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Abstract 

Renal failure is a decrease or cessation of Glomerular filtration. In acute renal failure 

(ARE) the kidneys abruptly stop working entirely or almost entirely. The main feature 

of ARF is suppression of urine flow, where the daily urine output is less than 250 ml 

or even less than 50 ml daily. Causes include low blood volume, decreased cardiac 

output and damaged renal tubules. Both the acute and chronic renal failure conditions 

show disturbances of ion transport systems in erythrocytes. In acute renal failure an 

elevation of intracellular free magnesium [Mg 2+  has been reported. 

The main aim of this study was to investigate and characterise magnesium (Mg 
2)  

transport in mammalian erythrocytes in the presence of various drugs. Healthy human 

controls and patients suffering from acute renal failure who are undergoing treatment 

via haemodialysis (Pre- and Post-dialysis) were employed for the study. The effects of 

varying extracellular Mg 2+  on platelet aggregation was also investigated employing 

different concentrations of adenosine diphosphate (ADP) on the plasma from both 

pre- and post-dialysis patients. Healthy human controls were used as a comparison. 

The Mg 2+  level in plasma from both Pre- and post-dialysis patients was slightly lower 

than in human control. In the erythrocytes normal Mg 2+  was lower in human control 

than in both the pre- and post-dialysis patients Upon Mg 2+ -loading, the human 

control Mg 2+  was still lower than loaded erythrocytes from both pre - and post-

dialysis patients. After a period of 50 min efflux, the human control Mg 
2+  level was 

higher than the efflux in both the pre- and post-dialysis patients, but both the pre- and 

post-dialysis patients had released smaller amounts of Mg 2+ than human control, 

indicating acute renal failure is associated with large fluxes of Mg 
2+ Amiloride (a 

sodium channel blocker) and N-methyl-D-glucamine (NMDG) a substitute for sodium 

were used to test the mechanism of Mg 2+  transport. 

vm 



Following Mg 2+  -loading, in pie-dialysis patients the Mg 2+  efflux in the presence of 

(10 M) amiloride was greatly elevated compared to untreated erythrocytes. When 

extracellular sodium chloride was replaced with NIMDG there was a large and 

significant decrease in Mg 2+  efflux compared to control. In post-dialysis patients a 

larger Mg 2+  efflux was observed in the presence of amiloride (10 M), but in 

NMDG there was an initial reduction in Mg 2+  efflux (lower than control) which 

increased and remained the same as control. 

Mg 2-f  showed a time-dependent manner of uptake and release in erythrocytes, which 

suggested it would affect platelet aggregation. The plasma from healthy human 

controls as well as both pie- and post-dialysis patients was employed in the presence 

of ADP (10 -10 M) and a varying range of extracellular Mg 2+  (1-7 mM). In 

human control, ADP can aggregate platelets in a dose dependent manner. A 

perturbation of extracellular Mg 2+  caused a decrease in the ADP induced platelet 

aggregation. However, during acute renal failure a perturbation of extracellular Mg 
2+  

had no significant effect on platelet aggregation in plasma from acute renal failure 

patients compared to healthy human controls. 

In conclusion, the results of this study employing blood (erythrocytes and plasma) 

from both pig and human (healthy control and acute renal failure patients) indicate 

that erythrocytes can take up Mg 2+  and release it in a time-dependent manner. In 

some cases, the efflux was sensitive to either amiloride or extracellular sodium: In 

addition, ADP can induce a dose dependent increase in platelet aggregation, which 

was attenuated by a perturbation of extracellular Mg 2+  Further experiments are 

required to characterise precisely the transport of Mg 2+  and its role in platelet 

aggregation during diseased states. 
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Chapter One 

General Introduction 



1.1 Chemistry oIMg 2+  

Magnesium is named after the Greek city, Magnesia, where large deposits of 

magnesium carbonate were found. Magnesium sulphate was isolated by Grew in 1195 

from spring water from Epsom which is believed to have medicinal properties. In 1707 

Valentine isolated magnesium carbonate while in 1755 Black isolated magnesium 

oxide. Subsequently in 1808, Sir Humphrey Davy became the first person to isolate the 

metal form of magnesium. The element magnesium occurs in nature in the forms of its 

various compounds which are known to be widely distributed in the earths crust, the 

upper stratum, to a depth of 16 Km which has been estimated to contain an average of 

3.45% of M90 2  and it is the eighth element in order of abundance both terrestrially and 

cosmically (Emley, 1966). In nature, magnesium does not naturally occur in free state 

but in its principal of mineral forms as oxides, carbonates, chlorides, silicates, fluorides, 

sulphate and phosphate (Emley, 1966). In water, Mg 2+ occurs as a chloride at a 

concentration of 5.0-5. 5g Litre . 

Magnesium is extremely electropositive and readily loses two electrons to yield a 

divalent cation (Mg 2+)  in common with other alkaline earth metals. The alkaline earth 

metals decrease in electronegativity with increased atomic weight. Usually, the alkaline 

earth metals occur as salts of commonly found anions. For example, magnesium, 

calcium, strontium and barium occur in nature as sulphates and carbonates. Magnesium 

will form oxides on heating in air and its nitrates have very low thermostability. Many 

magnesium salts are insoluble in water while others are deliquescent. Isotopes of Mg 
2+  

and their abundance are 24Mg 2  (78.60%), 25Mg 2- (10.11%) and 26Mg 2+ (11.29%) 

(Williams, 1993). 



Magnesium ions (Mg 2) have an ionic radius approximately two thirds that of calcium 

ions and sodium ions and half that of potassium ions. Therefore, due to its small size 

and relatively large charge, Mg 2+  is the strongest metal ion in abundance in biological 

systems (Wacker, 1968, 1980; Williams, 1993). Cations usually form the most stable 

complexes with anions or ligands of similar hardness and hard ligands contain highly 

electronegative donor atoms. Therefore, Mg 2+  can form stable complexes with 

phosphate or carboxylate ions and with nitrogen's lone pair of electrons. Mg 
2+  has a 

longer hydration energy than of Ca 2+  due to Mg 2+,  s greater polarising potential. This 

means that magnesium salts of large organic acids are more soluble than analogous 

calcium compounds (Wacker, 1968, 1980; Williams, 1993). 
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1.2 Maenesium status and nutrition in the body. 

Magnesium is the second most abundant metal within cells, where its amount is 

exceeded only by potassium (Heaton, 1981). On average a human adult contains about 

9 g of magnesium in the ionic form or free Mg 21  (Heaton, 1981). This is 

approximately one third of the total amount in the body (Heaton, 1981). In general the 

body contains about 27 g of magnesium in the free and bound forms. 

Magnesium is present as a positively charged ion species (Mg 2+)  Of the total body 

Mg 2+  one half is adsorbed to the surface of hydroxyapatite in bone, the other half is 

located intracellularly and only 1% is in the extracellular fluid. 

Mg 2+  is predominately located in cellular organelles in bone (approximately 52%), the 

remainder in muscle (28%), soft tissue (19%), serum (0.3%) and red blood corpuscles 

(0.5%) (Elm, 1987). About 30% of Mg 2+  in the bone is believed to represent an 

exchangeable pool of Mg 2+  Mobilisation of Mg 2+  from this pool is rapid in children 

compared to adults (Mudge and Weiner, 1992). Mg 24-  in the human body is the second 

most abundant after the intracellular monovalent cation C (Reinhardt, 1988). The 

concentration of plasma Mg 2+  is approximately 0.75-1.1 mmol litre ' with two thirds 

of plasma Mg 2  being free Mg 2+  and one third is bound to plasma proteins, albumin, 

thrombin, globumin, etc. (Mudge and Weiner, 1992). It is now the belief that Mg 
2 in 

blood serum is in transit between the bone stores and actively metabolising tissues 

(Birch and Sadler, 1979; Phillips, 1989; Vormann and Gunther, 1993). In serum, 33% 

of Mg 21  is bound to proteins, 61% ionised and the remaining 6% complexed to ions 

including phosphate and citrate (Speich, Bousquet and Nicholas, 1981). Only the 

ionised Mg 2  is available to react in physiological and biochemical processes (Heaton, 

1981). Thus, knowledge of intracellular free Mg 2+  concentration {Mg 21, is essential in 

to 



understanding the physiological role of this important divalent cation in physiological 

and biological processes. 

Normal magnesium intake is approximately 12-15 mmol per day. Foods rich in 

magnesium include nuts, green leafy vegetables, cereals and red meat (Heaton, 1981). 

Of the magnesium taken in orally, approximately one-third is absorbed by the small 

bowel. The kidneys maintain magnesium homeostasis by excreting the magnesium 

absorbed by the gut. Because approximately one third of serum magnesium is bound to 

albumin, the filtered load of magnesium is bound at the renal level. Of the filtered 

magnesium, approximately 25-301/o is reabsorbed by the proximal tubules, 50-60% is 

reabsorbed by the ascending limb of Henle's loop, and 2-5% is reabsorbed distally 

(Quamme and Dirks, 1986). 

1.3 Relationship between magnesium and calcium signalling. 

Magnesium (Mg 2+)  is the second most abundant divalent cation and is present in all 

living cells. Its physiological role is primarily intracellular and preservation of 

intracellular Mg 21  concentration ([Mg 2+])  is essential for normal functioning of the 

heart (Whang, Oei and Aikawa, 1994). Molecular evolution in mammals has resulted in 

the development of over 300 Mg 2  -dependant enzymes (Flatman, 1991; Wacker, 

1968) and thus Mg 2+  plays a regulatory role in many cellular ftrnctions including many 

of those involved in the glycolytic process, those catalysing the transfer of phosphate 

and most of those utilising AlP (Flatman, 1991). In essentially all reactions where 

ATP is a substrate, the true substrate is Mg 2+ -ATP. The regulatory role of Mg 2+ in 

many cellular processes is attributed to free [Mg 2+  (Murphy, Freudenrich and 

Lieberman, 1991) and intracellular Mg 2+  has been shown to modulate Ca 2+ flux 
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through the L-type Ca 2'- - channel in cardiomyocytes (Fry, Bun, Chen, IlIner, 

Kickenweiz, McGuigan, Noble, Powell and Twist, 1993; Agus, Kelepouris, Dukes and 

Morad, 1989) and Ca 2+  efflux in pancreatic acinar cells (Francis, Lennard and Singh, 

1990; Singh and Wisdom, 1995) whilst extracellular Mg 2+  concentration affects 

amplitude of contraction (Howarth, Waring, Singh and Hustler, 1994) and digestive 

enzyme secretion (Francis cIa!, 1990; Singh and Wisdom, 1995). Experiments using 28  

Mg 2'- have demonstrated that both intracellular and extracellular Mg 2+  are 

exchangeable in the isolated working rat heart (Page and Polimeni, 1972) and that free 

and bound Mg 2'-  are exchangeable, depending on the cell type (GUnther, 1990). These 

exchanges create a Mg 2'-  buffer which ensures that intracellular Mg 2+  is maintained 

(Gunther, 1993). The regulation of intracellular Mg 2+  involves the permeability of the 

plasma membrane, intracellular buffering by proteins and transport of Mg 2'- in the 

plasma membrane and organelles (Flatman, 1991). Mechanisms therefore must exist 

whereby Mg 2±  is transported through the cell membrane in both an inward and 

outward direction, so as to maintain a steady-state intracellular Mg 2+  concentration. 

The electrochemical gradient across the cell membrane would tend to promote influx 

of Mg 2+,  so some mechanism(s) must exist to extrude Mg 2+  against this gradient. 

It has been suggested that Mg 2+  deficiency or reduced dietary Mg 2+ intake may play 

an important role in the aetiology of many diseases including many of those involving 

the cardiovascular system, such as hypertension, cardiac arrhythmias, atherosclerosis 

and ischaemnic heart disease (Page ci a!, 1972; Altura and Altura, 1995). Magnesium 

deficiency is common in patients who have suffered acute myocardial infarction and 

studies have shown that intravenous inthsion of Mg 2+  in the acute phase of myocardial 

infarction, significantly reduces arrhythmia's and mortality (Abbot and Rude, 1993; 
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(alloe, Rasmussen, Jorgensen, Aurup, Balslov, Cintin, Graudal and McNair, 1993; 

Woods, Roffe and Fletcher, 1994). Heart disease is one of the most common causes of 

death in the western world at the present time; it is therefore of some interest to 

understand factors and mechanisms which regulate Mg 2+  homeostasis in the heart 

(Woods eta!, 1994; Altura eta!, 1995). 

