti

o
n

w
h
er

e
o
n
e-

d
ir

ec
ti

o
n
a
l

in
fo

rm
a
ti

o
n

fl
ow

is
in

v
o
lv

ed
,

a
cc

o
rd

in
g

to
S
a
n
d
h
u

[S
a
n
9
3
].

T
h
er

ef
o
re

,
it

s
a
p
p
li
ca

ti
o
n

is
n
o
t

re
st

ri
ct

ed
to

m
il
it

a
ry

en
v
ir

o
n
-

m
en

ts
.

(+
)

si
m

p
le

m
a
n
a
g
em

en
t

o
f

p
er

-
m

is
si

o
n
s.

(+
)

p
o
li
cy

-n
eu

tr
a
l
i.
e.

ca
n

b
e

u
se

d
to

ex
p
re

ss
M

A
C

a
n
d

D
A

C
se

cu
-

ri
ty

p
o
li
ci

es
.

(+
)

h
ie

ra
rc

h
ic

a
l
ro

le
s
a
ll
ow

th
e

in
-

h
er

it
a
n
ce

o
f

p
ri

v
il
eg

es
a
n
d

p
er

-
m

is
si

o
n
s.

(+
)

le
a
st

-p
ri

v
il
eg

e
en

fo
rc

ed
si

n
ce

u
se

rs
a
re

o
n
ly

em
p
ow

er
ed

w
it

h
p
ri

v
il
eg

es
w

it
h
in

a
se

ss
io

n
.

(+
)

se
p
a
ra

ti
o
n

o
f

d
u
ti

es
o
b
ta

in
ed

b
y

d
efi

n
in

g
co

n
fl
ic

ti
n
g

ro
le

s
a
n
d

im
p
o
si

n
g

co
n
st

ra
in

ts
.

(-
)

u
se

r’
s

id
en

ti
ty

is
n
o
t

ca
p
tu

re
d

b
y

a
ro

le
b
u
t

m
ay

b
e

n
ec

es
sa

ry
.

F
o
r

ex
a
m

p
le

,
d
o
ct

o
r

”
A

”
sh

o
u
ld

o
n
ly

h
av

e
a
cc

es
s

to
h
is

p
a
ti

en
ts

re
co

rd
s

a
n
d

n
o
t

to
a
ll

re
co

rd
s

a
l-

lo
w

ed
b
y

h
is

ro
le

.

Table 2.2: Access Control Models [FSG+01, SS97, OSM00, San93, SS94, SdV01]

10

Chapter 3

Comparison Framework

In Chapter 1, we have identified three possibilities of using access control for
improving intrusions detection rate and quality. The possibility further inves-
tigated by this report is the merging of policies (section 1.2), which drives the
framework used for comparing the languages. In this chapter, we set the stage
for the comparison by first discussing the notion of security policy and then the
comparison criteria.

The concept of security policy is not always clear. Sterne [Ste91] had al-
ready indicated back in 1991 that the term Security Policy is overloaded. The
situation remains the same typically for three reasons. Firstly, security poli-
cies can have different levels of abstraction, from high-level policies expressed
in natural language to low-level configuration rules [LSK01, MOR01]. Secondly,
security policies can apply to several domains (e.g. database [BBC+02], Web
documents [BCF01]) and disciplines other than computer science (e.g. national
security, social security). Finally, the diversity of aspects involved with the no-
tion of security itself: three basic objectives i.e. confidentiality, integrity and
availability [LZ97] and several properties such as reliability, performance, safety,
trust and privacy [SWY+02, BA05].

In this report the Ponder concept of policy is used: a policy is a rule that
defines a choice in the behavior of a system. This concept enforces that policies
are a way of parameterizing system management (e.g. with access control com-
ponents) allowing changes in the behavior of a system without actually changing
the implementation of its components [Slo94].

Our comparison framework is built by arguing about three aspects of access
control policies that are considered essential for intrusion detection policies.
First, we argue about each type of access control policy to identify if a policy
violation of that type is meaningful for detecting intrusions. Second, we present
basic elements of access control and intrusion detection policies that are required
or represents an added-value towards the ”Merged policy” possibility, discussed
in section 1.2. Finally, we discuss constraints to determine which ones are
relevant from the intrusion detection perspective.

11

3.1 Types of Access Control Policy

Four types of access control policy are distinguished in the Ponder specification
language [DDLS01, Sch03]: authorization (positive and negative), obligation,
delegation (positive and negative) and refraining. They are used as reference in
this work because they are comprehensive, i.e. no other types of access control
policies could be identified in the literature. We argue for each type of policy if
it is interesting under the intrusion detection perspective and to which extent.

1. Authorization policies specify the actions a subject is permitted to
perform over an object. Wieringa and Meyer [WM93] define the purpose
of authorization mechanisms as to ”... protect the integrity of resources
in operating systems and databases, to guard the security of sensitivity
resources, and to protect the privacy of sensitive data.”. Therefore, in-
trusion detection and authorization policies are related since detection of
unauthorized access is a mechanism used to guard and protect resources.
The ability to express authorization policies is a requirement for compar-
ing the languages.

2. Obligation policies specify the actions a subject must perform on an
object, if an event occurs. These policies define the duties of the subject
in an organization and require the specification of a deadline and counter-
measures if the policy enforcement mechanism detects that the obligation
is not fulfilled. Therefore, obligations involve a choice the subject has be-
tween fulfilling or not an authority regulation. For example, ”a subject
has to show valid credentials to enter a system” is not really an obliga-
tion since if the rule is not fulfilled the subject simply does not get any
result. It involves no deadline or sanction actions because the outcome
is immediately visible to the subject. Obligations are more subtle rules
which involve watchdog guards to have it enforced. Nevertheless, subjects
in a broad sense can be considered as anything which can initiate actions
and, consequently, can be an automated agent for example. In this case,
the agent can have the obligation to monitor the login process and re-
port unsuccessful attempts under certain conditions. Thus, unfulfilling
this obligation can represent a breach of security and thus an opportunity
to intruders. Based on this reasoning, obligations will be considered as a
comparison item.

3. Delegation policies specify a transfer of authorization from one sub-
ject to another. By definition [WM93], delegation is ”an act in which
the authority to perform a task is transferred to someone (the delegate),
but where the final responsibility for the performance of the task is kept
by the one who delegates the task (the principal of delegation)”. Thus,
the principal of delegation can transfer a subset of its authority, i.e. a
subset of the actions he can perform over an object. A delegation policy
maps then to two authorization policies: one for the principal of delega-
tion and one for the delegate. A positive delegation can be revoked either

12

automatically by a time constraint clause indicating its validity or by the
specification of a negative authorization. A negative delegation policy
specifies a delegation which is forbidden, i.e. a subject cannot transfer the
permission to perform a task to someone else. For example, a manager
is not allowed to delegate the access rights over a cost file to employees
that are not also managers [DDLS00]. Therefore, positive delegation will
be considered as a comparison parameter for the same reason as autho-
rization policies. However, negative delegation will not be considered as
such because its violation seems to have no practical and direct usage for
intruders.

4. Refrain and negative authorization policies both specify actions that
a subject is not permitted, i.e. is forbidden, to perform over an object.
However, in Ponder [Sch03] the former are meant to be enforced by au-
thorization mechanisms active in the subject’s controller, e.g. when the
target1 is not trusted by the subject, while the latter are meant to be
enforced by the mechanisms active in the target’s controller. This differ-
entiation is not relevant for our comparison because it is specific to Ponder
implementation. Nevertheless, negative authorization can also be used in
two other circumstances: to temporarily remove access rights from a sub-
ject on an object and to restrict access when a permissive policy is the
default, i.e. when ”everyone” has access to ”something” unless it is ex-
plicitly forbidden [DDLS00]. In both cases, intruders can exploit negative
authorization policies for malicious purposes and the ability to express this
type of policy will be taken as a comparison item. Nevertheless, refrain
policies will be considered as already covered by negative authorization
policies.

In summary, it is essential that the access control languages support autho-
rization policies (both positive and negative), delegation policies (only positive)
and obligation under certain circumstances.

3.2 Elements

The basic elements found in intrusion detection policies2, extracted from the
Snort Users Manual3 [SP], are listed next. These elements represent just a small
sample of network-based IDS and aim to identify the possibility of representing
elements not belonging to the core of access control policies.

• Protocol (e.g. TCP/IP and UDP);

• IP Address;

• Port number;
1Target refers to target objects, i.e. a subject accesses target objects.
2We are considering signature-based IDSs.
3Snort is an open source IDS.

13

• Protocol flag (e.g. ACK and SYN);

• Packet content: to be matched with a string.

The core access control policy elements: subject, object and action are essen-
tial from the perspective of intrusion detection. Furthermore, expressing access
rights in terms of sets increases scalability, manageability and efficiency.

• a set of subjects (e.g. role and group);

• a set of objects (e.g. group or directory in the computer system);

• multiple operations.

The languages ability to support the elements mentioned above will be eval-
uated as an indication of possible combination between access control and in-
trusion detection elements into merged policy.

3.3 Constraints

Constrains are expressions used to limit or to restrict a variable within bounds.
The applicability of a policy is set by constraints. On the one hand, intrusion
detection involves essentially constraints of time and causality between events.
On the other hand, authorization (positive and negative) and delegation (only
positive) policies involve essentially constraints of time and restrictions over
values of attributes. We want to determine which constraints might be useful
for combining elements from both areas into a single policy.

Kumar’s signature classification for IDS [Kum95] is used as a reference for
reasoning about constraints.

1. existence of a state at a certain point in time (e.g. the violation of an
authorization policy as a whole);

2. sequence of several actions or activities happening either at repeated
intervals (e.g. action a ∆ action b ∆ action c) or within a duration (e.g.
∆ = [action a, action b]);

3. patterns of actions and activities:

(a) concurrence of actions and activities, i.e. occurring jointly but in any
order (e.g. action a and action b);

(b) absence of match in the entire searching space (e.g. (action a and
action b) and not action c);

(c) combination of matches over generalized selection of actions and ac-
tivities (e.g. from set = {action a, action b, action c} select the
combinations which could be malicious, such as {action a, action b}
and {action b, action c} for example).

