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Abstract 

Maintenance procedures are reported to affect surface properties. The majority of work 

regarding surfaces in relation to performance and welfare is currently race track specific. 

The study aimed to investigate limb and hoof movement on a synthetic arena surface 

following two different commonly used preparations (harrowing and rolling). 

Nine horses were recorded using infrared cameras and retro-reflective markers, in walk, 

trot and canter, on two surface preparations in a cross-over design. Hoof range of motion 

(ROM) and displacement as well as metacarpophalangeal joint (MCPJ) extension and third 

metacarpal (MCIII) inclination were analysed using ANOVA. Surface hardness and traction 

were also measured. Speed was monitored using a marker on the sternum. 

No difference was found between maintenance treatments for speed, hoof ROM or hoof 

displacement. Results showed significantly greater (P<.05) MCPJ extension at mid-stance 

following harrowing and significantly (P<.05) greater MCIII adduction at impact following 

harrowing, when gait was grouped. Hardness and traction were statistically similar on both 

treatments.  

Alterations to the surface cushion that do not significantly alter hardness and traction 

appear to be sufficient to produce subtle changes in stride characteristics. The difference in 

MCIII adduction shows that foot placement in the frontal plane changed, but the support 

that the surface gave the hoof did not. Greater MCPJ extension on the harrowed surface 

was unexpected and post hoc analysis identified that the position of the sternum marker 

relative to the planted foot was further ahead at mid-stance. A greater percentage of 

bodyweight on the forelimbs would produce greater extension. 
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Chapter One - Literature Review. 

1.0 Introduction - The use of synthetic surfaces for equine exercise, training and 

competition is rapidly growing (Murray et al., 2010a). Mechanical surface properties do 

however affect the limb loading rates, shock attenuation and supporting structure loads, as 

well as the accelerations and decelerations of the limb and hoof (Gustås et al., 2006a; 

Hobbs et al., 2010). The relationships between manmade surfaces, welfare and 

performance therefore warrant further consideration (Reiser et al., 2000; van Weeren, 

2010). 

In the field of human sports, the governing bodies have made improvements in the surface 

substrate and maintenance techniques used in regard to optimising performance and 

minimising injury risk (Murray et al., 2010a; Swan et al., 2009). Testing procedures and 

strict building and maintenance guidelines of training and competition surfaces have 

allowed human sports to work towards an achievable end goal, however currently the 

same cannot be said for the equine industry. There are at present no set standards or 

regulations governing surfaces in relation to type or maintenance procedures necessary to 

maintain the optimum health and wellbeing of the horse (Weishaupt, 2010a; Wheeler, 

2006). The reason for this deficit can be attributed to the fact that not enough is known 

concerning a surface and its relationship to the kinetics and kinematics of the horse. 

Researchers within the industry are working towards a greater understanding of the effect 

a surface will have on the movement of the horse to be able to provide greater welfare and 

improved performance (Chateau et al., 2010; Gustås et al., 2006a; Hobbs et al., 2010; 

Murray et al., 2010a; Peterson et al., 2011; Ratzlaff et al., 2005; Setterbo et al., 2011; 

Weishaupt, 2010a).  

Research regarding horse and ground interaction has until recently focused mainly on 

racehorses and therefore race tracks (Burn and Usmar, 2005; Dallap-Schaer et al., 2006; 

Peterson and McIlwraith, 2008; Ratzlaff et al., 2005).  It should be noted however that even 

within a single discipline, considerations are not necessarily simplified. Parkin et al. (2004a) 

observes that what may prove best for one type of racing may not for another. The surface 

requirements for a national hunt horse, for example, are not the same for a horse running 

on the flat due to factors such as difference in age, height, weight, speed of race and forces 

encountered on turns and jumps between the two different race types (van Weeren, 2010). 

Epidemiological studies have identified the effect that race type has on injury risk 

(Mohammed et al., 1991; Parkin et al., 2004a,b,c; Williams et al., 2001). 
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Extreme concussive forces experienced in fast paced events such as racing are often stated 

as causal factors for catastrophic breakdown (Crevier-Denoix et al., 2009; Drevemo and 

Hjerten, 1991; Williams et al., 2001). It is important to recognise however that the 

racehorse’s career is relatively short in comparison to those in other disciplines. Dressage 

horses suffer much less high impact, speed related concussion but have much longer 

careers than those racing. High strains and compression of joints over long periods of time 

result in chronic degenerative problems such as arthritis of the knee and hock (Murray et 

al., 2006; Murray et al.,2010b). The idea of catering surface type to discipline is fast 

becoming the consensus (Murray et al., 2010a; Parkin et al., 2004a; van Weeren, 2010) 

meaning further discipline specific research into surface substrate and maintenance is 

needed.  

The optimum surface for any given discipline is yet to be agreed but has been described by 

Barrey et al. (1991) as needing to minimise concussion through energy absorption, whilst 

still returning suitable power to aid performance. The ideal surface to gallop a two year old 

race horse on will not be the ideal surface to jump a 15 year old top level eventer. As 

horses age, the body absorbs and handles loads and impacts differently (van Weeren, 

2010). The musculoskeletal system of a young horse can adapt in relation to the extent and 

intensity of training it receives (Butcher and Ashley-Ross, 2002). The stiffness of the 

suspensory apparatus of the metacarpophalangeal joint (MCPJ) however has been found to 

increase in relation to age and not training (Butcher and Ashley-Ross, 2002). Stiffness of 

such structures is needed to avoid over extension of certain joints but not all natural 

changes are as beneficial for the horse. Stiffness can continue to increase as the horse ages 

and will detrimentally affect mobility. Additional age related degenerative changes, such as 

osteoarthritis for example, have been epidemiologically reported in highly mobile joints in 

domesticated as well as wild horses (Butcher and Ashley-Ross, 2002; Cantley et al., 1999). 

Taking age related changes of the equine athlete into account is yet another challenge 

researchers face when searching for a uniformly ideal surface.  

Weishaupt (2010a) states that the need for objective information is a necessity if the 

industry is to move forward. Individual pieces of work go a small way to answering a much 

larger question and retro-respective studies, such as epidemiological ones, can only 

provide limited information. Anecdotal evidence of surface characteristics, related to injury 

and substandard performance, needs to be replaced with thorough investigatory work that 

provides qualitative but also quantitative information (Peterson and McIlwraith, 2008; van 
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Weeren, 2010). Future research should incorporate substrate characteristics, measured 

using a reliable and repeatable system, with kinematic or kinetic data of the horse.  

1.1 The interaction between the horse and the surface 

1.1.1 The movement of the horse Horses use different gaits consisting of varying footfall 

patterns and speeds. Throughout all of the gaits the forelimb swings in a way similar to a 

pendulum with the muscles of the scapula and humerus moving the proximal limb whilst 

the segments of the distal limb follow inertly (Back et al., 1995). A single stride is divided 

into two parts known as stance and swing (Clayton, 2002) with the stance phase describing 

the time in which the limb is in contact with the ground and the swing when the limb is 

airborne. In more recent work the stance phase itself has been divided into four stages; 

primary impact, secondary impact, support and break over (Thomason and Peterson, 2008; 

Peterson et al., 2011).   

1.1.2 Primary and secondary impact The impact stages of the stride involve the hoof 

contacting the surface, with vertical and horizontal landing and breaking forces occurring 

(Back, 2001). The scale of the forces encountered will depend on a number of factors but 

the mechanical property of the surface is strongly implicated (Peterson et al., 2011). In 

relation to a synthetic substrate, opposed to turf or tarmac for example, it is the top layer 

of the surface that works to initially decelerate the hoof as it undergoes compression 

(Peterson et al., 2008). The hoof works to dampen the shock, meaning that with a suitable 

top surface layer, the forces produced should be within the safe manageable limits of the 

limb. In the faster gaits such as gallop it has been suggested by Peterson et al. (2008) that 

the vertical velocity of the hoof at this point could possibly be in the region of 8ms-1. The 

time that the limb has to absorb ground reaction forces (GRFs) is greatly reduced due to 

the shorter period spent with the hoof on the ground (Wilson et al., 2001). Large GRFs 

coupled with shorter times for absorption and attenuation are believed to be the reason 

the impact stage is often implicated in the development of arthritis amongst other injuries 

(Back, 2001). Peterson et al. (2011) describes the stage where the hoof travels in a 

downward motion and strikes the ground almost vertically to be the primary stage of 

impact.  As the body of the horse moves forwards after the initial impact, its force causes 

the hoof to slide forward before stopping again causing an additional collision to the 

primary impact, which is consequently termed secondary impact (Peterson et al., 2011). 

GRFs are now seen to increase as the surface produces an equal opposing force to that of 

the horse (Gustås et al., 2004). GRFs and deceleration of the hoof at impact on differing 
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surfaces have been measured using various techniques including force shoes and plates 

(Chateau et al., 2009), accelerometers (Burn et al., 1997) and hoof strain gauges (Savelberg 

et al., 1997). Such studies have in recent years aided researchers to gain a better 

understanding of the relationship between the horse and the surface at such an important 

part of the stride. 

1.1.3 Support  As the horse moves through the stance phase the body travels forward over 

the limb, which is now acting as a supportive strut (Clayton et al., 2000) and the weight and 

force is transferred from the loose top layer of a synthetic surface to the stiffer layer 

directly below (Peterson et al., 2008). It is important to remember that whilst vertical GRFs 

can reach a peak at midstance of up to two and a half times body weight, there are also 

horizontal forces at work (Lanovaz et al., 1998; Smith et al., 2002; Witte et al., 2004). The 

surface’s ability to handle this horizontal movement and force is considered in terms of 

shear strength. The shear strength and impact resistance of a surface are linked to its 

hardness and directly affect the amount of hoof slip and rotation (Gustås et al., 2006a). A 

comparatively hard surface with high shear strength causes minimal hoof slip and rotation 

and therefore rapid deceleration at impact through to mid stance (Gustås et al., 2006a). 

Such high GRFs can result in tissue concussion and damage to the articular cartilage and 

supporting structures (Barrey et al., 1991; Ratzlaff et al., 1997) with catastrophic 

breakdown of bone and tendons more likely to occur at this point compared to other 

phases of the stride (Peterson et al., 2011).  A comparatively soft surface with low shear 

strength however can cause large amounts of hoof slip and rotation leading to muscle 

fatigue, which can damage the flexor tendons and ligaments as the horse pushes itself out 

of the surface and off the ground (Murray et al., 2010a). The amount of shear strength a 

surface provides is therefore key during this part of the stride (Peterson et al., 2011) and 

further work in this area is needed to ascertain the optimum values. 

1.1.4 Break over and swing The terminal event of stance phase is referred to as toe-off, or 

break over, which involves the rotation of the heels over the toe disengaging contact with 

the surface (Eliashar et al, 2002). If the surface has low shear strength the hoof is able to 

rotate forward and this aids the horse in dealing with the change in direction of forces 

(Peterson et al., 2011). After break over the swing phase occurs, the limb is airborne and 

the hoof accelerates with the forward momentum of the horse (Peterson et al., 2008). 

Break over ends with all forces reduced towards zero at toe off (Thomason and Peterson, 
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2008). It is important that the relationship between break over and the surface is not 

overlooked as any alteration to break over will directly affect the limb in swing.  

1.2 Dynamic ability of the distal limb  

1.2.1 Adaptive Hypertrophy The limb will be subjected to dynamic loads during movement 

which the horse has evolved to absorb and dissipate (Peterson, et al., 2011). Acceptable 

levels of shock passing through the limb are in fact beneficial to the horse and result in 

adaptive hypertrophy of the systems, which can help to strengthen the limb (Goodship and 

Smith, 2004; Marlin and Nankervis, 2002; O’Sullivan and Lumsden, 2004). Bone remodels 

according to the pressure, frequency and duration of the loads it receives (Rivero et al., 

2007; Goodship and Smith, 2004). It is made stronger and better suited to specific types of 

work if training regimes have been identified and implemented correctly (Goodship and 

Smith, 2004). If such forces however exceed tolerable levels the systems move beyond 

adaptive hypertrophy and injury occurs either via catastrophic breakdown or degenerative 

changes (Peterson, et al., 2011). The forces sustained by the horse during movement and 

subsequent levels of adaptation to them are influenced by exercise intensity and the 

relationship of the limb with the surface. 

1.2.2 Foot bearing Limb impact and hoof deceleration are directly influenced by surface-

hoof interaction (Crevier-Denoix et al., 2009; Johnston and Back, 2006). Chateau et al. 

(2010) identified that the amount of shock the limb is subjected to during movement is 

directly dependant on the nature of the two objects that collide. The hoof tends to land 

asymmetrically with the lateral side landing first followed by a medial rocking motion until 

the hoof then becomes stabilised during the support stage (Chateau et al., 2005; Chateau 

et al., 2006a; Johnston and Back, 2006). Initially the heel sinks during the impact stage, 

followed by forward toe rotation from mid-stance through to break over when working on 

compliant surfaces (Chateau et al., 2005; Johnston and Back, 2006). Heel first landing such 

as this has also been reported in feral as well as sound domestic horses (Trotter, 2004) with 

foot conformation, shoeing and track surface being the direct modifier of loads applied to 

the hoof and therefore the limb (Johston and Back, 2006).  

As well as rotation the hoof undergoes a certain amount of slippage, also known as 

displacement, in the first milliseconds of the stance phase (Merkens et al., 1993; 

McClinchey et al., 2004). It is known to be beneficial for a certain amount of displacement 

to occur as it increases hoof deceleration time resulting in a more gradual loading of the 
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limb. The level of slip that occurs can however vary greatly due to factors such as velocity, 

shoeing and surface substrate characteristics (McClinchey et al., 2004; Orlande, 2009).   

Movement in the distal limb is mainly restricted to flexion and extension. It is the collateral 

ligaments, the presence of the sagittal ridge and the shape of the joint surfaces which aid in 

limiting abduction and adduction of the limb when the structure is loaded (Heaps et al., 

2011). Normal low levels of axial rotation and collateromotion seen in the distal 

interphalangeal joints are increased by asymmetric placement of the foot on uneven 

surfaces (Chateau et al., 2001). Displacement or incorrect rotation of the hoof during the 

stance phase of the gait has been reported to be a common cause of injury to the 

supporting structures of distal limb joints (Chateau et al., 2001; Clanton et al., 1991; Heaps 

et al., 2011). Hoof displacement during impact at gallop has been implicated in the 

aetiology of soft tissue injury in the racing Thoroughbred (Clanton et al., 1991). It is 

suggested therefore that although certain levels of hoof displacement and rotation can 

benefit the horse there is a point at which it can become damaging. It is also important to 

note that optimal levels for both factors are yet to be agreed on and reported. The effect 

the surface has on foot bearing and movement of the structures of the distal limb is 

considered to be one of the most important factors in the occurrence of injury (Chateau et 

al., 2010; Heaps et al.,2011; Salo et al., 2009; Weishaupt, 2010a). Analysing the effect of 

alterations in surface mechanical properties on the motion of the hoof could be of great 

value in regard to improving welfare of competition and leisure horses.  Incorrect 

placement or rotation of the hoof will place extra forces on the limb, especially at the 

highly mobile joints such as the MCPJ. The surface substrate and its preparation is 

therefore a priority for further research in this area.   

1.2.3 The metacarpophalangeal joint (MCPJ) The MCPJ of the equine distal limb comprises 

of a number of bones and supporting structures (Butcher and Ashley-Ross, 2002). The third 

metacarpal, proximal phalanx and the proximal sesamoids are supported by the distal 

sesamoidean ligament, suspensory ligament (SL) and the deep digital flexor tendon (DDFT) 

(Smith et al., 2002). The support created by these structures enables the joint to resist 

extension caused by GRFs. Extension of the MCPJ has been described as being a passive 

event caused by the vertical forces placed upon it (Johnston and Back, 2006). A large 

increase in horizontal breaking force and vertical ground reaction force is transmitted 

through the limb during stance (Johnston and Back, 2006). Extension of the MCPJ is at this 

point resisted by the superficial digital flexor tendon (SDFT), DDFT and the SL (Clayton et 



Chapter One                                                                                               Literature Review 

 

 7 

al., 1999; McGuigan and Wilson, 2003; Smith et al., 2002). The SL however has no muscular 

component or crimp fibres, like those found in the tendons, to aid in adjusting tension. 

Strain in the SL is therefore completely dependent on the angle of the MCP joint, with 

maximal values reached during mid-stance due to high weight bearing (Clayton, 1997). 

Dressage horses, during highly collected movements, have been reported to be at a greater 

risk of injury of the SL in the hind limbs than in any other type of discipline (Murray et al., 

2006.  It should be noted, however, that eventers and show jumpers are also prone to this 

type of injury (Murray et al., 2006).  

A single catastrophic event can cause breakdown of the horse during locomotion, however 

injuries are more frequently caused by repeated trauma sustained during training and 

competition (Clayton, 1997). Age related changes such as osteoarthritis of the joint 

cartilage have been found to increase in severity through biomechanical loading (Radin, 

1983). The MCPJ has been reported to show the highest number of degenerative and 

traumatic lesions of any appendicular skeletal joint (Brommer et al., 2003). Pool (1996) 

attributes damage such as this to a small surface area combined with a large range of 

motion and increased loading at certain points of the stride. The bones and supporting 

structures are affected by cyclical loading rates which are determined by intensity, 

combined with factors related to ground surface substrate (Clayton, 1997; Heaps et al., 

2011; Smith et al., 2002).  

The MCPJ is functionally specialised to move mainly in the sagittal plane (Chateau et al., 

2001) though it is not limited to this direction, as has been reported by Butcher and Ashley-

Ross (2002). A number of researchers (Chateau et al., 2001; Clayton et al., 2007; Heaps et 

al., 2011) concluded that passive abduction and adduction and some axial rotation were 

the likely cause of injury in the joint. Chateau et al. (2001) demonstrated that small 

amplitude movements in the MCPJ are found outside the sagittal plane when moving on an 

even surface. Work over irregular surfaces causing an uneven bearing of the foot was then 

shown by Chateau et al. (2002) to significantly affect the angle of collatermotion in the 

joint, as well as the amount of axial rotation. The supporting structures and bones are 

therefore subjected to high peak forces, concussions and strains on uneven ground,  

meaning that breakdown and consequent injury often occur (McGuigan and Wilson, 2003; 

Smith et al.,2002). 
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1.3 Arena characteristics  

1.3.1 Surfaces The different constituents of surfaces will all have an effect on the motion of 

the horse and therefore the forces applied to the limb. In turn the horse will affect the 

surface and can, over time, change its hardness and stability. de Lagarde and Betsch (2008) 

suggest the quality of a track is related to factors such as its substrate composition, the 

type and frequency of maintenance it receives as well as daily factors, which include the 

number of horses running, the training time and the local temperature and humidity. The 

primary quantitative measures for substrate composition are often reported in terms of 

particle type, size and distribution, organic content and moisture content (Peterson et al., 

2008). Peterson et al. (2008) states however that as there is currently no suggested range 

for such measurements, the relationship between them and biomechanical characteristics 

is still not fully understood.  

1.3.2 Substrate materials Considerations for the substrate laid on any race track or arena 

include product cost, availability of materials, expected workload, ambient temperature, 

rainfall and humidity and often the individual or group’s preference. Peterson et al. (2011) 

suggest that the race track designer’s experience will greatly affect the choices made 

regarding cushion and base type. Chateau et al. (2010) reports that in the case of 

racehorses it is the trainer that selects the surface type most often used, both Peterson et 

al. (2011) and Chateau et al. (2010) however report that choices are generally made with 

no scientific substantiation.  Research into the characteristics of a variety of substrates is 

subsequently carried out to understand better the effect such choices will have on the 

horse, in both the short and long term. 

1.3.3 Woodchip There is a variety of materials currently available for equine arena 

surfaces. Wood chip, once extensively used due to its price and availability went through a 

decline in popularity in favour of other substrates. The current economic climate alongside 

environmental considerations has however caused woodchip to be reassessed as a possible 

substrate of choice. A recent study by Murray et al. (2010a) concluded that using woodchip 

can result in sliding in cold or wet weather conditions, particularly after a jump. Previous to 

this Drevemo and Hjerten (1991) have reported high decomposition rates and 

management problems making its comparatively low price less attractive over time. A 

study by Barrey et al. (1991) however did report that of the dirt racetracks the researchers 

tested, the most efficient at structural dampening proved to be the track with added 

woodchip. Barrey et al. (1991) found a reduction in the hoof’s peak deceleration rate and 

vibration, which was later supported by a study by Ratzlaff et al. (1997). Ratzlaff et al. 
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(1997) found that a high percentage of organic material in the substrate coupled with low 

compaction of the surface resulted in reduced impact forces. It is important to note 

however that Barrey et al. (1991) reported that newer substrates of the time such as 

leather chips or rubber showed similar properties to the woodchip but with fewer long 

term maintenance issues compared to woodchip.  

1.3.4 Rubber Rubber has previously been found to alleviate hardness in human sports 

surfaces as well as helping to lessen substrate wear caused by stress in high-traffic areas 

(Baker et al., 2001). It is therefore not surprising that in a recent study (Murray et al., 

2010a) based on questionnaire results for Dressage riders, approximately half of all the 

respondents currently used an arena composed of a sand and rubber mix. Murray et al. 

(2010a) reported that when rubber was used on top of the sand it helped to keep a 

uniform top layer but when mixed its ability to do this was reduced and the risk of injury 

through impaired stability was increased. The authors attribute this to the surface drying 

due to increased moisture evaporation when the top layer of sand was exposed to the 

climatic conditions. Such findings support earlier research by Baker et al. (2001) that found 

that too large a ratio of rubber to sand could adversely affect water retention and 

therefore shear strength causing increased risk of balance loss to the horse. It is important 

to note though that the results from Murray et al. (2010a) were collected via a survey 

making them subjective in nature. Further work that includes collection of kinematic data 

in relation to movement of the horse is therefore necessary to fully explore such findings. 

1.3.5 Sand Sand, when used for surface material is considered in terms of the size, shape 

and distribution of its particles. The attributes of these particles affect the moisture 

content of the surface, porosity and therefore drainage rates as well as the amount of 

compaction and shear strength (Peterson et al., 2011). The sand used in arenas tends to 

range from around 0.05mm in diameter to 2.0mm (Wheeler, 2006) and is referred to as 

fine and coarse sand respectively. Murray et al. (2010a) reported that fine sand appeared 

to reduce the likelihood of tripping compared to coarse sand and was also better at 

maintaining uniformity in dry conditions. It is important therefore to understand the 

varying characteristics of the individual grains in order to predict the effect of heavy use 

during training or competition. 

Sand has long been used for exercising horses on but this does not mean that when used 

alone it is an ideal substrate to improve performance and reduce injury risk. Murray et al. 

(2010a) reports that sand affects propulsion stored as elastic energy in the tendons due to 



Chapter One                                                                                               Literature Review 

 

 10 

decreased shear resistance, which increases the risk of a trip. A reduction in propulsion is 

also suggested by the same authors to cause a loss of hoof height during jumping, leading 

to reduced performance, decreased time to fatigue and increased risk of collision with an 

obstacle. In conjunction with this a further study by Murray et al. (2010b) found that horses 

that had not previously trained on sand were at a higher risk of injury on sand compared to 

horses that did so regularly. Information such as this suggests that sudden changes in 

surface type can result in acute lameness through lack of adaptive conditioning, especially 

where sand is concerned. It should be noted however that a gradual reduction in risk of 

lameness was seen when horses were worked consistently on sand, which the authors 

attributed to bone and tendon conditioning.  