Although interest in divalent cations has tended to focus on changes in cytosolic free 

calcium ([Ca 2#)  there is considerable growth in the appreciation of the potential roles 

of Mg 2-  both as a direct metabolic regulator and as a modulator of Ca 2+  sensitivity 

(Altura and Aitura, 1981; Flatman, 1984; Grubbs and Maguire, 1987). The activities of 

many ion transport mechanisms are regulated by Mg 21  in the physiological range of 

0.1-1.0mM (Flatman, 1991). In secretary epithelia, fluid secretion is regulated by 

intracellular Ca 2+  and intracellular Na + (Petersen and Gallacher, 1988). Mg 
2+  plays a 

key role in these processes as an essential cofactor for the activation of Ca 
24- and Na + 

pumps (Fujise and Lauf, 1988). Squire and Petersen (1987) demonstrated that Mg 
2+  

can evoke a physiological dose dependent activation of K • channels in mouse parotid 

acinar cells, while in red blood cells Mg 2  activates the Na + -K + - Cl - cotransporter 

(Flatman, 1988). These findings again suggest an important thnction of Mg 
2-  in fluid 

secretion, since in epithelial cells this transporter is the primary uptake mechanism for 

Cl - ions, which are required to drive fluid and electrolyte secretion (Petersen and 

Gallacher, 1988; Petersen, 1992; Mooren and Singh, 1997). Thus, regulation of 

cytosolic free Mg 2+  concentration is critical for many cellular functions, including fluid 

and electrolyte secretion, enzyme activity, cell growth and proliferation (Petersen and 

Ciallacher, 1988; Flatman, 1991; Petersen, 1992; Mooren and Singh, 1997). 
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Magnesium is both a universal and essential biological element, which is found in 

abundant quantities in cells. It plays an important role in the regulation of cell fbnction. 

Despite its wide range of important functions and distribution in the body its study has 

been neglected, compared to the second messenger, calcium. This was thought to be 

the fact that accurate biological techniques were not available to measure intracellular 

free magnesium concentration and in most cases calcium seems to interfere with the 

techniques (Hurley, Ryan and Brink, 1992). However, over the past 6-7 years 

persistence in magnesium biology research and moreover, alternative strategies have 

been found to study magnesium homeostasis in different cell types. Research in several 

laboratories (Singh and Wisdom, 1995; Mooren and Singh, 1997) over the past few 

years has concentrated with the characterisation of magnesium transport and its second 

messenger role in the exocrine pancreas. 

1.4 Biological roles of magnesium and its relationship with calcium si2nallin2. 

Mg 21  exists as an abundant divalent cation and it is involved in several physiological 

and biochemical processes during cellular homeostasis. It is an important co-factor for 

over 300 enzymes (Wacker, 1968, 1980). Mg 21  is involved in the synthesis and 

replication of RNA and DNA (Henrotte, 1993) and with muscle contraction (Altura 

and Aitura, 1995), and the secretion of enzymes (Francis et al., 1990; Nielsen and 

Petersen, 1972; Wisdom, Geada and Singh, 1996) and hormones (Grodsk and Bennett, 

1966; Curry, Joy, Holley and Bennett, 1977; Baker and Knight, 1978). Mg 
2+  also 

plays an important physiological role in transmembrane movements of ions (e.g. Na: 

K - ATPase, Ca 2 - ATPase, K: H - ATPase, C: Na: Cl - and Na: Cl - transporter 

and Ca 2+:  Na and HCO3 : Cl - exchanges) and regulation of ion channel activities e.g. 

Nat, K, Cl - and Ca 21  (Flatman, 1984, 1990, 1993; Agus €1 a!, 1989; Gunther and 



Vormann, 1990). Furthermore, Mg 2*  is also involved with metabolic pathways, 

protein synthesis, bioenergetic and structural properties of cells, stabilisation of 

membrane and electrical potentials across cells (Birch, 1993). 

1.5 Magnesium and cardiovascular dvsfunctions. 

Experimental, epidemiological and clinical studies published over the last decade point 

to the active involvement of magnesium ions in the maintenance of cardiovascular 

function as well as in the aetiology of cardiovascular disease when problems arise in 

magnesium intake and balance (Altura and Altura, 1995; Woods et al, 1994). Dietary 

magnesium deficiency as well as abnormalities in magnesium metabolism appears to 

influence a variety of of cardiovascular disease states. 

Hazard and Wurmser, in 1932 recognised that systemic administration of magnesium 

ions could induce rapid vasodilation and reduction in arterial blood pressure. 

Little more than that was known about the cardiovascular actions of magnesium in 

1961, when some researchers from the British Medical Association (B.M.A) were 

investigating the physiological responses of isolated blood vessels to vasopressors and 

vasodilators. Removal of all the magnesium from artificial physiological salt solution 

produced vasospasm, enhanced responses to vasopressors, and decreased responses to 

dilator agents (Aitura and Altura, 1995). Their findings were the first to report such 

dramatic results of a magnesium free medium on vascular smooth muscle tone or 

reactivity. 

1.6 Magnesium affects vascular contractility. 

Blood normally contains magnesium ion in three states; bound to plasma proteins, 

complexed to small anion ligands such as bicarbonate or peptides, and free. It is well 

documented that most clinical laboratories measure total magnesium levels by 



colorimetry or atomic absorption spectrophotometry. However, it is the free ionised 

form of magnesium [Mg 2'  that is physiologically active. Usual estimates of free Mg 
2  

concentration have relied upon total magnesium measurements in protein free 

utrafiltrates, which of course exclude the protein, bound magnesium (Altura and 

Altura, 1995). Anion levels can be very significant in pathological states, and in view of 

the role played by magnesium in cellular homeostasis, it is desirable to directly measure 

free Mg 2+  in blood and other body fluids. With this in mind, magnesium sensitive ion 

selective electrodes were designed to obtain these measurements in the presence of 

cationic interferences. In 1980, Altura and Altura demonstrated that diverse large and 

small mammalian coronary arteries subjected to reductions in extracellular Mg 
2+  

concentrations underwent rapid spasm and potentiation of circulating vasoconstrictor 

hormones. Similar observations have been made in human coronary attacks. They 

therefore initiated ion sensitive electrode studies to determine whether patients with 

acute myocardial infarction or coronary heart disease exhibited significantly lowered 

levels of Mg 2  as a percentage of total magnesium was also significantly lowered. 

These types of studies provoked a number of cardiologists to examine the potential use 

of magnesium in the therapy of acute myocardial infarction and congestive heart failure 

(Woods et a/, 1994; Altura and Altura, 1995). 

Animal studies provided evidence for magnesium modulation of hypertensive events. 

With respect to both experimental and genetically induced hypertension, several 

reports support the idea that magnesium deficiency or derangement in magnesium 

metabolism results in high blood pressure (Altura and Altura, 1995). 

Experiments by Altura and Altura (1995) indicated that in rats, dietary deficiency of 

magnesium resulted in elevation of arterial blood pressure, decreased arteriolar, 

venular, and precapilary lumen sizes, and decreased numbers of microvessels, 

10 



accompanying with decreased flow in the capillaries. An elevated ratio of Ca 2+  to Mg 

2± was also found in the vascular walls, which was expected to result in enhanced 

vascular tone, enhanced reactivity to endogenous vasoconstrictors, and diminished 

reactivity to endogenous vasodilators (Altura and Altura, 1995). 

They also found that ultrafilterable Mg 2+  is significantly attenuated and that there is an 

elevated Ca: Mg ratio in hypertensive rats. It was also reported that intracellular free 

Mg 2  is lowered in striated muscle and aortic smooth muscle of these rats (Altura and 

Altura, 1995). These findings support the hypothesis that the level of free ionised Mg 

2+  in the extracellular fluid and at the level of the vascular smooth muscle cell 

membrane plays an important role in controlling vascular tone, contractility of blood 

vessels, and eventual prevention of hypertensive vascular disease. Many independent 

clinic studies showed that patients with hypertension of diverse aetiologies exhibited 

hypomagnesemia in serum or in tissues, or both. On average, patients with long term 

hypertension had at least a 15% deficit in total magnesium. Reports from around the 

world clearly demonstrated inverse correlations between total magnesium in serum or 

tissue and arterial blood pressure (Altura and Altura, 1995). 

In 1994 Nadler demonstrated that controlled short-term (four weeks) dietary 

deprivation of magnesium in humans significantly elevated arterial blood pressure. 

Other studies showed evidence that certain hypertensive patients exhibited reduced 

urinary excretion of magnesium, which is inversely correlated with diastolic blood 

pressure levels (Altura and Altura, 1995). 

1.7 MaEnesium deficiency, atherosclerosis and diabetes. 

Hypercholesterolemia has been accepted as a factor for atherosclerosis. It is not clear 

how the lipoproteins and Ca 2+ gain access to the normal impermeable arterial walls, 

but magnesium deficiency may be involved (Altura and Altura, 1995). Evidence from 
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both animal and human studies suggest that dietary and blood levels of Mg 
2+  may 

modulate serum levels of lipids and lipoproteins (Altura and Altura, 1995). In the 

hypertensive diabetic patient population, hyperinsulineinia, insulin resistance, and 

hypertensive vascular disease are often associated with decreased serum high density 

lipoprotein (HDL) cholesterol, increased low density lipoprotein (LDL) cholesterol, 

and elevated triglyceride levels. With respect to experimental diabetes and magnesium, 

a number of studies point to firm relationship between the diseased state and 

magnesium deficiency. There appears to be a strong association between clinical 

diabetes, hypertension, dyslipidemias, and abnormal glucose tolerance. Experimental 

studies have suggested that control of diabetes is inversely related to magnesium 

deficiency (Altura and Altura, 1995). Diabetic retinopathy is clearly associated with a 

state of magnesium deficiency. Both insulin- dependent and non-insulin-dependent 

diabetes are associated with reduced serum total magnesium and intracellular Mg 
2+  

concentration as well as increased urinary loss of magnesium (Altura and Altura, 

1995). Even though not all diabetic patients who had been studied exhibited a 

simultaneous reduction in serum total magnesium and intracellular free Mg 
2+  oral 

treatment with magnesium salts improved control of both types of diabetes, in the few 

studies performed at the time (Altura and Altura, 1995). 

Using ion-selective electrodes to measure free Mg 
2+  in fasting subjects with and 

without type II diabetes and 31 P-NMR spectroscopy to measure intracellular free Mg 
2+  

in red blood cells, Altura a a!, 1995 found that both Mg 
2+  levels were significantly 

reduced in diabetic compared to non-diabetic subjects. A close relationship was seen 

between serum free Mg 2+  and intracellular free Mg 2+  They thus proposed that 

magnesium deficiency, both extracellular and intracellular, was a characteristic of 
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chronic, stable, mild non-insulin-dependent diabetes and it may predispose patients to 

the excess cardiovascular mortality of the diabetic state. 

In collaboration with Gupta, Altura and Altura (1995) performed in vitro 31P-NMR 

spectroscopy experiments on the intact perfused heart. The findings indicated that 

acute elevation of extracellular free Mg 2+  concentrations increased phosphocreatine 

levels, intracellular pH, and intracellular free Mg 
2+ levels. Intracellular inorganic 

phosphate levels decreased, and the cytosolic phosphorylation potential and free 

energy of ATP hydrolysis increased accordingly. Acute reductions in extracellular free 

Mg 2 resulted in opposite effects on cardiac performance. These findings suggest that 

magnesium regulates cardiac performance, oxygenation, and substrate delivery in the 

myocardium (Altura and Altura, 1995). 