14

Table 3.1 shows time constraints and Table 3.2 shows other constraints,
extracted from the classes of signatures identified by Kumar, discussed above,
and from the core access control policy elements, discussed in Section 3.2.

Time constraints Examples
time interval authorization valid between 9:00 and 17:00
time duration delegation valid during 24 hours
date interval authorization valid from 20/01/06 to 30/01/06

every date or day of week negative authorization repeatedly valid every Saturday
”after” time authorization valid after 12:00
”before” time authorization valid before 22:00

Table 3.1: Time constraints summary from Kumar events existence and sequence
classes

Other constraints Examples
if-then-else condition if subject belongs to group then

boolean operators (and) authorization applies to both actions ab
boolean operators (or) authorization applies to either action a or b

boolean negation action a not followed by action b within an interval
sets operations (union) members of group a plus members of group b

sets operations (difference) members of group a except members of group b
sets operations (intersection) members belonging to both groups a and b

Table 3.2: Other constraints summary from Kumar events patterns class and
access control policy elements

3.4 Comparison Structure

The comparison criteria are structured next, according to discussions in Sec-
tions 3.2, 3.1 and 3.3. The access control models supported by the language
(seen in Chapter 2) and the availability of a toolkit and technical documenta-
tion are also considered as comparison items.

• Access control elements

• Intrusion detection elements

• Positive authorization

• Negative authorization

• Delegation

15

• Obligation

• Time constraints

• Other constraints (condition, boolean operations and sets operations)

• Access Control model

• Toolkit and manual availability

16

Chapter 4

Access control Languages

In this chapter, we present a list of access control languages and motivate our
choice of languages for the comparison. Next, we provide an overview of the
selected languages and finally we present a table, as structured in Section 3.4,
for each language.

The classification of access control approaches is not clear-cut. Thus, we
present in this report a combined classification from published work [Dam02,
Sch03, DBSL02]. One language representative of each class has been selected for
this report, even though many languages fit in more than one class. The names
of the selected languages are emphasized in italic. Two groups of languages
have been left out of this report: the Logic-based Languages and Trust Specifi-
cation languages. The former group will remain as future work and the latter
is considered out of scope because we are interested in enforcing security inside
one organization and trust languages deal with cross-organizational security.

• Role-based Access Control Specification (e.g. Temporal Role-Based Ac-
cess Control [BBF00], Role Definition Language [HBM98], RCL2000 [AS00],
RBAC state-related constraints [CS96], Ponder).

• Management Policy (e.g. Policy Description Language, PCIM [MESW01]).

• Enterprise and Collaboration Policy (e.g. ODP-RM [ISO99], Law-Governed
Interaction, Event-Trigger-Rules [SLL+01]).

• High-level Policy Languages (e.g. Security Policy Language, Tower [HV01],
XACML [ftAoSIS02], LaSCO [HPL98]).

• Logic-Based Languages (e.g. Authorization Specification Language [JSS97],
Z [Bos95], Alloy [Sch03], Standard Deontic Logic [WM93], Maude [DHV03]).

• Trust Specification (e.g. PolicyMaker [BFL96], KeyNote [BFIK99], Trust
Policy Language [HMM+00]).

The remaining of this chapter contains the overview of the chosen languages
followed by a comparative table for each of them.

17

4.1 Ponder

Ponder is a declarative language based on an object-oriented model. It is used
to specify role-based policies such as access control policies [DDLS01], QoS poli-
cies [LLS03] and management policies [DDLS00]. Furthermore, it is supported
by a toolkit [SDL02], which is, however, no longer available for the research com-
munity as of February 2005. The Ponder toolkit includes a compiler framework
for translating policies to low-level enforceable representations such as firewall
rules, Linux security kernel calls, Java objects and XML files.

4.1.1 Ponder access control elements

Ponder allows expressing the basic elements of access control (subject, object
and action) and also permits expressing five kinds of grouping [DDLS00].

• Domains are sets of objects to which policies can be applied. Domains
follow the concept of a file system directory, structuring objects hierarchi-
cally and allowing reference by relative and absolute path1. Furthermore,
domains can be combined through scope expressions, evaluated each time
a policy is interpreted. Therefore, it is possible to retrieve domain mem-
bers, perform operations over domain sets, and to traverse the structure
of sub-domains in different ways.

• Groups are sets of policies related semantically and, therefore, instanti-
ated together. A group contains policies related to the same target object
which can be, for example, a department or an application.

• Roles are sets of policies related to a position or a job description in
an organization. Thus, roles allow grouping subjects with the same du-
ties, responsibilities and rights. For example, the role nurse describes
permissions applied to individual subjects, i.e. human being with nurse
qualifications. New hired nurses are then assigned to this predefined role.

• Relationships are sets of policies which determine rights and duties be-
tween roles. For example, a relationship MorningReport could describe the
obligation that subjects belonging to the role nurse have to issue a report
addressed to subjects belonging to role ward-supervisor every morning.
This relationship can then be instantiated for specific individuals.

• Management structures are sets of policies related to organizational
units. It defines which roles, relationships and other management struc-
tures should be instantiated together. For example, the management
structure Ward could contain the other structures MaternityWard and
EmergencyWard and several relationships between the roles nurse, pa-
tient and ward-supervisor.

1Similar to Unix file pathnames

18

4.1.2 Ponder permissions

Ponder also supports several types of policies as described next [DDLS00].
First, positive authorization policies define which actions2 a subject is per-

mitted to perform on a set of objects in the target domain. An optional when-
constraint clause and filters on actions can be used to limit the applicability
of the policy. Figure 4.1 shows an example3 of a positive authorization policy
authorizing network administrators to perform actions load, remove, enable and
disable on routers between 19:00 and 20:00.

inst auth+ adminRouters {
subject /NetworkAdmin;
action load(), remove(), enable(), disable();
target /routers;
when time.between("‘19:00,"’20:00"’);

}

Figure 4.1: Positive authorization in Ponder (the + sign on the first line indicates
that this is a positive authorization)

Second, a negative authorization policy defines which actions a subject is for-
bidden to perform on a set of objects in the target domain. No filters on actions
can be specified for this type of policy. Figure 4.2 shows a negative authoriza-
tion policy forbidding test engineer trainees to perform action performance tests
on routers.

inst auth- testRouters {
subject /testEngineers/trainee;
action performanceTest();
target /routers;

}

Figure 4.2: Negative authorization in Ponder (the - sign on the first line indicates
that this is a negative authorization)

Third, delegation policies define which actions a subject allows another sub-
ject to perform on a set of object in the target domain on his behalf. These
policies have three basic elements: a grantor, a grantee and a predefined autho-
rization that the grantor must possess. The target and the list of actions on
a delegation policy, if specified, must be a sub-set of the target and the action
list specified in the corresponding authorization policy. Cascading delegation
is also possible in Ponder. The use of a hops-clause limits how many levels of

2Actions in Ponder can be specified using the toolkit. They are Java classes which extend
an Action superclass and are loaded by Policy Management Agents. For details refer to Ponder
Implementation Guide [Pon03].

3All Ponder examples have been extracted from [DDLS01] with minor changes.

19

sub-delegations are allowed. Furthermore, the valid-clause limits the validity
of the delegation. Figure 4.3 shows a delegation which has the authorization
adminRouter (from example Figure 4.1) as parameter. Thus, the authorization
subject, i.e. the grantor member of the /NetworkAdmin domain, can delegate
the actions enable and disable to the grantee member of the /DomainAdmin
domain, on objects in the target domain routers/routers-mainBuilding. After
the validity period, i.e. 24 hours after the policy has been enforced, it is auto-
matically revoked.

inst deleg+ (adminRouters) delegAdminRouters {
grantee /DomainAdmin;
action enable(), disable();
target /routers/routers-mainBuilding;
valid time.duration(24);

}

Figure 4.3: Delegation in Ponder

Finally, obligation policies are triggered by events and require the speci-
fication of at least one obliged action. The concept of obligation in Ponder
presuppose that the subject has the corresponding authorization to perform the
required actions over the object [Slo94]. Furthermore, obligations can be used
for either specifying an obligation imposed on a subject and for catering for
network or target object failures. No due date and sanction actions are required
for an obligation in Ponder. Figure 4.4 shows an obligation triggered by 3 con-
secutive loginfail events performed by the same userid. Upon these events, a
security administrator from /NRegion/SecAdmin has to disable the userid on
the /NRegion/users domain and log the userid.

inst oblig loginFailure {
on 3*loginfail(userid);
subject s = /NRegion/SecAdmin;
target t = /NRegion/users^{userid};
do t.disable() -> s.log(userid);

}

Figure 4.4: Obligation in Ponder

4.1.3 Ponder extensions

Another type of policies, called meta-policies, and some other features are also
supported by Ponder.

• Meta-policy allows the specification of a series of constraints for a group
of policies to limit permissions on a system or to avoid conflict between

20

policies. For example4, the specification of the role accountant can in-
clude a meta-policy to make sure that the obligation registerPayment is
performed before the obligation IssueCheque.

• Policy type uses the same concept as template and, therefore, can be
instantiated by parameters. A type can contain an extends-clause for
specialization through inheritance. For example, the role type specialized-
nurse can extend the role type nurse by adding new obligations to the set
of obligations inherited from the nurse role.

• Import statements is used to import policies and scripts from other
domains. A script, i.e. a code object, can be used for complex action
filters in a positive authorization.

4.1.4 Ponder access control models

The Discretionary Access Control (DAC) model (section 2.1) relies on the dis-
cretion of the subject which owns an object to control and grant access rights
to other subjects. In Ponder, DAC policies can be specified by using authoriza-
tion policies and constraints on object attributes. Figure 4.5 shows a positive
authorization which restricts the actions of deleting and reading a file to the
file owner. It remains at the discretion of the object’s owner to delegate access
rights to other subjects.

inst auth+ ownerAccess {
subject s = /users/financeDept;
target f = /file/payroll;
action f.delete(), f.read();
when f.getOwner() = s;

}

Figure 4.5: DAC policy in Ponder

The Mandatory Access Control (MAC) model (section 2.2) requires subjects
and objects classifications to allow access rights on a lattice structure of security
labels. Damianou [DDLS00] has mapped the Bell-LaPadula model to Ponder
using policies and domains but concluded that, although the mapping is possi-
ble, any addition of label or level in the lattice would represent a re-computation
of the domain structure. Therefore, in practice the mapping is not viable.