1.3.6 Wax - The use of wax in sand surfaces is becoming more popular, especially with 

indoor arenas as it is thought that the wax helps to retain moisture and therefore reduce 

dust which can be a problem in covered training areas (Wheeler, 2006). In addition to this 

an increase in moisture retention leads to a reduction in water application resulting in 

reduced labour and costs. Murray et al. (2010a) identified that wax-coated sand surfaces or 

a mix of sand and rubber were associated with a lower risk of injury in comparison to sand 

alone. Findings such as these are further supported by Robin et al. (2009) and Crevier-

Denoix et al. (2009). Robin et al. (2009) found the maximum breaking force to be reduced 

on a waxed surface compared to crushed sand. Crevier-Denoix et al. (2009) reported that 

maximal tendon force was significantly lower in horses worked on an all weather waxed 

track compared to crushed sand. The change in angles of the distal joint segments was 

found to be smoother on the waxed surface. Both studies suggest that wax allows for 

higher deformability of the surface allowing the heels to penetrate the top layer leading to 

a more progressive loading of the SDFT in the forelimb. It is important to mention however 

that Robin et al. (2009) reported that stride length was shorter on wax, although the speed 

remained constant, which would suggest reduced efficiency if performance were to stay 

the same.  Work by Bridge et al. (2010) and Peterson et al. (2010) found that wax was not 

always stable under varying heat conditions and that on some American race tracks it 

melted during the day due to changes in temperature. Melting of the wax will inevitably 

result in an alteration of the mechanical properties of the surface. The study by Peterson et 

al. (2010) identified some of the components of waxes commonly used in surfaces and the 

effect that temperatures typically recorded on American tracks had on individual melting 

points. High temperatures like those reported by both studies may not have year round 

implications concerning surfaces used outdoors in England but such interactions must be 
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considered. Knowledge of the interaction between the wax, sand and other materials such 

as rubbers and fibres under more temperate conditions would be of benefit to the UK 

equine industry.  

1.3.7 Fibre A number of human studies (Gibbs, 2002; Richards, 1994; Spring and baker, 

2006) have found the amending of sports surfaces with polypropylene mesh and fibres to 

be beneficial in improving surface stability especially during high wear activities. Further to 

this it has been reported that such fibres can reduce hardness, leading to a possible 

decrease in injury (Spring and Baker, 2006). A number of chopped fibres are now available 

for equine surfaces, either pre-mixed with other substrates or sold as an additive to 

improve an unstable or hard sand surface. 

Sand mixed with other substrates such as rubbers, fibres and wax, is becoming 

progressively more popular in the industry and such a mix is commonly referred to as a 

synthetic surface. Using a combination of materials can often mean that the component 

parts behave differently from when they are used alone. Peterson et al. (2011) states that 

the cohesion of the materials will depend on the amount of wax used and that shear 

properties will be affected by the wax, fibre and rubber content and its interaction with the 

sand particles.  

1.3.8 Moisture content Recent work concerning race tracks by Peterson et al. (2011) 

indicated that the moisture content of the base of a track remains relatively consistent, 

however the same is not reported for the top cushioning layer. The moisture in the top 

layer has been found to fluctuate widely in different conditions as well as between 

different areas of the same race track on the same day (Ratzlaff et al., 1997). Peterson et al. 

(2011) report that compaction of a surface is a function of the material’s moisture content, 

therefore often making for an uneven track. Barrett et al. (1997) found dynamic loading in 

humans to differ substantially between running on a dry sand and wet sand surface. The 

wet sand showed higher peak impact forces but lower surface penetration values which 

would suggest that too much moisture can cause higher levels of trauma to the joints but 

too little moisture is likely to cause propulsion issues and strain injuries. An increase in 

moisture content of a sand based surface results in increased particle adherence and 

therefore more resistance to shear movement providing a more stable surface.  Finding the 

ideal moisture content is therefore of importance. Murray et al. (2010a) suggests that 

moisture content of sand surfaces should be approximately 8-12% to give a more stable 

surface. Barrey et al. (1991) stated however that between 8-17% water content aids in the 
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reduction of peak deceleration and vibration in the hoof but on a sand surface the 

optimum water content depends entirely on the particle size distribution.   

1.4 Mechanical surface properties  

1.4.1. Hardness A Clegg impact tester is a widely recognised tool used for measuring the 

hardness of a surface in human and equine sports (Caple et al., 2011; Malmgren, et al., 

1994; Popke, 2002; Setterbo et al., 2011). The equipment works by measuring the 

deceleration on impact of a weighted hammer that is dropped through a hollow tube 

(Fulwider and Palmer, 2004). An accelerometer is fitted to the hammer and measures the 

impact and then displays the information in terms of a numerical value (Gravities=G) on a 

digital display (Mcnitt et al., 2004). The weight of the hammer used as well as the height it 

is dropped from varies between studies. Baker and Canaway (1993) stated that the values 

attained for hardness will vary depending on the drop mass and height as well as the area 

of contact between hammer and surface. Further to this Baker and Canaway (1993) 

reported that results could show even greater levels of variability than those already 

recorded between hammer weights when testing a multi-layered surface. Baker et al. 

(2007) reported that a heavier weight, 2.25kg compared to 0.5kg, more accurately 

represented the hardness of a layered surface due to the increased kinetic energy it 

gathers before impact. Baker et al. (2007) went on to report that heavier weights show less 

rebound on impact. Equine arenas are designed to generally have a solid hard base 

underneath a settled pad layer of substrate and finally a lighter top layer of material, 

providing they are suitably maintained. Findings such as this are important when measuring 

surfaces which are likely to contain materials prone to elastic deformation such as rubbers 

and fibres which are often used in equine surfaces. The weight and drop height of the 

hammer used should therefore be tailored to the specific research work to give accurate 

measurements. Hardness for equine arena sand substrates have been reported by previous 

researchers to be between 60 and 100 G (Blundell et al., 2010; Fidler, 2008). 

1.4.2 Shear strength The ability of a surface to handle horizontal movement and force is 

considered in terms of shear strength. The amount of shear strength present in an 

equestrian surface will greatly affect hoof slip and rotation during the stance phase of the 

gait (Gustås et al., 2006a). Comparatively high or low amounts of shear strength increase 

possible injury risk. Ideally the surface should allow the horse sufficient grip to avoid excess 

slipping whilst also allowing some amount of movement to prevent concussive limb injuries 

(McClinchey et al., 2004). 
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Torque wrenches have been successfully used to measure the level of torque, as an 

indicator of shear strength, on recreational sports surfaces used by humans. (Spring and 

Baker, 2006). The torque wrench uses a weighted disk to measure the amount of force 

required to turn the apparatus against a given surface. Measurements are taken by 

dropping the wrench from a height of 0.2m and then applying force to turn the handle. The 

dial on the apparatus gives a numerical value in Newton meters (Nm) of the amount of 

force that is required to produce a turning motion of the base plate against the surface.  In 

human sports such as Australian Rules football, the disk has been adapted with studs to 

mimic the players’ footwear (Chivers and Aldous, 2003). In equestrian sports, research has 

been conducted to validate use of a disc designed to replicate a shod hoof (Blundell et al., 

2010; Fidler, 2008). Blundell et al. (2010) reported there to be significant associations 

between the various weights available for use on the torque wrench and the result given. 

The researchers concluded that the 30Kg weight provided the most appropriate results 

when used on equestrian surfaces as it showed the lowest sample variance. Findings such 

as those by Blundell et al. (2010) suggest that an equine specific plate with a 30Kg weight 

would therefore provide reliable shear strength data for an equine surface especially for 

comparative work due to the low sample variance. 

1.4.3 Surface maintenance Peterson et al. (2011) states that, although it is the surface 

substrate that is most commonly considered when looking at mechanical properties, much 

of the performance of substrates is dependent on maintenance. Currently there are no set 

standards for arena surface maintenance in competition (Wheeler, 2006) meaning that 

manufacturer guidelines and past experience are used to prepare the surface (Chateau et 

al., 2010). It is well reported that harder surfaces are associated with increased risk of fatal 

injury in racing (Dallap Schaer et al., 2006; Parkin et al., 2004a,b,c; Peterson et al., 2011; 

Williams et al., 2001). Incorrect maintenance technique and overuse can cause even a high 

class surface to become hardened over time thus losing the ability to absorb and return 

energy in sufficient measures often resulting in concussive injuries.  Parkin et al. (2004) 

describes hardness as potentially modifiable with use of correct maintenance, making it 

one of the most important considerations when trying to create the optimum surface.   

1.4.4 Maintenance research It has been suggested that dressage horses trained on livery 

yards or shared arenas were at higher risk of lameness over a two year period than those 

trained on privately owned surfaces (Murray et al., 2010b).  Information such as this 

suggests a link between the number of horses using the surface compared to the amount 
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of arena maintenance. Heavier footfall and lower maintenance levels lead to a change in 

the mechanical properties of a substrate and depending on environmental conditions 

certain areas of the surface are likely to become either deeper or thinner or hold more 

water. All of these conditions would cause disruption to the biomechanics of the horse. 

 Information regarding the correct type and amount of maintenance each substrate needs 

to produce a consistent surface is therefore a high priority. Parkin et al. (2004a) highlights 

that an uneven track surface alters the balances of forces through the hoof and therefore 

the limb. Kai et al. (1999) reports that the magnitude of forces exerted on the hoof and 

limb vary greatly with each stride as a consequence of the consistency of the surface top 

layer. It is therefore suggested by a number of authors that reduced maintenance 

contributes to a more uneven surface and is associated with a higher risk of injury (Kai et 

al., 1999: Parkin et al., 2004a; Peterson and McIlwraith, 2008; Williams et al., 2001).  

Research has shown that maintenance procedures have positive and negative effects on 

surface characteristics. Peterson and McIlwraith (2008) compared mechanical properties of 

a dirt race track surface after two types of maintenance procedure. The first maintenance 

procedure involved using a harrow and grader to produce a partial compaction of the layer 

underneath the loose surface top. The second procedure involved using a pavement ripper 

to cut nearly three times the depth into the surface compared to the previous equipment. 

A rototiller was then used to break up the newly turned surface and it was finally rolled and 

harrowed. The authors reported that the average peak load measured following the second 

procedure was significantly (p<0.05) reduced in comparison to the first. It is important 

however to note that the standard deviation was found to greatly increase suggesting that 

the track was much less consistent after the second procedure, which as previously 

mentioned is a risk factor in itself. The effect of different maintenance procedures and 

equipment currently used on existing surface properties is therefore of much interest. 

Determining the ideal surface to produce optimal performance whilst paying attention to 

horse welfare will need further work encompassing many different types of tests and 

technology.  Peterson and McIlwraith (2008) suggest using epidemiological data alongside 

mechanical track characteristic tests in retrospective studies to provide a whole picture of 

the horse surface interaction. For non retrospective work however Thomas and Peterson 

(2008) suggest that studying surface characteristics alongside biomechanical analysis of the 

living horse would give researchers a greater knowledge of this subject area.  
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1.5 Biomechanical Analysis 

1.5.1 Motion Capture The use of motion capture for analysis of equine gait has been 

carried out since the late 19th century (Clayton, 1998). In the last ten years there has been a 

dramatic acceleration in the development of hardware and software available for 

computer aided systems of motion analysis (Hobbs et al., 2010). The use of such systems 

allows for a quantitative evaluation of locomotion, removing some of the subjectivity that 

qualitative analysis can bring (Clayton and Schamhardt, 2001). Use of two dimensional (2D) 

and three dimensional (3D) videograhic recording systems allow analysis of only the 

geometry of movement thus providing kinematic data, when used alone therefore they do 

not take into consideration the forces responsible for such movement (Clayton and 

Schamhardt, 2001). Videographic systems can however be used in conjunction with 

equipment capable of providing kinetic related data, such as force plates, accelerometers 

and strain gauges to provide a more in depth biomechanic analysis (Back, 2001; Clayton, 

1998; Hobbs et al., 2010). The large amounts of equipment needed to analyse so many 

occurrences at once however can prove difficult to fund especially when studying horses as 

opposed to humans. Testing of the equipment in field is in many cases still in its infancy. 

The introduction of horses into the equation raises issues regarding both the safe 

organisation and utilisation of the equipment and the animal simultaneously. 

1.5.2 Motion analysis Motion analysis in its simplest form can be done using adhesive 

markers applied to specific regions of the horse in conjunction with an electronically 

shuttered video camera based system (Hobbs, 2009). Measurements of 2D joint angles and 

stride characteristics for example could then be taken manually from the images using 

specialised software. Recording of data for motion analysis is now however increasingly 

being carried out using a video based optoelectronic systems where either light emitting or 

retro-reflective markers are placed on the subject (Morris and Lawson, 2009; Weller et al., 

2006). A number (minimum of two) of video cameras are used which emit and detect 

infrared light allowing tracking of the markers in a predefined volume (Hobbs et al., 2010) 

to  within an accuracy of currently 0.6mm (Pfau et al., 2005). The markers create a local co-

ordinate system which relates to the specific bone or body segments to be studied allowing 

easy identification via the software (Morris and Lawson, 2009). Human error or 

discrepancies between users, sometimes encountered when manually drawing in 

measurements such as limb angles, is therefore reduced. 

1.5.3 Marker movement The use of skin markers to measure joint movement in both 2D 

and 3D work relies upon marker placement accurately representing the position and 
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therefore movement of the underlying bone.  The problem is that the skin moves over the 

surface of the bone and this displacement can cause error when interpreting the data 

(Chateau et al., 2006a; Clayton, 2010; Lanovaz et al., 2002). Corrective algorithms have 

been developed for various bones and joints to correct these errors (Khumsap et al., 2004), 

however there are still only a limited number available (Hobbs et al., 2010). It is also 

important to note that such algorithms are only valid for horses of similar conformation 

and type, moving in the same gaits as those of the original study (Back, 2001; van Weeren 

et al., 1990). Lanovaz et al. (2004) described algorithms for 3D work for the tibia and third 

metatarsus, and Sha et al., (2004) described that for the radius. Correction algorithms for 

the pastern region however have not yet been devised but work using bone pins has 

helped to determine the movements seen in this area.  

1.5.4 Bone pinning The use of bone pins to report true bone movement minus the errors of 

skin displacement is an accurate but invasive method often meaning that subject numbers 

are limited when compared to work with non-invasive markers (Chateau et al., 2006a). 

Clayton et al. (2007) reports however that even with the use of bone pins rather than 

markers, the margin for error regarding placement is large. Distal limb joints such as the 

proximal interphalangeal (PIP) and distal interphalangeal (DIP) have such small ranges of 

movement in the transverse and dorsal planes that even small error in bone marker 

placement can produce inaccurate findings. Bone pinning is, as mentioned, an invasive 

procedure and the presence of the pin may therefore affect the horse’s natural movement 

by causing some degree of lameness though van Weeren et al. (1990) reports pinning had 

no effect on normal locomotion. Back (2001) states that problems arising from 

displacement of skin are greatly reduced distal to the carpus, meaning that the use of 

invasive bone pinning procedures are not vital in distal limb work. 

1.5.5 2D and 3D analysis Historically 2D systems have been used to study biomechanics of 

the horse and the same can be said for the human. Researchers in human sport science 

have however suggested that studying naturally 3D rotations and translation of joints can 

give misleading results when interpreted by such single plane analysis methods (Gard et al., 

1996). As motion in the equine limb has often been described as pendulum like, with 

movements of flexion and extension mainly in the sagittal plane, it could be assumed that 

certain stride characteristics require only simple 2D recording systems (Back, 2001; Clayton 

1998; Khumsap et al., 2004). Accurate 2D analysis is however reported (Weller et al., 2006) 

to rely on zero deviation in the horse to camera angle when using standard electronically 
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shuttered video equipment. A fetlock joint for example would demonstrate more or less 

extension or flexion than had actually occurred if the limb under investigation was not 

directly perpendicular to the camera. Work by Ramakrishman and Kadaba (1991) did 

however report that misalignments of the flexion and extension axis had little effect on the 

joint angle values of humans measured in 2D where flexion or extension were the 

dominant movements.  The use of 2D measurements where flexion and extension 

dominate should therefore not be completely overlooked especially when using an 

optoelectronics based capture system as opposed to an electronic video camera set up. 

Use of such a system and marker set when studying equine motion would give fewer errors 

as this type of data acquisition is not affected by the camera position relative to the subject 

(Unt et al., 2010; Weller et al., 2006).  

The development of such specialised motion capture technology has allowed recent studies 

to look at 3D as well as 2D rotations of the hoof and distal limb joints (Chateau et al., 

2006a; Chateau et al., 2010; Khumsap et al., 2004; Weller et al., 2006). The way in which 

the hoof lands naturally as well as how it lands when treated with remedial farriery have 

been much researched. It is however less well reported how the normally shod hoof lands 

on differently maintained surfaces. It has been shown with the use of heel and toe wedges 

that unnatural landing angles of the hoof can affect the naturally small rotations of the 

MCPJ  (Chateau et al., 2001) and the sagittal plane kinematics seen in the interphalangeal 

joints (Chateau et al., 2006a). Such effects are suggested to have a negative impact on the 

health and wellbeing of the horse as a number of the movements caused by uneven foot 

bearing are observed in the aetiopathogenesis of distal limb injuries (Chateau et al., 2001). 

It is therefore important to know how different surface substrates or treatments will affect 

the landing of the hoof and the motion and forces felt through the limb. The use of 3D 

motion analysis to measure complex movement of the hoof on landing and extension of 

the MCPJ in relation to arena surface characteristics is therefore an area open to new 

research.  

At present there has been little work done regarding 3D motion of the hoof and limb in 

relation to changes in mechanical surface properties caused by maintenance procedures. 

For this study it was important to develop a non-invasive 3D marker set that would be able 

to repeatedly measure any potential differences in movement of horses on two different 

preparations of a single synthetic surface. Previous research was important for 

development of this marker set. 
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1.6 Aims and Objectives 

Developmental Aims 

To identify and validate a motion analysis marker set and camera set up suitable for 

collecting 3D data of the limb and hoof in an outdoor environment. 

Developmental Objectives 

To design a marker set suitable for collecting measurements of movement of the distal limb 

and hoof in 3D. To evaluate the marker set in the field using specialist 3D motion analysis 

infrared cameras and equipment. To trial different camera settings to successfully collect 

motion data in challenging lighting conditions. 

Study Aim 1 

To compare movement of the distal limb and hoof following two preparations of a single 

synthetic arena surface. 

Study Aim 2 

To evaluate the effect that two commonly used arena maintenance treatments have on 

mechanical surface properties.  

Study Aim 3  

To investigate the relationship between movements of the limb and hoof and the 

mechanical properties of a single synthetic arena surface following two different 

preparations. 

Study Objectives 

 To prepare a waxed synthetic surface (Andrews Bowen Pro Wax) in two different 

ways using standard arena maintenance equipment that is commonly used in the 

United Kingdom; 1. roller and 2. combined harrow and grader.  

 To use retro-reflective markers and infrared optoelectronic cameras to record 

movement of the hoof, inclination of the limb and extension of the MCPJ.  

 To measure hardness and traction of each preparation using mechanical apparatus; 

1. A Clegg impact tester and 2. An adapted torque wrench.  
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 To statistically analyse results for both motion of the horse and mechanical surface 

data. 

 To investigate the relationships between movements of the limb and hoof, 

mechanical surface properties and surface treatments.  

Study hypothesis 1 

There will be significantly greater hoof rotation and displacement following harrowing 

compared to rolling. 

Study Hypothesis 2 

There will be significantly less MCPJ extension and MCIII inclination following harrowing 

compared to rolling. 

Study Hypothesis 3 

Hardness and traction will be significantly lower following harrowing compared to rolling. 

Ethical Approval  

Risk assessments were completed and ethical approval was obtained from the School of 

Sports, Tourism, and the Outdoors at the University of Central Lancashire and Myerscough 

Ethics Committee (Appendix, A, B and C) before commencement of the study. 

 

 

 

 

 

 

 

 

 



Chapter Two                                                                                       Equipment Validation 

 

 20 

Chapter Two – Equipment Validation 

Development of suitable marker set and validation of optoelectronic cameras for outdoor 

data collection. 

2.0 Introduction  

The experimental nature of infield data collection meant that the specialised QualysisTM 

camera system used required developmental work regarding set up and orientation of each 

unit. Hobbs (2009) reported that such camera systems tracking passive markers are usually 

confined to covered areas due to light sensitivity levels.  All data for the current study 

however was collected under constantly changing outdoor conditions so it was important 

that suitable settings were established before commencement of the pilot and main study. 

Developmental work was required to configure the most suitable marker set for capturing 

limb inclination and joint angle of the MCPJ as well as rotation of the hoof. Passive markers 

had to be large enough to be identified by the cameras in challenging conditions but small 

enough to avoid disturbance caused by the adjacent limb during movement. 

2.1 Marker Type  

The current study used removable skin markers rather than bone pinning for ethical 

reasons. The design of the main study was comparative in nature meaning that each horse 

was marked up only once and then performed both test procedures consecutively. Only 

one horse was used in the validation stage for testing various marker sizes and 

configurations. The Optoelectronic system used in the study records motion by emitting 

infrared light to illuminate markers which are placed over chosen anatomical landmarks. 

The passive markers reflect the light back to the cameras and light signals are then 

converted into electrical ones and tracked using specialist software (Morris and Lawson, 

2009). Spherical and hemispherical passive reflective markers (Plate 2.1, pg21) were 

therefore tested for visibility on camera, ability to stay attached to the horse during 

movement and likelihood of being knocked off by the adjacent limb. Spherical markers 

consisted of a foam ball covered by a special scotch-lite reflective film with a built-in screw 

and a two-sided neoprene base (Qualysis, 2011). Hemispherical markers were composed of 

foam half spheres and were also covered in reflective film but had no neoprene base.   

The large spherical markers were marginally better identified by the cameras in comparison 

to the hemispherical ones due to the intensity of the received signal. Smith et al. (1997) 

concluded that the effect of differing marker size on accuracy of values was very small 

when using such systems and was not a determining factor for producing reliable data for 
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Plate 2.1. Durable, lightweight passive reflective markers.  A = Spherical marker (38mm), 

B = hemispherical (42mm) marker. Markers are foam shapes covered by reflective film 

(Scotch-lite). 

 

motion analysis.  The hemispherical ones were therefore selected for use on the hoof due 

to the likelihood of the larger spherical markers becoming displaced during break over.  

It was decided consequently to measure the difference in distance along the axis of the two 

marker shapes and adjust the position of the marker centroid on the recorded data 

accordingly to account for variation between them. A number of markers (5 spherical and 4 

hemispherical) were placed onto a flat surface and a 3D image recorded. The difference in 

distance along the chosen axis of the two types of marker was recorded and found to be 

consistently uniform. Work could therefore go ahead using both the spherical and 

hemispherical markers with data for the hemispherical markers adjusted at the processing 

stage using the specified measurements taken here.  