Gender related differences in haemodynamic characteristics have had attention, 

because premenopausal women are known to be less susceptible than men to numerous 

cardiovascular disorders. In the early 1980's a diverse range of both endogenous and 

exogenous vasodilators were experimented with, these showed to exert their effects on 

endothelial cells. In 1980 Furchgott showed a substance called "endothelial-derived 

relaxing factor" (EDRF) and also known as Nitric Oxide to be released by the 

endothelial cells in response to vascular smooth muscle relaxants. Experiments by 

Altura and Altura (1995) on male and female isolated rat aortas demonstrated that in 

male isolated aortas, withdrawal of extracellular free Mg 
2+  and concomitant reduction 

in extracellular Na + induced significantly increases of basal tone. Surprisingly, this did 

not occur in intact aortas removed from female rats, though it was observed in 

endothelium-denuded aortic preparations from both sexes. The observed gender-

related differences were not dependent on animal strain or type of tissue preparation. 

No tension development was observed in aortas from castrated males treated with 
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estradiol. Aortic tissues of sexually immature male and female rats, however, exhibited 

marked tension development when exposed to zero extracellular free Mg 
24-  and low 

extracellular Na + (Altura and Altura, 1995). These studies suggested that sex steroid 

hormones, probably 170 estradiol, could influence contractile responsiveness of 

vascular smooth muscle. A possible mechanism is mediating effects on endothelial 

cells, possibly via modification of magnesium-regulated internal sodium dependent 

calcium influx. This may help to explain why magnesium-deficient women, unlike men, 

are protected against ischemic heart disease, hypertensive vascular disease and 

cerebrovascular disease until menopause (Altura and Altura, 1995). 

Magnesium intake has been linked to cardiovascular disease, and an epidemiological 

study by Schroder in the USA and Crawford in London suggested a link between 

water hardness and protection against cardiovascular disease. The hardness of water 

depends on the calcium and magnesium concentrations, and hard water does not 

always contain high magnesium (Altura and Altura, 1995). Following some studies in 

which the magnesium levels were ascertained very carefully, it is clear that there is an 

inverse relationship between magnesium intake and ischemic heart disease, sudden 

cardiac death, and hypertensive vascular disease. 

1.8 Aetiology of clinical hypoma2nesaemia. 

The many causes of clinical hypomagnesaemia and magnesium depletion can be divided 

into four broad categories: renal, gastrointestinal, endocrine and miscellaneous 

(Whang, 1993). The renal causes include, administration of diuretics and antibodies, 

which result in ethanced magnesiuria, hereditary renal magnesium wasting and 

alcoholism (Shah, Alvardo and Kirshenbaurn, 1990). Magnesium depletion and 

hypomagnesaemia have been found in association with the following gastrointestinal 
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aetiologies: malnutrition, alcoholism, prolonged intravenous therapy without 

magnesium administration, malabsorption associated with non-tropical sprue, short 

bowel syndrome, intestinal surgery for morbid obesity and adenoma and nasogastric 

suction. Diabetic ketoacidosis, hyperaldosteronism, excessive losses of magnesium 

resulting from bulimarexia, laxative abuse, diarrhoea, villous hyperparathyroidism, and 

hyperthyroidism constitute endocrine causes of hypomagnesaemia and magnesium 

depletion. Exchange transfusions, acute intermittent porphyria, excessive lactation and 

theophylline toxicity constitute miscellaneous causes of magnesium deficiency (Whang, 

1993). 

1.9 Magnesium transport in Ervthrocytes and models. 

Magnesium's role in regulating membrane transport first became evident in studies 

performed in the 1950s. Rats were used in the experiments, they were made 

magnesium deficient, they showed electrolyte imbalances and, in particular, their 

skeletal potassium content was reduced (Flatman, 1993). Skou (1957) who showed 

that the sodium pump had an absolute requirement for magnesium provided a partial 

explanation of these effects. Continuing work has now shown that many transport 

systems are affected by the concentration of magnesium both inside and outside the 

cell. Much work has been done on red blood cells, as these provide a convenient model 

for transport studies (Flatman, 1984; 1993). However, the findings are relevant to 

transport in other situations. Some are particularly important in red cell behaviour. 

These provide explanations for physiological and pathophysiological phenomena, 

which may permit therapeutic exploitation. 
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The importance of magnesium in regulating ion transport was first recognised in 

experiments on the sodium pump. Activity of the pump's Na, K-ATPase was shown to 

have an absolute requirement for magnesium (Skou, 1957; Dunham and Glynn, 1961). 

Since then magnesium has been shown to play a vital role in many other partial 

reactions of the pump including, phosphorylation of the enzyme from AlP or P 1  (Post, 

Sen, and Rosenthal, 1965; Post, Toda and Rogers, 1975), ATP-ADP exchange 

(Robinson, 1976; Beauge and Glynn, 1979; Beauge and Canipos, 1986), Na-ATPase 

(Beauge and Campos, 1986; Rossi and Garrahan, 1989), sodium-potassium exchange 

(De Weer, 1976; Flatman and Lew, 1981). 

Sodium-sodium exchange (Flatman and Lew, 1981) potassium-potassium exchange 

(Karlish and Stein, 1982 a, b; Sachs, 1988b). Calcium pumps are widely distributed in 

animal cell membranes. Magnesium plays an important role in the operation of these 

pumps probably affecting both the phosphorylation and dephosphorylation of the 

transporter. The pumps have all been studied using both animal and human models. 

Experiments using red blood cells have also been used ranging from red blood cells 

from squirrel (Maijanovic, Gregory, Ghosh, Willis and Dawson, 1993), chicken 

(Gunther, Vormann and Forster, 1984), sheep (Lauf, 1985), pig (Taylor, Singh, 1997). 

Human blood has also been used both for platelet aggregation (Ravn ci al, 1995; 

1996), NMR studies (Gupta, 1980). Clinical trials in hospitals have also been 

performed on patients suffering from a range of cardiovascular disorders, renal 

problems and diabetic problems (Resnick, Barbagallo, Gupta and Laragh, 1993). Rats 

have also been employed, their heart tissues have been used to measure how their 

magnesium levels varied in the presence of specific channel ion blockers e.g. anñloride 

(Gunther and Vormann, 1987). 
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1.10 Red Blood Corpuscles or erythrocytes. 

Red blood corpuscles or erythrocytes have many advantages for use in studies of 

membrane transport. They have a simple shape and lack intracellular or extracellular 

compartments so the fluxes can be measured precisely and unambiguously. Changes to 

the cytoplasmic components can be performed by applying reversible haemolysis 

("ghosting") or ionophores, hence enabling the effects of intracellular factors on 

transport to be studied, (Reed and Lardy, 1972). 

The erythrocytes have a simple metabolism mechanism, which allows a more direct 

assessment of the role of metabolism and metabolic intermediates in transport. Their 

membranes contain fewer transport systems and have low cation permeability. Over the 

course of evolution, different animal species have had various transport systems 

deleted from the erythrocytes without affecting their viability or competence in oxygen 

and carbon dioxide transport. 

1.11 Role of Mz 2+  in erythrocyte transport. 

The effects of magnesium on cation transport have been studied extensively in 

erythrocytes. The magnesium dependence of the sodium pump (Flatman and Lew, 

1981), Na, K, Cl, cotransporter (Flatman, 1988) and KCI transport (Lauf, 1985; 

Brugnana and Tosteson, 1987) have all been well established. 

There is evidence from several species that in vitro erythrocytes, magnesium content 

falls as the cells get older. Berstein in 1959 experimented by separating the blood into 

its different fractions. The different fractions contained different magnesium levels; the 

younger cells contained approximately twice as much magnesium as did the older 
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denser fractions. Various other workers experimented on similar lines and the results 

presented similar findings. Dunn (1974) gave early evidence for net magnesium 

transport in human red cells in vitro. His findings showed that magnesium is lost from 

cells containing a high magnesium concentration when they are incubated in medium 

containing zero or 0.8 mM magnesium. 

1.12 Techniques for measuring magnesium in cells and its transport. 

There are numerous techniques which are available to measure total and ionized 

magnesium in cells. These include labelled isotopes, fluorescent bioprobes, magnesium 

sensitive electrodes, NMR and atomic absorbance spectroscopy. 

1.12 (a) fluorescence 

Visible and ultraviolet (IJV) radiation can be used to induce electronic transitions 

between the ground state and the higher energy excited states of a molecule, resulting 

in absorption or IJV/visible spectra. The excitation energy is lost in the form of heat to 

the medium. However, fluorescence occurs if the excitation energy emitted when the 

molecule in a singlet excited state returns to the ground state. Both the ground state 

and singlet excited state have the electronic spins paired up, leading to intense 

transitions in the fluorescence spectrum. Fluorescence occurs at a lower frequency or 

longer wavelength than does absorption, because the energy of the emitted radiation is 

less than that of excitation energy by an amount corresponding to the vibrational 

energy lost to the medium. The fluorescence emission spectrum is the mirror image of 

the absorption spectrum. The fluorescence frequencies are different from the excitation 

frequencies; therefore no interference from the excitation source occurs. Fluorescence 

is a highly sensitive technique that can detect concentrations as low as io M, as 

opposed to l0 M for NINIJt spectroscopy (Freitas and Dorus, 1993). The dependence 
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of the fluorescence intensity on the wavelength of the emitted light is the emission 

spectrum. In contrast, the excitation spectrum represents the dependence of the 

fluorescence intensity on the wavelength of the exciting light. Synthetic fluorescence 

indicators are required for most biological applications (Freitas and Dorus, 1993). The 

work using fluorescence is performed by using the fluorescent indicator Fura-2 

acetometylester (fbra-2 (AM)), which contains a fliran ring as a fluorophore (Tsien, 

1983). This is a Ca 2+  indicator. This indicator was then modified to give a Mg 2  

indicator FURAPTRA (Raju, Murphy, Levy, Hall and London, 1989). Upon Mg 2+  

binding there is a shift in excitation maximum, hence the free intracellular Mg 21

concentration that is measured from the fluorescence excitation spectrum of 

FURAPTRA can be obtained from the ratio method according to (Raju eta!, 1989): 

[Mg 2 ]r = KD S min  (RR mm) / S ma' (R macR) 

where R is the fluorescence intensity ratio at wavelengths 335 and 370 nM observed 

for the biological sample, R , and R 	are the fluorescence intensity ratios in the 

absence and presence of saturating amounts of Mg 2+,  and S s.  and S 	are the 

fluorescence intensities in the absence of Mg 2  and in the presence of saturating Mg 2+  

respectively. The main advantage of the ratio method is that Mg 2+  measurements are 

independent of the concentration of the fluorescence indicator used. 

The use of the fluorescence indicator has been validated in isolated rat hepatocytes and 

cultured chicken heart cells (Murphy ci a!, 1989) and pancreatic acinar cells (Lennard 

and Singh, 1991; Mooren and Singh, 1997; Wisdom and Singh, 1996). The good 

match between the lCD  value for the complex between Mg 2+  and FURAPTRA and free 

intracellular Mg 21  concentrations and the rapid response of fluorescence make it a 

promising aid for the monitoring of Mg 2+  fluxes in biological tissues. Due to the larger 

intracellular Mg 21  concentrations relative to those of Ca 2+  the possibility that the 

w 



FURAPTRA indicator will interfere and buffer the Mg 2+ levels being measured is less 

likely than that for fluorescence of Ca 2+ indicators (Raju et a4 1989). Mag-thra-2 is 

the commercial name of FURAPTRA. 

1.12 (h) Ion selective microelectrodes 

Early electrode work used neutral ionophore N,N' diheptyl-N,N-dimethylsuccinamide 

(ETH-1 117). Its Mg 2# selectivity was not high, and was interfered by Na * and C 

hence preparations of calibrating solutions were required. The selectivity of Mg 
2+  

selective microelectrodes for Mg 2+  relative to Ca 2+ is low. A new resin, ETH-5214, 

which is not interfered by K 4  and Na + ions was used for Mg 
2*  selective electrodes 

(Hu, Bruhrer, Muller, Rusterholz, Rouilly and Simon, 1989; Buri and McGuigan, 

1990; 1991). The advantages of Mg 2  selective microelectrodes include: direct 

measurement of free intracellular Mg 2+ levels as opposed to the indirect measurements 

based on 31P and 19F NMR and fluorescent dyes, low cost of equipment and fast 

response. The main disadvantages are the need for large cells and the invasive nature of 

the measurement (Freitas and Dorus, 1993). 