4.1.5 Ponder comparison summary

Table 4.1 shows the comparison summary of Ponder.
4Example extracted from [DDLS00].

21

4.2 Law-governed Interaction - LGI

Law-Governed Interaction (LGI) [MU98, UM00, Min05] is a coordination and
access control mechanism applicable to a distributed environment. As a coor-
dination mechanism, LGI offers middleware components for message exchange
between actors. Figure 4.6 shows the LGI decentralized architecture. A con-
troller Tx

5 is composed of: (1) the law6 L, (2) the mechanism responsible for
ruling the law I and (3) the control state CSx of agent x. The combination of
an actor and a controller represents an LGI-agent (e.g. human beings, software
processes or clients/servers). Besides, the engagement of an actor under the
regulation of a LGI-law is voluntary and the current enforcement mechanism of
LGI does not support the mandatory compliance of agents to a law.

Figure 4.6: LGI-agents interacting [AMN02]

LGI is related to access control as follows. Instead of offering a passive
message-exchange infra-structure, LGI middleware actively monitors messages7

exchange checking compliance with a formal policy set, called the law. This
policy takes the form of ECA-rules, which can be represented in either a Prolog-
based or Java-based language. In this report, we use the Prolog-based repre-
sentation for our examples. It is important to note that Prolog rules in LGI
should not be read as if-then rules. Instead, each Prolog rule in LGI represents
an ECA pattern [Bra99] of the form: e :- c1, ..., cn, do(o1), ..., do(on)), where e is
an event, c1, ..., cn is a possibly empty list of conditions and do(o1), ..., do(on))
is a list of operations (actions). Given these rules, the law maps every possible
pair (event,state) to a pair consisting of (state,operation). Formally, given a set

5T stands for trusted.
6Laws must be published on the HTTP law server from which they can be collected by

controllers.
7LGI is able to work with asynchronous communication via TCP/IP messages. Syn-

chronous communication is planned for future releases of LGI.

22

of events E, a set of states S and a set of lists of operations O, a law L is a
function: L : E × S → S ×O.

Under Moses, an implementation of LGI, each controller can serve different
agents and deal with different laws. LGI provides an extensive set of predefined
events, operations and states. In the remaining of the LGI section, we present
some complementary relevant concepts, the predefined facilities of the language
and then we discuss LGI from the perspective of our evaluation criteria.

4.2.1 LGI complementary concepts

A few concepts are important for understanding the LGI semantics.

• The Prolog-law language uses two nonstandard predicates: (1) the predi-
cate @ such as in t@CS8 returns true or false depending on whether term
t is present or not in an agent control state CS; (2) the predicate do(t),
already mentioned, appends term t to a law, such as in do(add(level 0))
used to add term level 0 to an agent control state.

• The predicate not for Prolog-laws has the basic semantic of negation such
as in not(pingTo(Y)@CS), meaning that term pingTo(Y) is not present
in the CS.

4.2.2 LGI access control elements

The elements of a law L, i.e. events E, operations O and states S, are described
next.

Events occur at the level of a single agent, i.e. at the controller (also called
home) of the event, and can be of three types.

• Events related with issuing a request and receiving a reply, i.e. with the
passing of messages between agents. For example:

– adopted(par(argList), cert(certList)). This event is the first one
which occurs in the ”life” of an agent. It makes explicit the agent’s
intention to cooperate under a law. The parameter argList is a list
of arbitrary terms such as the agent’s name and role. The parameter
certList is list of certificates9.

– arrived([y,L′],m, x). This event occurs when a L′-message m sent
by agent x arrives at agent y (y is the home agent of the event).

– sent(x,m, [y,L′]). This event occurs when agent x sends a L′ message
m to agent y (x is the home agent of the event).

– certified, created (counterpart of adopted), connected, disconnected
and reconnected, and submitted (counterpart of arrived) are also
supported. See the LGI Manual [Min05] for details.

8CS is an agent control state.
9Certificates permit the authentication of an agent governed by law L who wants to coop-

erate with another agent governed by law L′.

23

• Events related with exceptions or faults which may occur during the trans-
mission of a message. For example:

– exception(op,diagnostic). This event occurs if an operation op fails
and diagnostic is an explicative text message. The agent which
evoked the failed event is the home of the exception event.

• Event related to the deadline of an obligation imposed on an agent. For
example:

– obligationDue(oType). This event occurs when an agents pending
obligation is no longer due.

– stateChanged. This event occurs when an agent is discharged of a
pending state-obligation because the obligation is no longer due.

Operations are actions mandated by a law which may trigger events. They
can be of three kinds:

• communication-operations

– forward(x,m, [y,L′]). This operation forwards a L′-message m ad-
dressed to agent y; if agent y receives the message, an event of the
type arrived([x,L],m, y) will be triggered at y.

– deliver([x,L],m, y). This operation delivers a L-message m sent by
agent x if the message has arrived at agent y.

– multicast(x, m, destinationList). This operation10 forwards message
m to all agents listed on the destinationList.

– release(x,m, [h, p]). This operation releases a message m to an agent
not governed by LGI laws, using TCP/IP protocol. Parameters p
and h specify port and host respectively.

• state-operations

– add(t) or +t. This operation adds a term t to an agent control state.

– remove(t) or −t. This operation removes term t from an agent control
state.

– replace(t1, t2). This operation replaces term t1 of an agent control
state by term t2.

– incr(f, d) and dcr(f, d). These operations increment and decrement
an agent control state term f with quantity d.

– replaceCS(termList). This operation replaces an agent whole control
state with the given list items.

– addCS(termList). This operation appends an agent control state
with the given list items.

10This is an operation restricted to Prolog-laws.

24

• obligation-operations

– imposeObligation(oType, dt, timeUnit). This operation imposes an
obligation of type oType on the agent; the parameter dt determines
when the obligation is due and the parameter timeUnit determines
the time unit (h, min, sec, ms) of dt. It automatically includes a
term obligation to the agent DCS.

– repealObligation(oType). This operation removes all obligations of
type oType from the agent DCS.

– imposeStateObligation(termList). This operation triggers a state-
Changed event upon any change on the agent CS indicated by the
termList. It automatically includes a term audited to the agent
DCS.

– repealStateObligation(termList). This operation removes all terms
audited(termList) from the agent DCS.

States are a snapshot of the agent at an instant. It can have three parts.

• Context is a set of variables that provides information used only during
the evaluation of a law such as ThisLawName, CS and DCS (references to
the other two parts of the state), Msg (message being sent or received),
self (address of the home agent).

• Control state (CS) is a list of terms which have no predefined mean-
ing, i.e. the terms meaning is defined by the law. Some examples extracted
from the LGI Manual [Min05] are: manager, role(manager), name(joe,smith),
[1,2,3], children([joe,jane,jim]).

• Distinguished control state (DCS) is a list of terms with predefined
meaning and syntax, as described next.

– obligation(oType, t0, dt). This term indicates that an agent has a
pending obligation of type oType, starting at time tx and ending at
time t0 + dt.

– audited(termList). This term has as parameter a list of terms to
be audited in consequence of the most recent imposeStateObligation
operation. Any addition or deletion of a item from the list triggers a
stateObligationDue event.

– authorityTable(A). This term has as parameter a list of certification
authorities initialized automatically when an agent adopts a law L.
Authorizations can be added to or deleted from the list A through
the operations addAuthority and delAuthority.

25

4.2.3 Roles in LGI

LGI has no built-in concept of role [AM04]. However, the term role(doctor)
on a CS of an agent can represent that this agent belongs to the doctor role.
A role can be assigned to an agent x in two ways: 1- an agent claims and
activates a role by presenting a digital certificate issued by another agent (e.g.
administrator). Figure 4.7 shows an agent (Self) claiming to activate its first
role in the session by presenting a certificate issued by the admin; 2- an external
agent, operating under the same law as agent x, sends a message to x appointing
x to a role. So the law will be used to define the process of acquiring roles, the
dynamic behavior of roles and the effects of the ability of agents to operate.
Figure 4.8 shows an agent belonging to role ”branchA-manager” assigning role
”branchA-employee” to an userId.

R1. certified(issuer(admin),subject(Self),
attributes([role(R)])) :-
not(role(R1)@CS),do(+role(R))

Figure 4.7: Role assignment by presenting a digital certificate

R1. sent(X,assign-role(userId),Y) :-
role(branchA-manager)@CS, do(forward)
R2. arrived(X,assign-role(userId),Y) :-
do(+role(branchA-employee)), do(deliver)

Figure 4.8: Role assignment by an external agent

4.2.4 LGI permissions

LGI provides two kinds of operations and corresponding events to settle and
revoke obligations. However, it leaves open the details of the law in terms of the
circumstances under which the obligation applies to the agent, the sanctions
which will incur if the obligation is not fulfilled before the due date and the
treatment of pending obligations.

The operation imposeObligation(oType, dt, timeUnit) is one kind of obliga-
tional operation in LGI. This operation causes a term obligation(oType, t0, dt) to
be automatically added11 to the agent DCS for the due time control. The event
obligationDue(oType) will be triggered when time t = t0 +dt is reached and can
be associated with sanction actions. A pending obligation can be revoked be-
fore the due date by the operation repealObligation(oType). Figure 4.9 shows:
(1) rule R1 in which agent X receives the ”onDuty” obligation (from [AM04])

11This term is automatically removed from the agent DCS when the obligation due date is
reached.

26

assigned by agent Y; the term ”onDuty” is added to the agent’s CS and the
obligation type ”dutyExpired” and deadline are settled, (2) rule R2 which de-
termines that, when the event of type ”dutyExpired” is fired, no sanctions are
applied and the term ”onDuty” is simply removed from the agent’s CS.