A number of different adhesive tapes for attaching the markers to the limb were trialled at 

this point. Motion analyses studies using markers directly on skin generally utilize either 

double sided adhesive tape or in some cases super glue (Clayton and Schamhardt, 2001; 

Morris and Lawson, 2009). It was decided that a durable double-sided reinforced tape was 

suitably effective for marker attachment and was therefore selected for further data 

collection 

 

 

 

 

 

 

 

 

 

A and B 
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A B 
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2.2 Marker configuration 

There are currently very few skin mounted marker sets used to measure motion of the 

horses’ limbs in 3D. The finalised marker set would therefore need validation against the 

current standard marker configuration that is used when collecting 2D motion data. At this 

early stage of pilot work a marker set was devised for 2D and 3D data collection, however 

the validation work was performed later using the results from the main study.  

Identification of the left MCIII, proximal phalanges (PI) and hoof was necessary to produce 

suitable results for data analysis. The anatomical locations chosen for limb marker 

placement were adapted from a commonly used 2D set previously described by Clayton 

and Schamhardt (2001). In place of marking the carpus however the proximal head of the 

MCIII was chosen, similar to a method recently used by Hobbs et al. (2010). 

 A total of eight spherical and three hemispherical retro-reflective markers (38mm and 

42mm in diameter respectively) were placed on the left fore limb of the horse for use in 

dynamic trials. Two additional spherical markers were also positioned on the lateral and 

medial distal hoof for a static image to be taken before trials commenced. The static image 

was used to build a model of the lower left forelimb. Once the static image had been 

captured the distal hoof markers were removed and the remaining markers for 

identification of the MCIII, PI and the hoof were used to capture movement data.  

Identifiable anatomical landmarks for marker placement (plate 2.2, pg23) were; 1 and 2 -

lateral and medial proximal end of the third metacarpus at the head of the second and 

fourth metacarpal bone; 3- An area offset medially from the middle of the third 

metacarpal; 4 and 5 -The lateral and medial distal end of the third metacarpus over the 

collateral ligaments of the MCPJ; 6 - The first phalanx over the common digital extensor 

tendon; 7 and 8 - The medial and lateral distal end of the first phalanx; 9 and 10 - The 

medial and lateral proximal end of the hoof wall at coronary band at the location of the 

DIPJ; 11 -The Proximal end of the dorsal hoof wall at the coronary band; 12 and 13; The 

medial and lateral distal end of the dorsal hoof wall.  

Further to this a marker was placed on the sternum of the horse to allow researchers to 

actively monitor velocity on each trial for consistency purposes. 
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2.3 Camera set up  

Early experimental design testing of the camera set up was vitally important for the current 

study work to be able to proceed successfully. Optoelectronic camera systems are usually 

confined to indoor laboratories due to the camera’s reduced ability to track markers using 

the infrared system when in natural outdoor daylight. The current study trialled a new 

software technique known as active filtering that was developed to be used with Qualysis 

Track ManagerTM and Qualysis OqusTM infrared cameras (n=3) . Active filtering works by 

simultaneously laying one frame over another; one that includes natural light captured 

without using the infrared flashes to capture the background and one that has been 

captured using the flashes, so this includes natural light and the marker image. The 

background from one frame is subtracted from the next frame that includes the marker 

Plate 2.2. Full marker set used for data collection (1-11) including static markers (12+13). 1 and 2 
(lateral and medial) - Proximal end of the 3rd metacarpus at the head of the 2

nd
 and 4th metacarpal 

bone; 3 - Offset medially from the middle of the 3
rd

 metacarpal; 4 and 5 (lateral and medial) - Distal 
end of the 3

rd
 metacarpus over the collateral ligaments of the MCPJ; 6 - 1

st
 phalanx over the 

common digital extensor tendon;7 and 8 (medial and lateral) - Distal end of the 1
st

 phalanx; 9 and 
10 (medial and lateral) - Proximal end of the hoof wall at coronary band at the location of the DIPJ; 
11 - Proximal end of the dorsal hoof wall at coronary band;  12 and 13 (medial and lateral) - Distal 
end of the dorsal hoof wall. 

6 

11 
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image leaving only the marker image for every two frames of data. This image is then used 

to construct the 3D view. The system’s ability to capture markers in an outdoor 

environment is therefore reported by the manufacturer (QualysisTM) to be increased when 

using this hardware. It needed to be decided at this initial testing stage whether the 

markers could be identified on the moving distal limb of a horse in such challenging 

conditions with such new and relatively untested hardware.  

The cameras were positioned outdoors in a straight line with the fields of view overlapping 

to enable accurate tracking of a 3D image. The filming area was calibrated using a 

specialised L frame and marker wand (Plate 2.3). Calibration is necessary to allow the 

system to accurately record measurements in a predetermined space. The process involves 

placing the L frame in the chosen data collection area to establish the orientation of the 3D 

axis in relation to the camera set up. The wand is then moved smoothly and continuously 

through the space in all directions and orientations whilst being recorded. The horse was 

led through the calibrated camera setup at walk and trot and data was captured and results 

monitored on site. The cameras were connected directly to a laptop that showed data 

collection in real time in a split screen setup to allow researchers to check camera views 

simultaneously. Motion capture files were therefore analysed during recording for suitable 

identification of markers whilst using active filtering.  

 

 

The anatomical marker set as well as active filtering proved successful at this early stage of 

developmental work. It was therefore decided that pilot testing for the main study could go 

ahead. 

 

Plate 2.3 Optoelectronic calibration wand with non-coplanar control points (A). The wand must be 

recorded inside the capture volume for a set time (~60 seconds). Wand motion should be smooth and 

continuous and cover a 3D volume in all directions and orientations. Optoelectronic calibration L Frame 

(B) used to establish the orientation of the 3D axis in relation to the camera set up. 

A B 

A B 
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Chapter Three - Pilot study 

3.0 Introduction  

Pilot testing was carried out towards the end of April 2011 and was used to test the 

equipment and protocol to ensure that the experimental design was reliable and 

repeatable. All study work was performed outside on a specially laid surface situated at 

Myerscough College known as the ‘Test Track’.  

3.1 The Test Track 

 The testing area was built specifically to be used for study work to eliminate the influence 

of non research related traffic, degradation and maintenance procedures experienced by 

surfaces in every day private use. The track was laid in December 2010 and was not used 

prior to the current study which commenced with pilot testing in April 2011. The track was 

composed of a number of different layers (figure 3.1) starting with the sub-base of 

compacted earth, next an impermeable plastic membrane was laid on top of which went a 

geotextile layer. The track then had a layer made up of PermavoidTM units that are designed 

to drain the surface and then store the water for further use. On top of the units was a 

second geotextile layer. The final layer was a synthetic substrate, which consisted of (by 

weight) 83% silica sand, 15% fibre, felt and rubber crumb and 2 % wax and was laid to 

120mm in depth.  

 

 

 

 

Figure 3.1. Component layers of the test track at Myerscough College. Picture courtesy of Jessica 

Hawkins, and UCLAN. 
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3.2 Habituation to the equipment and test track 

One horse (14.3hh, 11 years, 553kg, Gelding) was used for the pilot study and underwent a 

habituation period prior to testing to prevent undue stress and decrease possible risk of 

injury or abnormal gait. Habituation to the marker set occurred on two different days with 

behaviour monitored closely at all times to allow the researchers to measure the horse’s 

response to each stage of the process. Initially the horse was safely restrained using a 

bridle whilst markers were applied to the specific anatomical locations listed in section 2.2 

(pg23). The horse was kept in the stable for a fifteen minute period with the markers on 

and behaviour was closely monitored. The horse showed no signs of stress or discomfort to 

the presence of the markers and therefore progressed to the next stage. The second stage 

commenced with reapplication of the marker set on the second day. The horse was then 

led out of the stable into an arena and finally onto the test track. Behaviour was monitored 

at all times to identify any adverse reactions to the procedure.  Researchers concluded that 

the horse was not adversely affected by the presence of the markers and that pilot testing 

could go ahead.  

3.3 Camera setup  

The camera setup for the study is shown in figure 3.2 (pg27). Eight infrared cameras 

(Qualysis OqusTM) were used, which due to the application of active filtering recorded at 

245Hz using Qualysis Track Manager TM kinematic software.  Four cameras were positioned 

on the left hand side of the track with the remaining four positioned opposite. The cameras 

were connected to each other for simultaneous use and were then connected to a laptop 

positioned in a covered area to one side of the track. Camera placement and heights were 

altered until a suitable set up was reached that allowed researchers to record several 

strides per trial. Cameras were positioned so that each camera’s field of view overlapped at 

least one other adjoining camera (plate 3.1, pg27), as is standard practice for biomechanic 

analysis under field conditions (Miro et al., 2009). Wires were kept on the outside of the 

test surface area with the exception of one cable that crossed the track buried under the 

substrate in specifically designed rubber housing.  
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Plate 3.1. Overhead image of the calibrated filming zone used for pilot testing. Overlapping 

camera fields of view are presented in white. The red cubed volume in the middle represents the 

calibrated volume that data is collected within. The green grid shows the floor surface area. 

Figure 3.2. The film set up. A = test track, B = adjacent arena, used for cool down of horses 
during testing, C=motion capture cameras, D= laptop, E= safety barriers, F= direction of 
movement through the camera run, G= area where camera cable crossed the track buried in a 
specially designed rubber housing, H= calibrated filming zone. 

 

G H 
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3.4 Anatomical Markers  

Markers were applied to the left forelimb and sternum as detailed in section 2.2 (pg 22).  

3.5 Arena Treatment  

Two standard maintenance procedures that produced different finishes on the surface 

were chosen to be used in the study. Treatments were chosen based on information 

collected regarding suggested maintenance procedures for synthetic surfaces from a 

number (n=9) of telephone interviews with providers of equestrian surfaces (Appendix E). 

Treatment one involved using a piece of equipment that comprised of a harrow and grader, 

known as an Arena MateTM (plate 3.2A). The surface when treated and visually assessed 

appears even but with a loose top layer. Treatment two was a standard roller (plate3.2B) 

which appears to flatten and compact the surface when visually assessed.  

 

 

Prior to commencement of the pilot study the two treatments were tested on the surface 

using various levels of application and the visual effect on the substrate assessed. Accessing 

the track with a tractor and equipment was trialled a number of times. Researchers needed 

to be able to accurately manoeuvre a heavy vehicle onto and across the area whilst 

avoiding compacting the newly treated surface. The information gained here was used 

alongside the manufacturer’s recommendation to decide on the final treatment procedure. 

Finalised test treatments involved pulling the equipment north to south down the track in 

two parallel strips then back up the track from south to north over the centre of the two 

previous strips (figure3.3, pg 29).  

Plate 3.2. A combined harrow and grader (A) comprises of eight tines and two revolving graders. 

Surface roller (B) used for turf and arena surfaces. Weight of roller = 300 Kg. Width = 2m 

(landscapemachinery.co.uk). 

 

A B 
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3.6 Filming procedure  

A static image of the full marker set was taken with the horse stood with limbs squarely 

positioned; additional markers (12 and 13, section 2.2, pg22) were then removed and trials 

commenced. The surface was treated using the first maintenance procedure and the horse 

then ridden in walk, trot and canter through the test track. Treatment two was applied to 

the surface and the procedure repeated. The horse was led in hand for ten minutes to cool 

down in the adjacent arena then safely put away with all markers removed. It was decided 

that the necessity in the study to carry out walk work before moving into faster gaits during 

filming meant that the horses would not need a set warm up prior to commencing filming.  

3.7 Sample size 

Previous studies of a similar biomechanical nature have measured limb and hoof 

movement using sample sizes of between four and six horses. Chateau et al. (2005) 

reported 3D joint angles and range of motions (ROM) for hoof rotations and distal limb 

segments using four horses. It should be noted though, that unlike the current study, an 

invasive bone pinning procedure was used. A more recent study however by Chateau et al. 

(2010) investigated hoof landing parameters on different surface substrates via non 

invasive techniques also using four horses. Results from the work were analysed using a 

general linear model test.  Further to this work by Hobbs et al. (2011) reported inclination 

of the limb using six horses in a non-invasive, cross over design similar to that used in the 

current study. As this study was testing a difference in preparation of the same surface it 

was expected that differences in kinematics would be more subtle, so the sample size was 

increased to ten horses to provide sufficient power to carry out a statistical analysis of the 

results. 

 

Figure 3.3 Direction of application of arena treatment. A= 1
St

 pass North to South; B=2
nd

 pass, 
adjacent to A, North to South; C= 3

rd
 pass South to North overlapping the inside area of both A and B.  
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Chapter Four - Investigation of treatment effects  

4.0 Introduction 

The main investigation took place over eight different dates during May and June 2011; day 

1 = 05/05, day 2 = 06/05, day 3 = 13/05, day 4 = 19/05, day 5 = 27/05, day 6 = 02/06, day 7 

= 03/07. All work was carried out on the test track used in the pilot work (section 3.1, 

pg25).  

Ten horses (5 geldings, 5 mares; mixed breed; mean ± SD – height 15.2 ± 1.3hh, age 11.1 ± 

2 years, weight 540.8 ± 98.6Kg) that were deemed sound and fit were used for the main 

study. Horses were shod with standard iron shoes on all hooves, at various dates prior to 

testing. All horses underwent similar regular workloads throughout the course of the 

research and were habituated to the equipment prior to testing in the same manner as 

described in section 3.2 (pg26). Allocation of filming dates and surface treatment order was 

randomised for each horse.  

One rider was used throughout the study to decrease inconsistencies arising from riding 

styles and understanding of testing procedures. The same rider was chosen that completed 

the pilot study and was very experienced in equestrian sports having competed at national 

and international level. The rider was briefed regarding the study aims and procedures and 

consented to the work before commencement of data collection (Appendix D). 

4.1 Camera setup 

The camera setup for the main study is shown in figure 3.2 (pg27). Heights and distances 

between cameras were decided so that an area of ~three metres wide and ~seven meters 

long was visible from the camera reconstruction. 

4.2 Anatomical Markers 

The marker set previously devised in the pilot study was used for the main data collection 

work (plate2.2, pg23). Markers were applied in the stable whilst the horse was held by a 

competent handler; this procedure was performed by the same person for every horse for 

consistency purposes. Double sided adhesive tape cut into squares approximately four cm 

by four cm was used to secure the markers to the limb. Surgical tape was then used to form 

a figure of eight pattern over the markers of the hoof to ensure minimal displacement from 

original positions. Horses had a full marker set initially applied which included those used 

for the static image.  
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4.3 Arena Treatment 

Surface treatment order was randomised on each day for every horse. One researcher 

applied treatment one and a second applied treatment two. Researchers did not change 

treatment type for consistency purposes as past research (Blundell et al., 2010; Kai et al., 

1999) has attributed varying results of mechanical properties of surfaces to the difference 

between users of maintenance equipment. The two researchers together judged the final 

outcome of the treatments and if treatments were deemed inconsistent in relation to 

findings in section 3.5 (pg28), then further treatment was applied.  

4.4 Filming procedure 

Camera setup and treatment procedure were carried out as detailed previously in section 

4.2 and 4.3 respectively.  Horses were prepared in a stable and then brought out to the 

track one at a time with a maximum of two horses tested within any one day. Horses were 

led in hand through the camera set up on the track to familiarise each one with the filming 

equipment. The horse was then positioned in hand within the calibrated area and a static 

image taken. The extra markers needed for the static only were removed (12 and 13, plate 

2.2, pg23). The rider mounted and the horse walked onto the test track at one end, through 

the camera setup and then off the track at the opposite end (figure 3.2, pg27). The process 

was then repeated twice more so that in total there were three original attempts in walk. 

Throughout data collection researchers monitored the horse’s speed through the camera 

run. The velocity of the sternum marker was analysed using the Qualysis Track ManagerTM 

program which could calculate and display the data in graph form within seconds of it 

having been recorded. If the horse was travelling at too high or low a velocity compared to 

its other attempts the rider was asked to complete an extra recorded trial. Once three 

successful velocity matched runs in walk had been made, the rider repeated the process in 

trot and canter (Plate 4.1, pg32). Successful velocity matched trials were deemed to be 

within 0.2m/s of each other. The horse was then taken into the adjacent arena whilst 

treatment two was applied to the surface and the data collection process repeated. Horses 

were led in hand for a ten minute cool down period after testing and safely returned to the 

stable, all equipment was then removed.  
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Plate 4.1 A horse completing a successful trial in canter. 

4.5 Mechanical surface properties  

4.5.1 Hardness measurements 

Hardness measurements (G) were taken using a Clegg impact testing device (plate 4.2) 

after completion of data collection for each horse on both surface treatments.  In total 15 

sections that were deemed to undergo the most traffic during data collection were tested. 

Rectangular sections measured approximately 1.3 x 1.8 metres and are shown in figure 4.1 

(pg33), the sections numbered 51-65 were those tested. Five drop readings were taken in 

different places within each rectangle to give a mean hardness value for that specific area. 

Each drop followed the procedure laid out in the Clegg standard operating procedure 

which can be found in the appendices (Appendix F).  

 

 

 

 

 

 

 

Plate 4.2 Clegg Impact Testing device. A= digital display 

meter. B= 2.25Kg drop weight fitted with accelerometer. C= 

Hollow guide tube.  

B 

C A 
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4.5.2 Torque measurements 

Measurements of the surface were taken to give an indication of shear force. A torque 

wrench with an adapted base plate specially made to mimic the equine hoof was used 

(plate4.3).  Test track grid squares 51-65 (figure 4.1) were measured with a repeat of five 

drops in each square from which a mean value was taken. Care was taken to measure 

torque on areas that had not been deformed by the Clegg Impact tester or the horse 

enabling the researchers to get a true shear strength reading for each treatment.  Each 

drop followed the procedure laid out in the torque wrench standard operating procedure 

which can be found in the appendices (Appendix F).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Track surface testing grid. Areas 51-65 (shaded in blue) were tested for hardness using a Clegg 

impact tester after each treatment data collection. The large amount of squares that were not used in the 

current study were numbered for use in unrelated test work. 

Plate 4.3. Torque wrench split into component parts. A = Torque 

wrench. B = Connecting section with handles to lift and operate 

equipment. C = Specially adapted base plate. D =. 10Kg weights 

A 

D 

C 

B 
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4.5.3 Moisture Content 

Surface samples were collected from the test track on testing days and then tested under 

laboratory conditions in a method similar to Peterson and McIlwraith, (2008) in order to 

determine moisture content. Samples were collected from the North and South of the track 

and divided into triplicate, resulting in six samples for each test date (n=49). Samples were 

all weighed at 100grams =/- 0.1g, labelled and then placed in a temperature controlled 

oven at 40 degrees Celsius for a twenty four hour period. Samples were then removed, 

cooled for thirty minutes and re-weighed to calculate moisture content.  

4.6 Data processing 

Data processing occurred in a number of stages and involved using Qualysis Track 

ManagerTM and Visual3DTM computer programs to take the data from the captured motion 

information through to actual metric values that could be statistically analysed. 

4.6.1 Stage one- Limb modelling Using the Qualysis Track ManagerTM software a model was 

constructed to represent the limb segments of the horse. The model was then applied to 

each subjects separate static file to pertain to the exact measurements and angles of each 

horse tested.  All recorded trials were then cropped to one stance phase per horse, starting 

just before impact and finishing just after toe off (plate 4.4). Exact points in the stride phase 

were later identified in Visual3DTM.    

 

The specific anatomical landmarks identified by the markers were then manually selected 

and named. Once this process was complete all data was converted and exported into  

Plate 4.4. Analysis of walk using Qualysis Track Manager 
TM

. The limb circled in blue was analysed in 

the current study. The time line along the bottom has been cropped to one stance phase (circled in 

red).  The Box highlighted in green shows the co-ordinates in X, Y and Z of the different markers at any 

point on the data clip. 
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4.6.2 Stage two – Individual static measurements In Visual3DTM each horse had a separate 

file containing the relevant dynamic trial data for all gaits on both treatments. At this point 

the program needed to be able to identify the specific measurements of the limb segments 

for individual horses’ and link them with the relevant kinematic data. The system does this 

by applying the particular static image (plate 4.5) that was taken before testing and 

applying it to the appropriate motion files. The static image represents the measurements 

of that horse whilst stood and takes into account the individual horses’ weight and 

conformation. The axial distances of the hemispherical markers used on the hoof to collect 

motion data were edited at this point to match those of the spherical markers (plate 4.5), 

using measurements detailed in section 2.1 (pg20). Transformation then occurred to scale 

the data via integration of calibrated information to the digital co-ordinates captured.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Plate 4.5 Model building of the distal segment 

of the left fore limb in Visual 3D, complete 

with segment axis. Purple markers indicate 

hemispherical markers used and individually 

adjusted for data analysis. 
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4.6.3 Stage three – Identification of events A low pass digital Butterworth filter with a cut 

off frequency of 15Hz was then used to smooth the data. Specific events were then 

identified to facilitate comparison of values between different horses by standardising 

certain parameters, in this case phase of stride. Impact, mid-stance and toe off were 

identified using graphed data alongside motion images as shown in plate 4.6. Impact was 

identified as being between the vertical velocity minimum and vertical acceleration 

maximum of the hoof in Z, in a method similar to that previously reported by Hobbs et al. 

(2010). Mid-stance was marked as the point that MCIII became vertical. Toe off was 

established as being between the subsequent vertical velocity minimum and corresponding 

acceleration maximum. The motion image of the limb segments (plate 4.6) was used to 

support identification of events accordingly. Phase of stride was identified in using this 

method for all trials, in all gaits for each horse.  

 

 

 

 

 

 

Plate 4.6. Stance phase event identification in Visual3D
TM 

using velocity and accelerations
 
from the 

distal hoof marker of the left fore limb. The graphs present impact as being between the vertical 

velocity minimum and vertical acceleration maximum of the hoof in Z (highlighted in yellow). Mid-

stance was marked at the point when the MCIII was vertical (highlighted in red). Toe off was 

established as being between the subsequent vertical velocity minimum and corresponding 

acceleration maximum (Highlighted in blue). The motion image of the limb segments was used to 

support identification of events accordingly. 
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4.6.4 Stage four – Extracting values Trials were grouped together for maintenance 

procedure and gait for each horse. Absolute values for a given movement were defined in 

relation to the calibrated lab co-ordinate system (figure 4.2). The segment coordinate 

system was then used to define MCPJ rotations.   

 

 

 

 

 

 

 

 

 

Hoof rotation and displacement were calculated from the markers positioned medially, 

centrally and laterally on the proximal hoof. Figure 4.3 (pg 38) demonstrates use of the 

global coordinate system in measuring motion. Hoof rotation was calculated as a ROM in 

degrees from impact to mid-stance and mid-stance to toe off as roll (rotation around X) 

(medial/lateral = +/- values), pitch (rotation around Y)  (forwards/backwards = +/- values) 

and yaw (rotation around Z) (lateral/medial=+/- values). Hoof displacement was also 

measured as linear displacement in centimetres and movement was defined as cranio-

caudal (X) (cranial/caudal = +/- values), mediolateral (Y) (medial/lateral = +/- values) and 

vertical (Z) (up/down = +/- values).  