1.12 (c) Metallochromic dyes 

Metallochromic dyes are reagents that change their colour and, consequently, their 

optical spectrum, in the presence of different concentrations of free metal ions. The 

metallochromic dyes eriochrome blue SE, arsenazo III, and antipyrylazo Ill have been 
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used to determine free intracellular Mg 2+  concentrations in biological samples (Scarpa, 

1979). Optical measurements require a reagent that is pH insensitive and has a high 

degree of specificity for Mg 2+  relative to other metal ions, in particular Ca 2+  By 

multi-wavelength spectrophotometry, it is possible to correct for pH effects and 

interference from other metal cations, provided that the optical spectrum of the Mg 
2# - 

dye complex differs sufficiently from other interfering factors (Scarpa, 1979; Tsien, 

1983). This method, requiring loading of the dye into the intracellular compartment via 

microinjection, is restricted to giant cells such as squid axons and muscle fibres. Unless 

the spectral properties of a metallochromic dye in a given medium are known, this 

method should be used with caution. 

Since this project involves the use of AAS and NMR, emphasis is placed on these two 

powerfUl techniques to measure total Mg 
2* 

1.12 (d) Radio labelled mR24- 

Two radio isotopes of Mg 2+  exist 27  Mg and 28  Mg, respectively which are employed 

for the investigation of cellular magnesium transport mechanisms (Gunther, Eds: Sigel, 

Sigel and Decker, 1990; Vormann and Gunther, Ed: Birch, 1993). Both the isotopes 

are difficult to manipulate and their use is limited due to their short half-lives 9.46 mm 

and 20.9 hours for 27  Mg and 28  Mg, respectively (Flik, Velden and Kolar. Ed. Birch, 

1993). The isotopes are not commercially available. 
27 Mg is obtained from thermal 

neutron irradiation of 26  Mg of natural isotopic composition or magnesium enriched 
26  

Mg which is a expensive process. 28  Mg is obtained from reactor irradiated Li/Mg 

alloy (Kolar, Velden, Vollinga, Zandbaerger and Goejj, 1991). Gamma-spectrometry 

and liquid scintillation counting techniques are used to measure both isotopes (Flik, 

Van der Velden and Kolar, Ed. Birch, 1993). 
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Radio labelling is based on the observation that plasma membrane permeability for 

magnesium increases when the cells are incubated in a Ca 
2+  -free medium in the 

presence of the calcium ionophore A23 187, which mediates the electroneutral 

exchange of 1 Mg 21  for 2 H t Incubating media with varying concentrations of Mg 
2+  

can be used from which [Mg 2+  1 can be calculated from the pH gradient and from the 

extracellular Mg 2±  concentration ([Mg 2+ ) according to the following equation 

[h{g 2+ 1 = [ js4g 2+ 0 * 	± 2 / 	+ 2 

since A23 187 permeabilizes both plasma and organelle membranes (Tsien, 1983), other 

researchers (Corkey, Duszynski, Rich, Matschinsky and Willamson, 1986) have 

employed digitonin, which is selective for plasma membrane. The technique is mainly 

limited by its requirement for high-density cell suspensions. 

1.12 (e) lonophores and AAS technique. 

The techniques for measuring magnesium transport has progressed from labelled 

isotopes to the more precise and accurate use of ionophores. The ionophores were first 

recognised through their effect of stimulating every linked transport in mitochondria 

(Moore, Pressman, 1964, Pressman, 1963,1965). This not only provided a valuable 

tool for studies on the linkage between metabolism and transport, but also prompted 

extensive studies to provide insight into the molecular basis of ionophore action. 

lonophores are compounds of moderate molecular weight (200-2000), that form lipid 

soluble complexes with polar cations of which iC, Na , Ca 
2+,  Mg 2+ and biogenic 

anilnes are the most significant biologically (Flatman, 1991). 

The ion selectivity of ionophore on artificial thick membranes, have provided the 

technological basis for a novel series of ion selective electrodes. Many ionophores are 

now available as physiological tools to study membrane transport. The one of most 
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interest to researchers derives from the ability of the carboxylic ionophores X-537A 

and A23 187 to transport the key biological control ion Ca 2+  across the membranes 

(Pressman, 1976; Reed et a!, 1972; Pfeiffer, Reed and Lardy, 1974). These findings 

eventually led to the administration of ionophores to intact animals to evaluate their 

pharmacological potential. 

lonophores in general may be regarded as molecules with backbones on diverse 

structures that contain strategically spaced oxygen atoms. The backbone is capable of 

assuming critical conformations that focus these oxygens about a ring or cavity in 

space into which a complexiable cation may fit more or less snugly. 

The liganding oxygen systems (filled in black) or representatives ionophores are 

shown in black in Fig A (Pressman, 1976). 
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A23 187 differs from X-537A in having a high selectivity for divalent over mono valent 

ions (Pfeiffei -  et all  1974). If added to energised mitochondria, it causes the release of 

endogenous Mg 2+ without corresponding depletion of Ca 2+  or Kt. A23 187 also 

facilitates the entry of Ca 2 into erythrocytes (Reed c/al, 1972). 

A23 187 releases energy linked accumulation of Ca 2+  from vesicles derived from 

sarcoplasmic reticulum. This indicates that the Ca 2+  is concentrated within the vesicles 

against a concentration gradient, rather than being bound at a low chemical activity by 

an energy linked mechanism (Caswell and Pressman, 1972; Entman, Gillette, Wallich, 

pressman and Schwartz, 1972; Scarpa, Balasserre and Inesi, 1972). 
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FIG.8 Schematic representation of cellular Mg' metabolism. Part of the Mg' is bound (MgA). in the 
exiracellula, compartment mainly to albumin. Mg' can be transported into or out of the cell when the 
concentration of intracolluler tree Mg is changed. p. Gating of net Mg' effiux when (Mg'i. is 
increased; -, feedback inhibition of net Mg' efflux when (Mg'L reaches normal values. M9A cytosOl. 
M9A ribos. and MgA nucleus. are Mg' bound in the cytosot, in ribosomes and the nucleus. respectivelY. 

Mito and SEW. mean that Mg' can be taken up and released from mitochondria or sarcoplaSnliC 
reticulum respectivety. and can be partly bound in these orgaflelleS. Moreover. Mg' is enriched at 
negatively charged > of cellular mem&anes. (Reproduced with peflflission train GünthOr 

(1987).) 

Fig B shows a general scheme of cellular compartmentation and metabolism of 

cellular Mg 2+• 
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1.13 Historical backeround on Atomic Absorbance Spectrometry (A.A.S) 

The technique of Atomic Absorbance Spectroscopy (A.A.S) can be thought of having 

its origins in 1666 with Isaac Newton who used a prism to separate the colours of the 

solar spectrum. Wollaston in 1802 recorded his observation that dark lines in fact 

interrupted the spectrum of sunlight, which was at the time thought to be continuous. 

Later in 1814 Fraunhofer found a series of lines in the visible region of the solar 

spectrum and labelled the principal lines alphabetically without identii'ing their 

chemical origin. 

In 1832, Brewster, who is associated with the invention of the kaleidoscope 

investigated the absorption of light by various vapours and suggested that Fraunhofer 

lines were due to certain vapours in the sun's atmosphere. Kirchhoff in 1860 deduced 

from Fraunhofer's results the presence of certain elements in the solar atmosphere and 

with Bunsen in 1861 laid the foundations of a new method of chemical analysis using 

flames. Frauthofer and Kircithoff had been observing atomic absorption and atomic 

emission, respectively. 

In 1902 Wood illustrated the emission-absorption relationship by heating sodium in a 

partially evacuated glass bulb and irradiated the bulb with light from a sodium flame. 

He demonstrated an increase in absorption effect by heating the bulb more strongly. 

Wood named the lines emitted and absorbed by sodium atoms resonance lines and 

carried out experiments to show the possibility of using resonance effect to detect 

traces of mercury. This may have been the first analysis carried out by atomic 

absorption spectrometry. 
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In 1924 Angerer and Joos studied the atomic absorption spectra of metals in the iron 

group and Frayne and Smith in 1926 of indium, gallium, aluminium and thallium. 

Hughes and Thomas in 1927 studied the absorption and resonance effects of mercury. 

Lunegardh in 1928 demonstrated atomic emission spectroscopy (AES) in an air-

acetylene flame using a pneumatic nebulizer. In 1930 Mueller and Pringsheim 

published an atomic absorption method of measuring mercury content of air thereby 

carrying on Woods original project of 1913 and 1919. 

Walsh in 1955 and subsequently Alkemade in 1960 made the first real applications of 

atomic absorption spectroscopy to chemical analysis in the same year. They made 

significant contributions to the development of AAS as an analytical tool. They used 

the hollow cathode lamps as a line source, greatly reducing the resolution required for 

successful analysis. Their introduction of modulation into the system permitted the 

detector to distinguish between absorption and emission by atoms at the same 

wavelength. They also utilised the flame for atomisation. 

1.13 (a) What is Atomic Absorption Spectrometry (AAS)? 

Atomic absorption is a process involving the absorption by free atoms of an element of 

light at a wavelength specific to that element, or a more simplified it is a means by 

which the concentration of metals can be measured (Unicam, 1980). 

In Atomic Spectrometry, emission and absorption, energy is put into the atom 

population by thermal, electromagnetic, chemical and electrical forms of energy and 

are converted to light energy by various atomic and electronic processes before 



measurement. Atomic Absorption Spectrometry is useful not only for the identification 

but also the quantitative determination of many elements present in samples. The 

technique is specific, in that individual elements in each sample can be reliably 

identified and it is sensitive, enabling small amounts of an element to be detected down 

to around I p.g g' (lppm) i.e. one part in one million using simple flame procedures. 

Lower levels can be determined down to 0.001 ppm using procedures that are more 

sophisticated (Unlearn, 1980). 

When a sample or sample solution is burned in a flame or heated in a tube, the 

individual atoms of the sample are released to form a cloud inside the flame or tube. 

Each atom consists of a positively charged nucleus surrounded by a number of 

electrons in rapid motion around the nucleus. For each electron in each atom there is a 

discrete set of energy levels that the electron can occupy. The spacing of the energy 

levels is different for each electron in the atom, but for similar atoms corresponding 

electrons have identical spacing. The energy levels are usually labelled Fo, the ground 

state, through E, E 2  etc. to Ea. Fig C shows the general energy level states. 

IONIZATION LEVEL 

E - 

ENERGY 

flCITED STATE 
E. 

Figure C Energy level diagram 
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For an unexcited atom, each electron is in the ground state. To excite the atom, one or 

more electrons can be raised to the first or higher energy levels by the absorption of 

energy by the atom. This energy can be supplied by photons or by collisions due to 

heat. Those electrons furthest away from the nucleus require least energy to go from 

the ground state E0  to the first energy level F 1 . The energy E corresponds to the 

energy gap between the ground state and the first energy level. 

The energy required for this transition can be supplied by a photon of light with energy 

given by: 

E=hv 

Where /, = Planck' s constant and v the frequency. 

This corresponds to a wavelength (X) of 

= hcfE 

where c is the speed of light in vacuum. 

However, for all non-conducting elements (insulators) and for most of the electrons in 

the atoms of conducting elements, the energy gap E 1 -E0 , is very large and thus a very 

energetic photon, either in the vacuum, UV or x-ray region would be required to excite 

the atom. Metallic and metalloid elements contain so called valence electrons, which 
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are relatively loosely bound to the nucleus, and which can be excited by photons of 

wavelengths in the optical range 190-900 nm. For each atom of a metal or metalloid 

the energy gap E 1 -E., for a particular valence electron is nearly identical. Furthermore 

the energy gap is not found in any other element. If light of sufficient narrow 

wavelength range, centred on 

hc/(E l-E)) 

is sent through a cloud of various atoms, only atoms of one particular element will 

absorb photons. Hence the selectivity of atomic absorption technique. 

Atoms in the cloud move at high speed and collide with each other, and absorb over a 

very narrow range of wavelengths. The width of a typical absorption line is about 

0.001m. For atomic absorption purposes, an emission source with an emission line of 

the same frequency and a width of about 0.00 mm is normally used. This requirement 

is usually satisfied by an emission spectrum of the element of interest, generated by a 

hollow cathode lamp (HCI). 