R1. arrived(X,onDuty,Y) :- do(+onDuty),
do(imposeObligation(dutyExpired,[12,hour]))

R2. obligationDue(dutyExpired) :- do(-onDuty)

Figure 4.9: Obligation in LGI

The operation imposeStateObligation(termList) is another kind of obliga-
tional operation in LGI. This operation causes a term audited(termList) to be
automatically added12 to the agent DCS. The event StateChanged will be
triggered when any change on the agent CS indicated by the termList occur13.

Authorization in LGI is acquired by sending an access request over an object
to another agent, which can be a server. Figure 4.10 shows agent C (client)
sending an authorization request (extracted from [AM04]) to agent S (server)
to perform an access action Op over the medical-records of a patient (identified
by Pid) under the following circumstances: if agent C belongs to role doctor or
nurse, represented by role(doctor) and role(nurse) in its CS, if agent C is the
attending-physician or attending-nurse of patient Pid, represented by attending-
physician(Pid) and attending-nurse(Pid) in its CS and if agent C is on duty,
represented by the term onDuty in its CS. Finally, the access request will only
be delivered to agent S, i.e. accepted by agent S, if agent S is a server that
belongs to role(pr-server).

R1. sent(C,access(Op,m-record(Pid)),S) :-
((role(doctor)@CS, attending-physician(Pid)@CS);
(role(nurse)@CS, attending-nurse(Pid)@CS)),
onDuty@CS, do(forward)
R2. arrived(C,access(Op,m-record(Pid)),S) :-
role(pr-server)@CS, do(deliver)

Figure 4.10: Authorization in LGI - example 1

LGI allows the assignment of permissions to roles and the checking of per-
missions as shown in Figure 4.1114. In rule R1, an agent S (server) assigns the
permission a role R has to perform an action Op over its object Obj. In rule
R2, a client (agent C) sends an access request to any server (agent S), attaching

12This term is automatically removed from the agent DCS when an event stateChanged is
fired.

13The termList can be ”all” indicating that any change at all on the agent CS will trigger
a StateChanged event.

14This figure shows just an extract of Figure 6 from [AM04]

27

the list ARS of its activated roles. In rule R3, the request is only accepted
(i.e. delivered) by a server if any of the roles in list ARS has the permission to
perform the requested action over the specified object.

R1. sent(S,permission(R,Op,Obj),Self) :-
do(+permission(R,Op,Obj))
R2. sent(C,access(Op,Obj),S) :-
activated-roles(ARS)@CS,
do(forward(C,access(Op,Obj,myRoles(ARS)),S))
R3. arrived(C,access(Op,Obj,myRoles(ARS)),S) :-
has-permission(ARS,Op,Obj),
do(deliver(C,access(Op,Obj),S))

Figure 4.11: Authorization in LGI - example 2

Delegation of access rights in LGI is acquired when an agent X sends a del-
egation request to an agent Y. Figure 4.12 shows a delegation request (rule R1)
sent by an agent belonging to role doctor and which is the attending physician
of patient Pid to an agent belonging to the role nurse. The request, when ac-
cepted, delegates the attending task of the patient to a nurse (rule R2). The
doctor is allowed to appoint a maximum of two nurses for any patient. This
example is complemented by the already shown example in Figure 4.10 which
specified the authorization rights to the patient’s medical records.

R1. sent(X,delegate(Pid),Y) :- role(doctor)@CS,
attending-physician(Pid)@CS,
if (not(deleNo(Pid,N)@CS)) then
(do(+deleNo(Pid,1)), do(forward))
else (N<=2, do(deleNo(Pid,N)<-deleNo(Pid,N+1)),
do(forward))
R2. arrived(X,delegate(Pid),Y) :- role(nurse)@CS,
do(+attending-nurse(Pid)), do(deliver)

Figure 4.12: Delegation in LGI

Negative authorizations, i.e. prohibitions, in LGI can be carried out by
explicitly blocking interactions between agents, if certain conditions are not
satisfied. Figure 4.13 shows a purchase order being explicitly blocked by agent
Y (e.g. a server) if the agent X does not belong to the role manager and the
payment involved is greater than 1000 (from [AMN02]).

4.2.5 LGI access control models

The Discretionary Access Control model (DAC) (section 2.1) relies on the dis-
cretion of the subject which owns an object to control and grant access rights

28

R1. sent(X,order(item(I),payment(P)),Y) :-
P>1000, not(role(manager)@CS), do(blockS)

Figure 4.13: Prohibition in LGI

to other subjects. In LGI, DAC policies can be specified in a similar way as
we have seen in the example shown in Figure 4.11, where an agent determined
the access rights over its own objects. The agent decides whether another agent
will be allowed to perform operation Op over its object Obj either by granting
or by blocking the access.

The Mandatory Access Control model (MAC) (section 2.2) requires subjects
and objects classification to allow access rights on a lattice structure of security
labels. The classification of agents, regulated by mandatory rules and imposed
by a central authority, can in LGI be achieved as described next.

• Minsky (Figure 2.5 in [Min05]) presents a Dynamic Layering Law where
a ”manager” of the law sets security levels for agents willing to interact
under this law. The agents then are allowed to interact with each other
only if their security levels are identical or if the ”sender” agent has higher
security level than the ”receiver” agent. In this approach, the ”manager”
of the law is identified by its absolute address in the law preamble15.
Therefore, the identification of the authority is hard-coded in the law.

• As mentioned in Section 4.2.1, digital certificates authenticate agents that
are allowed to interact by using a public-key issued and signed by a Cer-
tification Authority (CA). The same concept of security levels present in
the Dynamic Layering Law can be achieved by the certificates approach
(Figure 3.1 in [Min05]). However, by using certificates the identification
of the ”manager” of the law is no longer hard-coded in the law itself but is
determined by the presence of the term role(mgr) in the ”manager” CS.
Therefore, this approach is a more flexible way to define the authority
which can set security levels for regulating agents interactions in a MAC
fashion.

In LGI, objects and access to them can be classified through the use of
terms in an agent CS and of operations like access(Op,Obj(id, level)). This
way, an agent server can determine and control the access to its own resources.
Furthermore, the combination of security levels for agents interactions and of
security levels for objects seems also possible.

4.2.6 LGI comparison summary

Table 4.2 shows the comparison summary of LGI.
15For example, by using the preamble command alias(mgr,’manager@ramses.rutgers.edu’).

29

4.3 Security Policy Language - SPL

SPL is a constraint-based, event-oriented language for specifying policies [RG99].
In SPL, a policy is a group of rules and sets that govern a particular domain
of events. It allows the specification of abstract policies and the development
of policy libraries by parameterizing these groups of rules and sets. Thus, poli-
cies can be instantiated several times with different (set) parameters. A policy,
when instantiated, behaves as a rule and therefore can be combined with other
rules and included in another policy. Besides, SPL assumes there is a stream of
events that is being monitored which is checked against policies for compliance.

4.3.1 SPL access control elements

The basic concepts of the language are described next.

• Entities are objects with explicit interfaces which allow property query-
ing. Entities manipulated by SPL can be internal SPL constructs such as
sets and policies but can also be references to entities outside SPL such
as users, files and events.

• Sets allow the classification of entities in categories and the aggregation
of entities in groups.

• Rules express constraints in terms of relations between entities and sets.
They consist of two logical expressions, namely a domain-expression, which
establishes the domain of applicability of a rule, and a decide-expression,
which decides the applicability of the rule. The basic syntax of a rule is
label : domain-expression :: decide-expression. The main goal of a rule is
to decide upon the acceptability (allow, deny or neutral, i.e. not-apply)
of each event16 under control of the SPL access monitor.

• Policies govern a particular domain of events by composing rules with
other rules in conjunctions, disjunctions and negations and by composing
rules with sets into logical units. Each policy rule is in fact a query rule
identified by a question mark before its label.

4.3.2 Grouping in SPL

SPL allows two kinds of grouping: sets and roles, as described in the next
paragraphs.

Sets can be categories and groups.

• Categories are sets that allow classifying entities based on their proper-
ties17 by using the restriction operator @. For example:

16Events in SPL can be grouped in past, current and future sets; the expression ce.event is
an event that belongs to the current events set.

17A property of an entity is written with a dot, e.g. target.type is referring to the property
type of the target object.

30

– user set localUsers=AllUsers@{.hostname=localhost} defines a cat-
egory of users which have the common property of being logged in a
specific host;

– object set invoices=AllObjects@{.doctype=”invoice”} defines a cat-
egory of objects which have the common property of being invoices.

The restriction operator can also be used to restrict the events to which
rules and policies apply. For example:

FORALL r IN u.userPolicy{r@{.target.owner=u}}
defines that all private rules of a user only apply to target objects owned
by this user.

• Groups are just collections of internal or external entities. For exam-
ple, user set Authorized, object set Protected, external operation set
AllActions and external event set AllEvents.

The concept of role as a users group with common responsibilities and au-
thority is a building block in SPL. Roles are considered as policies and are
specified by using two sets: one set representing the users which are allowed to
play the role and another set representing the users actually playing the role.
Figure 4.14 shows a role policy (from [RG99]). The first set is the Authorized
set and the second set is the Active set. Events trying to insert a user into the
Active set are only allowed if the user (represented by parameter[1]) is in the
Authorized set.

policy simpleRole (user set Authorized,
user set Active)

{
?simpleRole: ce.action.name = "insert" &
ce.target = Active

:: ce.parameter[1] IN Authorized;
}

Figure 4.14: Role in SPL

4.3.3 SPL permissions

Positive and negative authorizations are specified in SPL in terms of rules,
where each rule is either a permission or a prohibition which identifies events
that are allowed or denied. Therefore, every event where the domain-expression
is true can be permitted or prohibited based on the result (true or false) of the
decide-expression. Figure 4.1518 shows a rule which states that paymentOrder
approvals are allowed when the author of the approval is not the owner of the

18Example taken from [RG99].

31

paymentOrder. This rule is an authorization for events that make the decide-
expression true and is a prohibition for events that make the decide-expression
false.