Values for 2D and 3D MCPJ extension were calculated as the angle between lateral markers 

on the proximal 3rd metacarpus, MCPJ and distal PI at mid-stance, impact and toe off (<180° 

flexion/>180° extension). MCPJ values were defined as flexion and extension (figure 4.4, pg 

38). MCIII inclination was measured at impact and toe off as an acute angle from the vertical 

static limb position (value =0) with roll (medial/lateral = +/- values), pitch 

(forwards/backwards +/- values) and yaw (lateral/medial = +/- values).  

 

Figure 4.2. Representation of the global coordinate system used to define motion in a given 

plane in position on the test track used in the current study.  Direction of movement for horse 

motion data was South to North.  
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Figure 4.3. Sign conventions for rotation of the hoof and MCIII using the global coordinate system. 

A) Pitch (forwards/backwards = +/- values), B) Roll (medial/lateral = -/+ values).  C) Yaw 

(lateral/medial= -/+ values). 

 A 

B 

C 

Figure 4.4 MCPJ flexion and extension (<180°/>180° values) calculated as the angle between 

lateral markers on the proximal 3
rd

 metacarpus, MCPJ and distal PI at mid-stance, impact and toe 

off. 
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Graphs (figures 4.5 and 4.6) as well as numerical values for all kinematic data were then 

exported from Visual 3D as text files and moved into Minitab16 for statistical analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Graphs taken from visual 3D of one stride for one horse in trot showing hoof rotation (A) for 

roll (top), pitch (middle) and yaw (bottom) and hoof displacement (B) for cranio-caudal (top), 

Mediolateral (middle) and vertical (bottom). The coloured lines represent the mean for all three trials 

for both treatments (Harrow– Black, Rolled – Red) with the standard deviation appearing as the larger 

lighter coloured blocks. For all graphs the X axis represents percentage of stance duration.  

A B 



Chapter Four                                                               Investigation of Treatment Effects 

 

 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Mean MCIII Inclination (A) for one horse in trot for pitch (top), roll (middle) and yaw (bottom). 

Mean MCPJ extension (B) in X for one horse in walk (top), trot (middle) and canter (bottom) for all trials 

(with standard deviation) on both treatments; harrowed (black) and rolled (red). Percentage of stance 

duration is displayed on the x axis for both graphs. MCPJ extension is shown in increasing in extension 

towards mid-stance then decreasing toward toe off.  

A B 
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4.7 Statistical analysis  

All statistical analysis was performed using Minitab16. Data was assessed for normality using 

a Kolomogrov-Smirnov test and judged to be normal. A Pearsons Correlation was 

performed to validate the use of an adapted 2D marker set for 3D collection of 3D data. A 

General Linear Model (GLM) was used to test for a significant difference in kinematic values 

between surface treatments for all hoof and limb movement data. Hardness and shear 

forces measurements were analysed using a paired t-test to look for significant differences 

between treatments. Significance was defined at the 0.05 level. 
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Chapter Five - Results 

5.0 Introduction 

Horse number three was removed from the study due to inconsistencies caused by the 

marker set and its ability to stay attached on the day of filming. In total data from nine 

horses were analysed and reported. 

Results for the study are presented in four parts. The first section explains the procedure 

and results used for validation of the 3D marker set by comparison of 2D and 3D MCPJ 

extension values. The second section presents the full results for hoof rotation, hoof 

displacement, MCPJ extension and MCIII inclination on both treatments. The third section 

details the mechanical surface properties on separate testing days and as overall mean 

values for harrowed and rolled treatments. The final results correlate the mechanical 

surface property findings with those from the kinematic analysis that yielded statistically 

significant values.  
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5.1 Validation of the 3D marker set  

Measurements for MCPJ extension in the sagittal plane (X) were taken from the 3D data 

and compared to those produced from the same trials using the current standard 2D 

analysis method. The mean angles for all trials at all phase of the stride were compared 

between treatments using a paired t test. A significant difference (p=0.001) was found 

between the two means (table 5.1) showing that the values produced by the two systems 

were not the same. Accurate measurement of 2D angles of movement in the sagittal plane 

relies upon the horse being perpendicular to the camera set up throughout data collection. 

During testing it was not ensured that horses followed a direct track through the camera 

setup. The angles reported by the 3D capture may differ therefore from those of the 2D, 

due to its ability to more accurately capture measurements occurring at varying distances 

to the camera setup. As a result of this the data from the two methods was analysed 

further to decide whether the 3D measurements increased in a similar manner to that of 

the 2D throughout the various phases of the stride (figure 5.1, pg44). The 2D and 3D data 

correlated (p<0.001) with an r value of 0.949 meaning that the two data sets were very 

closely related and that they increased in a significant linear way. The results from the 

correlation conclude that the marker set used in the study for 3D movement produced the 

same magnitude of change in values as the more commonly used 2D set up.  

 

 

 

 

 

Mean 3D MCPJ angle 

(degrees) 

Mean 2D MCPJ angle 

(degrees) 
P Value Significant 

200.5 202.8 0.001 Yes 

Table 5.1. Mean (n=162) values for 3D and 2D MCPJ extension for all phases of the gait. P values of 

less than 0.05 denote significance. 
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Figure 5.1  Scatter plot comparison of 2D and 3D MCPJ extension data for impact, mid-stance and 

toe off.  Values were found to increase in a significant linear relationship (r=0.949) 

 

Dimension Impact Mid-stance Toe off 

2D 
Not significant Significant Not significant 

3D 
Not significant Significant Not significant 

 Figure 3.1  Scatterplot of 2D and 3D MCPJ extension data showing the correlation of 

data points.  
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5.2 Distal limb and hoof movement between two different surface preparations 

Kinematic data for the distal limb and hoof was collected in walk, trot and canter on a 

single synthetic surface treated with two different maintenance procedures (harrowing and 

rolling). Trials were velocity matched during filming using a sternum marker to monitor the 

speed at which each horse travelled through the testing set up. Data was selected for 

velocities that were within 0.2 m/s for three measurements for each horse for each gait on 

one treatment. Individual horse velocities were then matched for three further 

measurements on the second treatment.   Data collections deemed to be too high or low a 

velocity for a horse in comparison to previous successful attempts were discarded (8%) and 

extra trials collected.  Table 5.2 (pg 46) shows the velocities of each horse for the successful 

trials that were then analysed for kinematic data in the current study. A t-test was 

performed post hoc to ensure data was successfully matched. No significant difference 

(p>0.05) was found between velocities on either a harrowed or rolled surface in any gait for 

each horse. 
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 Harrowed Rolled Harrowed Rolled Harrowed Rolled 

Horse Walk  
(m/s) 

Walk 
(m/s) 

Trot 
(m/s) 

Trot 
(m/s) 

Canter 
(m/s) 

Canter 
(m/s) 

1 1.44 1.43 3.09 3.21 4.72 4.63 

 1.42 1.36 3.25 3.17 4.69 4.30 

 1.50 1.42 2.93 3.01 4.82 4.59 

Mean 1.46 1.4 3.07 3.13 4.74 4.50 

2 1.50 1.38 3.30 2.97 4.10 3.86 

 1.45 1.46 3.05 3.16 4.33 3.90 

 1.51 1.42 3.21 3.11 4.20 4.07 

Mean 1.49 1.42 3.19 3.08 4.21 3.94 

4 1.52 1.35 3.20 3.31 4.50 4.68 

 1.55 1.42 3.21 3.22 4.26 4.69 

 1.47 1.42 3.31 3.16 4.48 4.61 

Mean 1.51 1.40 3.24 3.23 4.41 4.66 

5 1.39 1.42 2.91 2.93 4.04 4.06 

 1.38 1.34 2.80 2.96 3.98 4.07 

 1.33 1.42 2.91 3.06 4.20 4.37 

Mean 1.37 1.40 2.88 2.98 4.07 4.17 

6 1.54 1.60 3.31 3.48 4.23 4.60 

 1.50 1.54 3.59 3.54 4.42 4.55 

 1.53 1.51 3.50 3.41 4.45 4.59 

Mean 1.52 1.55 3.47 3.48 4.37 4.58 

7 1.36 1.43 3.25 3.50 4.32 4.61 

 1.45 1.38 3.11 3.04 4.42 4.45 

 1.50 1.37 3.23 3.11 4.31 4.38 

Mean 1.43 1.40 3.20 3.21 4.35 4.48 

8 1.45 1.45 3.24 3.45 4.75 4.82 

 1.54 1.51 3.21 3.45 4.84 4.97 

 1.70 1.47 3.42 3.22 4.84 4.76 

Mean 1.56 1.47 3.29 3.38 4.81 4.85 

9 1.55 1.49 3.54 3.41 4.98 5.19 

 1.57 1.50 3.43 3.35 5.01 5.10 

 1.51 1.44 3.49 3.44 5.28 4.89 

Mean 1.54 1.48 3.48 3.40 5.09 5.06 

10 1.49 1.53 3.26 3.19 4.03 4.06 

 1.43 1.48 3.30 3.22 4.04 4.08 

 1.42 1.44 3.23 3.27 3.92 4.11 

Mean 1.45 1.49 3.26 3.23 4.00 4.09 

 

 

Table 5.2. Successful velocity (m/s) matched trials for each horse in walk, trot and canter for each trial 

and mean average on both treatments.  
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5.2.1 Hoof rotation and displacement 

Hoof rotation was measured using Range of Motion (ROM) from impact to mid-stance 

(figure 5.2) and mid-stance to toe off (figure 5.3) in X (roll), Y (pitch) and Z (yaw). There was 

no significant difference (p>0.05) found between treatments (harrowed and rolled) in any 

plane for both ROM when tested using general linear modelling.   

 

 

 

Figure 5.2. Comparison of mean (n=81) ROM in roll, pitch and yaw for impact to mid-stance 

between treatments (harrowed and rolled) (error bars indicate standard error of mean). 

 

Figure 5.3. Comparison of mean (n=81) ROM in roll, pitch and yaw for mid-stance to toe off 

between treatments (harrowed and rolled) (error bars indicate standard error of mean).  
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Hoof displacement was calculated as a mean for all horses using displacement in cm from 

impact to mid-stance and mid-stance to toe off in craniocaudal, mediolateral and vertical 

directions. No significant differences (P<0.05) were found between the two maintenance 

treatments in any plane or phase of stride (Table 5.3).  

 

 

Plane of 
movement 

Stride phase 

Mean value 
for ROM 

(cm) ± SE on 
Harrowed  

Mean value 
for ROM 

(cm) ± SE on 
Rolled 

P value Significant 

Craniocaudal 
Impact to Mid-

stance 
0.03 ± 0.1 0.06 ± 0.3 0.369 No 

Mediolateral 
Impact to Mid-

stance 
0.01 ± 0.1 0.01 ± 0.1 0.925 No 

Vertical 
Impact to Mid-

stance 
0.02 ± 0.1 0.02 ± 0.1 0.534 No 

Craniocaudal 
Mid-stance to 

Toe off 
0.17 ± 0.4 0.16 ± 0.3 0.929 No 

Mediolateral 
Mid-stance to 

Toe off 
0.03 ± 0.1 0.02 ± 0.1 0.916 No 

Vertical 
Mid-stance to 

Toe off 
0.05 ± 0.1 0.05 ± 0.1 0.668 No 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3. Mean results (n= 81) for hoof displacement (cm) ± standard error of mean, from Impact 

to mid-stance and mid-stance to toe for movement craniocaudal, mediolateral and vertical. 
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5.2.2 MCPJ Rotations 

MCPJ extension was split into three parts for analysis; impact, mid-stance and toe off. 

General linear modelling was used with horse and gait variability taken into account. There 

was no significant difference (p>0.05) found in mean (n=81) MCPJ extension between 

treatments for impact or toe off. Significantly (p<0.05) greater extension was however 

found on the harrowed treatment at mid-stance (figure 5.4). The difference in joint angle 

between the two treatments was 1.07 degrees and it is important to note that this was for 

a mean value (n=81) that included all gaits. Post hoc analysis showed the largest differences 

between treatments for an individual gait (n=27) to be in walk and trot though this was not 

found to be significant (figure 5.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.  Comparison of the overall mean (n=81) angle for treatments harrowed and 

rolled for MCPJ extension at mid-stance (error bars indicate standard error of mean). 

Values on the Y Axis begin from the mean value (n=9) for all horses MCPJ extension 

angle when standing (204.4°).  

Figure 5.5.  Comparison of the overall mean (n=27) angle for treatments harrowed and 

rolled for MCPJ extension at mid-stance split in walk, trot and canter (error bars 

indicate standard error of mean). Values on the Y Axis begin from the mean value (n=9) 

for all horses MCPJ extension angle when standing (204.4°). 
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5.2.3 MCIII inclination 

MCIII Inclination was measured in roll, pitch and yaw at impact and toe off. General linear 

modelling was used with horse and gait variability taken into account. A significant 

difference was seen between treatments for roll at impact (p=0.04) (figure5.6) but not toe 

off (p=0.78).  A greater amount of limb adduction was therefore found on the harrowed 

surface compared to the rolled at impact. It should be noted that the significant difference 

recorded was not subject to a particular gait. A post hoc analysis appeared to show 

however that the largest differences between treatments for a particular gait were in walk 

and canter (figure 5.7) but these were not proven to be significant (p>0.05).  

 

 

 

Figure 5.7.  Comparison of treatments harrowed and rolled split into gait for mean (n=27) 

MCIII Inclination at Impact for roll (error bars indicate standard error of mean).  

Figure 5.6.  Comparison of treatments harrowed (HG) and rolled (R) for mean (n=81) MCIII 

Inclination in roll at Impact (error bars indicate standard error of mean).  
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There were no significant differences (p>0.05) found between treatments for pitch (figure 

5.8) or yaw (figure 5.9) at either impact or toe off. 

 

 

 

 

 

Figure 5.8. Comparison of treatments harrowed and rolled for MCIII Inclination at Impact and 

toe off in pitch, split into all gaits (n=27). The limb crosses the zero line around mid-stance 

passing from negative to positive values (error bars indicate standard error of mean). 

 Impact  

Figure 5.9. Comparison of treatments harrowed and rolled for MCIII Inclination at Impact and toe 

off in yaw, split into all gaits (n=27) (errors bars indicate standard error of mean)  

Impact  

Toe-off 
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5.3 Mechanical surface properties 

5.3.1 Hardness Measurements for hardness were taken for each surface treatment after 

each horse. Figure 5.10 shows the difference in values for each horse on both treatments 

with data collected from the Clegg testing area (squares 51-65) referred to in section 4.5 

(pg 32). A correlation was then performed to appraise the relationship between testing day 

and hardness for the track (figure 5.11). A slight trend was observed with hardness 

appearing to increase over the duration of testing.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Comparison of mean (n=75) surface hardness readings (gravities) for treatments 

(harrowed and rolled) for each horse on each date of testing. Data was collected from the 

originally selected area for hardness testing (squares 51-65).One horse was tested on each date, 

except for the 13
th

 and 27
th

 May, where two were tested. Data for horses tested on the 13
th

 and 

27
th

 May are displayed in the order in which they were collected. 

 

Figure 5.11. A slight trend was observed between mean hardness (n=75) and data collection 

date for both treatments (harrowed and rolled) on the originally selected area for hardness 

testing (squares 51-65). 
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Results for hardness were broken down further with testing squares 57-61 of the testing 

grid (figure 4.1, pg33) chosen to represent hardness for the study. The selection was based 

on the fact that the motion data was captured in that specific area resulting in it being 

most relevant when related to the kinematic results. The difference in values between 

surface treatments on the selected test area was compared for each horse as well as for 

over the whole of the testing period (Table 5.4). In table 5.4 the greater hardness value for 

each horse is highlighted in red. The difference between treatments as a whole was not 

shown to be significant (p=0.278). It is interesting to note however that seven out of nine 

trials show the rolled surface to be marginally harder than the harrowed, though only one 

of these produced significant results (horse 10-p<0.05). Hardness for both treatments were 

then correlated with testing order for the selected area (figure 5.12, pg54).  Figure 5.12 

demonstrates a lesser trend for an increase in mean hardness value related to test day 

order when compared to the track as whole and was not found to be significantly 

correlated (figure 5.11, pg52). The difference in surface hardness from the start to the end 

of testing therefore showed less change on this smaller selected area than the larger 

original one. Values recorded suggest this was due to the smaller area already having 

greater hardness readings from the start of testing compared to those found on the same 

dates in the larger area. 

 

 

 

 

Horse Data 
collection 

date  

Harrowed 
(mean ±SD) 

Rolled (mean 
±SD) 

Difference P value Significant 

1 05/05/11 63.28± 1.3 65.08 ± 4.3 -1.8 0.462 No 

2 06/05/11 64.88± 2.6 64.96± 2.9 -0.08 0.956 No 

4 13/05/11 67± 7.9 72.8±2.5 -5.8 0.165 No 

5 13/05/11 55.8± 2.8 58.2± 2.3 -2.8 0.104 No 

6 19/05/11 66.52± 4.4 67.52± 5.7 -1.2 0.474 No 

7 27/05/11 67.52± 2.1 66.28± 1.7 1.24 0.455 No 

8 27/05/11 73.72± 5.4 67.84± 2.8 5.88 0.129 No 

9 02/06/11 66.76± 6 71.36± 1.4 -4.6 0.229 No 

10 03/06/11 69.08± 3.5 73± 3.1 -3.9 0.002 Yes 

All 
Horses 
(mean) 

 

66.07 ± 4.8 67.44 ± 4.6 -1.37 0.278 No 

Table 5.4. Comparison of mean arena surface hardness readings (gravities) ± standard deviation, for 

treatments (harrowed and rolled) for each horse on each date.  Values were collected from a 

specified area of test track (squares 57-61 of figure 4.1,pg33). For individual horses n=25, for all 

horse mean n= 225. Greater hardness values for each horse are highlighted in red.  



Chapter Five                                                                                                                    Results 

 

 54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. Mean hardness (n=25) for data collection date for both treatments (harrowed and 

rolled) on the smaller selected area for testing (squares 57-61). 
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5.3.2 Traction A mechanical fault with the torque wrench mechanism meant that 

measurements of torque were taken for each treatment after only six of the nine horses 

had finished the test procedure. Figure 5.13 shows the difference in values for each horse 

on both treatments with data collected from the original testing area (squares 51-65), as 

previously mentioned. Four out of six data collections showed a greater level of traction on 

the rolled surface compared to the harrowed.  The mean results for the two treatments 

over the whole course of the data collection displayed a significant difference (p=0.001) 

with greater traction on the rolled surface.  

Results were then broken down further to testing squares 57-61 using the same method 

outlined for hardness in section 5.3.1. There was no significant difference (p>0.05) overall 

between treatments on the smaller test area. Table 5.5 (pg56) shows that  the rolled was 

found to be harder on four out of six tests, two of which were significant (p<0.05). A 

correlation was then performed to appraise the relationship between testing day and 

torque for the track (figure 5.14 pg56). There appeared to be no relationship between 

torque levels recorded on the surface and testing day over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. Comparison of mean (n=75) surface torque readings (Nm) for treatments 

(harrowed and rolled) for six out of nine horses on data collection days. Data was collected 

from the originally selected area for hardness testing (squares 51-65).One horse was tested 

per day, except for the 27/05/11 where two were tested. Data for horses on 27/05/11 is 

displayed in the order in which it was collected. 
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Horse Data 
collection 

date 

Harrowed 
mean±SD 

(Nm) 

Rolled 
mean±SD 

(Nm) 

Difference P value Significant 

5 13/05/11 13.60 ± 0.7  13.28 ± 0.7 0.32 0.508 No 

6 19/05/11 12.64 ± 0.5  13.44 ± 0.4 -0.82 0.053 No 

7 27/05/11 14.24 ± 0.7  13.84 ± 0.3 0.40 0.387 No 

8 27/05/11 13.64 ± 0.4 13.92 ± 0.4 -0.28 0.341 No 

9 02/06/11 12.60 ± 0.4 14.44 ± 0.4 -1.84 0.002 Yes 

10 03/06/11 12.88 ± 0.5 13.71 ± 0.1 -0.13 0.014 Yes 

All 
Horses 
(mean) 

 13.26 ± 
0.6 

13.70 ± 
0.4 

-0.44 0.202 No 

Table 5.5. Comparison of mean arena surface traction readings for treatments (harrowed and 

rolled) for each horse on each date.  For individual horses n=75, for all horse mean n= 450. 

Greater hardness values for each horse are highlighted in red. 

 

Figure 5.14. Comparison of mean (n=25) surface torque readings (Nm) for treatments 

(harrowed and rolled) for six out of nine horses on data collection dates, with data for two 

horses collected on 27/05/11. Data was collected from the smaller selected area for hardness 

testing (squares 57-61). There was no correlation observed between values (p<0.05). 
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5.3.3 Moisture content  

 Moisture content of the surface was determined by sampling the North and South end of 

the track. Figure 5.15 shows the moisture content on the testing dates for both mean (n=3) 

ends of the track as well as the mean average (n=6) for the two. Moisture content 

appeared to vary between the North and South of the track though the samples were not 

found to be significantly different (p>0.05) from each other for any of the test dates.  

 

 

 

5.3.4 Climatic conditions Data was collected for maximum and minimum air temperatures 

as well as soil temperature, rain fall and humidity for all the testing dates (table 5.6).  

 

Date 
Air temp 

max 
Air temp 

min 
Soil temp 

(10cm) 9am 

Rain (mm) 
previous 
day 24hr 

Rain on 
day (mm) 
9am-9pm 

Humidity % 

05/05/2011 18.6 13 13.6 0 1.4 56 

06/05/2011 20.9 13.8 13.8 2.8 0.2 78 

13/05/2011 14.40 6.8 12.8 0 0 85 

19/05/2011 15.30 9.8 12.1 0.4 0 73 

27/05/2011 14.70 10.8 13.1 0.8 0 78 

02/06/2011 19.80 12.8 15.1 0 0 92 

03/06/2011 25.40 17.9 16.2 0 0 60 

Figure 5.15 Moisture content levels of the surface samples taken from the test track on data 

collection dates. Samples were taken from the North and South of the track with a mean produced 

for each (n=3) A mean average (n=6) of the two ends was also produced to give an indication of 

moisture content of the track as a whole. 

Table 5.6. Daily temperatures, rain fall and humidity for collection dates throughout May and June 2011 

at Myerscough College, Lancashire. 
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5.4 Correlations between mechanical surface properties and kinematic results  

A number of correlations were performed post hoc to explore possible relationships 

between mechanical surface properties and kinematic results. Correlations were 

performed for hardness as well as traction in relation to the two kinematic results that had 

yielded significant differences between treatments; MCPJ extension at mid-stance in roll 

and MCIII inclination at impact in roll. Results for MCPJ extension and MCIII inclination 

were then correlated together.  