Another requirement to obtain a high absorption signal is that atoms should be in the 

ground state and a large number of electrons should be able to be excited to the first 

state when a photon of correct frequency is absorbed. The general statement of the 

Maxwell-Boltzmann law gives the number of atoms in the ground state and the first 

excited state. 
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1.13 (bi The Boltzmann Distribution. 

The electron in an excited atom involved in transitions to a higher energy level is that 

electron with the least energy. In chemical terms it is the valence electron. An electron 

can be promoted from the ground state to an upper excited state by heating a 

population of atoms. If a whole population of atoms is heated, the actual number of 

electrons in any particular orbit can be calculated by the Maxwell-Boltzmann equation. 

This states that if there are N 1  atoms in an excited state and No atoms in the ground 

state, then 

N1/N0 = (gi/go) e_AE/KT 

Where: 

E = energy difference between the ground state and excited state. 

T = the temperature of the atom population °  k. 

K = Boltzmann constant 

gi/go = statistical weights in energy states 0 and 1. 

The law assumes that the population of atoms has a constant uniform temperature. It 

also assumes that the energy levels are single energy levels. 
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1.13(c) The theory of Atomic Absorption Spectrometry. 

This will be discussed using the wavelength region from 190-900 rim i.e. the ultra 

violet and visible regions. 

1.13 (cii Absorption. 

The absorption of energy by atoms follows well-known physical laws, which provide 

us with a basis for quantitative analytical chemistry. The radiant energy or photons, 

absorbed by atoms are generally in the form of very narrow lines of characteristic 

wavelength originating from the visible or ultraviolet spectrum. During the absorption 

process the outer valence electrons of the atoms are promoted to a higher orbital and 

the atom is electronically excited. There is a relationship and equilibrium between the 

populations of excited and unexcited atoms involving photons, and between atomic 

absorption and atomic emission spectroscopy (Unicam, 1980). 

A photon behaves in a similar manner to an alternating electric field and interacts with 

the negatively charged electrons in an atom. Under certain conditions, an atom can 

absorb a photon. The energy levels in an atom are quantized; i.e. they have certain 

well-defined energies. As a consequence of this, the photon energy, liv, must be exactly 

equal to the energy gap between a filled energy level E 0  the ground state, and an 

unoccupied energy level F 1  the first energy state, as represented below Fig D: 
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Figure P  Absorption process 

The wavy arrow in fig D represents a photon colliding with and being absorbed by a 

ground state atom E0. The vertical arrow represents the simultaneous excitation of the 

atom from ground state Ee to the excited state E 1 . This process involves an electron 

being promoted from a filled atomic orbital to a more energetic orbital, normally 

unoccupied. An over simplified Bohr Orbit diagram can describe the absorption 

process ig E). 

Xucleus 

hV 

Electron promoted to outer orbit Electrons in BoW orbits 

Figure E Bohr orbit reptesentaon of light absorption by a liThium atom 
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This is a simple representation of absorption, as transitions between orbitals within the 

same electronic shell can be induced, as well as transitions between different electronic 

shells. An example of the former, is the promotion of an electron in a 4s orbital in a 

potassium atom to the orbital by light of wavelength 766.5nm. 

1.13 (c ii) Emission. 

The process of emission is the reversal of absorption. The atom in an excited energy 

level can revert to the ground stale by emitting as a photon (fig F). 

E l  

by 

Figure F Emission process 

The photon of energy hv is equal to the energy gap (E'-Eo). The emission of a photon 

when the electron moves to the unexcited state from the excited state forms the basis 
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of emission spectroscopy. In this technique the light generated in the emission process 

is measured at a specific wavelength. In any atom there are a numerous permitted 

energy levels and numerous transitions permitted between different excited energy 

levels and the ground state. The existence of numerous upper excited states means that 

the equilibrium between ground state atoms and excited atoms is not as simple as the 

diagram shows (Fig F). 

1.14 Nuclear Magnetic Resonance (NMR) and its application to study ion 

transport. 

Nuclear magnetic resonance (NMR), a spectroscopic technique that measures 

magnetic nuclei and their environment, has gained considerable success and popularity 

in studying the dynamic state of inorganic ions and organic metabolites in whole and 

isolated living cells, tissues, and organs (Balschi, Cirrillo and Springer, 1982, Civan, 

Degani Margalit and Shporer,1983). The main advantage of NMR is that it is non-

invasive, so that ionic and metabolic changes in the cellular environment can be 

observed as they take place within an essentially unperturbed living system. With the 

introduction of sophisticated and continuously improving high field superconducting 

spectrometers, the NMR technique is approaching the status of a common, non-

invasive analytical tool for cellular studies and research (Gupta and Gupta, 1984). 

The work of Moon and Richards in 1973 on human red blood cells appears to be the 

first published account of a high resolution NIVIR spectrum of a cell system. There have 

been notable advances during the last few years, the most outstanding have been the 

applications of N1¼'IR to the study of intracellular pH, free Mg 2 , free Ca2 , free Na 
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and C ions, and the application of NMR to the study of 31P metabolites in human 

(Balschi eta!, 1982, Gadian, 1983). 

Intracellular metal ions (Nat, C, Mg2t, Ca2t)  and pH appear to modulate a variety of 

cellular and tissue ftxnctions (Boynton, McKeehan and Whitfield, 1982; Nuccitelli and 

Deamer, 1982). Exploration of possible regulatory roles of these ions in cellular 

proliferation, differentiation, volume regulation, and hormonal control of various 

cellular processes as well as understanding how the concentrations of intracellular ions 

are managed by various membrane transport processes is important. It may aid in the 

understanding of how such regulation goes astray in disorders such as cancer 

(Cameron, Smith, Pool and Sparks, 1980; Gupta and Gupta, 1982), hypertension 

(Blaustein, 1977, and Hamlyn, Ringel, Schaeffer, Levinson, Hamilton, Kowarski and 

Blaustein, 1982), and sickle cell disease (Tosteston, 1955). NMR spectroscopy has 

provided a unique non-invasive tool for such studies. 

The information available from NMR often complements that available from other 

techniques. Uniike the atomic absorbance spectroscopy, NMR may in suitable cases 

provide information on free ions. Absorption and flame emission techniques that yield 

the total amounts of various ions in a cell. 

1.14 (a) Intracellular Free Mg 2  in living cells. 

Since Mg 2+  ion plays an important role in the diverse biochemical reactions occurring 

within a cell, knowledge of cellular free Mg 
2+ level is essential for an accurate 

understanding of a functioning intact cell. It is relatively easy to measure total Mg 
2+  

content of a cell by atomic absorption techniques; such is not the case for the 
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measurement of free Mg 2+  A non-invasive 31p  NMR technique for determining free 

Mg 2+  in intact cells has been used. 

1.14 (b) 31  NMR Measurement of intracellular Free M2  2+ 

The 31P NItvLR technique for measuring free Mg is based on an accurate measurement 

of the frequency difference between the &P and 13P resonances in the 31 p NMR 

spectrum of intracellular ATP. Because the positions of the "P resonances of 

frequencies of phosphorus groups of AlP in an NMR spectrum depend on its state of 

complexation with Mg 2+  (the predominant divalent cation component of the cell), the 

NMIR spectrum allows a determination of the fraction of total ATP that exists as the 

Mg 2+  complex as well as total Mg 2  An accurate knowledge of the dissociation 

constant of MgATP (K0') under simulated intracellular ionic conditions then yields 

free Mg 2+  directly from the NMR spectral data (Gupta, 1980; Gupta, Benovic and 

Rose, 1978). 

For a comparison of the measured Mg-dependent separation between the uP and 13P 

resonances of intracellular ATP (S ap"') and MgATP (&t'") controls under 

simulated intracellular ionic conditions and pH, by calculating a value of 4, which is 

defined as the fraction of total AlP not complexed to Mg 2+  according to the following 

equation: 

4 = ([ATP]) I ([Alp] i) = (S 	- 	MgATP / (5 AlP - 
	

M&An') 

As long as only a single set of resonances is observed, consistent with fast exchange 

averaging of the resonances of AlP and MgATP, the frequencies of phosphorus 

resonances reflect the state of Mg 21  complexation of ATP. Misawa, Lee and Ogawa 



(1982), noted that at higher "P NFvIR frequencies (~ 145 MHz) and lower 

temperatures (:~ I OC), the assumption of rapid exchange of ATP and MgATP may not 

entirely be valid. 

The following equation is then used to derive a value for free Mg 
2+  in the intact cell 

directly from the spectral data: 

[Mg] r  = 

An important assumption which is implicit in the application of this technique to intact 

cellular systems is that the chemical shifts of the 31P resonances of intracellular ATP 

respond to the presence of Mg 2+  in a manner similar to that observed for total ATP. 

Many cell systems have been examined, in which much of the total cellular ATP is 

complexed to Mg 2+,  the critical part of the assumption states that, upon saturating 

cells with Mg  2%  the separation 8 4  "11  will decrease to that observed in isolated 

MgATP. Gupta in 1980 tested this assumption by saturating oxygenated erythrocytes 

with a high level of internal Mg 2+  10 RmOl/ml cells). The observed separation 

between the aP and 1W resonances changed from its value of 353 ± 1 Hz at 40.5 

MHz and 37CC in unperturbed oxygenated erythrocytes to a value of 338 ± 1 Hz, 

indistinguishable from that observed in extracellular MgATP control 337 ± 1 Hz 

under simulated intracellular ionic conditions. Similar shifts for the intracellular 

MgATP in human erythrocytes and extracellular MgATP control have been observed 

which indicate, that the shifts of the "P resonances of the red cell ATP are determined 

primarily by the normal interactions of Mg 2+  and AlP. The validity of the "P NMR 

method for determining free Mg 2+  in the red cells suggests that it is likely to be valid in 

other cell types as well. 
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1.14(c) Application of the 31P NMR method for free Me 2+ determination. 

Intracellular free Mg 2  has been measured by the NTvIR procedure in human normal 

and sickle red blood cells (Gupta et as!, 1978), frog skeletal muscle (Gupta eta!, 1980), 

Ehrlich ascites tumour cells (Gupta et a!, 1980), murine lymphoma cells (Erdos and 

Maguire, 1983), human lymphocytes (Rink, Tsien and Pozzan, 1982), dog erythrocytes 

(Wyrwicz, Schofield and Burt, 1982), perftised and ischemic heart muscle (Gupta, 

Gupta, Yushok and Rose, 1983), rabbit urinazy bladder and uterus smooth muscles 

(Dillon, Meyer and Kushmerick 1983), and in amphibian oocytes (Morrill, Kostellow, 

Weinstien and Gupta, 1983). 

Gupta et a!, 1984 concluded that low availability of Mg 2+  would limit the rates of 

cellular reactions in which the substrate is the Mg 2+  complex of ADP or another 

compound that binds Mg 2+  wealdy. Low cellular free Mg 2+  levels support an 

important role for Mg 21  in the regulation of metabolic processes in agreement with the 

Mg 2 - co-ordinated control of metabolism and growth proposed by Rubin and co-

workers (Rubin, 1975; Rubin, Terasakai and Sanui, 1979). 

1.15 Role of Mg 2+  in Platelet Aggregation. 

1.15 (a) Platelet Aggreeation 

1.15 (a ii Platelets 

Platelets or thrombocytes, though non-nucleated and, thus, strictly speaking, not 

entitled to be classified as cells, are capable of a complex variety of reactions, which 

are essential for haemostasis and important for the healing of damaged blood vessels. 

Platelets are small, non-nucleated disc-shaped bodies derived from megakaryocytes in 
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the bone marrow and present in the blood at a concentration of 150,000 to 400,000 

per R1.  They are about 0.8 microns in depth and 2.3 microns in diameter, and they 

contain mitochondria, a complex system of tubules and three sorts of granules- dense 

granules, alpha granules and lysosomes. The plasma membrane has an external coat 

consisting of protein and glycosaminoglycans (mucopolysaccharides); it contains two 

glycoproteins - Hb and Lila - which are important in platelet aggregation. 