DutySep: ce.target.type = "paymentOrder" &
ce.action.name = "approve"

:: ce.author != ce.target.owner;

Figure 4.15: Authorization in SPL - example 1

Generic policies can be specified and then instantiated in SPL. Figure 4.16
shows a generic authorization policy with three parameters, mainly based on the
concept of sets, which allows permission for subjects (AllowUsers) to perform
actions (RestrictActions) on target objects (ProtObjects)19. The last line is an
instantiation of the ACL policy applying the authorization to clerks to perform
the action write on invoices.

policy ACL(
user set AllowUsers
object set ProtObjects
interface RestrictionActions)
{
?PolicySimple: ce.action IN RestrictActions &
ce.target IN ProtObjects

:: ce.author IN AllowUsers
}
DoInvoice: new ACL(clerks, invoices,
AllActions@{.name = "write"});

Figure 4.16: Authorization in SPL - example 2

SPL allows the specification of rules which prohibit events not explicitly
allowed by other policies. Figure 4.17 shows an example of such a default-
prohibition policy query rule. Thus, if events do not satisfy either authorRule
or userPolicyRule then they are denied access to a target object20.

?DAC: authorRule OR userPolicyRule OR deny;

Figure 4.17: Prohibition in SPL

SPL specifies obligations by considering a rule domain− expression as the
obligation trigger expression and the decide-expression as the obliged expression.
The tags TIMEOUT and COMPENSATE can be included in an obligation

19This example is a combination of Figures 9, 10 and 11 from [RG99].
20For more details about the rules involved in this example, refer to [RG99].

32

policy OnlineShop
{
?BookPayment():
TIMEOUT = 1 hour
COMPENSATE = blacklist(ce.author, ce.target)
EXIST fe IN FutureEvents {
ce.action = "Buy_book"
:: fe.action = "Pay_book"

};
}

Figure 4.18: Obligation in SPL

policy DAC
{
authorRule: ce.target.owner = ce.author

:: true;
}

Figure 4.19: DAC policy in SPL

policy to determine the deadline and the sanction action respectively. Heimdall,
as the next generation of SPL is called, provides an obligation enforcement
mechanism for assuring that the sanction action is automatically triggered if the
obligation is not fulfilled within the deadline21. Figure 4.18 shows the generic
obligation22 of paying for a bought book.

4.3.4 SPL access control models

Discretionary Access Control (DAC) policies can be partially specified in SPL,
such as shown in Figure 4.1923 in which it is specified that the owner of a
target object can perform any action on it. However, because SPL does not
support delegation, the owner of an object cannot transfer access rights at his
own discretion.

Mandatory Access Control (MAC) policies could in theory be specified in
SPL considering that entity attributes can be configured. Thus, an object’s
security level and a subject’s clearance level could be considered as attributes
the same way as attributes like name, owner and so on. This security and

21The Heimdall enforcement mechanism transforms the obligation into two new policies:
one for the trigger event and one for the fulfill event both based on present events which
will be evaluated when they are executed. A time keeper deals with the deadline constraints
involved. See Gama [GF05] for detailed information. Ribeiro [RZF01] also discusses the
enforcement of obligations in SPL.

22The example is a combination of Figures 2 and 3 from [GF05].
23Extracted from [RG99].

33

clearance levels are based on both confidentiality level of information and on
projects. However, no publicly available SPL documentation seems to indicate
whether the language allows multi-valued attributes such as needed for projects.
Apart from this issue, a detailed study is required for analyzing the viability of
the mapping between the Bell-LaPadula model, for example, and SPL features.

4.3.5 SPL comparison summary

Table 4.3 shows the comparison summary of SPL.

4.4 Policy Description Language - PDL

Bell Lab’s PDL is a real-time production rule system specialized for defining
policies [LBN99]. It is an event-based language developed for application in the
context of telecommunication networks, Web Services routing preference set-
tings, assignment of users to tasks in workflows, and fault management related
to network routers. A policy in PDL is a function that maps a series of these
events into a set of actions. Policies are described by a collection of expressions
of two kinds.

1. Policy rule proposition: ”event causes action if condition” means that if
the event occurs in a situation where the condition is true then the action
will be executed.

2. Policy-defined event proposition: ”event triggers policy-defined-event if
condition” means that if the event occurs in a situation where the condition
is true then the policy-defined-event will be triggered.

Events can be primitive or complex. Primitive events can be system defined,
i.e. initiated by changes in the environment, or policy defined, i.e. initiated
by policy-defined event propositions. Complex events are a combination of
primitive events, for example, parallel events, sequential events, or absence of
an event in order to enforce a policy.

Bertino [BMP05] applies PPDL, an extended PDL with preferences, to work-
flows and presents a modified policy-defined event proposition. It has the format
true causes a if C where true represents a fact that is always true and a rep-
resents an action which will be triggered if condition C is satisfied. Permissions
are based on user, task and role consisting of: (1) the assignment of users to
roles and (2) the assignment of roles to tasks. A permission to execute a task
can be granted in two ways.

• Figure 4.20 shows a rule that assigns permission to user U with role R
to execute task T (expressed by term ass(T,R, U)), if user U belongs to
role R (is(R,U)) and the fact that user U cannot execute task T does not
exist (not neg(T,U)).

• Figure 4.21 shows a rule that assigns permission to user U with role R to
execute task T, if a positive exceptional condition C is satisfied.

34

poss(T,R,U) causes ass(T,R,U) if is(R,U), not neg(T,U)

Figure 4.20: Permission to execute a workflow task in PPDL

posex(T,R,U) causes ass(T,R,U) if C

Figure 4.21: Conditional permission to execute a workflow task in PPDL

Furthermore, preferences between roles and users for the execution of a task can
also be specified in PPDL. For more details, refer to [BMP05].

However, although it is possible to express access control in a specific scenario
(workflow management), PDL and PPDL do not really support access control
policies in a broad sense. In terms of workflow, the concept of object is replaced
by the concept of task and permissions are applied to subject-task-action instead
of to subject-target-action.

4.4.1 PDL comparison summary

Table 4.4 shows the comparison summary of PDL.

35

Criteria Summary

Access Control elements

All the basic elements of access control can be rep-
resented in Ponder, i.e. subject, object and actions.
It allows assembling subjects in roles and in groups
and also allows expressing a list of actions. Domains
permit grouping of objects.

Intrusion Detection elements

None of the basic elements of intrusion detection can
be expressed in Ponder. Besides, the Ponder docu-
mentation does not make explicit that new elements
could be added to the language through Java classes.

Positive authorization Positive authorizations can be expressed in the for-
mat subject-target-action.

Negative authorization Negative authorizations can be expressed also in the
format subject-target-action.

Delegation Delegations can be expressed in the format grantor-
grantee-action-target.

Obligation
Obligations can be expressed in the format event-
condition-action. Deadline and sanction actions are
neither required nor possible in Ponder obligations.

Time constraints

Ponder supports time constraints which use the OCL
library Time [Gro00] and allow expressing duration,
interval, before, after, date, month, day of the week,
time and current time. Thus, Ponder provides the
ability to apply all the time constraints mentioned
in Table 3.1.

Other constraints

Ponder supports: (1) conditions applied to autho-
rizations policies; (2) boolean and operations over
sets (union, intersection and difference) applied to
subjects and objects attributes; (3) concurrency con-
straints applied to actions expressing sequence, par-
allelism and alternative.

Access Control model Ponder allows the specification of DAC policies but
MAC policies cannot be specified in a viable way.

Toolkit and manual availability The Ponder toolkit is no longer available. However,
a technical manual is available

Table 4.1: Ponder Comparison Summary

36

Criteria Summary

Access Control elements

The three basic elements of access control can be
represented in LGI. First, subjects are agents which
can interact with other agents representing humans,
servers or processes. The distinction between agents
is achieved by the agent control-state CS and its se-
mantics are defined by the law. Second, agents can
have resources, i.e. objects, and services associated
with them. Finally, actions are operations which can
be performed between agents. The semantics of an
agent control-state are defined by the law and, there-
fore, sets of subjects in roles, grouping of objects and
lists of actions can be achieved by providing meaning
to control-state terms.

Intrusion Detection elements

The basic elements of intrusion detection can be
obtained by providing semantics to agents’ control-
state terms defined by the law. Furthermore, a new
HTTP law-server can be created to publish and re-
trieve new laws since the current LGI toolkit provides
a very simple and small law-server.

Positive authorization
Positive authorizations are expressed in terms of an
access request from one agent to another agent. The
request can be accepted or denied.

Negative authorization Negative authorization are achieved by blocking in-
teractions between agents.

Delegation
Delegations are expressed in terms of a delegation
request from one agent to another agent. The request
can be accepted or denied.

Obligation Obligations can be imposed by law, triggering dead-
line events and sanction actions automatically.

Time constraints

The time constraints available depend on the law-
language used and the packages imported to specify
the law. Thus, in Java for example, law-classes can
explicitly import packages other than the basic LGI
package. The current LGI toolkit uses the Jinni Pro-
log interpretera and it seems that no sophisticated
time constraints are available.

ahttp://www.cs.unt.edu/˜tarau/

Other constraints
Law rules can include conditions and boolean op-
erators. However, sets operations are not built-in
supported.

Access Control model LGI allows the specification of DAC and MAC poli-
cies.

Toolkit and manual availability
The LGI toolkit called Moses is available the link
http://www.moses.rutgers.edu/download.html. A
technical manual is also available.

Table 4.2: LGI Comparison Summary

37

Criteria Summary

Access Control elements

All the basic elements of access control can be repre-
sented in SPL, i.e. subjects and objects are entities
and actions are operations. Sets of subjects, objects
and actions are possible.

Intrusion Detection elements

None of the basic intrusion detection elements can be
expressed in SPL. Besides, SPL does not provide a
toolkit which allows the flexibility of specifying new
entities and new Java methods for example.

Positive authorization Positive authorizations can be expressed in terms of
decide-expressions that return true on a SPL rule.

Negative authorization
Negative authorizations can be expressed as rules
with decide-expressions returning false or in a generic
format using the deny predicate.

Delegation Delegations are not supported by SPL.

Obligation History-based obligations with deadline and sanction
action are supported by SPL.