5.4.1 Hardness correlations No significant correlation (p>0.05) was found between mean 

values for MCPJ extension and mean values for surface hardness for either harrowed or 

rolled (figure 5.16). There was also no significant correlation (p>0.05) found between 

values for mean MCIII inclination in roll and values for mean surface hardness for both 

treatments (figure 5.17, pg59). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. There was no significant correlation found between mean values (gait x 

repetition -n=9) for MCPJ extension and mean values (n=25) for surface hardness for 

either treatment (harrowed and rolled). 
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5.4.2 Shear strength correlations 

No significant correlation (p>0.05) was found between mean values for MCPJ extension and 

mean values for surface hardness for either harrowed or rolled (figure 5.18). There was 

also no significant correlation (p>0.05) found between mean values for MCIII inclination 

and mean values for surface hardness for both treatments (figure 5.19, pg 60). 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. There was no significant correlation found between mean values (gait x 

repetition -n=9) for MCIII inclination in roll and mean values (n=25) for surface 

hardness for either treatment (harrowed and rolled). 

Figure.5.18. Scatter diagram for mean (gait x repetition -n=9) MCPJ extension at impact 

and mean (n=75) surface torque for both treatments (harrowed and rolled). There was 

no significant correlation found between mean values for MCPJ extension and mean 

values for surface traction readings for either treatment 
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5.4.3 MCIII inclination correlated with MCPJ extension 

No correlation was found between values for MCIII inclination in roll at impact and MCPJ 

extension at mid-stance following either harrowing or rolling (figure 5.20).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19. Scatter diagram for mean (gait x repetition -n=9) MCIII inclination at 

impact in roll and mean (n=75) surface torque for both treatments (harrowed and 

rolled). There was no significant correlation found between mean values for MCIII 

Inclination and mean values for surface traction readings for either treatment 

Figure 5.20. There was no correlation found between value for MCPJ extension (n= 

162) at mid-stance and values for MCIII inclination in roll at impact for either 

treatment (harrowed and rolled). 
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A correlation was found between MCIII inclination in pitch at impact and MCPJ extension at 

mid-stance. MCPJ extension increased as pitch angle decreased on both harrowed and 

rolled surfaces. Figure 5.21 shows the correlation for all trials for all horses in canter. 

Similar trends were also found in walk and trot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21. There was a correlation found between values (n=54) for MCIII 
inclination in pitch at impact and MCPJ extension at mid-stance for both treatments 
in canter (harrowed and rolled). Similar trends were found for walk and trot. 
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5.5 Summary of main results 

The main equine kinematic and mechanical surface property results that were analysed 

using statistical tests are summarised in table 5.7.  

Results  

Kinematic analysis p value Significant 

 
There was no difference found in hoof 
rotation in roll, pitch or yaw for impact to 
mid-stance or mid-stance to toe off between 
harrowed or rolled treatments.  
 

Roll 
Imp-mid 
p=0.855 

Pitch 
Imp-mid 
p=0.695 

Yaw 
Imp-mid 
p=0.768 

No 

Roll 
Mid-toe 
p=0.881 

Pitch 
Mid-toe 
p=0.920 

Yaw 
Mid-toe 
p=0.984 

No 

 
No difference was shown in the amount of 
hoof displacement measured in cranio-caudal, 
mediolateral or vertical directions between 
harrowed or rolled treatments. 

Cranio-caudal 
Imp-mid 
p=0.369 

Mediolateral 
Imp-mid 
p=0.925 

Vertical 
Imp-mid 
p=0.534 

No 

Cranio-caudal 
Mid-toe 

0.929 

Mediolateral 
Mid-toe 

0.916 

Vertical 
Mid-toe 

0.668 
No 

No significant difference was found for MCPJ 
extension at impact or toe off on either 
treatment. 

Impact 
p=0.252 

Toe off 
p=0.174 

No 
 

A significant difference was found for MCPJ 
extension at mid-stance. Greater levels of 
extension were measured on a harrowed 
surface compared to rolled. 

Roll 
Mid-stance 

p=0.044 
 

Yes 

A significant difference was found for MCIII 
inclination at impact in roll. Greater levels of 
adduction were measured on a harrowed 
surface compared to a rolled one. 

Roll 
Impact 

p=0.040 
Yes 

No difference was found for MCIII inclination 
in roll at toe off between treatments. 

Toe off 
p=0.788 

No 

 
There was no difference found in MCIII 
inclination in pitch and yaw at either impact 
or toe off between harrowed or rolled 
treatments 
 

Pitch 
Impact 

p=0.474 

Yaw 
Impact 

p=0.070 
No 

Pitch 
Toe off 
p=0.362 

Yaw 
Toe off 

p=0.122 
No 

Mechanical surface properties P value Significant 

No difference was found for mean hardness between harrowed and rolled 
treatments on the original test area (squares 51-65). 

p=0.564 No 

No difference was found for mean hardness between harrowed and rolled 
treatments on the smaller test area (squares 56-61). 

p=0.278 No 

A significant difference was found for mean torque readings between 
harrowed and rolled treatments on the original test area (squares 51-65).  

p=0.001 Yes 

No difference was found for mean torque measurements between harrowed 
and rolled treatments on the smaller, selected test area (squares 56-61). 

p=0.202 No 

Table 5.7. Results description including p value for significance. Results highlighted in red were found to show a 

significant difference between harrowed and rolled treatments.  
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Chapter Six – Discussion 

6.0 Introduction 

The current study was developed to investigate the movement of the distal limb and hoof 

of the horse on an arena surface treated using different general maintenance procedures. 

There are currently no set standards or rules governing surface maintenance in any 

equestrian sport. Surface substrate, moisture content and design have all been studied to 

ascertain the relationship they each have to injury and performance (Barrey et al., 1991; 

Chateau et al., 2009; Gustås et al., 2006a; Murray et al., 2010a; Peterson and McIlwraith, 

2008; Setterbo et al., 2011). Studies documenting race track characteristics (Dallap-Schaer 

et al., 2006; Peterson and McIlwraith, 2008; Ratzlaff et al., 2005) and related injury (Parkin 

et al., 2004a,b,c; Williams et al., 2001) have benefited all disciplines by identifying areas of 

significant importance in the aetiogenesis of such problems. It is essential therefore that 

surfaces used for equine training and competing in non-racing disciplines are also given 

thorough consideration by researchers.    

Recent literature has widely documented that certain surface substrate characteristics can 

predispose horses to acute catastrophic, as well as chronic degenerative, injuries (Peterson 

et al., 2011; Murray et al., 2010a,b; Weishaupt et al., 2010). It has become recognised that 

material consistency of a surface is of great importance to counteract issues arising from 

usage and climatic conditions (Murray et al. 2010a; Peterson et al., 2011; Riggs, 2010; 

Setterbo et al., 2011). Maintenance procedures could potentially produce a more 

consistent, safer surface. The amount of research work published in this area however is 

still lacking in comparison to that detailing other factors affecting surfaces, such as the 

effect of decreasing substrate hardness. Previous studies on this subject have reported the 

effect of treatment on mechanical surface properties without comparison to kinematic or 

kinetic data (Setterbo et al., 2011). It is therefore essential that non-racing specific, 

innovative research work is carried out with a focus on maintenance that is reliable in 

providing mechanical as well as biomechanical information. The current study aimed to 

meet this research need. 

Data was analysed with gaits grouped together as well as individual gaits of walk, trot and 

canter. It is important to understand some of the characteristics associated with individual 

gaits when analysing the kinematic results. Individual gaits can be defined as specific 

coordinated movement of the limbs that results in progressive motion (Barrey, 2001). Walk 

is a four beat symmetric gait that has long overlap time between the stance phases of the 
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different limbs. The MCPJ is not extended as far in walk as it is in trot and canter due to 

these long cross over stance times distributing the body weight of the horse more evenly 

over the limbs.  Trot is also symmetrical but is a two beat gait that consists of moving linked 

diagonal pairs. Canter, unlike walk and trot, is an asymmetrical gait consisting of three 

beats. In canter a leading and trailing fore limb can be identified. The leading and trailing 

limbs will handle loads differently due to variations in inclination and distribution of body 

weight (Back et al., 1997). 

The current study investigated the effect that two different standard maintenance 

procedures (harrowing and rolling) had on the biomechanics of the hoof and distal limb. An 

infrared camera system was used to collect motion data from retro-reflective markers 

placed on the horses. Hardness and traction data of the surface were also collected 

following both treatments. Results were assessed to explore the effect the arena 

treatments had on the characteristics of the substrate and consequently the movement of 

the horse.  

To carry out the study a suitable marker set for capturing 3D motion data had to be 

identified and validated. Kinematic values obtained were comparative with those reported 

by other authors. MCPJ extension values in walk (217°), averaged between treatments, 

agreed with those suggested by Vilar et al. (1995) (216°) and Smith et al. (2002) (216°). 

Values measured in trot (228°) in the current work were also similar to those that Vilar et 

al. (1995) suggest to be commonly reported (225°). Smith et al. (2002) states that a value of 

228° is often reported for MCP extension of the leading limb in canter, again this is a similar 

result to that found in the current work (226°). Further to this the final marker 

arrangement used in this study was found to measure increases in extension of the MCPJ 

to the same magnitude as the currently used 2D set. The result of this validation meant 

that data could be taken and interpreted for all three dimensions with reassurance of its 

validity. 

6.1 The effect of maintenance treatments on equine kinematics 

6.1.1 Rotation and displacement of the hoof  

The hoof is the point of contact between the horse and the surface.  Incorrect rotation or 

displacement of the hoof is implicated in the development of injury, especially during 

intense competition. Hoof rotation and displacement were measured during the current 

study as ROM from impact to mid-stance and mid-stance to toe off, in roll, pitch and yaw 

for both treatments.  
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There was no difference found between treatments for rotation of the hoof in roll, pitch or 

yaw from impact to mid-stance or mid-stance to toe off. To the author’s knowledge there is 

no published data regarding the effect of commonly used maintenance treatments on hoof 

rotation. On a compliant substrate, such as the synthetic one used for this study, the hoof 

deforms the surface as it rotates during the different phases of stance. The heel is initially 

reported to sink, followed by forward toe rotation from mid-stance through to break over 

(Chateau et al., 2005; Johnston and Back, 2006). Ratzlaff et al. (1993) reported pitch angle 

of the hoof on a dirt track in galloping horses, stating acute angle values (6-7°). The current 

study reported ROM for hoof rotation, unlike the work by Ratzlaff et al. (1993). Measuring 

and reporting accurate absolute angles for hoof rotation using adhesive markers requires 

radiographs to identify the centre of rotation for the coffin joint as well as the long axis of 

the coffin bone relative to the hoof. The current study did not use radiographs for ethical 

and practical reasons meaning that an absolute angle would be an estimation and would 

really only produce useable values in pitch. It is more difficult to record exact angles for roll 

and yaw when using an estimated marker set as they are greatly affected by limb 

adduction. Using ROM therefore allowed direct comparison between the magnitude of 

movement seen in rotation in a given direction between surfaces due to the cross over 

design of the study methodology. Work by Chateau et al. (2006b) compared the effect of 

different shoeing procedure on ROM in the hoof on a treadmill. Comparing the results from 

the current study against those of Chateau et al. (2006b), using matched gait (walk) and 

phase of stride (impact-mid-stance) in standard steel shoes, the harrowed treatment 

appears to have produced the most similar result. The present work recorded a ROM of 

3.6º (±1.7) on the harrowed treatment and 5.2º (±1.7) on the rolled (figure 5.2, pg47). 

Chateau et al. (2006b) however reported a backward rotation of 5.1 º (±3.8) for impact to 

hoof stabilisation and then a forward rotation of 1.3º (±1.9) from hoof stabilisation to heel 

off in standard shoes. Significance was not found in separate gaits in the current study, 

though this may have been influenced by sample size. All motion results in the current 

work were tested using a mean value that included data from walk, trot and canter. The 

mean (±SE) ROM found for pitch was 5.3º (±4.3) following harrowing and 5.7º (±3.6) for 

rolling, resulting in no significant difference between treatments at impact to mid-stance 

(figure 5.3, pg 47).  

It is suggested by Peterson et al. (2008) that when studying surface characteristics it is 

deformability that has the largest influence on limb and hoof kinematics. The current study 

focused on the effect that two general maintenance treatments would have on the 
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mechanical properties of one synthetic surface.  The ability of the surface to deform after 

maintenance treatments was estimated in the current study by comparison of kinematic 

values in relation to hardness and traction values. It should be noted however that the 

surface deformation is affected by the physical properties and composition of the surface 

and not just the treatment it receives.  Factors such as these must therefore be considered. 

Hoof rotation is suggested to give a reliable indication of a surface’s ability to deform 

during the stance phase of the gait (Johnston and Back, 2006). Harrowing an equine arena 

surface is thought to lead to a decrease in substrate hardness and shear resistance and 

therefore should produce an increase in substrate deformation (Setterbo et al., 2011; 

Thomason and Peterson, 2008). Conversely rolling a surface is reported to lead to 

decreased deformation through increased hardness and shear properties.  It could be 

expected therefore that in the current study harrowing the test track would produce a 

softer surface cushion resulting in an increased hoof rotation and displacement when 

compared to the rolled treatment.  Mean hardness for the whole test period however was 

not significantly different between treatments. The lack of difference between treatments 

for hoof rotation could to some extent be explained by this finding. Statistically neither 

treatment resulted in a cushion layer that was harder than the other. Such results imply 

that neither procedure allowed for greater rotation in any direction at any point of the 

stride as mechanically they were identical in terms of ability to deform through hardness. 

It is anecdotally suggested that synthetic surfaces, especially those with a wax content, 

require currently undetermined levels of loading to allow them to settle and to some 

extent compact. The test track had been laid for four months prior to commencement of 

testing and had undergone no use aside from the validation work involving maintenance 

treatments. Data was collected on seven dates between May and June of one year with 

horses spending relatively minimal time on the track. The addition of an untreated control 

area to the current study may have enabled identification of normal settling behaviour of 

the substrate. The ability of maintenance procedures to actively treat the surface cushion 

during this stage could have then been analysed. It may be that neither treatment has a 

notable effect on hardness at this settling stage due to the less compact nature of newly 

laid synthetic sand and wax surfaces.  

The surface was however found to be significantly different between the two treatments in 

terms of torque with greater levels found on rolled although this was only on the larger 

original test area.  The smaller selected area within the filming zone showed no difference 
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between treatments for torque. Peterson et al. (2011) reports that at toe off specifically it 

is the surface’s resistance to shear that determines rotation of the hoof. This information 

would explain the lack of difference seen in hoof rotation at toe off in the current study as 

torque in the filming zone was not altered. The area for filming was subject to greater 

levels of human and equipment traffic as well as equine. The extra loading of the surface 

possibly proved to have a greater effect on the mechanical substrate properties, such as 

torque, than the maintenance equipment did.  

As well as hoof rotation, no difference for hoof displacement in craniocaudal, mediolateral 

or vertical directions, from impact to mid-stance or mid-stance to toe off was found 

between treatments. A small amount of craniocaudal slippage, especially at impact, is 

beneficial to the horse and aids in decreasing forces encountered during deceleration. Too 

much however can be damaging to the supporting systems of the joints of the limb 

(Orlande, 2009). The amount of displacement and rotation of the hoof can vary due to 

surface substrate characteristics (Gustås et al., 2006b; McClinchey et al., 2004). The 

potential for displacement of the hoof has been identified as being greater on asphalt, 

rubber and concrete than sand (McClinchey et al., 2004). Information such as this suggests 

that traction of the hoof is higher on rougher materials, providing they are firm. The 

current study found traction levels to be statistically non-different between treatments 

within the filming area, which would explain the lack of difference recorded for 

craniocaudal and mediolateral hoof displacement. Further to this, Burn (2006) suggested 

that on sand surfaces hoof penetration depth (vertical) can affect displacement 

(craniocaudally) due to the force exerted on the hoof wall by the surrounding substrate. 

Hoof penetration (vertical) ROM did not alter between treatments in this study, and as 

suggested by Burn (2006), neither did craniocaudal displacement. The likely reason for this 

result is again that hardness and therefore possible deformation of the surface was not 

changed between treatments.  

The present study used the same surface material for both treatments but hypothesised 

that the mechanical properties would alter once treated with either a harrow or roller. In 

the specific filming area neither hardness nor traction changed significantly, which would 

explain the lack of difference seen for hoof displacement between treatments. Research is 

therefore recommended comparing hoof displacement in all directions in relation to 

varying hardness and traction levels to explore the related effects. The importance of hoof 

slip and rotation cannot be overlooked as it will directly influence movement of the limb 
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and accompanying joints. 

6.1.2 Extension of the MCPJ and MCIII inclination 

Extension of the MCPJ has been previously described as a passive event caused by the 

vertical forces placed upon it (Johnston and Back, 2006). Extension of the joint is resisted 

by supporting structures such as the SDFT, DDFT and the SL (McGuigan and Wilson, 2003; 

Smith et al., 2002). Strain in these structures is therefore highly dependent on the angle of 

the MCPJ. In the stance phase of the gait the weight of the horse will cause extension of 

the joint with maximal values reached around mid-stance (Clayton, 1997). The level of 

MCPJ extension is influenced by factors such as age, velocity, weight, surface and gait.  

The results from the current study found mean MCPJ extension to be no different between 

treatments for either impact or toe off. Extension of the MCPJ during stance phase is 

directly related to substrate hardness with greater values reported by other researchers on 

harder surfaces (Clayton, 1997; Heaps et al., 2011; Smith et al., 2002). The results for MCPJ 

extension at impact and toe off therefore support this theory as neither treatment was 

proved to result in a significantly harder surface.  

Mean MCPJ extension at mid-stance however was greater on the harrowed surface (225°) 

compared to the rolled surface (224°) when gait was grouped. Breaking the MCPJ data 

down into gait showed that larger values were produced for extension following harrowing 

than rolling for all separate gaits; walk (218° vs. 216°), trot (229° vs. 228°) and canter (226° 

vs. 225°). Vilar et al. (1995) reported findings from a personal communication from 

Martinez, which suggested average acute MCPJ extension angles of 218° in walk and 226° 

in trot at mid-stance. The values for both gaits are identical to those found for the 

harrowed surface in the current study, although the surface on which they were collected 

is not stated. Kicker et al. (2004) used a 3D marker set to record dorsiflexion angles, which 

equate to palmar angles of 224° in walk and 237° in trot on a treadmill. Values for both 

gaits are greater than those recorded during the current work but this is possibly to be due 

to the harder nature of the treadmill surface in comparison to a wax synthetic substrate. 

Smith et al. (2002) states typical peak angles in canter to vary between limbs with 228° for 

the leading limb and 238° for the non-lead. The current study measured extension of the 

MCPJ of the leading limb in canter and reported similar though slightly lower values.  

 

Mid-stance is the main weight bearing phase of the stride where the limb acts as a 

supportive strut and the body passes over it. Maximum joint extension is therefore 
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expected around this point. A harder surface, due to its lack of deformation during this 

increased moment of weight bearing would cause greater extension of the MCPJ. The study 

hypothesized that the rolled surface would become harder than the harrowed and 

therefore greater levels of MCPJ extension would be recorded, but this was not the case. 

Neither treatment yielded a harder surface than the other; therefore the difference 

reported could be caused by other factors. Gait, velocity, collection, supporting structure 

strength, shoeing and surface have all been reported to alter extension of the joint 

(Chateau et al., 2006a; Clayton, 1997; Heaps et al., 2011; McGuigan and Wilson, 2003; 

Smith et al., 2002). The current study was designed with these issues in mind as the only 

influence the study aimed to investigate was that of the surface in relation to MCPJ 

extension. A cross over design was used for the study meaning that horses were compared 

to themselves for opposing surface treatments thus negating issues surrounding difference 

in natural gait patterns.  All horses were shod in steel shoes on all four hooves, with none 

undergoing any type of remedial farriery that would involve shoes designed to adjust 

natural movement of the horse. As the horses acted as crossover for each treatment the 

effect of one horse having different shoes would have been unlikely to have affected the 

overall results. Velocity was controlled throughout the trials by use of a tracking marker 

placed on the sternum of each horse and followed using Qualysis track manager. Velocity 

was recorded and analysed in field during testing to ensure each horse was velocity 

matched across treatments. A post hoc analysis found no significant difference (p>0.05) 

between velocities on either a harrowed or rolled surface in any gait for each horse. 

Ratzlaff et al. (1995) reported that horses show a set preference for stride rate at a given 

gait and velocity, suggesting that stride length would also be maintained. Chateau et al. 

(2010) however reported that horses did alter stride length in relation to surface substrate. 

Although stride length was not specifically measured in this work a change in stride length 

would lead to a change in inclination of MCIII in pitch. No significant difference was found 

for MCIII inclination in pitch suggesting that horses not only keep a constant velocity but 

exhibited no change in stride length on either surface. Velocity and stride length were 

therefore not producing the greater MCPJ extension values seen following the harrowed 

treatment. A number of post hoc analyses were therefore conducted to attempt to identify 

the cause. 

 

There is a strong relationship between the body’s centre of mass and the magnitude of 

loading that the limbs receive (Buchner et al., 2000). It was found during post hoc analysis 
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that at impact and mid-stance the sternum marker, and therefore the horses’ body, 

appeared further forward over the limb on the harrowed surface than on the rolled. The 

MCPJ could consequently have been under increased loading, which would explain the 

higher levels of extension found on the harrowed treatment. The trend for a more forward 

body position and related increase in extension values, was observed in the majority of 

trials for all gaits and all horses. Further post hoc analysis showed that there was a strong 

correlation between MCIII pitch inclination at impact and MCPJ extension at mid-stance on 

both surfaces (figure 5.21, 61). As pitch angle decreased MCPJ extension increased and this 

was true for both treatments. The difference between treatments for mean MCPJ 

extension was 1.07° when all gaits were grouped (figure 5.4, pg 49). Significance was not 

found when testing for individual gait, though figure 5.5 (pg 49) in the results does show 

greater MCPJ extension following harrowing in walk, trot and canter. The effect on MCPJ 

extension caused by harrowing is therefore subtle but it is significant (p<0.05) and should 

not be overlooked. Harrowing is possibly causing small alterations to the surface cushion 

that are not large enough to elicit a change in hardness or traction but are enough to cause 

the horse to display altered stride kinematics.  

MCIII inclination in roll, pitch and yaw is used by researchers to identify the placement of 

the limb in relation to the body (Chateau et al., 2006a; Hobbs et al., 2011). The study found 

no difference in MCIII inclination for pitch or yaw at impact or toe off (figures 5.8 and 5.9, 

pg 51). A horse will modify its pattern of locomotion in relation to substrate properties 

(Chateau et al., 2010; Clayton, 2002; Weishaupt et al., 2010b). Chateau et al. (2010) 

reported horses to alter stride length and stride frequency greatly between extremely 

different surfaces (asphalt and deep dry sand). The current study only used one surface but 

applied two treatments that were hypothesised to alter the mechanical properties of the 

substrate and therefore possibly the stride characteristics. Hardness and traction was the 

same for both treatments within the filming area which is possibly why pitch and yaw 

inclination were not altered.  