1.15 (a ii) Aggre2ation 

Platelets and their interaction with the vessel wall are important for the initiation and 

development of arterial thrombosis (Fuster, Steele and Chesebro, 1985) and several 

pharmacological treatments have been introduced to obtain an efficient platelet 

inhibition. Rupture of an artherosclerotic plaque may trigger thrombus formation (Falk, 

1992). When the surface of a plaque ruptures, platelets adhere and become activated to 

release proaggregatory and vasoconstricting substances (Kristensen, Martin, 1991). 

The primary thrombus formed in the artery consisting of platelets, but activation of the 

coagulation system leads to the formation of a platelet fibrin clot. A predisposing 

factor in the development of arterial thrombosis is now platelet hyperreactivity (Fuster, 

Steele and Chesebro, 1985; Nadler, Malayan, Luong, Shaw, Natarajan and Rude, 

1992). Moreover that Mg 2+  has shown beneficial effects in the treatment of patients 

with acute myocardial infarction (MI) (Teo, Ysuf, Collins, Held and Peto, 1991; 

Woods, Fletcher, Roffe and Haider, 1992; Shechter, Hod, Chouraqui, Kaplinsky and 

Rabinowitz, 1995) and preeclainpsia (Watson, Moldow, Ogbum and Jacob, 1986), 

which are conditions associated with increased platelet activity, indicates a possible 

anti-platelet effect of magnesium. 



1.16 Role of M 2+  in Platelet AE2regation 

Mg 2+  is known to inhibit experimental arterial thrombus formation (Acland, 1972; 

Adams and Mitchell, 1979; (iertz, Rebecka, Wajnberg and Uretzky, 1987). This could 

be caused by decreased platelet accumulation, but may also result from increased 

thrombus dispersion due to enhanced fibrinolytic activity. In vitro studies have 

demonstrated that Mg 2+  is able to inhibit platelet aggregation in a dose dependent 

manner (Watson et a!, 1986; Hwang, Yen and Nadler, 1992; Gawaz, Ott, Reininger 

and Neumann, 1994; Ravn, Vissinger, Kristensen and Husted, 1996). It has recently 

also been demonstrated that the platelet inhibitory effect of Mg 2+  in vitro is present at 

low, clinically applicable concentrations (Ravn ci a!, 1996) and this encouraged Ravn 

ci a!, (1996) to look for a possible effect of Mg 2+  on platelet activity following 

intravenous administration. 

1.17 Use of BIODATA Platelet Aggregation. 

Platelet aggregation is measured routinely in clinical laboratories using a BIODATA 

Platelet aggregation profiler (Figs Ga and Gb). 

HIJ 



ng Ga Photo of BlO/DAIA PLARELET AGGREGA11OM PROFILER MODEL PAP-3. 

flaatnTIwgoEm 

DISPLAY AREA 

LIGHT SHIELD 

ELAPSED TIMER 
CONTROLS 

\. 	—STOP TEST 

..START TEST 

TEST DURATION 
CONTROL 

TESTWELL 

RAE C 
"Awlawak SWUDs PLASTIC INCUBATION 

BLOCK COVER 

ANALOG anna 
THUMB SCREW 

wuTEqu.nnAa 	

% AGG. 

TRACE FILTER 

OIAMT ADVANCE 	 HOLD - READ  

Fig Gb BIOIDATA PLATELET AGGREGATION PROFILER 
MODEL PAP-3 

41 



1.18 Use of the BlO DATA Platelet profiler (model PAP-3) in Apgreeation. 

RIO/DATA Platelet Aggregation Profiler, model PAP-3, operates via a photo-optical 

scanning system, a continuous differential amplifier system and an automatic recorder 

calibration and standardisation system. 

The operation involves two samples of the plasma. One sample is platelet -rich plasma 

(PRP), and the other platelet poor plasma (PPP). These are inserted into the labelled 

optical test wells. The PAP-3 utilises the difference in optical density between the PRP 

and PPP and determines whether the platelet count is correct for proper testing. If the 

platelet count is too high or to low, the appropriate warning indicators are activated 

alerting the operator to the problem and the correct action to be used. 

Following the insertion of the plasma samples, light received through the test 

specimens by the photo detectors are transformed into electrical signals, which are 

continuously and differentially compared and then amplified. The final amplified signal 

is split into two components, with the first component fed into the galvanometer-

actuated recorder from which the aggregation curve is generated. The patented control 

and standardisation circuitry automatically adjusts the recorder for the fill-scale 

deflection based upon the initial optical density levels of the test samples. This removes 

the need to establish or re-establish the chart baseline. 

The second part is fed simultaneously into a micro processor where it is electronically 

measured, converted to numerical values and then displayed on a continuos basis, as 

the aggregation curve is generated. At the end of a defined test, the final total 

aggregation is displayed until the next test is initiated. 
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The chart paper is moved at a constant rate of 25 mm min 1  and is made of a heat 

sensitive material. This then removes the requirement of an ink system (Fig H). The 

actual aggregation pattern may be displayed as either a filtered or unfiltered trace. In 

the unfiltered trace, the curve trace contains oscillations, which are related to 

aggregate size and shape, while in the filtered trace the curve trace is free of the 

oscillations and the resultant line is then based upon the arithmetic average of the 

oscillations. 

The PAP-3 works at a constant fixed temperature of 37 °C; this is monitored and 

controlled automatically. The machine cannot operate until this temperature is reached. 

The PAP-3 has a digital display, which presents a step by step method of operation. 

1.19 Percentage (%) Aggregation. 

All aggregation patterns that are produced by the PAP-3 are automatically and 

continuously analysed for the percentage (%) aggregation beginning when the START 

TEST button is depressed and continuing until the PRP scan is stopped either manually 

or automatically. (A typical trace is shown in fig H), (BiolData corporation, 1974). 
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Fig H shows an original chart recording of platelet aggregation in a sample of blood. 

Caution has to be employed to maintain a standard set of experimental conditions and 

protocol. The PAP-3 cannot be standardised if any of the following exist in either a 

combination or as a single condition: -A stir bar is not inserted into the platelet rich 

specimen before testing. The instn.iment cannot be standardised due to insufficient 

difference in the optical density of platelet-rich versus platelet-poor samples as a result 

of low initial platelet count or improper centrifligation. 
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Erroneous results may be result if the following conditions exist: - Light shields are left 

open during test. Test tubes are not completely seated in the test wells. Incorrect 

volumes of plasma and reagent were used. 

1.20 Laboratory Procedures. 

The formation of a haemostatic seal is the primary frmnction of the platelet. Adhesion 

and aggregation are initial and require platelet capabilities (Rodnani, 1971). Extensive 

reviews on platelet function and the aggregation have appeared in literature (Davey 

and Lusher, 1968). Lusher (1971) has made a diagrammatic representation of the 

haemostatic mechanism including the role of the platelets (Fig I): - 
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Fig I. A diagrammatical representation of haemostasis. 
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Platelet aggregation is the most useful in-vitro test of platelet function presently 

available (Day and Holmsen, 1972). Platelet aggregation is clinically significant in the 

detection and diagnosis of acquired or congenital qualitative platelet defects. The 

platelet's ability to respond to particular aggregating agents is the basis for 

differentiating platelet dysfiinctions. (Marcus and Zucker, 1965). 

1.21 Preparation of Plasma. 

The collection, handling and preparation of the plasma sample particularly the plasma-

rich plasma is extremely important and must therefore be performed with precision. 

Failure to follow proper procedures result in poor or erroneous test results. All blood 

samples must be collected and handled in plastic containers. It is important that under 

no circumstances glass syringes or other glass containers be used, as the platelets will 

adhere to them. 

1.22 Aims of this study. 

This study was designed mainly to characterise Mg 2 transport in Mg 21-loaded 

erythrocytes and to investigate the role of Mg 21  in platelet aggregation. 

The specific aims are: - 

(a) To measure plasma and erythrocyte Mg 2+  and other cation concentrations using 

atomic absorption spectroscopy method. Initial experiments involved the use of 

blood from pig in order to establish the technique and a good working hypothesis. 

Subsequent experiments involved the use of human blood both in control and in 

patients who have acute renal failure. 
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(b) To characterise Mg 2+ transport on erythrocytes taken from both pig and human 

using a number of transport inhibitors. 

(c) To investigate the role of Mg 2+ in platelet aggregation in blood taken from both 

pig and human. Blood from the pig was employed mainly to establish the 

technique. 

(d) To measure Mg 21  concentration in erythrocytes in whole blood using NMR 

technique. 
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2.1 Materials for Mg 2+  transport 

Mg 2+  standards (0, 0.625, 1.25, 2.5, 5 and 10 mM). Samples of plasma and 

erythrocytes. An atomic absorption spectrophotometer (model Unicam 929) set at 

285.2 nm. Solutions such as (Mg 24-Ioading solution, Mg 2 -free solution, washing 

solution, calcium ionophore A23187 at concentration (10 M), 10 % TCAI0.175 % 

LaCI3) (see appendix Ill for recipes and contents of each solution including 

physiological salt solutions). In addition, the Sherwood flame photometer (model 410) 

and Cl - titrator (model Jenway) were also employed in this study. Reagents for these 

techniques include Na + (100 mmol), K + (5 mM), Cl - (100 mmol), distilled water, 

Gilson pipette (p 20). 

2.2 Materials for platelet a2erezation 

Plasma of type Platelet rich plasma (PRP) and platelet poor plasma (PPP), a magnetic 

stirrer bar and a BlO DATA platelet aggregation profiler of type PAP-3. 

Drugs used in this study: Adenosine diphosphate (ADP), amiloride and N-methyl-D-

glucamine (NMDG). 

2.3 General procedure. Fresh Pig and human blood samples were obtained routinely 

from the local abattoir and from Royal Preston Hospital, respectively. The pig blood 

was collected in plastic bottles containing 0.4% sodium citrate (anticoagulant), 

whereas the human blood from the hospital was collected in 10 ml heparinised tubes. 

The blood was centrifuged at 2750 rpm at room temperature for 7 min to separate the 

plasma from the red blood cells. The plasma was employed to measure the 

concentration of such ions Nat, K, Ca 2+, Mg 2+  Cl - whereas the erythrocytes or red 

blood cells were used to measure Mg 2+ transport. In some experiments, Ca 
2± 
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transport was also measured for comparison. In the experiments involving platelet 

aggregation, the blood was centrifi.iged to obtain platelet rich plasma (PRP) and 

platelet poor plasma (PPP) and the hospital method was used to measure aggregation. 

2.4 Loading of 012 and human erythrocytes with Mg 2+  

Either human or pig blood was centrifuged at 2750 rpm for 7 mm. The plasma portion 

was obtained for the assay of ions. The remaining plasma and bufl3' coat was discarded 

and a sample of unloaded erythrocytes was retained for Mg 2+  measurement and 

protein assay. A 10% cell suspension sample of remaining erythrocytes were loaded 

with Mg 2+  (12 mM MgCl2) in the presence of I 0 M calcium ionophore (A23 187), 

incubated for 30 min at 37 °C in a shaking water bath. After the loading process the 

cells were centhfiiged for 7 min at 2750 rpm, and the supernatant discarded. The 

residue pellet was then resuspended in medium (composing of 140 mM KCI, 50 mM 

sucrose, 5 mIvI glucose, 30 mM Hepes / Tris pH7.4, 12 mM MgCl 2  and 1% bovine 

serum albumin (B.S.A)) and centrifuged at 2000g for 5 min to remove the calcium 

ionophore. This process was performed 3 times. Loaded erythrocytes were retained for 

Mg 2  measurement and protein assay. The Mg 2+  efflux was measured by reincubating 

a 10% cell suspension of loaded eiythrocytes at 37 °C in a control Mg 2+  free NaCl (140 

mM) medium (composing of 140 mM Na , 50 mM sucrose, 5 mM glucose and 30 

mM Hepes / tris pH 7.4) at 5, 10, 20 30, 40, 50 min intervals. Following the efflux 

duration samples of the cell suspension were centrifuged at 2750 rpm for 7 mm. The 

supernatant of each aliquot was retained for Mg 2+ measurement and the pellet for 

protein assay. At the end of the 50 min efflux period the erythrocytes were also 

assayed for Mg 2+  to determine the remaining cellular Mg 2+  In some experiments the 

same procedure was repeated by substituting the NaCl in Mg 2  free medium with 

either NMDG or 10 M amiloride. 
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2.5 Measurement of Mg 21  using Atomic absorbance spectroscopy method (AAS) 

Mg 2  in either plasma or erythrocyte efflux samples were measured using atomic 

absorbance spectrophotometxy (AAP). 