Time constraints

SPL supports some time constraints listed in Ta-
ble 3.1, such as timeout duration TIMEOUT = 1
hour and obligation effectiveness timeframe from
15h00 to 20h00a.

aAccording to Gama in [GF05]

Other constraints

The following sets operations are supported by
SPL: index myset[i], membership elementINmyset,
join operator myset1 + myset2 and meet operator
myset1 ∗myset2. Logic operators are all supported
and conditions are indirectly supported, for example,
by set membership.

Access Control model

SPL does not really support the specification of DAC
policies because an object owner cannot propagate
access to his objects. MAC policies could be poten-
tially expressed but more investigation and access to
technical information is required.

Toolkit and manual availability Neither SPL toolkit nor technical documentation is
available.

Table 4.3: SPL Comparison Summary

38

Criteria Summary
Access Control elements Not all basic access control elements can be repre-

sented in PDL or PPDL, for example, the concept
of object is absent. However, the language provides
powerful events handling and allows, for example,
the grouping of events. However, although groups of
users in roles are also allowed they are applied only
to workflow task execution.

Intrusion Detection elements Currently no intrusion detection basic elements are
available.

Positive authorization Authorizations for subject to perform actions on ob-
jects cannot be expressed in PDL.

Negative authorization Not applicable.
Delegation Not applicable.
Obligation Not applicable.
Time constraints PDL provides a type Time as an attribute of an

event. Time attributes can contain values such as
morning associated with 6:00am. Time intervals can
be specified as shown in the following example from
Lobo [LBN99]: hour[3].T ime − hour[1].T ime = 5
over the complex event hour, hour,hour (hour means
zero or more events of the same type). The expres-
sion is true if the time interval between the first and
the third events of a series equals five.

Other constraints PDL supports condition expressions and boolean op-
erations but do not support sets operations. PDL
has temporal aggregates which are similar to func-
tion calls and can perform operations such as Count,
Sum, Min, Max and Avg on events or events’ at-
tributes.

Access Control model Not applicable.
Toolkit and manual availability Toolkit and technical manual currently not available.

Table 4.4: PDL Comparison Summary

39

Chapter 5

Discussion

Our main goal when comparing access control languages was to identify the pos-
sibility of merging access control and intrusion detection policies. Assuming we
have identified the right criteria in our comparison framework and considering
the set of languages we compared, we believe that Law-Governed Interactions
(LGI) contains the most promising ingredients for combining these policies. In
summary, LGI provides:

• the basic elements and type of policies for access control policies.

• the concepts of agent state and event, since LGI is a stateful language.

• flexibility for additions of intrusion detection elements. Besides, TCP/IP
elements (considered in this report as basic elements for intrusion detec-
tion) fit well with the idea of interacting agents.

• practical instruments for creating new laws (i.e. policies governing inter-
actions), such as the availability of an updated toolkit and documentation,
and for programming new state attributes, new events and new actions.

• decentralized and scalable policy enforcement. Therefore, since each LGI
controller is an independent process which can be placed anywhere in the
network, we could have controllers in strategic network nodes intermedi-
ating network and host traffic.

• possibility to impose constraint on interactions.

• mandatory policy enforcement between agents already engaged in a law
since interactions are not possible if the policy on both agents controllers
are not satisfied.

However, despite of the ingredients for the merging policies found in LGI,
we identified a mismatch between LGI events and intrusion detection stateful
languages events. We discuss next whether this has any consequences which
might restrict the possibility of using LGI for describing attack scenarios.

40

transition t (s1 -> s2)
nonconsuming
{
[IP d1 [TCP t1]]:
(d1.source == 192.168.0.1) &&
t1.destination == 23)
{log("message");}

}

Figure 5.1: TCP/IP attack rule in STATL

On the one hand, events for LGI occur at a single agent level. A law decides
what should be done if an event occurs at a given agent state and triggers
operations, i.e. actions, at another agent state. So, as described in section 4.2,
a law maps (event, state) → (state, operation). On the other hand, events
in intrusion detection stateful languages [Kum95, EVK02] are related to the
transition between states. Considering that these languages describe a complete
attack scenario: (1) states represent snapshots of a system during the evolution
of an attack; (2) transitions connect two states and have events description
associated with them. Thus, if at a state S1 the event stream matches an event
described in a transition, this transition is fired causing a move to a next state
S2. In such a way, a scenario maps a sequence of (state) → (event, operation)
→ (state). As we can see, there is an event mismatch between LGI and stateful
intrusion detection languages and we suspect that, as a consequence, LGI might
only be viable to express one-step attack scenarios. This is what we investigate
next using two attack scenario examples.

First, let’s suppose we want to catch events that match any IP datagram
containing a TCP segment, with source address 192.168.0.1 and destination
port 23. Figure 5.1 shows an example in the STATL1 language [EVK02] that
performs this matching. The transition2 states that if the event ”[IP d1 [TCP
t1]]:” is matched then the log command is executed. Figure 5.2 shows the
translation of this example to LGI in terms of two agents interacting. At the
agent X event home (event sent), the source address is checked and, at the agent
Y event home (event arrived), the destination port is checked. As we have see,
LGI is able to express this one-step attack scenario.

Now, let’s suppose we want to catch events that match the whole TCP con-
nection as a step, for example, to identify half-open TCP connections which are
building blocks for a TCP-flood attack. Figure 5.3 shows a graphical representa-
tion of the states and transitions involved, taken from Kumar [Kum95]. In order
to represent this scenario in LGI we need to map each pair (source,destination)
as a two agents’ interaction, similar to the example shown in Figure 5.2. There-

1STATL stands for State Transition Analysis Technique Language.
2The translation being nonconsuming means that at each event matched a new instance

of the transition is fired.

41

R1. sent(X,packet(IPaddress(IP),port(P),Y) :-
IP=192.168.0.1, do(forward)
R2. arrived(X,packet(IPaddress(IP),port(P),Y) :-
P=23, do(log("message"))

Figure 5.2: TCP/IP attack rule in LGI

fore, we would need to log three interactions separately: (1) one interaction
between agent ”source” and agent ”destination” matching protocol flag SYN.
This interaction would be logged in agent ”destination” and would correspond
to TCP1; (2) one similar interaction corresponding to TCP2 and logged in
agent ”source” and (3) again one similar interaction corresponding to TCP3

and logged in agent ”destination”. Therefore, we would have at the end three
log entries logged in two different agents, representing no risk if analyzed sepa-
rately. Unlike LGI, STATL and the language proposed by Kumar, log multi-step
attacks as a whole providing the necessary level of abstraction for composing
attack scenarios.

Figure 5.3: Colored Petri Net representation of a TCP connection [Kum95]

In summary, although LGI is a stateful language, it seems that it only allows
efficient representation of one-step attack scenarios. However, more in-depth
theoretical study as well as practical experimentation is required to validate
this hypothesis.

42

Chapter 6

Conclusions

This report discussed the reasons why it would be beneficial to bring access
control and intrusion detection together, by combining policies. It described
the three existent models of access control policies, i.e. DAC, MAC and RBAC,
providing a comparative table with the main advantages and disadvantages of
each model. It defined a comparison framework from the perspective of intrusion
detection which supported the comparison of some access control languages. It
presented a discussion about the applicability of the most promising access con-
trol language in terms of combining policies from the perspective of describing
attack scenarios.

As future work, we identified four mains topics while working on this report:

• a comparative analysis of the three possibilities for narrowing the gap
between access control and intrusion detection presented in Section 1.3.

• the inclusion of a logic-based language in the scope of this report for
insights on the applicability of this kind of language for intrusion detection.

• the extension of the comparison framework used in this report with the
policy enforcement mechanism used by each language. It would provide
insights on the possible ways and benefits of different approaches.

• a more detailed analysis of LGI for representing multi-step attack scenar-
ios.

Acknowledgments

I would like to specially thank my supervisor Pascal van Eck for the constant
support, essential insights and comprehensive reviews.

43

Bibliography

[AJ01] Y. Lin. A. Jones. Application intrusion detection using language
library calls. In Proceedings of the 17th Annual Computer Security
Applications Conference (ACSAC’01), pages 442–449, 2001.

[AL01] Magnus Almgren and Ulf Lindqvist. Application-integrated data
collection for security monitoring. In Recent Advances in Intrusion
Detection (RAID 2001), LNCS 2212, pages 22–36, Davis, Califor-
nia, October 2001. Springer. http://www.sdl.sri.com/papers/
raid2001/.

[AM04] Xuhui Ao and Naftaly H. Minsky. On the role of roles: from role-
based to role-sensitive access control. In SACMAT ’04: Proceedings
of the ninth ACM symposium on Access control models and tech-
nologies, pages 51–60, New York, NY, USA, 2004. ACM Press.

[AMN02] Xuhui Ao, Naftaly Minsky, and Thu D. Nguyen. A hierarchical
policy specification language and enforcement mechanism for gov-
erning digital enterprises. In POLICY’02: Proceeding of the Third
IEEE International Workshop on Policies for Distributed Systems
and Networks, pages 38–49, Washington, DC, USA, June 2002.
IEEE Computer Society. http://doi.ieeecomputersociety.
org/10.1109/POLICY.2002.1011292.

[And80] J. P. Anderson. Computer security threat monitoring and surveil-
lance. Technical report, James P. Anderson Co., Fort Washington,
PA, 1980. http://seclab.cs.ucdavis.edu/projects/history/
papers/ande80.pdf.

[AS00] Gail-Joon Ahn and Ravi S. Sandhu. Role-based authorization con-
straints specification. Information and System Security, 3(4):207–
226, 2000. citeseer.ist.psu.edu/ahn00rolebased.html.

[BA05] Travis D. Breaux and Annie I. Anton. Deriving semantic models
from privacy policies. In Proceedings of the Sixth IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks,
pages 67 – 76. IEEE Computer Society, june 2005.

44

http://www.sdl.sri.com/papers/raid2001/
http://www.sdl.sri.com/papers/raid2001/
http://doi.ieeecomputersociety.org/10.1109/POLICY.2002.1011292
http://doi.ieeecomputersociety.org/10.1109/POLICY.2002.1011292
http://seclab.cs.ucdavis.edu/projects/history/papers/ande80.pdf
http://seclab.cs.ucdavis.edu/projects/history/papers/ande80.pdf
citeseer.ist.psu.edu/ahn00rolebased.html

[BBC+02] V.S. Batra, J. Bhattacharya, H. Chauhan, A. Gupta, M. Mohania,
and U. Sharma. Policy driven data administration, June 2002.