A significant difference was found for MCIII inclination at impact but not toe off in roll. The 

results show that the limb was adducted to a greater extent on a harrowed surface 

compared to a rolled one. Mean adduction of the limb for all gaits was -3.5° on the 

harrowed surface and -2.6° on the rolled (figure 5.6, pg 50). A trend was seen for greater 

adduction following harrowing compared to rolling for each gait when split into walk (-3.8° 

vs. -2.8°), trot (-3.6° vs. -3.5°) and canter (-3° vs. -1.5°) (figure 5.7, pg 50). There is currently 



Chapter Six                                                                                                                Discussion 

 

 71 

no information available regarding inclination of the limb in relation to surface 

maintenance procedures. Surface inclination has however been shown to influence limb 

inclination. Hobbs et al. (2011) reported significantly larger levels of adduction of the MCIII 

on a flat surface than a banked surface on a turn. The authors presented the results for 

adduction as positive values with results in trot on a banked turn (7.2°) most similar to 

those reported as negative values in the current work (-3.6°). This figure still shows larger 

levels of adduction than those found in the present study and this is most likely due to the 

alteration of foot placement and body inclination needed to negotiate a 10m circle. This is 

supported by the fact that the study found MCIII inclination values to be larger for the 

inside leg than the outside. The work by Hobbs et al. (2011) does however ever 

demonstrate that the horse will alter placement of the hoof relative to the body and that 

this will affect limb adduction. Differences in velocities between studies may also have 

influenced levels of MCIII adduction with greater speeds recorded in the study by Hobbs et 

al. (2011) (3.58m/s) than those found in the current work (3.24m/s). 

 In the current study a trend was seen for greater adduction following harrowing compared 

to rolling in walk, trot and canter (figure 5.7, pg 50). Analysis of trials in Visual3DTM 

illustrated the difference measured for MCIII adduction between treatments in the 

majority of trials in all gaits for all horses (plate 6.1). It appears that the horse is altering the 

swing phase of the gait and this in turn is affecting the stance phase due to a change in foot 

placement in the frontal plane. It is possible therefore that had absolute angles and not 

ROM been reported for hoof rotation a difference may also have been found.  

 

 

Plate 6.1. MCIII adduction images taken from Visual3D
TM

. Greater levels of adduction were seen 

following harrowing of the surface (A) compared to rolling (B). The left forelimb analysed in this 

study is shown on the right of the two plates. The red lines trace the marker patterns of motion 

of the limb and hoof. 
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Results from MCPJ extension already suggest that horses in the current study were 

exhibiting significant differences in stride kinematics due to possible perceived differences 

caused by surface treatments. The change in level of adduction of the MCIII between 

treatments strengthens the idea that locomotion patterns were altered due to small 

differences in surface characteristics. Barrey et al. (1991) reported the damping effect of a 

track to be dependent on particle size distribution and density. It is possible that the 

treatments in the current study altered the cushion layer of the track sufficiently enough to 

produce differences in shock acceleration and vibration frequency felt by the horse. 

Previous studies have measured such impact characteristics successfully using 

accelerometer or specially adapted force shoes (Chateau et al., 2009; Gustås et al 2006b; 

Hjerten and Drevmo, 1994; Ratzlaff  et al., 2005; Robin et al., 2009). Forces such as these 

were not measured in this study so the changes seen cannot be directly attributed to them 

although it could explain such subtle changes as those recorded. Further work investigating 

the effect of different surface treatments in relation to gait alteration could lead to a 

greater understanding of the effect maintenance procedures had on mechanical surface 

properties and therefore equine kinematics.  

6.2 Mechanical surface property results 

Data for hardness and traction was recorded during testing to attempt to assess possible 

characteristics of the surface that could affect the motions found in the hoof and limb. 

Hardness data was collected using a Clegg hammer, a piece of apparatus that has 

undergone extensive testing and use in human, and more recently equine, sports surface 

research (Caple et al., 2011; Malmgren et al., 1994; Popke, 2002; Setterbo et al., 2011). The 

Clegg hammer can however only give an approximation of the possible vertical forces 

encountered by the horse. A torque wrench was therefore also used to partially address 

some of the opposing forces, in this case traction, often considered in terms of shear force. 

The study used a specially adapted torque wrench constructed to replicate a shod hoof. 

The torque wrench accomplished this using a custom-made base plate fitted with a 

standard type steel horse shoe.  Neither piece of apparatus could however measure ground 

reaction forces and should therefore be used as a guide to the possible forces encountered 

by the horse. 

There was no significant difference found between mean hardness for rolled (67.1G) versus 

harrowed (66.3G) treatments over the study period on the originally designated test plots. 

It was found that five out of nine days resulted in larger hardness readings after use of the 
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roller, compared to four out of the nine for the harrow (figure 5.10, pg 52).  No trend was 

seen regarding treatment order, time of day, air or soil temperature or moisture content of 

the track, in relation to either the harrow or the roller. Overall mean hardness was 

relatively low on both treatments when compared to previous work. Fidler (2008) reported 

mean hardness to be 90G following rolling of a synthetic arena surface to and 73G 

following harrowing. Further to this work, Blundell et al. (2010) reported hardness readings 

ranging from ~70 to ~90G for a synthetic sand and rubber surface. Setterbo et al. (2011) 

suggests that additives to sand surfaces, such as fibres, rubber and wax, cause the 

substrate to behave differently compared to sand alone in relation to equipment 

measuring mechanical properties.  

A slight trend for an increase in hardness was seen over time (in relation to date of testing), 

independent of treatment. Loading of a substrate over time is the most efficient manner in 

which to get it to settle as mentioned in section 6.1.1. It is therefore possible that 

measurements for hardness were influenced by an amount of shifting and settling of the 

substrate. Post hoc analyses were therefore run to investigate possible relationships 

between hardness, traction, treatment and test dates on a smaller area of the track specific 

to the filming zone that had received the most loading.  Further to this it was felt that this 

specific area would yield results that were more relevant to the kinematic data recorded 

due to being directly within the filming zone. No significant difference was found for 

hardness or traction between treatments for the selected test area. The trend for an 

increase in hardness over time that had been found on the larger test area was not found 

on the smaller one. The length of the track and the sharp turns to enter and exit meant 

that this middle section, which was the filming zone, was the only area to be trotted and 

cantered on. The smaller area was subject to traffic from not only horses, but researchers 

and vehicles as well. The reduced correlation between hardness for both treatments and 

test date could therefore be caused by an increase in traffic to the area resulting in a more 

settled surface although this still seemed to have no measurable effect on readings 

recorded after maintenance treatments. A study conducted after a greater time period in 

which the track had been ridden on and regularly maintained would build on results found 

in the current work. It is possible that the settling of a surface is affected by moisture levels 

and due to the outside location of the track used in the current work moisture could not be 

controlled.    

A significant difference was found between treatments for traction using the specially 
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adapted torque wrench on the originally selected test area. A greater amount of traction 

was found on the rolled treatment (14.00Nm) as opposed to harrowed (13.28Nm). 

Peterson and McIlwraith (2008) support this finding reporting shear strength to be reduced 

on a harrowed surface compared to a non harrowed surface.  Results from the smaller test 

area however found traction to not be significantly different following treatments, with 

13.26Nm recorded following harrowing and 13.70Nm following rolling. Both these results 

are slightly lower than those seen for the larger test area but are also lower than that 

reported in work by Fidler (2008) that found traction on a harrowed sand surface to be 

21.2Nm and 23.Nm on rolled. Peterson and Mcilwarith (2008) suggest that the shear 

strength of a dirt surface is perhaps not affected by standard maintenance procedures due 

to clay in the track having the greatest bearing on cohesive properties. It is possible that 

adding wax to a sand substrate produces the same effect in synthetic surfaces. 

The moisture content of the surface is cited as being one of the most influential factors on 

mechanical properties of a substrate due to its influence on surface hardness and therefore 

injury risk (Parkin et al., 2004a; Peterson et al., 2011; Ratzlaff et al., 1997). No water was 

manually added to the track at any point, meaning the level the surface received was 

weather dependant. It is also important to note that the synthetic surface tested contained 

wax and that the track was laid on a special drainage system containing permavoid units. 

Adding wax to a sand surface increases its ability to retain water in hot dry conditions as 

well as conversely enabling it to show improved drainage in very wet conditions (Murray et 

al., 2010a). The permavoid units are designed to act as a moisture management system, 

increasing the moisture retaining ability of a surface, and there is currently no research 

available on the suitability of use of this technology in regard to synthetic equestrian 

surfaces. The present study did not aim to address the effect these units had on substrate 

character or horse kinematics. Future work monitoring the effect that such technology has 

on current understanding of surface characteristics is however a priority. 

The current study found the moisture levels to fluctuate by between 1-5% on different 

testing days as well as sampling sites across the surface. Generally however moisture levels 

did appear to be reduced over time with the exception of the third testing date. Samples 

were taken from the north and south of the track and presented in the results as separate 

values as well as a mean for the two. The mean minimum moisture content of the surface 

on one day was recorded at 0.1% and the mean maximum at 5.4%. A report by Peterson et 

al. (2011) regarding moisture in racetracks supports these findings, stating that levels in the 
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cushion fluctuate across a surface, even if levels in the base are found to remain constant.  

Barrey et al. (1991) suggested a moisture content between 8-17% of a wax-free sand 

surface aids in deceleration of the hoof at impact. Levels for the current study were all 

below the minimum 8% recommended by Barrey et al. (1991) however the substrate 

tested in the present work contained wax. Synthetic surfaces containing wax are widely 

used in racing and non-racing disciplines. In England top equestrian competitions such as 

The Horse of the Year Show have chosen to use this type of substrate. Recommendations 

for moisture levels of synthetic surfaces with a wax content would therefore be a valuable 

development in relation to suggested maintenance procedures. It is vital that researchers 

continue to explore the relationship between these mechanical surface characteristics and 

the effect they have on the movement of the horse. 

The values produced in the study bring into question why the hardness and traction of the 

surface in the selected test area did not alter in response to either treatment applied. It has 

been reported (Setterbo et al., 2011) that the magnitude of changes seen for surface 

hardness and deformation when harrowed are directly related to the depth that the tines 

penetrate the surface. The current study used a joint harrow and grader with spring tines 

that are designed to aerate the surface (Andrews Bowen, 2011). When compared to 

harrow levels tested by Setterbo et al. (2011), the treatment applied in the current study 

would be best defined as a shallow harrow (2-5 cms deep), affecting the top of the surface. 

At initial hoof impact it is this top loose layer of the track that quickly becomes 

compressed. The stiffer pad level below the cushion then becomes instrumental in carrying 

the load of the horse from secondary impact through to toe off. Ratzlaff et al. (1997) found 

that extensive harrowing of a sand and clay track to the depth of 6cm had minimal effect 

on the deeper layers of the track other than inadvertently compacting them due to the 

weight of the equipment used. Further to this Setterbo et al. (2011) reported that 

harrowing a synthetic track elicited smaller changes in the mechanical responses in 

comparison to dirt surfaces even at the lower depths. The Clegg measures the hardness of 

the top surface layer on the first drop, assessing the hardness of the stiffer pad layer on 

subsequent drops in the same position (Peterson et al., 2011). The current study used a 

number (5) of repeated drops, meaning the top cushion layer that the harrow had actually 

interacted with, was only truly measured on the first drop.  Hardness results from the 

current study suggest that using a shallow level harrow is perhaps not sufficient to elicit 

measureable changes to the mechanical properties of a synthetic surface.  A deeper harrow 
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that interacts with the stiffer pad layer may be necessary to obtain a change in substrate 

behaviour. It is important to note however that changes brought about by such techniques 

are not always beneficial. Peterson and Mcilwraith (2008) found that use of a pavement 

ripper that cut into the surface to a depth of 15cm, reduced peak loading of the hoof but 

subsequently resulted in a greater standard deviation of the load. An increase in variability 

such as this is regarded as a possible hazard and it is unlikely that a horse will be able to 

constantly adapt and handle inconsistent forces.  

It is important to note that the current work was undertaken to assess the effect that 

commonly used maintenance equipment had on a surface. The current lack of guidelines 

regarding suitable maintenance procedures and equipment for arena surfaces means that 

it is often the manufacturers’ advice that dictates the treatment used. The equipment used 

in the current work was chosen following telephone interviews with surface manufacturers 

regarding suggested maintenance regimes (Appendix E). Results from this study are 

therefore directly applicable to the current situation in the equine industry. The level of 

harrow used for this work should therefore not be over looked but possibly investigated in 

a different manner for example following a set regular treatment over time.   

Findings for hardness and traction therefore do not lead to a clear conclusion regarding the 

change in mechanical surface properties after preparation of a surface by harrowing or 

rolling. The author suggests that given the results produced, a control area undergoing 

neither treatment may have proved beneficial when attempting to understand factors 

affecting the surface. An untreated area such as this would enable researchers to monitor 

the settling effect of the substrate over time. In addition to this work, exploring the depth 

and amount of harrowing necessary to elicit recordable changes in an infield environment 

would prove most beneficial in answering some of the questions raised here.  
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6.3 Conclusion 

The study focused on the effects that commonly used arena maintenance treatments had 

on the mechanical properties of a substrate and the movement of the horse. There are at 

present no set standards or regulations governing surfaces in relation to maintenance 

procedures necessary to maintain the optimum health and wellbeing of the horse. 

Research regarding horse and ground interaction has until recently focused mainly on 

racehorses and therefore race tracks. The author of the current study therefore decided to 

investigate behaviour of surfaces that were non racing specific. A test track was 

constructed to act as an arena and a synthetic wax surface was used.  

The main study found there to be no difference in hoof displacement or rotation between a 

harrowed or rolled surface. Surface hardness and traction within the filming zone were not 

significantly altered between treatments and this is believed to have had the greatest 

effect on the movements of the hoof. Greater levels or altered type of treatment 

application may be necessary to elicit measurable changes in hoof motion. Extension of the 

MCPJ at mid-stance was found to be significantly greater on the harrowed treatment than 

rolled leading to the rejection of the original study hypothesis. Post hoc analysis revealed 

that at impact and mid-stance the sternum marker, and therefore the horses’ body, 

appeared further forward over the limb on the harrowed surface than on the rolled. The 

MCPJ could consequently have been under increased loading, which would explain the 

higher levels of extension found on the harrowed treatment.  Inclination of MCIII was used 

in the study to identify placement of the limb in relation to the body. MCIII inclination in 

roll showed significantly greater adduction of the limb on a harrowed compared to rolled 

surface.  Horses have been shown to alter stride kinematics in relation to perceived 

differences in shock vibration in surfaces. It is possible that alterations to the surface 

cushion are enough to elicit small changes in stride characteristics. The difference in MCIII 

adduction shows that foot placement in the frontal plane changed which is likely to have 

been caused by an altered swing phase. 

It is important to consider that due to the outdoor location of the surface, daily 

temperatures and moisture content may have also been having subtle effects on the 

mechanical substrate properties recorded.  

The study has found that harrowing and rolling synthetic arena surfaces may be enough to 

produce subtle changes in extension of the MCPJ and Inclination of the limb. Such changes 

may also be detectable in hoof movement if acute angles are reported instead of ROM. 
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Further work is necessary to explore how much and what type of treatment is necessary to 

elicit such alteration in stride kinematics. Further research in this area could build on 

findings from the current study to aid researchers in understanding possible effects stride 

adaptation mechanisms may have on welfare as well as performance.  
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                                                                                                      REFERENCE NO. ______________ 

 

FACULTY OF SCIENCE 

 

 

   

APPLICATION TO ANIMAL PROJECTS COMMITTEE FOR APPROVAL OF RESEARCH 
PROJECT  

 

This form should be completed for all NEW applications for University research support and 

submitted to the Chair of the Animal Projects Committee. 

 

Does project require a Home Office Licence? NO          

 

Is there a licence holder? YES/NO Who holds it__________  Personal Licence no: 
_________ 

 

Date: 11/01/11 

Investigation of different equestrian surfaces and their effects on the horse’s movement 

during flat work and over jumps 

 

 

Name of researcher and co-workers: 

 

Laura Dagg, Alison Northrop and Sarah Hobbs 

Emma Blundell; Andy Owen; Jaime Martin; 

Charlotte Brigden 
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1. Aims and objectives of project: (Layperson’s terms) 

 

Aim 1: The primary aim of the research is to investigate fetlock angle and limb inclination 

of both leading and trailing limbs, muscle activity, acceleration of the hoof and vertical 

force and hoof pressure under the top surface during flat work and jumping. Flat work 

will include walk, trot and canter. Jump work will involve clearing heights of up to 1m. 

One horse will be used for this initial work. 

 

Objective 1: Fetlock angle and limb inclination will be measured using markers and up to 

ten cameras for 3D motion analysis.  Activity of the superficial digital flexor and deep 

digital flexor muscles will be measured using wireless surface electromyography (EMG). 

An accelerometer will be attached to the hoof wall to collect data regarding deceleration 

forces for flat and jump work. Force on jump landing will be assessed using an RS scan 

pressure mat underneath the arena surface. 

 

 

Aim 2: The secondary aim is to assess the horse’s movement during flat work and 

jumping over different surfaces and surface preparations.  The work will compare the 

horse’s movement to the use of a biomechanical hoof tester.  The jump height is likely to 

be 1-1.4m and varying width according to the horse’s capabilities.   

 

Objective 2: The research team will compare measurements taken of ten horses 

(measurements seen in aim 1) and a biomechanical rig (the Orono Biomechanical hoof 

Tester). Following this initial work, the team will assess different equestrian surfaces and 

surface preparations using the suite of tests above.  
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2. In layperson’s terms explain precisely what will happen to them (e.g. killed 
for Langendorf; tissues collected from abattoir and analysed for zymogen etc): 

 

 

Before collection of data, consent will be gained from the owners of the horses used as 

well as from the riders participating in the study using appropriate consent forms 

(attached). The horses will be checked for soundness, and the consent form will ensure 

the horses regularly jump at the required level.  The work will take place at Myerscough 

College and will involve some indoor and some outdoor work, weather dependant. All 

researchers involved in the study will have completed the specified yard induction at the 

college prior to commencement.  

 

In addition, pilot testing will take place in the Biomechanics Laboratory at UCLan to test 

the set up and functioning of equipment prior to data collection at Myerscough College. 

Specifically, the RS Scan mat will be validated for use under an arena top surface by 

comparing data from the mat to data from the force platform when enclosed in a 

protective cover and under a 150 mm depth of arena surface. Testing will be carried out 

with human participants and the landing from a 60 cm raised platform recorded.  Verbal 

information about the test and written consent together and capability to undertake the 

study (PARQ) will be gained from all participants. Consent and PARQ forms are also 

attached. Other equipment (accelerometers, surface EMG electrodes and motion capture 

with active markers will all be tested together to ensure correct functioning and 

synchronization. 

 

Habituation  

All horses used in the study will be familiarised to the markers for measuring fetlock 

angle and limb inclination as well as the EMG sensors and the accelerometer before 

commencement of the study. Familiarisation will involve designated competent handlers 

applying the necessary equipment to the horse in a secure environment, the stable 

initially and then in an enclosed area if the horse responds appropriately. This will mean 

that the researchers can be confident that the horse is comfortable moving with the 

equipment on.  Markers will be applied with an adhesive tape to specific points of the 

distal limb (the third metacarpal, fetlock joint and first phalanx) and checked for 

adhesiveness as well as possible irritability. These markers have been used regularly 

before with no evidence of irritation but a skin patch test will be carried out for each 

horse. Markers will be applied to specified points on the limb to allow measurement of 

limb inclination. EMG sensors shall then be attached to specified muscular regions 

(superficial digital flexor and deep digital flexor) by being placed inside a protective 

pouch of material which is then attached to the horse with use of a waterproof surgeon’s 
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tape (skin patch tests also carried out for each horse). Surface EMG electrodes do not 

cause any pain and areas for application will be shaved prior to use and cleaned with 

ether to improve adhesiveness in a manner previously described by Robert et al. (2000). 

The accelerometer will be attached to the hoof wall and placed in a protective cover to 

avoid damage to equipment should the hoof strike a pole during exercise. Initial 

familiarisation will be carried out using a heart rate monitor and a behavioural 

assessment. Heart rates averaging > 180bpm for > 5 minutes will be removed from the 

study as a heart rate above this is classed in the category ‘high intensity and hard physical 

stress’ (Janzecovik et al., 2010). Heart rate should therefore not exceed this level for this 

time frame with the most rapid fall being seen immediately following exercise (Snow, 

1987).  Continued signs of discomfort and negative behaviours (over the familiarisation 

period) will mean that the horse will be removed from the study. Negative behaviours 

are described below: 

Ears pinned back, head raised, head turned, head tossed, head shaken, head down, 

excessive defecation (Kaiser et al., 2006), threatening, ceasing forward movement, 

rearing, kicking, biting, lunging toward handlers, avoidance of handler and avoidance of 

riders aids (McGreevy et al., 2009). 

Trial work; 

Aim 1 will involve work with one horse to ensure all the equipment is working effectively 

and that the data can be collected. Aim 2 will use up to ten horses once the equipment 

has been agreed. Trial work will either be split into flat and jump days with all the 

equipment tested at once (as set out in the guide below) or may involve different pieces 

from the equipment list being tested on different days with flat and jump work in one 

shorter session. The decision regarding the option chosen will depend on horse and rider, 

equipment and arena availability. All measurements will be taken with an aim to be able 

to collect data that can be used in future work for comparison with the Orono 

Biomechanical Hoof Tester (OBHT). 

Aim 1 - Work will be carried out to enable the team to check the horse has been suitably 

habituated to the equipment and that it works correctly and provides suitable 

information for future work. The horse will be prepared in a suitable environment 

(stable) for the testing by a competent handler who is experienced with the equipment 

being used and the procedure that is to be followed. The horse will be tacked up and a 

heart rate monitor will then be fitted to the horse and the skin markers will be applied on 

the third metacarpal, fetlock joint and first phalanx to allow for measuring of fetlock joint 

angle. The surface EMG sensors will be applied to proximal muscle regions which have 

previously been shaved and had ether applied to clean them thoroughly. Sweat proof 

surgeons tape and a specially made material pouch will be used to hold the EMG 

equipment securely in place. The accelerometer will then be attached to the hoof wall 

along with a suitable covering to protect it which will wrap around the hoof wall but not 

interfere with the horse’s natural movement. The horse will then be led to the 

international indoor arena where testing will take place. The rider will be wearing 

suitable riding clothes and protective equipment as stipulated by Myerscough including a 
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riding hat up to current safety standards (BSEN1384 or PAS 015). The horse will be 

walked in hand for a short period of time so its reaction to moving whilst wearing the 

equipment can be judged. Once the rider and researchers are happy with the equipment 

causing no problems to the horse or its movement the rider will warm the horse up. After 

a specified 15 minute warm up period equipment such as the accelerometer and EMG 

sensors can be activated and tested for their ability to collect the necessary data. Once 

the researchers are happy that the equipment has been sufficiently tested the horse can 

be warmed down and put away. If the equipment does not work as expected the 

researchers can work with it to try and address the problem within a suitable time frame 

for the horse, so it is not left standing in the arena or equally being overworked. The 

horse will be wearing a heart rate monitor throughout the pilot studies and if its heart 

rate is deemed to be too high (>180 bpm) the equipment shall be removed and the horse 

will be suitably warmed down. Researchers will also use behavioural observation to 

assess the horse’s way of going and behaviour throughout this process and work will be 

halted if the horse is deemed to be presenting any negative behaviours.  Negative 

behaviours will include excessive tail swishing or feet stamping, refusal to work, flight 

behaviours and evasive behaviours (McGreevy et al., 2009) as listed earlier. The rider will 

also be asked how they feel the horse is during this work. The rider will know the horse 

well and would be able to identify abnormal behaviour as a secondary measure to 

ensuring the horse is comfortable with what it is being asked to do. Once researchers are 

happy with this phase of testing, further work will be carried out on the flat and over 

jumps. If researchers are unhappy with this phase of testing then possible solutions to 

problems that have arisen can be discussed and further flat work planned.   