The AAP was set up for Mg 21  measurement (lamp 4 and wavelength 285.2 nm). It 

was standardised with distilled water and then the Mg 21  standards were aspirated for 3 

sec beginning with the most dilute i.e 0.625 mM up to 10 mM. The readings were used 

to convert the absorbance into units of Mg 2+  The sample was collected by 

centrifligation of the whole blood at 2750 rpm for 7 mm. the plasma was then treated 

with solid 5% tetrachloroacetic acid (TCA), it was centrithged at 2500 rpm for 5 mm 

and the supernatant kept and residue discarded. A 1:100 dilution using 10% TCA and 

0.175% lanthium chloride solution was performed to the supernatent and then tested 

via AAS. For the erythrocytes 100 R1  of erythrocytes were used to which 2 ml of 10% 

TCA solution was added and centrifuged as for the plasma. The same was then done to 

the supernatant and tested with the AAS. All values were expressed as net Mg 
24- flux 

(sM /100 mg cell protein) '). 

2.6 Protein Assay: Assay of protein using BioRad method 

Protein standards of the range 0 mg nil - 25 mg ml were made using bovine serum 

albumin (BSA) and diluting with 1% triton X-100. Using a Gilson pipette, 100 111 of 

each standard was transferred into a 5 ml test tube. Reagent A (alkaline copper tartrate 

solution) was added at a volume of 500 pal to each standard and each tube was 
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immediately vortexed (mixed) for 5 sec. Using a pipette, 4 ml of reagent B (dilute 

Folin Caicaltean Reagent) was added to each standard and the mixture was vortexed 

for a further 5 sec. The standard mixtures were allowed to stand for 15 min prior to 

testing using a spectrophotometer (Parmacia LKB, Novaspec II) set at absorbance of 

750 nm. The samples were used to produce a calibration curve. A sample of 1 % 

Triton X-100 was used to blank the machine. The samples were also treated in the 

same way and the calibration curve was used to determine their protein content. 

2.7 Measurement of Cl - UsinE Cl- titration 

A Jenway PCLM 3 model Cl - titrator was used for the measurement of Cl in the 

samples. Using a pipette 15 ml acid buffer was added to a titration pot. To this 10 

drops of gelatin solution were added and the mixture stirred. Using a Gilsons pipette, 

20 R1  of 100 mmol Cl-  was added to the mixture and the titrator conditioned for 2 sec 

by pressing "Condition". The display increased above 100. Mother 20 j.il of 100 mmol 

Cl- was added and the titrator conditioned again for another 2 sec. The display reading 

was —100, hence the titrator was calibrated. Sample of volume 20 d was added and 

this time "Titrate" was pressed to engage titration. The theory of Cl titration is based 

upon the principle that a constant current is passed between the two silver electrodes 

which then liberate silver ions at a constant ratio into the solution. These silver ions 

combine with the chloride ions in the solution and are precipitated as insoluble silver 

chloride. When all the chloride has combined with the generated silver, free silver ions 

become available in the solution and their presence was detected by two further silver 

electrodes. All values were expressed in mM values. 
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2.8 Measurement of Na', iC and using flame photometry 

The Sherwood flame photometer (model 410) was standardised using distilled water 

which was aspirated into the flame for 20 mm. The correct filter was selected and Na + 

and K + standards of 100 mmol and 5 mM were then used, respectively to standardise 

the flame photometer. The samples were then diluted 10 times and then tested. All 

values were obtained in mM values. 

2.9 Platelet Aggregation Method 

The precise operational method is shown in appendix I. Our modifications to the 

Corporation protocol were to collect 10 ml of blood in a plastic syringe and dispense 

into a 10 ml lithium heparin polypropylene tube (LiP equipment Ltd, Catalog No: 

71038 LHI 0 PP/WSC). The tube was capped with the screw cap and gently inverted 

to mix the solution. The platelet rich plasma (PRP) was prepared by centrifligation at 

800 RPM AT 25°C, for 5 Sn. The centrifuge was allowed to stop gradually by 

removing the braking system, the plasma was checked for the absence of erythrocytes. 

If any erythrocytes were present the sample was re-centrifuged for 5 Sn. A Gilson 

and a plastic tip were used to transfer the PRP into a plastic Elkay graduated 10 ml pro 

mailing tube. The tube was sealed with the polyethylene screw cap and allowed to 

stand for 60 min at room temperature. The platelet poor plasma (PPP) was prepared 

by re-centrifligation of the sample at 2750 R.P.M for 20 Sn. The tube was removed 

from the centrifuge and the PPP was transferred using a Gilson pipette into another 

mailing tube and capped. The plasma samples were then tested within 2 hours of 

collection. The % of aggregation was displayed on a chart recorder which was built 

into the aggregator. The original chart recordings were used to calculate the mean 
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±standard error of the mean (SEM) % of platelet aggregation. In some experiments the 

original chart recordings were in the result section. 

2.10 NMR method 

Whole blood was carefully transported on ice (4 °C), and placed in a NMR tube 

containing Heparin. Deutriated water (1320) was added for the magnet to lock onto. It 

was then exposed to NMR via a magnet. A fully automated computer program was 

used to perform the experiment. (see appendix IV for details). 

2.11 Statistical Analysis 

All results are presented as mean ± standard error of the mean (SEM). Values 

were compared using the Students t - test and only values with P <0.05 were taken as 

significant. In this study 96 samples of pig blood, 10 samples of human control and 12 

samples of patients with acute renal failure were employed. In some experiments 

involving platelet aggregation samples of original chart recordings were also given. 
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Chapter Three 

Results 
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The results are subdivided into four parts 

(a) Plasma ion level 

(b) Characterisation of Mg 2+  transport 

(c) Platelet Aggregation 

(d) NMR study 
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3.1 Cations and Anion concentrations in plasma 

Tables 1 and 2 show the concentration of the cations Na 4-, K , Mg 2+  and Ca 2+  and 

the anion, Cl -  in plasma of either pig (Table 1) and healthy human controls and pre - 

and post-dialysis patients (Table 2). The results show that Na + concentration was 

lower in pig compared to healthy human. In contrast, in pre-and post-dialysis patients, 

Na + concentration was almost treble. The results also show that K + was lower in pig 

compared to healthy human. However, in pre-and post-dialysis patients iC 

concentration was 20 times higher compared to pig, but similar when compared to 

human controls. The results show that Ca 2+  was 45 times lower in pig compared to 

healthy human. In pre-and post-dialysis patients, Ca 21  was also similar compared to 

healthy human. The result show Mg 2+  was 17 times lower in pig compared to healthy 

human. In contrast, in pre-and post-dialysis patients, Mg 24-  was slightly lower than in 

healthy human. It is particularly noteworthy that plasma samples for pig were 

analysed in our laboratories using the techniques of AAS, flame photometry and Cl' 

titration, whereas plasma samples for human control and pre- and post-dialysed 

patients were analysed using a colorimetric method on equipment housed in the 

clinical laboratory at Royal Preston Hospital. 

3.2 Net Mg 2+  efflux in Mg 2+  loaded pig erythrocytes 

Figure 1 shows the mean ± SEM concentration of Mg 2+  in pig erythrocytes 

before loading (a), following loading with 12 mM MgCl2 in the presence of 10 M 

A23 187 (b) and following efflux of Mg 2+  for 50 mm (c). The results show that 

unloaded erythrocytes contain a basal Mg 2+  level of 0.01 ± 0.001 kM (100 mg cell 

protein) n 96. Following loading for 30 mm, Mg 24-  level was elevated in 

erythrocytes to 0.06 ± 0.01 kM (100 mg cell protein) , n=96. After 50 min of 

incubation of Mg 2 -loaded erythrocytes, Mg 2+  levels decreased to 0.042 ± 0.01 p.M 
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(100 mg cell protein) , n=96. The study has demonstrated that erythrocytes can take 

up Mg 2*  during loading and they can lose the Mg 2*  during incubation in a Mg 2+  free 

medium. The results show a significant (P c 0.05) decrease in Mg 2*  during 

incubation for 50 mm, however, Mg 2*  stilt remained high within the erythrocytes 

even after 50 min of efflux. 

Figure 2 shows the time course of net Mg 24-  (solid diamonds) and Ca 
24-  (solid 

squares) effluxes for Mg 24- 1 aded pig erythsocytes. The results show that there was a 

rapid and large increase in Mg 2*  efflux over the first 5 min and this level remained 

the same after 50 mm. In contrast, Ca 2*  efflux occurred gradually reaching around 

0.006 ± 0.0002 isM (100 mg cell protein) 1,  n = 96 after 50 mm. The level of Ca 2  in 

unloaded erythrocytes was 0.01 ± 0.001 RM (100mg cell protein) -5, n96. 

Figure 3 shows the time course of net Ca 24-  efflux for Mg 24- loaded erythrocytes in 

control (normal Mg 2 free solution, solid diamonds) and in Mg 
24- free solution 

containing either NNIDG (solid square) or 10 	M amiloride (solid triangle). The 

results show that erythrocytes can release Ca 2*  in a time dependent manner. 

However, in the presence of either amiloride or NMDG Ca 2 efflux was much higher 

compared to control. The efflux in amiloride was twice the values compared to the 

presence of NMDG. 

The time course of net Mg 2* efflux from Mg 24--loaded pig erythrocytes in the 

absence (solid diamonds) and presence of either 10 ' M amiloride (solid triangles) or 

NMDG (solid squares) is shown in Figure 4. The results show that there was a rapid 

increase in Mg 2'  in the presence of a Mg 2+  free physiological salt solution. In the 

presence of either NMIDG or amiloride, the net Mg 2+  efflux was decreased indicating 

that efflux is dependent upon extracelluar Na 4-.  
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3.3 Net MR 2+  and Ca 2+  emux in human erythrocytes 

In addition to pig et-ythrocytes it was also possible to employ human erythrocytes 

taken from healthy people and patients who had acute renal failure. Figure 5 shows 

the concentration of Mg 2+  in human erythrocytes of normal (A) and pre (B) and 

postdialysis (C) patients before Mg 2+  loading (c, column), following Mg 24-  loading 

with 12 mM MgCl2 and (10 M A23 187) for 30 mm (Ld, column) and after 50 mm 

of Mg 4- 
 efflux from loaded erythrocytes (Eff column). The results show that normal 

healthy human erythrocytes contain a very small amount of Mg 2+  was also 

difficult to load the cells with Mg 24-  and as a result there was little Mg 
24.  efflux. In 

contrast, erythrocytes taken from pre- and post-dialysis patients contain more Mg 2* 

compared to human control. In addition, the erythrocytes take up a large amount of 

Mg 24- 
 during the loaded period and most of the Mg 2+  is released during the 50 mm 

efflux period. The results indicate that acute renal failure is associated with large 

fluxes of Mg 24- 

Figure 6 shows the time course of Mg 24-  efflux from normal Mg 2  loaded (12 mM 

MgCl2  + A23 187) human erythrocytes in the absence (solid diamonds) and the 

presence of either 10 M amiloride (solid squares) or NMDG (solid triangles). The 

results show that normal Mg 2 '-loaded human erythrocytes can release Mg 2* rapidly 

reaching a maximum after 5 mm of incubation. This level remained high throughout 

the time course response. Pre-treatment of the erythrocytes with 10 M amuloride 

resulted in a significant (PC  0.05) decrease in Mg 2+  efflux compared to human 

control. In contrast, NMDG had no effect on Mg 24-  efflux compared to human 

control. Only at 30 and 40 min there seemed to be a significant inhibition in Mg 
24-

efflux. 
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1 efflux in pre- and post-dialysis patients 

The time course of Mg 2+  eftlux from erythrocytes of pre-dialysis patients is shown in 

Figure 7. The result shows that the erythrocytes can take up similar levels of Mg 24-

during loading as human control (see Figure 5 for comparison) and release the Mg 2* 

with maximal efflux occurring at 5 rnin following incubation (solid diamonds). There 

after, Mg 24-  efflux decreased slightly and remained at that level throughout the time 

course response. Pre-treatment of the erythrocytes with 10 M asniloride (solid 

squares) resulted in a significant (p-c 0.05) elevation in Mg 2+  efflux compared to 

untreated erythrocytes. In contrast, when NaCl was replaced with NMDG (solid 

triangles), there was a large and significant (Pc 0.05) decrease in Mg 24-  eftiux 

compared to control. The results of this study employing NMDG suggest that the Mg 

24-  efflux of pre-dialysis erythrocytes is partially dependent upon extracellular sodium 

since the eftiux was reduced but not abolished completely. In contrast, the results 

obtained with amiloride indicate an enhancement of Mg 2+  eftlux. It is possible that in 

the pre dialysis patient amiloride acts to enhance the efflux since the opposite is 

observed in human control (see Figure 6 for comparison). 