[BBF00] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. TRBAC:
a temporal role-based access control model. In RBAC ’00: Pro-
ceedings of the fifth ACM workshop on Role-based access control,
pages 21–30, New York, NY, USA, 2000. ACM Press. http:
//doi.acm.org/10.1145/344287.344298.

[BCF01] Elisa Bertino, Silvana Castano, and Elena Ferrari. On specifying
security policies for web documents with an xml-based language. In
SACMAT ’01: Proceedings of the sixth ACM symposium on Access
control models and technologies, pages 57–65, New York, NY, USA,
2001. ACM Press.

[BFIK99] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D.
Keromytis. The keynote trust-management system, version 2. Re-
quest for Comments: 2704, September 1999.

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized
trust management. In SP’ 96: Proceedings of the 1996 IEEE
Symposium on Security and Privacy, pages 164–173, Washington,
DC, USA, 6-8 May 1996. IEEE Computer Society. http://doi.
ieeecomputersociety.org/10.1109/SECPRI.1996.502679.

[Bib77] K. J. Biba. Integrity considerations for secure computer systems.
Technical Report TR-3153, Bedford, Massachusetts, USA, 1977.

[BMP05] Elisa Bertino, Alessandra Mileo, and Alessandro Provetti. PDL
with preferences. Sixth IEEE International Workshop on Policies
for Distributed Systems and Networks, pages 213–222, June 2005.

[BN89] David F. C. Brewer and Michael J. Nash. The chinese wall security
policy. In Proceedings of the IEEE Symposium on Security and Pri-
vacy, pages 206–214. IEEE Computer Society, May 1989. http://
doi.ieeecomputersociety.org/10.1109/SECPRI.1989.36295.

[Bos95] Anthony Boswell. Specification and validation of a security policy
model. IEEE Transactions on Software Engineering, 21(2):63–68,
1995. http://dx.doi.org/10.1109/32.345822.

[BP73] David Elliott Bell and L. J. La Padula. Secure computer systems:
mathematical foundations and model. Technical Report M74-244,
Bedford, Massachusetts, USA, 1973.

[Bra99] Ivan Bratko. Prolog Programming for Artificial Intelligence.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2nd edition, 1999.

45

http://doi.acm.org/10.1145/344287.344298
http://doi.acm.org/10.1145/344287.344298
http://doi.ieeecomputersociety.org/10.1109/SECPRI.1996.502679
http://doi.ieeecomputersociety.org/10.1109/SECPRI.1996.502679
http://doi.ieeecomputersociety.org/10.1109/SECPRI.1989.36295
http://doi.ieeecomputersociety.org/10.1109/SECPRI.1989.36295
http://dx.doi.org/10.1109/32.345822

[CCM02] Nathan Carey, Andrew Clark, and George Mohay. Ids interop-
erability and correlation using idmef and commodity systems. In
ICICS’02: Proceedings of 4th International Conference on Informa-
tion and Communications Security, LNCS 2513, Berlin Heidelberg,
December 2002. Springer-Verlag.

[CGL99] Christina Yip Chung, Michael Gertz, and Karl N. Levitt. DEMIDS:
A misuse detection system for database systems. In Proceedings of
the Third International IFIP TC-11 WG11.5 Working Conference
on Integrity and Internal Control in Information Systems, pages
159–178. Kluwer Academic Publishers, 1999.

[CS96] Fang Chen and Ravi S. Sandhu. Constraints for role-based access
control. In RBAC ’95: Proceedings of the first ACM Workshop
on Role-based access control, page 14, New York, NY, USA, 1996.
ACM Press. http://doi.acm.org/10.1145/270152.270177.

[CW87] David D. Clark and David R. Wilson. A comparison of commercial
and military computer security policies. In Proceedings of IEEE
Symposium on Security and Privacy, pages 184–194. IEEE Com-
puter Society, 1987.

[Dam02] N. Damianou. A Policy Framework for Management of Dis-
tributed Systems. PhD thesis, Imperial College, University of Lon-
don, Department of Computing, 2002. citeseer.ist.psu.edu/
damianou02policy.html.

[DBSL02] N. Damianou, A. Bandara, M. Sloman, and E. Lupu. A survey of
policy specification approaches. Technical report, Department of
Computing, Imperial College of Science Technology and Medicine,
London, 2002. citeseer.ist.psu.edu/damianou02survey.html.

[DCF06] H. Debar, D. Curry, and B. Feinstein. The intrusion detection mes-
sage exchange format. http://www.ietf.org/internet-drafts/
draft-ietf-idwg-idmef-xml-15.txt, February 2006.

[DDLS00] Nicodemos Damianou, Naranker Dulay, Emil C. Lupu, and Mor-
ris Sloman. Ponder: A language for specifying security and man-
agement policies for distributed systems. Technical Report DoC
2000/1, Imperial College of Science Technology and Medicine - De-
partment of Computing, October 2000.

[DDLS01] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris
Sloman. The ponder policy specification language. In POLICY
’01: Proceedings of the International Workshop on Policies for Dis-
tributed Systems and Networks, LNCS 1995, pages 18–38, London,
UK, 2001. Springer-Verlag.

46

http://doi.acm.org/10.1145/270152.270177
citeseer.ist.psu.edu/damianou02policy.html
citeseer.ist.psu.edu/damianou02policy.html
citeseer.ist.psu.edu/damianou02survey.html
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-15.txt

[DHV03] Francisco Duran, Javier Herrador, and Antonio Vallecillo. Using
UML and Maude for Writing and Reasoning about ODP Policies.
In 4th International Workshop on Policies for Distributed Systems
and Networks (POLICY 2003), pages 15–25, Lake Como, Italy,
June 2003. IEEE Publishing.

[EVK02] Steve T. Eckmann, Giovanni Vigna, and Richard A. Kemmerer.
STATL: An Attack Language for State-based Intrusion Detection.
Journal of Computer Security, 10(1/2):71–104, 2002.

[FSG+01] David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard
Kuhn, and Ramaswamy Chandramouli. Proposed NIST standard
for role-based access control. Information and System Security,
4(3):224–274, 2001.

[ftAoSIS02] OASIS (Organization for the Advancement of Structured Infor-
mation Standards). XACML Language Proposal, version 0.8.
http://www.oasis-open.org/committees/xacml, January 2002.

[GF05] Pedro Gama and Paulo Ferreira. Obligation policies: an enforce-
ment platform. In POLICY’05:Proceedings of the Sixth IEEE In-
ternational Workshop on Policies for Distributed Systems and Net-
works, pages 203–212, Washington, DC, USA, June 2005. IEEE
Computer Society. http://dx.doi.org/10.1109/POLICY.2005.
18.

[GG05] Fabio Roli Giorgio Giacinto, Roberto Perdisci. Alarm clustering for
intrusion detection systems in computer networks. In MLDM’05:
Proceedings of the 4th International Conference on Machine Learn-
ing and Data Mining in Pattern Recognition, LNCS 3587, pages
184–193, Berlin Heidelberg, July 2005. Springer-Verlag.

[Gro00] Object Management Group. Object constraint language specifica-
tion, version 1.3. http://www.cs.queensu.ca/~cisc422/2006w/
readings/papers/uml-section7.pdf, March 2000.

[HBM98] R. J. Hayton, J. M. Bacon, and K. Moody. Access control in an
open distributed environment. In Proceedings of IEEE Sympo-
sium on Security and Privacy, pages 3–14, Oakland, CA, USA,
May 1998. IEEE Computer Society. citeseer.ist.psu.edu/
hayton98access.html.

[HMM+00] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid. Ac-
cess control meets public key infrastructure, or: assigning roles to
strangers. In SP’ 2000: Proceedings on the 2000 IEEE Symposium
on Security and Privacy, pages 2–14, Washington, DC, USA, 14-17
May 2000. IEEE Computer Society.

47

http://www.oasis-open.org/committees/xacml
http://dx.doi.org/10.1109/POLICY.2005.18
http://dx.doi.org/10.1109/POLICY.2005.18
http://www.cs.queensu.ca/~cisc422/2006w/readings/papers/uml-section7.pdf
http://www.cs.queensu.ca/~cisc422/2006w/readings/papers/uml-section7.pdf
citeseer.ist.psu.edu/hayton98access.html
citeseer.ist.psu.edu/hayton98access.html

[HPL98] James A. Hoagland, Raju Pandey, , and Karl N. Levitt. Security
policy specification using a graphical approach. Technical Report
CSE-98-3, Computer Science Department, UC Davis, July 1998.

[HV01] Michael Hitchens and Vijay Varadharajan. Tower: A language
for role based access control. In POLICY ’01: Proceedings of the
International Workshop on Policies for Distributed Systems and
Networks, pages 88–106, London, UK, 2001. Springer-Verlag.

[ISO99] ISO/IEC. Jtc1/sc7/wg3-3n34, Information Technology - Open
Distributed Processing Reference Model - Enterprise Viewpoint.
ISO/IEC 15414 - ITU-T Recommendation X.911, January 1999.

[JSS97] Sushil Jajodia, Pierangela Samarati, and V. S. Subrahmanian. A
logical language for expressing authorizations. In SP ’97: Proceed-
ings of the 1997 IEEE Symposium on Security and Privacy, pages
31–42, Washington, DC, USA, 4-7 May 1997. IEEE Computer So-
ciety.

[KRL97] C. Ko, M. Ruschitzka, and K. Levitt. Execution monitoring of
security-critical programs in distributed systems: a specification-
based approach. In SP ’97: Proceedings of the 1997 IEEE Sympo-
sium on Security and Privacy, page 175, Washington, DC, USA,
1997. IEEE Computer Society.

[Kum95] Sandeep Kumar. Classification and Detection of Computer Intru-
sions. PhD thesis, Purdue University, Department of Computer Sci-
ences, 1995. citeseer.ist.psu.edu/kumar95classification.
html.