Aim 2 – The horses will be fitted with the desired equipment in the same procedure as 

was carried out for aim 1 and in the habituation work. The horses will initially be walked 

in hand to the arena and then ridden at walk, trot and canter to warm up.  The horse will 

work over poles on the ground in trot and canter so to guide the horse to the specific 

area where the RS Scan matt will be situated and suitably covered by the arena surface. 

Once the horse has been ridden in walk trot and canter over the specific areas the pole 

will be built into a cross pole and finally an upright which will be gradually raised to meet 

the desired height (1-1.4m) with some variation in width as agreed by the rider and 

researchers. The rider will help to decide a suitable warm up/warm down and when to 

increase the height of the fence.  Data will be collected in walk trot and canter and over a 

jump after the warm up.  One researcher will be responsible for observing the horses  to 

assess the behaviour throughout this process and work will be stopped if the horse is 

deemed to be presenting any negative behaviour continuously over a five minute period 

(see initial work). The rider will also be asked how they feel the horse is during this work 

as a secondary measure to ensuring the horse is comfortable with what it is being asked 

to do. 

Camera set up – The desired camera set up has already been previously tested by the 

research group to ensure that the equipment is used correctly and effectively on testing 

days. A total of 10 cameras will be used for the jump work to capture the approach, take 

off, body trajectory over the jump, landing and departure of the horse. Horses will be 

habituated to the camera set up by being walked, trotted and then cantered through the 
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line of cameras as part of the warm up work. Calibration will involve use of a 3D 

calibration stick and wand, which will be recorded and verified prior to the horse 

entering the arena and data collection commencing.  

Surface preparation – Initial work will involve preparing the surface in a number of ways. 

Harrowing, rolling and grading will be used and the researchers will experiment with the 

best methods and machinery available to them to get the desired surface finish. Surface 

work will take place in the indoor and outdoor arenas at Myerscough College as well as 

the newly built outdoor test track.  

Confidentiality - Data collected from the study work will remain entirely confidential and 

anonymous. The information provided by the riders and horse owners via consent forms 

ensures eligibility for taking part in the study. Information on the horse and rider 

involved as well as written consent will be stored safely and securely and will not be 

available to any third parties.  The rider will sign a consent form (attached) and a ParQ 

participant form.     

Cut off point 

In the unlikely event that the horse is used for up to 2 hours in any one testing session, a 

break will be enforced for 1 ½ hours before commencement of the work. Show jumpers 

would be expected to work up to 2 hours in general management.                                                                                                                                                                                                                               

 

3a. How many, and which species of animals are intended to be used in the first year?  

 

One Equus caballus will be used for the initial study. Ten horses (E. caballus) will be used 

for the main trial.  

 

3b. Where more than one species is used, how many of each are to be 

used  

 N/A 

 

4. What is the balance between the cost to the animals involved and the likely 

benefits to be gained by the research? 

 

The horses used in the study will be kept in regular work involving a mixture of flat and 

jumping. The cost to the horse is therefore minimal as it will be asked to perform at a 

level it is regularly used to doing. Heart rate will be measured to look for signs of stress 

during habituation and if it is >180bpm over a five minute period or the horse is seen to 
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show signs of lameness at any point it will removed after warming down appropriately. A 

behavioural assessment will be carried out as an additional measure of stress (as 

indicated in part 2).  The horses chosen will be selected in the knowledge that they 

regularly jump heights that will be asked of them.  

The use of biomechanics in athletic performance enhancement, therapeutics and sports 

medicine is becoming more predominant in the equine industry (Clayton, 2004). The 

effect of body trajectory over a jump in relation to fetlock angle and inclination of leading 

and trailing limbs is yet to be fully studied and understood. The use and adaptation in 

research of specialised equipment such as motion analysis software, EMG and 

accelerometers is however becoming well established. The results from such studies will 

aid in the understanding of the relationships between the horse and surface during work.  

This work will, in the long-term help to reduce injury and therefore increase welfare in 

the horse (Morris and Lawson, 2009). 

 

5. Are there ways in which the procedures could be refined to reduce the cost 
to animals without affecting the scientific validity of the project? 

 

The study causes minimal cost to the horses involved as they will already be fully 

familiarised with the equipment being used, in a safe and enclosed environment. The 

heart rate and behaviour of the horses will be measured throughout the habituation 

process and behaviour and health will be of utmost importance throughout the trial 

work. These observations will be (primarily) carried out by the lead researcher.  

The horses will be at a suitable fitness and experience level to comfortably perform the 

tasks asked of it without causing undue stress or over work. The height of the fence has 

been judged to be within the study horse’s particular capabilities ensuring the projects 

validity. The horses chosen will be ones that routinely carries out this type of work for 1-2 

hours in a day.  The horses chosen will also be used to people observing them during 

exercise.   

 

6. Indicate what scope exists for reduction in the number of animals used and 
refinement in technique as the project progresses. 

 

There is no scope for reduction of the number of horses used in the initial study as it will 

consist of only one horse. The results from this initial study allows the main work, to 

follow the principles of the three Rs (Schuppli et al., 2004) when finalising numbers for 

the further study work. The possible application of results gained from the study 

validates the work being carried out.  The results will help to understand the impact that 

a surface has on the way a horse moves. Ultimately this will lead to improvements in the 

arena surface and therefore reduce the risk of injury.    
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7. State any additional reasons that support this proposed use of animals to obtain 

the specific objectives.  Is the number of animals you propose to use appropriate? – i.e. 

large enough to produce a satisfactory valid result and not greater, in accordance with the 

principles of Reduction, Refinement and Replacement. 

 

The use of just one horse for the pilot will be suitable to test the equipment and for the 

type of information necessary. Using one horse will also allow the researchers to work 

within time constraints and validate ideas for the second aim and will, in the long-term 

aim to help reduce injury in competition horses in relation to surface properties.  The 

work will help researchers to understand the effects that the surface maintenance and 

properties have on the way the horse moves and ultimately educate the industry by 

increasing awareness of appropriate surface preparations for equestrian surfaces. 
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MYERSCOUGH COLLEGE 

 

 

 

RISK ASSESSMENT 

TITLE 

Habituation for Testing on 22nd 
December 

 

 
 
PROGRAMME AREA 
 
 
Equine 

 

ASSESSMENT UNDERTAKEN 

Signed: L. A. Dagg 

Date: 01/03/10 

 

 

ASSESSMENT REVIEW 

 

Date: 

 

    

STEP ONE STEP TWO STEP THREE 

   

Positioning reflective markers: horse may 
be startled by procedure; horse may bite, 
kick, stand on, or knock into handler. 
 
 
 
 
 
 
 

The researchers and horse are at 
risk 
 
 
 
 
 
 
 
 

The researchers have undergone Myerscough College yard safety training in the 
past.  Both the researchers have experience with horses. The horse will be safely 
restrained with use of a head collar and a lead rope tied with an emergency escape 
knot to bailing twine. If the horse becomes upset and pulls back the twine will snap 
and not injure the horse. The skin markers will be applied in the horses stable, the 
co-worker will be handling the horse and the researcher will be applying the 
anatomical markers to specified areas on the body. A patch test will be done before 
all the markers are applied to make sure that the horse does not have an adverse 
reaction to the adhesive. The researcher will ensure that she is aware of her body 
position to the horse in case the horse decides to kick out. The researcher will be 
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Attaching some tape to the hoof wall of 
one of the horses front feet: horse may 
bite, stand on, kick or knock into the 
handler or researcher. 
 
 
 
 
 
 
 
Attaching two objects of similar weight 
and size to an EMG sensor to the horse: 
horse may bite, stand on, kick or knock 
into the handler or researcher. 
 
 
 
 
 
 
 
 
Putting the horses bridle on with the 
tension gauge in place on one of the 
reins: the horse may become frightened 

 
 
 
 
The researchers and horse are at 
risk. 
 
 
 
 
 
 
 
 
 
The researcher and horse are at 
risk 
 
 
 
 
 
 
 
 
 
 
The researchers and the horse are 
at risk 
 

wearing a suitable riding hat. The riding hat must be up to standard, PAS 015/BSEN 
1384 or equivalent. Researchers will also be wearing other PPE including appropriate 
clothing, sturdy footwear and gloves. 
 
The researchers have undergone Myerscough College yard safety training.  Both the 
researchers have experience with horses.  Both the researchers have experience 
with horses. The horse will be safely restrained with use of a head collar and a lead 
rope tied with an emergency escape knot to bailing twine. The tape will be applied 
to the horses hoof in the stable; the researcher will ensure that she is aware of her 
body position to the horse in case the horse decides to kick out. The researcher will 
be wearing a suitable riding hat. The riding hat must be up to standard, PAS 
015/BSEN 1384 or equivalent. Researchers will also be wearing other PPE including 
appropriate clothing, sturdy footwear and gloves 
 
 
The researchers have undergone Myerscough College yard safety training in the 
past.  Both the researchers have experience with horses. The horse will be safely 
restrained with use of a head collar and a lead rope tied with an emergency escape 
knot to bailing twine. The objects used will be free from sharp corners and possible 
irritants and be deemed safe by the researchers. The objects will be secured to the 
skin in the area of the deep digital flexor muscle and superficial digital flexor muscle 
of one of the front limbs; the researcher will ensure that she is aware of her body 
position to the horse in case the horse decides to kick out or becomes startled. The 
researcher will be wearing a suitable riding hat. The riding hat must be up to 
standard, PAS 015/BSEN 1384 or equivalent. Researchers will also be wearing other 
PPE including appropriate clothing, sturdy footwear and gloves 
 
The researchers have undergone Myerscough College yard safety training.  Both the 
researchers have experience with horses.  The researchers will first make sure that 
the stable is clear of anything that the horse could injure itself on if it were to 
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and bite, stand on, kick or knock into the 
handler and the researcher.  
 
 
 
 
 
 
 
 
 
 
Risk of the researchers or the horse 
falling over between the stable and 
walker and injuring themselves 
 
 
Risk of the horse becoming upset and/or 
injuring itself on the walker. 
 
 
 
 
 
 
Injury to the horse during the habituation 
period in the stable and on the walker. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Researchers and the horse 
 
 
 
 
The horse 
 
 
 
 
 
 
 
Horse and the researchers. 
 
 
 
 

become upset and that any rugs it is wearing are securely fastened and pose no risk. 
The horse will be properly restrained in a safe manner whilst the bridle is put on by 
placing the head collar round its neck and untying the rope from the wall but leaving 
it through the twine so it does not hang on the floor. The researchers will ensure 
that they are aware of their position in relation to the horse in case the horse does 
become upset. The researchers will both be wearing suitable riding hats and the 
handler will also be wearing gloves. The riding hat must be up to standard, PAS 
015/BSEN 1384 or equivalent. Further to this a special safety attachment will be 
used with the tension gauge so that if in this period or future work with the 
equipment, it should break then the rein is still connected negating possible injury 
risk. 
 
The researchers will be wearing sturdy boots, a hat and gloves as stated by 
Myerscough College safety rules. The researcher will have checked the area to be 
free from hazard before taking the horse to the walker and both researchers will go 
to and from the walker for added safety. 
 
At least one researcher will be present for the entire time that the horse is on the 
walker with the sensors and tape locations applied. The bridle will be removed 
whilst the horse is on the walker to ensure it cannot become tangled or upset the 
horse in any way that could cause possible injury. If the horse appears to become 
distressed at any point or shows unexpected behaviour it will be removed from the 
walker immediately, taken back to the stable and the markers quickly but safely 
removed. 
 
The habituation period in the stable and walker will be as safe as possible. The 
stable, walker and surrounding area will be assessed for potential risks to both horse 
and people.  Risks assessed include: positioning of haynets and feed buckets, loose 
rugs, positioning of any yard tools and equipment, icy concrete, bad weather and 
people working in the immediate vicinity.  
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Injury to researchers and the horse due 
to ice. 
 
 
 
Fire 
 

 
 
The researchers and the horse 
 
 
 
 
The researchers, horse, yard staff 
and general public 

 
 
All areas must be assessed to be suitable for humans and horses to walk on before 
attempting to do so. Sturdy suitable footwear must be worn by researchers so not to 
increase the likelihood of a slip. The horse must be kept calm and at a walk when on 
route to the walker again to minimize occurrence of slip. 
 
Researchers will be made aware of fire procedures before commencement of the 
habituation procedure. Fire escape routes, and individual roles and responsibilities 
in case of fire will also be discussed. 
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RISK ASSESSMENT 

TITLE 

Investigation of different 
equestrian surfaces and their 

effects on the horse’s 
movement during flat work 

and over jumps 

 

 
PROGRAMME AREA 

 
 

Equine Surfaces Research 
Group 

 

ASSESSMENT UNDERTAKEN 

      Signed:  Laura Dagg / Emma Blundell / 

Alison Northrop  

      Date:  15 November 2010 

  

 

ASSESSMENT REVIEW 

 

      Date:     

 

    

STEP ONE STEP TWO STEP THREE 

List significant hazards here: 
 

 
 
General handling of the horse includes 
risks of being knocked over, stood on 
kicked or bitten. 
 
 
 
 
Clipping the horse for EMG sensor 
application includes the risk of tripping or 
falling over wires. Also risk of electric 
shock. 

List groups of people who are at risk 
from the significant hazards you have 
identified. 

 
The researcher, rider, and co-
worker 
 
 
 
 
 
The researcher and co-workers 
 
 
 

List existing controls or note where the information may be found.  List risks which are not 
adequately controlled and the action needed: 

 
 
All study researchers and participants have a history of handling horses and are 
experienced in being watchful of the horse in relation to themselves.  Personal 
protective clothing will be worn at all times including a riding hat (BS EN 1384 or 
PAS 015), gloves and sturdy footwear. The horses will be restrained by the use of a 
headcollar or bridle during all of the procedures discussed here involving the horses. 
 

 
All clipping must be done in a safe designated area and clippers will be wireless. No 
electrical equipment will be left unattended during the clipping process. Clippers 
electrical will be checked that they are in good working order prior to use. Clipping 
is routine practice and the horses used will be regularly clipped and will be familiar 
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Clipping the horse also involves risk to 
the handler from the horse becoming 
upset by the clippers or clipping process. 
Workers could be bitten, kicked or stood 
upon. 
 
 
 

 
 
 
The researcher and co-workers 

with the process. Razors will be used to complete shaving process. Care will be 
taken to remove the hair and razors will be stored safely in between use.     
 
A riding hat to current British safety standard (BS EN 1384 or PAS 015) and sturdy 
footwear must be worn by the person handling the horse and the person clipping at 
all times. The horse involved in the study must have been clipped previously and 
have shown relaxed behaviour. The process must be stopped immediately if the 
horse shows signs of significant stress, or the handlers decide it unsafe to continue 
with the process. This is unlikely because all horses used in the study will be used to 
being clipped as part of their normal management routine. 

Positioning markers on the distal limb 
includes risk of being knocked over, stood 
on, kicked or bitten. 
 
 
 
 
Positioning EMG markers onto proximal 
muscle areas of the horse includes risk of 
being kicked, knocked over, bitten or 
stood on. 
 
 
Applying the accelerometer to the hoof 
wall includes risk of being kicked, stood 
on and knocked over. Further risk of back 
injury can apply if bent over for a long 
period of time to apply the equipment. 
 
 

The researcher and co-workers 
 
 
 
 
 
 
The researcher and co-workers  
 
 
 
 
 
The researcher and co-workers  
 
 
 
 
 
 

All researchers and co-workers participating in collecting data will have undergone 
Myerscough college yard induction and safety training and be experienced with 
handling horses. Researchers must be aware at all times of their position in relation 
to the horse. Personal protective clothing should be worn (sturdy boots, gloves and 
a riding hat to current safety standards PAS 015/BSEN 1384 or equivalent). 
 
 
All researchers and co-workers participating in collecting data will have undergone 
Myerscough college yard induction and safety training and be experienced with 
handling horses. Researchers will be aware at all times of their position in relation 
to the horse. Personal protective clothing should be worn (sturdy boots, gloves and 
a riding hat to current safety standards PAS 015/BSEN 1384 or equivalent). 
 
All researchers and co-workers participating in collecting data will have undergone 
Myerscough college yard induction and safety training and be experienced with 
handling horses. Researchers must be aware at all times of their position in relation 
to the horse. Personal protective clothing should be worn (sturdy boots, gloves and 
a riding hat to current safety standards PAS 015/BSEN 1384 or equivalent). 
Researchers must make sure that at no time they kneel on the floor but instead 
bend their knees whilst keeping a straight back. The researcher positioning the 
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General handling and moving of 
equipment includes risk of back injury as 
well as arm, hand, leg and foot injury if 
equipment is dropped. 
 
Familiarisation of the horse to the 
equipment and testing procedure 
includes risk of horse knocking over, 
standing on or kicking someone. The 
rider is also at risk of falling off. 
 
 
 
 
 
 
The study includes risks of the researcher 
and co-workers, bumping into or sliding 
on equipment used.  
 
 

 
 
 
 
 
 
 
 
 
The researcher and co-workers  
 
 
 
 
Researcher, co-workers, rider  
 
 
 
 
 
 
 
 
 
 
Horse, rider, researcher and co-
workers  
 
 
 

accelerometer will swap if the adjustment takes a long time (more than 10-15 
minutes). Wires from the accelerometer will be held securely and safely in place 
with use of adhesive tape. A mock up accelerometer complete with mock up cables 
and data logger will be used for habituation purposes allowing the connective wires 
to easily brake if necessary. Once the horse is successfully habituated to the mock 
equipment it can be substituted for the real equipment and data collected 
progressively from walk through to trot and canter before jumping 
 
 
Ensure correct manual handling techniques are known and used at all times when 
moving equipment such as jump wings and poles. If the item in question is 
considered too heavy it must be moved between two people to avoid injury. All 
researchers and co-workers will be aware of this. 
 
Initial habituation will take place in the stable and during in-hand work. The horse 
will be handled at all times by competent staff throughout the habituation process 
and the pilot study. The riders participating are  experienced and will warm the 
horse up gradually to keep the animal relaxed. The height of the fence to be jumped 
will be built up slowly to ensure the horse is coping well with the procedure. Care 
will be made that all researchers are at a safe distance of the horse at all times it is 
working. Heart rate will be measured throughout and if found to rise above 180bpm 
the horse will be warmed down and data collection will cease to avoid possible 
accidents. 
 
 
The arena will be set up before the horse is tacked up and brought in with extra 
attention paid to making sure that all wires and equipment used are positioned 
safely. All electrical equipment shall be placed as near as possible to the side of the 
arena so that wires are not running across the horse's path. All wires that do reach 
the floor shall be safely placed under matting and covered with the arena surface. 
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Electrical equipment could become faulty 
and cause injury. 
 
 
 
 
The habituation and trials both pose a 
chance of the rider falling off and 
becoming injured.  
 
 
 
 
The habituation and trials both pose a 
risk of injury occurring 
 
 
 
 
 
The testing procedures includes the risk 
of slipping when inside or exiting the 

 
 
 
 
 
 
 
 
The researcher, co-workers, rider 
and horse  
 
 
 
 
The rider  
 
 
 
 
 
 
The rider, researcher and co-
workers  
 
 
 
 
 
The researchers, co-workers, rider  
 

Wires running out of the arena shall be securely taped to the floor to avoid trips. 
The site will have been risk assessed before hand to make sure that the arena 
surface is level and in good condition and that researchers are aware of entrances 
and exits, fire escapes and assembly points and first aid stations. No unauthorised 
persons shall be allowed into or around the testing area or near the equipment. 
Notices will be placed in the testing area to ensure this. 
 
 
All equipment will have been PAT tested and checked prior to use for loose wires or 
possible problems. Equipment which needs to be connected to a main power supply 
will have a circuit breaker attached.  
 
 
 
The rider will be wearing the correct safety equipment and clothing as stated by 
Myerscough College rules. During the study there will be a first aider either present 
or present on the equine yards at Myerscough and they will be told about the work 
so they will be aware. A first aid kit and a mobile phone will be available on site in 
case of an emergency. 
 
 
Qualified first aider and first aid kit will be on site during set up and testing. It will 
also be ensured that there is a mobile phone available in case the need to call the 
emergency services arises. A first aid box and the first aider will be located before 
the testing begins 
 
 
 
Be aware at all times of the surface being stepped on and take time to clean any 
excess build up of surface material of shoes whilst in and outside the arena. 
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arena due to the surface material 
underfoot.  
 
The dust from the arena surfaces may 
cause irritation to the eyes, nose and 
mouth 
 
Risk of electrocution due to rain 
 
 
 
Zoonotic disease 
 
Allergy to horses 

 
 
 
Rider, researcher and co-workers 
 
 
 
Rider, researcher and co-workers 
 
 
 
Rider, researcher and co-workers 
 
All personnel involved in the trials 

 
 
 
The rider, researcher and co-worker will be warned about the possible affects the 
dust may have and will be asked to report any discomfort to these areas to the first 
aider immediately. 
 
The testing will not be performed in the outdoor arena if it is raining however there 
is always a potential risk. The weather forecast will be continuously checked 
throughout the day. Circuit breakers are used on all extension cables 
 
Hands washed and good hygiene will be expected by all personnel involved. 
 
All personnel involved in the trials will be aware that horses will be used in the study 
and the lead researcher will ensure that all members of the team are not allergic to 
horses. In the event of an allergic reaction occurring a first aider will be called (as 
above) and treatment will be suggested according to severity of reaction. 
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MYERSCOUGH COLLEGE 

 

 

RISK ASSESSMENT 

TITLE 

Use of machinery for arena 
maintenance 

 
PROGRAMME AREA 

 
 

Equine  

 

ASSESSMENT UNDERTAKEN 

      Signed   L. Dagg 

      Date:     26/01/11 

 

 

ASSESSMENT REVIEW 

 

      Date:   

    

STEP ONE STEP TWO STEP THREE 

List significant hazards here: 
 
 
 
Slipping, falling when climbing on to 
tractor. 
 
 
The study involves the risk of driving a 
vehicle with attached machinery in a 
possibly confined space. The driver may 
crash and become injured or strike a 

List groups of people who are at risk 
from the significant hazards you have 
identified. 
 
Researcher and co-workers. 
 
 
 
Researcher, co-workers and members 
of the public. 
 
 

List existing controls or note where the information may be found.  List risks 
which are not adequately controlled and the action needed: 
 
 
Only trained staff to use tractor. Suitable PPE must be worn when using the 
tractor including suitable sturdy footwear to avoid slips and trips. 
 
 
Only trained staff to use tractor at all times. Drivers must be taught the correct 
techniques for handling the machines at speeds, with implements, braking, and 
parking before commencement of testing. All other researchers must be aware 
of their position in relation to the vehicle at all times and exit the area when the 
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researcher or member of the public. 
 
