Diffeomorphic image registration with applications to deformation modelling between multiple data sets

Papiez, Bartlomiej Wladyslaw (2012) Diffeomorphic image registration with applications to deformation modelling between multiple data sets. Doctoral thesis, University of Central Lancashire.

[thumbnail of Thesis Document]
PDF (Thesis Document) - Accepted Version
Available under License Creative Commons Attribution Non-commercial Share Alike.



Over last years, the diffeomorphic image registration algorithms have been successfully introduced into the field of the medical image analysis. At the same time, the particular usability of these techniques, in majority derived from the solid mathematical background, has been only quantitatively explored for the limited applications such as longitudinal studies on treatment quality, or diseases progression.

The thesis considers the deformable image registration algorithms, seeking out those that maintain the medical correctness of the estimated dense deformation fields in terms of the preservation of the object and its neighbourhood topology, offer the reasonable computational complexity to satisfy time restrictions coming from the potential applications, and are able to cope with low quality data typically encountered in Adaptive Radiotherapy (ART). The research has led to the main emphasis being laid on the diffeomorphic image registration to achieve one-to-one mapping between images. This involves introduction of the log-domain parameterisation of the deformation field by its approximation via a stationary velocity field.

A quantitative and qualitative examination of existing and newly proposed algorithms for pairwise deformable image registration presented in this thesis, shows that the log-Euclidean parameterisation can be successfully utilised in the biomedical applications. Although algorithms utilising the log-domain parameterisation have theoretical justification for maintaining diffeomorphism, in general, the deformation fields produced by them have similar properties as these estimated by classical methods. Having this in mind, the best compromise in terms of the quality of the deformation fields has been found for the consistent image registration framework. The experimental results suggest also that the image registration with the symmetrical warping of the input images outperforms the classical approaches, and simultaneously can be easily introduced to most known algorithms.

Furthermore, the log-domain implicit group-wise image registration is proposed. By linking the various sets of images related to the different subjects, the proposed image registration approach establishes a common subject space and between-subject correspondences therein. Although the correspondences between groups of images can be found by performing the classic image registration, the reference image selection (not required in the proposed implementation), may lead to a biased mean image being estimated and the corresponding common subject space not adequate to represent the general properties of the data sets.

The approaches to diffeomorphic image registration have been also utilised as the principal elements for estimating the movements of the organs in the pelvic area based on the dense deformation field prediction system driven by the partial information coming from the specific type of the measurements parameterised using the implicit surface representation, and recognising facial expressions where the stationary velocity fields are used as the facial expression descriptors. Both applications have been extensively evaluated based on the real representative data sets of three-dimensional volumes and two-dimensional images, and the obtained results indicate the practical usability of the proposed techniques.

Repository Staff Only: item control page