[KVV05] Christopher Kruegel, Fredrik Valeur, and Giovanni Vigna. Intru-
sion Detection and Correlation - Challenges and Solutions, vol-
ume 14 of Advances in Information Security. Springer Verlag, New
York, NY, USA, 2005.

[KVVK02] Christopher Kruegel, Fredrik Valeur, Giovanni Vigna, and Richard
Kemmerer. Stateful intrusion detection for high-speed networks. In
SP ’02: Proceedings of the 2002 IEEE Symposium on Security and
Privacy, page 285, Washington, DC, USA, 2002. IEEE Computer
Society.

[LBN99] Jorge Lobo, Randeep Bhatia, and Shamim A. Naqvi. A Policy
Description Language. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence and Eleventh Conference on
Innovative Applications of Artificial Intelligence, pages 291–298.
The MIT Press, July 1999.

48

citeseer.ist.psu.edu/kumar95classification.html
citeseer.ist.psu.edu/kumar95classification.html

[LLS03] Leonidas Lymberopoulos, Emil Lupu, and Morris Sloman. An
Adaptive Policy Based Framework for Network Services Manage-
ment. Journal of Network and Systems Management, 11:277–303,
2003.

[LSK01] Ingo Luck, Christian Schafer, and Heiko Krumm. Model-based tool-
assistance for packet-filter design. In POLICY ’01: Proceedings of
the International Workshop on Policies for Distributed Systems and
Networks, LNCS 1995, pages 120–136, London, UK, 2001. Springer-
Verlag.

[LZ97] J. Leiwo and Y. Zheng. Layered protection of availability. In Pro-
ceedings of the 1997 Pacific Asian Conference on Information Sys-
tems, april 1997.

[McH01] John McHugh. Intrusion and intrusion detection. International
Journal of Information Security, 1:14–35, August 2001.

[MESW01] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Policy
core information model, version 1 - specification. RFC 3060, http:
//www.ietf.org, February 2001.

[Min05] Naftaly Minsky. Law governed interaction (LGI): A distributed
coordination and control mechanism, version 0.9.2. http://www.
moses.rutgers.edu/documentation/manual.pdf, October 2005.

[MOR01] James Bret Michael, Vanessa L. Ong, and Neil C. Rowe. Natural-
language processing support for developing policy-governed soft-
ware systems. In TOOLS ’01: Proceedings of the 39th Interna-
tional Conference and Exhibition on Technology of Object-Oriented
Languages and Systems (TOOLS39), page 263, Washington, DC,
USA, 2001. IEEE Computer Society.

[MU98] Naftaly Minsky and Victoria Ungureanu. Unified support for het-
erogeneous security policies in distributed systems. Proceedings of
the 7th security conference. (USENIX Association: Berkeley, CA),
1998.

[OSM00] Sylvia L. Osborn, Ravi S. Sandhu, and Qamar Munawer. Config-
uring role-based access control to enforce mandatory and discre-
tionary access control policies. Information and System Security,
3(2):85–106, 2000.

[Pon03] Ponder. Ponder implementation guide. http://
www-dse.doc.ic.ac.uk/Research/policies/ponder/docs/
PONDERImplementationGuide.pdf, July 2003.

[PP03] Charles P. Pfleeger and Shari Lawrence Pfleeger. Security in com-
puting. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 3rd
edition edition, 2003.

49

http://www.ietf.org
http://www.ietf.org
http://www.moses.rutgers.edu/documentation/manual.pdf
http://www.moses.rutgers.edu/documentation/manual.pdf
http://www-dse.doc.ic.ac.uk/Research/policies/ponder/docs/PONDERImplementationGuide.pdf
http://www-dse.doc.ic.ac.uk/Research/policies/ponder/docs/PONDERImplementationGuide.pdf
http://www-dse.doc.ic.ac.uk/Research/policies/ponder/docs/PONDERImplementationGuide.pdf

[RG99] C. Ribeiro and P. Guedes. SPL: An access control language
for security policies with complex constraints. Technical Report
RT/0001/99, INESC, Lisboa, Portugal, January 1999.

[RZF01] Carlos Ribeiro, Andre Zuquete, and Paulo Ferreira. Enforcing
obligation with security monitors. In ICICS ’01: Proceedings of
the Third International Conference on Information and Commu-
nications Security, LNCS 2229, pages 172–176, Berlin Heidelberg,
November 2001. Springer-Verlag.

[San92] R. S. Sandhu. A lattice interpretation of the chinese wall pol-
icy. In Proc. 15th NIST-NCSC National Computer Security Con-
ference, pages 329–339, 1992. citeseer.ist.psu.edu/article/
sandhu92lattice.html.

[San93] Ravi S. Sandhu. Lattice-based access control models. Computer,
26(11):9–19, November 1993. http://dx.doi.org/10.1109/2.
241422.

[Sch03] Andreas Schaad. A Framework for Organisational Control Princi-
ples. PhD thesis, University of York, Department of Computer
Science, 2003. http://www.cs.york.ac.uk/ftpdir/reports/
YCST-2003-05.pdf.

[SDL02] Morris Sloman, Naranker Dulay, and Emil Lupu. The
ponder policy based management toolkit. http://www-
dse.doc.ic.ac.uk/Research/policies/ponder/PonderSummary.pdf,
August 2002.

[SdV01] Pierangela Samarati and Sabrina De Capitani di Vimercati. Ac-
cess control: Policies, models, and mechanisms. In FOSAD ’00:
Revised versions of lectures given during the IFIP WG 1.7 Inter-
national School on Foundations of Security Analysis and Design
on Foundations of Security Analysis and Design, pages 137–196,
London, UK, 2001. Springer-Verlag.

[SGF+02] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and
S. Zhou. Specification-based anomaly detection: a new approach
for detecting network intrusions. In Proceedings of the 9th ACM
conference on Computer and communications security, pages 265–
274. ACM Press, 2002.

[SLL+01] Stanley Y. W. Su, Herman Lam, Minsoo Lee, Sherman Bai, and
Zuo-Jun (Max) Shen. An information infrastructure and e-services
for supporting internet-based scalable e-business enterprises. In
EDOC’01: Proceedings of the Fifth IEEE International Enterprise
Distributed Object Computing Conference, pages 2–13, Washing-
ton, DC, USA, September 2001. IEEE Computer Society. http:
//computer.org/proceedings/edoc/1345/13450002abs.htm.

50

citeseer.ist.psu.edu/article/sandhu92lattice.html
citeseer.ist.psu.edu/article/sandhu92lattice.html
http://dx.doi.org/10.1109/2.241422
http://dx.doi.org/10.1109/2.241422
http://www.cs.york.ac.uk/ftpdir/reports/YCST-2003-05.pdf
http://www.cs.york.ac.uk/ftpdir/reports/YCST-2003-05.pdf
http://computer.org/proceedings/edoc/1345/13450002abs.htm
http://computer.org/proceedings/edoc/1345/13450002abs.htm

[Slo94] M. Sloman. Policy driven management for distributed systems.
Journal of Network and Systems Management, 2:333–360, 1994.

[SP] Snort Project. Snort Users Manual, version 2.3.3.
http://www.snort.org/docs/snort htmanuals/htmanual 233/.

[SS94] Ravi S. Sandhu and Pierrangela Samarati. Access control: Princi-
ples and practice. IEEE Communications Magazine, 32(9):40–48,
1994.

[SS97] R. Sandhu and P. Samarati. Authentication, access control, and
intrusion detection. In A. B. Tucker, editor, The Computer Science
and Engineering Handbook, pages 1929–1948. CRC Press, 1997.

[Ste91] Daniel F. Sterne. On the buzzword ”security policy”. In IEEE Sym-
posium on Security and Privacy, pages 219–231. IEEE Computer
Society, 1991.

[SWY+02] K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson,
H. Mills, and L. Yu. Requirements for policy languages for trust
negotiation. In POLICY 2002: Third International Workshop on
Policies for Distributed Systems and Networks, pages 68–79. IEEE
Computer Society, 2002.

[Ten86] William T. Tener. Discovery: An expert system in the commercial
data security environment. In Proceedings of the IFIP Security
Conference, 1986.

[UM00] Victoria Ungureanu and Naftaly H. Minsky. Establishing business
rules for inter-enterprise electronic commerce. In DISC’00: Proceed-
ing of the 14th International Symposium on Distributed Computing,
LNCS 1914, pages 179–193. Springer-Verlag, October 2000.

[WE02] M. Wood and M. Erlinger. Intrusion detection message exchange
requirements. October 2002.

[WH01] Marc G. Welz and Andrew Hutchison. Interfacing trusted applica-
tions with intrusion detection systems. In RAID ’01: Proceedings of
the 4th International Symposium on Recent Advances in Intrusion
Detection, LNCS 2212, pages 37–53, London, UK, October 2001.
Springer-Verlag.

[WM93] Roel J. Wieringa and John-Jules Ch. Meyer. Applications of deontic
logic in computer science: A concise overview. In J.-J. C. Meyer
and R. J. Wieringa, editors, Deontic Logic in Computer Science:
Normative System Specification, pages 17–40. Wiley, New York,
1993.

51

	Motivation
	From access control to intrusion detection
	From intrusion detection to access control
	Narrowing the gap between access control and intrusion detection
	Organization of the report

	Access Control Policy Models
	Discretionary Access Control
	Mandatory Access Control
	Role-Based Access Control
	Policy Models Comparison

	Comparison Framework
	Types of Access Control Policy
	Elements
	Constraints
	Comparison Structure

	Access control Languages
	Ponder
	Ponder access control elements
	Ponder permissions
	Ponder extensions
	Ponder access control models
	Ponder comparison summary

	Law-governed Interaction - LGI
	LGI complementary concepts
	LGI access control elements
	Roles in LGI
	LGI permissions
	LGI access control models
	LGI comparison summary

	Security Policy Language - SPL
	SPL access control elements
	Grouping in SPL
	SPL permissions
	SPL access control models
	SPL comparison summary

	Policy Description Language - PDL
	PDL comparison summary

	Discussion
	Conclusions