 
 
 
 
 
The study involves the risk of reversing a 
vehicle with attached machinery. The 
driver may crash or strike a researcher or 
member of the public. 
 
 
The study involves the risk of injury to 
researchers when hitching up appliances 
to the tractor. 
 
 
 
 The study involves the risk of damaging 
machinery, colliding with an obstacle or 
person and scaring horses when driving 
to the arenas. 
 
 
 
The study involves harrowing, rolling, and 
grading arenas with use of heavy 
machinery. 
 

 
 
 
 
 
 
 
Researcher, co-workers and members 
of the public. 
 
 
 
 
Researcher and co-workers. 
 
 
 
 
 
Researchers, co-workers, members of 
the public and horses. 
 
 
 
 
 
Researcher and co-workers. 
 
 
 

vehicle is being driven from one location to the next. The driver must ensure 
the area is clear and safe before attempting to move the vehicle. Members of 
the public must be kept away from the testing area and informed by 
researchers of areas which are unsuitable to enter. Suitable PPE must be worn 
when using the tractor including suitable sturdy footwear to avoid slips and 
trips 
 
Only trained staff to use tractor at all times. The area must be fully checked to 
make sure that there is no risk of injury to any other person or to the 
equipment in use. Only move if it is safe to do so. All other researchers must be 
aware of their position in relation to the vehicle at all times and exit the area 
when the vehicle is being driven from one location to the next. 
 
Ensure correct manual handling techniques are known and used at all times 
when moving equipment. If the appliance in question is considered too heavy it 
must be moved between two people to avoid injury. All researchers and co-
workers will be aware of this. Suitable PPE must be worn when using the tractor 
including suitable sturdy footwear. 
 
Only trained staff to use tractor at all times. The area must be checked to be 
free from blockage and hazards before attempting to travel to the arena. The 
driver must be aware of the public walking in these areas and also of horse that 
may need to be led pass. In the event of horses needing to pass the tractor will 
be turned off to allow safe passing and turned back on once the animals in 
question are suitably clear. 
 
Only trained staff to use tractor at all times. The area must be fully checked for 
hazards prior to starting to make sure that there is no risk of injury to any other 
person or to the equipment used. Only move if it is safe to do so. All attached 
appliances must be fitted correctly before movement of the tractor and 
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Zoonotic disease through using shared 
agriculture machinery and being in close 
proximity to animals. 
 
 
 

 
 
 
 
 
 
Researcher and co-workers. 
 

equipment must be deemed safe and suitable for use. Researchers must be 
aware of the arena dimensions, kick boards and fencing so that the machinery 
does not cause damage to the school. Suitable PPE must be worn when using 
the tractor including suitable sturdy footwear. 
 
 
Hands washed and good hygiene will be expected by all personnel involved. 
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MYERSCOUGH COLLEGE 

 

 

RISK ASSESSMENT 

TITLE 

Riding on the test track.  

Staff and students. 

 
PROGRAMME AREA 

 
 

Equine 

 

ASSESSMENT UNDERTAKEN 

      Signed:  K. Owen/ L. Dagg 

      Date:   March 2011 

 

 

ASSESSMENT REVIEW 

 

      Date:  March 2012 

    

STEP ONE STEP TWO STEP THREE 

List significant hazards here: 
 
 
 
Falling off 
 
 
 
 
 
Horse colliding with perimeter fence 
 

List groups of people who are at risk 
from the significant hazards you have 
identified. 
 
Students, staff and invitees 
 
 
 
 
 
Students, staff and invitees 
 

List existing controls or note where the information may be found.  List risks 
which are not adequately controlled and the action needed: 
 
 
Rules of the school and riding Safety Policy are clearly understood by riders. See 
induction document for correct riding equipment. Students are only allowed to 
ride onto the test track surface if a member of staff is present and has allowed 
them to do so after checking for possible hazards. 
 
 
Riders must only take horses onto the test track if it is deemed suitable to do so 
by a member of staff. The horse must be calm and fully under control before 
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Being Kicked by another Horse whilst 
Riding 
 
 
Rearing/spooking/shying/bolting horse 
 
 
 
 
 
Loose Girth, incorrectly fastened tack. 
 
 
 
Visiting horse may be more spooky and 
unsettled in a strange environment. 

 
 
 
Students, staff and invitees 
 
 
 
Students, staff and invitees 
 
 
 
 
 
Students, staff and invitees 
 
 
 
Students, staff and invitees 
 

any attempt is made to ride onto the track and riders must be aware of their 
positioning at all times.  
 
Students are to stay in single file when riding onto and off the test track and be 
aware of other riders position in relation to their own at all times. 
  
 
All riders to be aware of their position in relation to others at all times. All riders 
listen to the member of staff in charge of the group at all times and in an 
unexpected situation do asked. Riders should come to a halt until all horse are 
under control. 
 
 
See induction document for correct taking up. All riders must make sure that 
girths are tightened and that all tack in properly adjusted before riding from the 
arena onto the test track surface.  
 
Make sure all Invitees are aware of the Myerscough riding policy and are 
wearing the correct equipment as stated in the induction document. Riders 
must only take horses onto the test track if it is deemed suitable to do so by a 
member of staff. The horse must be calm and fully under control before any 
attempt is made to ride onto the track and riders must be aware of their 
positioning in respect to researchers and other horses at all times. Ensure the 
horse is given enough time to settle into the environment.  
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Appendix C – Study Registration
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UNIVERSITY OF CENTRAL LANCASHIRE 

FACULTY OF  

FACULTY RESEARCH DEGREES SUB-COMMITTEE 

 

Application to Register for a Research Degree 

Section One (Academic Issues) 

 

1. The Degree 

Submitted by (Centre for applied sport and 

exercise sciences) 

for the degree of 

(delete as appropriate) 

                                   MSc by Research 

 

 

2. Project Title 

  The effect of two different surface maintenance 

procedures on motion of the equine hoof and metacarpophalangeal joint. 

………………………………………………………………………………………… 

 

3. The Applicant 

Full Name: Laura-Anne Dagg Sex: Female 

E-mail address: 

ldagg@myerscough.ac.uk 

Date of Birth: 08/11/1983 
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4. Period of Time for Completion of Programme of Work 

4.1 Starting date for registration purposes: Jan/11 

4.2 Mode of study (full-time or part-time): Full 

4.3 For students based off - campus details of expected 

attendance and frequency of contact with University 

and supervisors (non UK resident must be part-time 

only) 

 

N/A 

 

5. The Programme of Research: 

 

The primary aim of the research is to compare the amount of movement in the hoof and the 

metacarpophalangeal joint (MCPJ) of the horse during flat and jump work on two different 

preparations of a single arena surface. The movement of the hoof as well as the angle of 

flexion and extension of the MCPJ will be measured in the front legs of the horse first 

working over ground poles in walk, trot and canter and finally during the landing of a jump. 

To determine the amount of movement seen in the hoof and the MCPJ, reflective markers 

will be used alongside a set up of 10 three dimensional (3D) motion analysis cameras.  

 

The secondary aim of the research is to investigate whether there is a relationship between 

the movements seen and the mechanical properties of a surface after general maintenance 

procedures. An arena surface comprising of waxed sand and felt mix (Andrews Bowen Pro 

Wax) will be prepared in two different ways using standard arena maintenance equipment 

e.g. roller and harrower. Surface hardness, penetration resistance and traction will be 

measured for each preparation using mechanical apparatus that has been validated in 

previous studies. The horses will then be worked on the surface as outlined in the primary 

aim and findings then compared. 

 

Extension of the MCPJ has been described as being a passive event caused by the vertical 

forces placed up on it (Johnston and Back, 2006). During the stance phase of the stride the 

hooves of the front limbs are planted firmly down on to the surface causing a large increase 

in horizontal breaking force as well as vertical forces which are transmitted up through the 

limb (Johnston and Back, 2006). Extension of the joint is at this point resisted by the 
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superficial digital flexor tendon (SDFT), deep digital flexor tendon (DDFT) and the suspensory 

ligament (SL) (Clayton, 1999; McGuigan and Wilson, 2003; Smith et al., 2002). The 

supporting structures, along with the bones, are therefore subjected to high peak forces, 

concussions and strains meaning that failure and consequently injury is often seen 

(McGuigan and Wilson, 2003; Smith et al.,2004). A single catastrophic event can cause 

breakdown of the horse during locomotion, it is however more often that injuries are caused 

by repeated trauma sustained during training and competition (Clayton, 1997). Age related 

changes such as osteoarthritis of the joint cartilage has been found to increase in severity of 

biomechanical loading (Radin et al., 1983). In addition, loading rates may affect 

degeneration in the bones and supporting structures, which vary with loading intensity and  

factors such as ground surface substrate (Clayton, 1997; Smith et al., 2002). Limb impact and 

hoof deceleration are therefore directly influenced by the surface-hoof interaction (Crevier-

Denoix et al., 2009; Johnston and back, 2006). Initially the heel is seen to sink during the 

impact phase which is then followed by forward toe rotation from midstance through to 

break over when working on compliant surfaces (Johnston and Back). Slippage or even 

rotation of the foot on the surface during the stance phase of the gait can therefore affect 

the natural locomotion and the loading on the limb. Movement such as this during impact is 

reported to be a common cause of injury to the supporting structures of distal limb joints 

(Clanton et al., 1991). The surface substrate as well as the preparation it receives are 

therefore attributed to having a major effect on the coefficient of friction (Gustas et al., 

2006). Further to this normal levels of axial rotation and collateromotion seen in the distal 

interphalangeal joints are increased by asymmetric placement of the foot on uneven 

surfaces (Chateau et al., 2001). The relationship between the distal limb and the surface is 

therefore now a growing area of interest and is certainly considered to an important factor 

in the occurrence of injury (Weishaupt, 2010). 

 

Artificial surfaces are commonly used for training and competing horse of all levels (Murray, 

et al., 2010). There are currently however no set standards or regulations governing the type 

of surfaces available or the maintenance procedures necessary to maintain optimum health 

and wellbeing of the horses working over them (Weishaupt, 2010; Wheeler, 2006). Surface 

substrate and treatment can affect the limb loading rates, shock attenuation, supporting 

structure loads and accelerations and decelerations of the limb and hoof (Gustas et al., 

2006; Hobbs et al., 2010). Recent work regarding horse and ground interaction has often 
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focused on racehorses and therefore race tracks (Burn and Usmar, 2005; Dallap-Schaer et 

al., 2006; Peterson and McIlwraith, 2008; Ratzlaff et al., 2005) but as Murray et al (2010) 

reports there is less available knowledge regarding other equestrian disciplines and surfaces. 

The optimum surface to work a horse on for any given discipline is yet to be agreed but is 

described by Barrey et al. (1991) as needing to be able to minimise concussion through 

energy absorption whilst still returning suitable power to aid performance. An overly hard 

surface causes rapid deceleration of the hoof at impact resulting in maximum concussion in 

the tissues and damage to the articular cartilage and supporting structures (Barrey et al., 

1991; Ratzlaff et al., 1997).  An overly soft surface however can cause muscle fatigue which 

in turn leads to damage of the flexor tendons as the horse tries to push itself out of the 

surface and off the ground (Murray et al., 2010). Weishaupt (2010) states the need for 

objective information and new ways to investigate and then evaluate limb-surface 

interactions are much needed. The effect on maintenance procedures on existing surface 

properties is therefore of much interest. 
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Appendix D – Rider Consent Form 

 

 

 



Appendix 
 

 XXXIII 

Participant Information Sheet – Rider 

 

You have been invited to participate in a piece of equine research at Myerscough 

College. The research will involve measuring limb inclination, fetlock angle, 

acceleration and muscle activity on the flat and over jumps (up to 1m high). This form 

provides basic information regarding the testing as well as asking for your consent to 

participate in the study.  If you have any questions which you feel are unanswered by 

the information provided below then please do not hesitate to contact the research 

team on the details provided at the end of this form. 

 

The testing procedure 

Before any work commences you will be required to complete the PAR-Q 

questionnaire provided. The questionnaire allows the team to be sure that you 

currently have no medical problems that would preclude you from participating.  

Study work will take place on the arenas at Myerscough College and will involve 

some indoor and outdoor work (weather dependent). You will be asked to ride one 

horse, testing will involve a warm up of around 15 minutes to include work on both 

reins in walk, trot and canter. Once warmed up the equipment will be activated and 

you will be asked to continue riding on the flat whilst the team collects data. At this 

early stage of the work some of the equipment may need adjusting and resetting 

throughout the test period. The research team will make sure that at no point is the 

horse stood for any length of time whilst equipment is altered. Some jump work will 

either commence further to this on the same date or on a later date. Jump work will 

commence as follow. After a suitable warm up the horse will be worked over a pole 

on the ground, which will then be gradually built to 1m in height. The jump will then 

be built into a spread and jumped at least once. You will then be asked to warm the 

horse down. In the unlikely event that the horse is used for up to 2 hours in any one 

testing session, a break will be enforced for 1 ½ hours before commencement of the 

work. 

 

Risks 

A full and thorough risk assessment has been carried out by the Myerscough research 

team to minimise any potential risks to yourself, the horses and the researchers. The 

main risk of taking part would be falling off the horse and injuring yourself.  You 

have been invited to take part in this study as you are a competent horse rider who 

rides on a regular basis and has done plenty of jump work previously. The horse used 

will have been habituated to the equipment before the testing date to reduce risk of 

stress and possible injury to yourself or the horse.  You will not be asked to do 

anything that you would not experience during an affiliated show jumping round.  

 

Consent 

Participation in the study is voluntary and you are able to withdraw at any time during 

any part of the testing. Once the testing is complete consent cannot be withdrawn so it 

is important to make sure you have read this information and asked any questions 

before completion of testing. 

 

Collected data 

All data that is collected from your participation will be anonymous and results will 

be analysed and used to determine future research work. The information you 

provided before the testing in the PAR-Q and signature to agree to test is to ensure 
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your safety and eligibility. Information you have provided will be safely and securely 

stored in a locked filling cabinet.  

 

Ethical Consent 

Ethical consent for the study *has been applied for to the Myerscough College 

committee and the University of Central Lancashire.   

 

*N.B. This will be modified to ‘has been approved by’ when approval is granted 

 

If you are happy to go ahead with participating in the testing please sign the attached 

consent form. It is a requirement you provide a signature to reflect agreement to 

perform the research. 

 
All communications should be made to, 

Dr Sarah Jane Hobbs, 

Senior Lecturer in Sport and Exercise, 

Centre for Applied Sport and Exercise Sciences, 

University of Central Lancashire, 

Preston, 

PR1 2HE 

Tel:  01772 893328 

Email:SJHobbs1@uclan.ac.uk 
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Agreement to testing 

I understand the risks associated with this study and that all the data produced will be 

treated with confidentiality and individually. If I wish, the results produced will be available 

to me. 

I willingly agree to participate in the current study.  I have read the above information and 

understand that withdrawal from the study is possible until all data has been collected. 

 

Name of participant; 

 

Print Name:  ………………………………………………………………… 

                                     

Signature:  …………………………………………………………………….  

 

Date:  .……. /…….. /………….   

 

Witness 

 

Print Name:  ………………………………………………………………… 

                                     

Signature:  …………………………………………………………………….  

 

Date:  .……. /…….. /………….   
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Appendix E – Manufacturers Surface 

Recommendations
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Manufacturers’ Surface Maintenance Recommendations 

 

Company 
Substrate 

offered 
Variations Suggested base 

Suggested 

Maintenance 

Suggested 

Equipment 
Water 

Ascot Silica Sand  
Same version 

but waxed sand 
Fibre mix  Stone 

Subject to traffic, 

minimum once per 

week 

Harrow & 

grader 

When needed 

but not for wax 

Combi-ride 

90% industrial 

silica, 

pulverised 

nylon, rubber 

crumb 

Same version 

but waxed sand 
   

Every day 20 

minutes 

Arena mate 

grader 

Only water if a 

5-6 weeks spell 

of no rain 

Equestrian 

surfaces 

Cushion track' 

wax silica sand, 

nylon, rayn, 

polyester 

No rubber, 

environmental 

reasons for 

europe 

Dry mix with no 

wax 

Sand 

alone, also 

fibres 

available 

to buy to 

mix 

Mini 

requirement for 

them to build 

on is  top 

quality hard 

stone 

Subject to traffic, 

cheaper surface 

more 

maintenance. 

Every 12 months 

get it levelled. 

 

No watering 

needed for wax, 

others should 

be fine if 

maintained. 

Only water if 

really dried out. 

Leisure Ride 
Sand based 

silica, blend of 

synthetic hair 

Different fibres used for the type 

of footing wanted. Dressage firm 

footing, Inch of cushioning.  SJ 

 
40mm clean 

stone, only use 

granite, dust 

Anything with fibre use a spring tine 

harrow to comb surface rather than 

drag. Want to take out footprints 

Non-waxed 

needs watering 

during dry 
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fibres, 

polyesters. 

Offer hot wax, 

non wax and 

cold wax. 

Softer more cushioning. Racing 

want a deep loose footing, works 

them heavily. 

free, screened. opposed to dig it. Then roll it after. 

Once a week at least. Six weeks pull 

edges down. 

periods to keep 

surface 

together. Hot 

Wax not 

needed. Cold 

wax if weathers 

very dry. 

Soft track 

Soft track mix 

sand, elastic 

fibre, geo fibre, 

hot wax. 

Also fibre mix which is unwaxed, 

manufactured sand mixed with 

fibres. 

 Hard stone Harrowing 

Soft track no 

watering, fibre 

mix only if 

really dry. 

Williams and 

Williams 

Sand alone. 

Sand and 

rubber mix 

Or premixes. Standard Pre mix top 

grade silica sand, rubber and rayon 

fibres. Pro surface if school gets a 

lot of usage silica rubber granules, 

short and long rayon fibres and 

polyesters. Non waxed. 

Felt you 

can add to 

a school 

riding 

deep 

Clean lime 

stone base but 

is regional 

Must have 

droppings 

removed daily 

for dust. Once a 

week grading. 

Harrower or 

grader. Mayfield 

engineering 

Indoor needs 

watering once a 

week. Hot spell 

outdoors might 

need a water 

but other than 

none. Sold as all 

weather.  

Martin 

Collins 

Wax coated 

surface. 

Activtract has 

sand, fibre and 

pvc 

Eco track is sand, fibre and rubber. 

Wax coated also 
 

Recommended 

spec non frost 

permeable 

stone with two 

membranes 

At least once a 

week but heavy 

use increase it. 

Harrow and 

grader. Equally 

as important as 

surface 

Wax coated no 

watering. 

Unwaxed kept 

moist for best 

performance.  
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Equestrian 

direct 

Olympic 

standard. Non 

wax high grade 

silica sand and 

mixed with 

binding fibre 

Discipline and usage. High use 

complete flexi ride. Synthetic alt to 

rubber goes onto the base with no 

sand. 

 

 

 

Lime stone 

base but again 

regional. 

Indoor a few 

times a week. 

More during 

competition. 

Harrow and 

roller.  

Usage. Equi 

level. It is a 

leveller and 

roller in one and 

waters 

No watering for 

light use if 

arenas 

outdoors.  

Witham Vale 

No exclusive 

surface for the 

company. Sand 

and rubber or 

sand and fibre 

mix.   

Waxed and non-waxed available  Regional 
Once or twice a 

week  
With a leveller 

May water but 

only in 

prolonged dry 

spell. 

John 

Homyak 

Pure synthetic 

polypropylene 

fibre. New not 

second hand 

bits of carpet. 

Non mixed. 

Used alone.  

  

Well drained 

agrigate 

surface.  

Maintenance is 

very low.  Does 

not freeze.  

Needs no 

machines, 

rolling or 

harrowing 

Indoors a bit of 

sand 

underneath and 

minimal water 

to keep moist. 

It is built for 

outdoor 

however.  
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Appendix F – Standard Operating Procedures 

for the Clegg Impact Tester and Torque Wrench
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EQUINE RESEARCH GROUP STANDARD OPERATING PROCEDURES  

 

ERG-SOP 21.  DETERMINATION OF HARDNESS 

 

[1] Scope 

This standard operating procedure specifies a method of testing to determine hardness of 

turf and synthetic surfaces. 

 

[2] Principle 

A cylindrical mass is released from a standard height and its peak deceleration during 

impact with the turf surface is recorded. 

 

[3] Apparatus 

A Clegg Impact Soil Tester shall be used.  The apparatus consists of a cylindrical compaction 

hammer with a mass of 2.25 kg and a diameter of 50 mm attached to a piezoelectric 

accelerometer which feeds into a peak level digital meter.  The peak deceleration of the 

hammer on impact with the ground is displayed in gravities on the liquid crystal display of 

the digital meter.  

 

[4] Procedure 

Ensure that the guide tube is held vertically and drop the compaction hammer down the 

tube from a height of 450 ± 10 mm (as identified by the white line marked on the weight).  

After the impact of the hammer on the turf surface, the peak deceleration displayed by the 

digital meter shall be recorded in units of gravities.  After each test the guide tube shall be 

moved so that the compaction hammer does not impact with the surface on the same spot 

twice. 

 

[5] Number & Distribution of Readings 

Replicate measurements will need to be made.  The number and sampling interval should 

be decided following initial pilot testing on a similar surface. 
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[6] Expression of Results 

Calculate the mean hardness value for each area in gravities. 

 

 

 

The 2.25 kg Clegg hammer 
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ERG-SOP 22.  DETERMINATION OF TRACTION 

 

[1] Scope 

This standard operating procedure specifies a test for the determination of traction of turf 

and synthetic surfaces. 

 

[2] Principle 

Measurement is made of the force required to initiate rotational movement of an 

appropriate selected disc which is in contact with the surface. 

 

[3] Apparatus 

The apparatus which shall be used consists of the following components: 

 

[a] a mild steel disc 145 ± 1 mm in diameter and 12 ± 2 mm thick, centre drilled.  Disc 

selection will depend on the surface being tested. 

 

[b] an 800 ± 25 mm long shaft with attached lifting handles which threads into the centre 

of the studded disc. 

 

[c] a set of annular weights which rest centrally on a bearing on the upper surface of the 

studded disc allowing free movement of the disc beneath the weights.  The weight 

used should be determined following appropriate pilot testing of a similar surface. 

 

[d] a standard torque wrench with a scale up to 80 N m which attaches to the top of the 

steel shaft. 
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[4] Procedure 

Assemble the apparatus.  Set the torque wrench indicator needle to zero, then drop the 

apparatus from a height of 100 ± 10 mm onto the surface.  This ensures that the selected 

disc embeds into the surface.  Without placing any vertical pressure on the torque wrench 

but keeping the central pivot point stable, turn the apparatus until the surface yields and 

no further increase in torque occurs (NB the movement should be steady but firm, and 

travel at least 90).  Record the value displayed on the torque wrench to the nearest N m.  

Before conducting the next test the apparatus must be moved to an area of fresh surface 

and the disc cleared of any debris.   

 

[5] Number & Distribution of Readings 

Replicate measurements will need to be made.  The number and sampling interval should 

be decided following initial pilot testing on a similar surface. 

 

[6] Expression of Results 

Calculate the mean traction value for each area in N m. 

 

 

The components of the traction apparatus 

 

 