The time-course of Mg 2* from Mg 24- -loaded erythrocytes taken from human post-

dialysis patients is shown in figure 8. The results shows that there was an initial rapid 

increase in Mg 2+  eftiux in the control (Mg 24-  free Krebs) followed by a decrease in 

the level which remained throughout the time course response. Pre-treatment of the 

erythrocytes with 10 a M amiloride resulted in a much larger efflux of Mg 
24-

compared to control. In contrast, when NaCl was replaced with NMDG, there was a 

significant (pc 0.05) reduction of Mg 2+  efflux at 5 min compared to the control. 

There after the Mg 2+ efflux remained at the same level as the control. In some aspect 



these results are similar to human control except for the results of NMDG after 5 mm 

of incubation. 

3.5 Ca 2+  efflux from Mg 24--loaded erythrocytes 

Figure 9 shows the time course of Ca 2*  eftlux for Mg 
24- loaded erythrocytes taken 

from healthy human controls. The results show that erythrocytes can release large 

amounts of Ca 2*  within 5 min of incubation (solid diamonds). This net Ca 2+  efflux 

remained at the same level throughout the time course response. Both 10 M 

amiloride (solid squares) and NMDG (solid triangles) had no significant effect on Ca 

2+ 
 efflux compared to the response obtained in the absence of these substances. 

3.6 Platelet agzretion 

Since erythrocytes can take up Mg 2+  and release it in a time-dependent manner it was 

also relevant to find out whether a perturbation of extracellular Mg 21  can affect 

platelet aggregation. Figure 10 shows samples of original chart recordings of the 

effect of different concentration (10 	- 10 " M) of ADP on human platelet 

aggregation. The results show that ADP can aggregate human platelets in a dose-

dependent manner with maximal effect occurring at 10 4  M. These experiments were 

performed several times and the mean ± SEM data are shown in Figure 11. The 

concentration of Mg 2+  in normal human plasma was 0.91 ± 0.05 mM, n12. 

Since ADP at 10 M can induce maximal effect on platelet aggregation it was 

decided to employ this concentration to study the effect of perturbation of 

extracellular Mg 2+  on platelet aggregation. Figure 12 shows the effects of 7 mM 

extracellular M902 on the ADP induced platelet aggregation. Original chart 

recordings are shown in Figure 12 A and the mean ± SEM results are shown in Figure 

12 B. The results show that perturbation of Mg 2+  from 0.91 mM (nontial) to 7 mM 

resulted in a significant (Pc 0.05) inhibition of ADP-evoked platelet aggregation 
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especially at high concentration (e.g. 10 M) of ADP. Typically, the ADP (at 10 ' 

M) induced aggregation in normal plasma was 45 ± 2.5 % (n10) compared to 5 ± 1.2 

% 012) in 7 mM Mg 24-  Since 7 mlvi extracellular Mg 2+  can reduce the ADP-

elicited platelet aggregation, it was relevant to ascertain whether other concentrations 

can do the sante employing 10 M ADP. Figure 13 shows the effect of different 

concentrations (1-7 mM) of Mg 2+ on ADP (10 - ' M) induced human platelet 

aggregation. Original chart recordings of the responses are shown in Figure 13 A and 

the mean ± SEM data are shown in Figure 13 B. These results show that Mg 24-   can 

elicit a concentration dependent inhibition of human platelet aggregation with 

maximal effect occurring at 7 mM Mg 2+  

Since a perturbation of extracellular Mg 2+  can decrease the ADP-induced human 

platelet aggregation it was decided to determine the effect of different concentrations 

of extracellular Ca 2+  on the ADP-evoked platelet aggregation. Original chart 

recordings of the ADP (10 M)-elicited responses froml mM to 7mM CaCl 2  are 

shown in figure 14. The mean ± SEM data are shown in figure 15. The effect of ADP 

in normal plasma Ca 2+ concentration (control) is also shown for comparison. Normal 

plasma Ca 2+ 
 concentration was 2.39 mlvi (100 mg cell protein 1 ). The results show 

that a perturbation of extracellular CaCl2 elicited a gradual decrease in the ADP-

evoked platelet aggregation with maximal inhibition occurring at 3 mM. Further 

increase in extracellular Ca 2+  resulted in an increase in ADP-induced human platelet 

aggregation. 

The effects of ADP alone and during perturbation of extracellular M902 were 

investigated in blood taken from patients who experienced acute renal failure. Both 

62 



pre- and post-dialysis blood samples were employed for comparison. Figure 16 shows 

samples of original chart recordings of ADP (10 M) induced human platelet 

aggregation in plasma from normal healthy control and pre- and post-dialysis patients 

in the absence and presence of 7 mM extracellular MgCl 2 . The mean ± SEM data are 

shown in Figure 17. The results show that a perturbation of extracdllular Mg 
24-  

 had 

no significant effect on platelet aggregation in acute renal failure patients compared to 

healthy human control. 

3.7 Nuclear magnetic resonance 

Figure 18 shows an original chart recording of the one and only successfUl NMR 

experiment. Several attempts were made to perform this part of the experiment, but 

due to a number of factors only one set of results were obtained, for human control 

blood. No experiments were performed on human patient blood as a result. 

The result shows a series on left between (10 and 0) this is a series of 4 spikes, two 

large and two small. Then between (0 and -20) there are 3 more spaced out smaller 

peaks. 
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Table 1. Concentration ofNa, K, Ca , Mg ' and Ct in pig plasma. All values are mean ± 

SEM, n96. 

ConcentTation (mM) of loris in pig plasma  

Ions Mean SEM fl 

Na' 79 1.1 96 

0.2 0.01 96 

Ca" 0.052 0.027 96 

Mg' 0.051 0.026 96 

CF 113 6.6 96 

r1 



Table 2. Caicuiiais of Na ',K, Ca Z+ 	S  and Cr in human plan in normal healthy 

peopieaidpre.andpost-dia1ysispatjn3 AI1yafuesagem±SEM(n= 12). 

Coninnaion (mM)ot ions in humai pS..,.. 

torm a bAm COMM  PrediSyss çnt.-  Pt4Sysis pants 
mn I 	SEM n mem SEM ii !T1fl SEM n 

Na 136.83 0.98 6 138 3.53 12 135 3.1 12 

K 4.38 0.42 6 4.2 0.75 12 3.8 0.31 12 

Ca 2.39 0.06 6 2.2 0.38 12 2.57 0.14 12 

Mg 0.91 0.05 0.77 0.08 12 0.71 0.06 12 

Cl 102.83 2.32 6 96 10.34 12 99 3.2 12 
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Figure 1. Concentration of Mg (uM (100mg cell protein) ) in pig erythrocytes before (control) 

loading (a), following loading (b), and 50 nun following Mg 
2-  efflux (c). Each point is mean ± 

SEM (n=6). Erythrocytes were loaded for 30 min in the presence of 10 ' M A23 187 at 37 °C. 
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loaded erythrocytes. Each point is mean ± SEM (xv=96). 
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Fienre 3. Time course of net Ca 2  efflux from Mg loaded erythrocytes in the absence (solid 

diamonds) and presence of either NMDG (solid squares) or 10 M amiloride (solid triangles). 

Each point is mean ± SEM, n=96. Note that all the Na + in the physiological salt solution was 

replaced by NMDG. 
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Fivire 4. Time coune of not Mg 2+  efflux from Mg 2+  loaded pig erythrocytes in the absence 

(solid diamonds) and presence of either 10 3  M ainiloride (solid triangles) or NMDG (solid 

squares). 
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Fiture 6. Time course of not Mg' efflux for Mg 2+  loaded erythrucytes taken from healthy people 

in Mg 21 free physiological salt solution (solid diamonds), and in the presence of either 10 M 

amiloride (solid squares) or NMDG (solid triangles). Each point is mean ± SEM, nl0. Note that 

all the NaCI was replaced with NMDG. 
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FiEure 7. Time course of Mg 2t  efflux for Mg 24-  loaded (12mM MgCl 2  + 10 M A23 187) human 

pm-dialysis erythrocytes in the absence (solid diamonds) and presence of either 10 M amiloride 

(solid triangles) or NMDG (solid squares). Each point is mean ± SEM, n= 12. Note that all the 

NaG was rwlaced  with NMDG. 
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FiEure 8. Time course of Mg 2+  efflux fbr Mg 2+  loaded (12mM M902 + 10' M A23187 for 30 

mm) erythrocytes taken from postdialysis human patients in the absence (solid diamonds, control) 

and presence of either 10 M amiloride (solid squares) or NMDC} (solid triangles). Each point is 

mn ± SEM, n= 12. 
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Fieure 9. Time course of Ca efflux for Mg 2+  loaded human erythrocytes in control (solid 

diamonds) and fotlowmg pre4reatxnent with 10 3  M amiloride (solid squares) or replacement of 

extracelluar sodium with NMDG (solid triangles). Each point is mean ± SEM, nlO. 
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Fie.ure 13(A). Original chart recordings showing the effect of different concentrations 

7 mM) of MgCla on ADP (10 -' M)-induced human platelet aggregation. The control 

response (a) is shown for comparison. Traces are typical of 6 such experiments. 

Note that the concentration of Mg 2 in plasma is 0.91 mM. 
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concentntions of extracelluar M902.  Each point is mean ± SEM, relO. 
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Chapter Four 

General Discussion. 
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The study employs blood from pig, human control and human patients to 

measure the levels of Mg 2+,  Ca 2+  Na , K + and Cl - in plasma and to characterise 

Mg 2+  transport in erythrocytes. In addition, the study also investigated the role of Mg 

2+  in platelet aggregation. The results have demonstrated marked changes in the levels 

of the ions in the plasma and Mg 2+  concentration for loaded erythrocytes. Moreover, 

Mg 2  seems to play an important physiological role in platelet aggregation. For the 

sake of clarity, the discussion is divided into four major sections. The first part is 

concentrated on the level of ions in the plasma. In the second section the 

characterisation of Mg 2+  transport is discussed. In the third section, emphasis is 

placed on the role of Mg 2+  during platelet aggregation and finally section four is 

concerned with the NMR study. 



4.1 Cation and anion levels in pip and human plasma. 

Levels of Na , K, Ca 2+  Mg 2-f  and Cl' were measured in both pig and human 

controls as well as human patients in pie- and post-dialysis states (tables I and 2, 

respectively). Plasma samples for pig were analysed in our laboratory using the flame 

photometer, the atomic absorbance spectrophotometer and Cl' titration, whereas 

samples for human controls and both pre- and post-dialysis patients were measured at 

the clinical laboratory at Royal Preston Hospital employing a coforimetric technique. 

The results obtained in our laboratory using the AAS equipment was found to be very 

unreliable in producing viable and consistent measurements of the ions. Factors which 

may influence lower readings on the AAS include: contaminated nebulizer tube, a 

dirty flame head, a dirty lamp, dilution factors and low flame fuel level. In plasma 

taken from pig the level of Na was almost half the level as the Na + found in human 

control and both pre- and post-dialysis patients. The level of K 4  in pig was more 

significantly (p <0.05) lower than in both human control and human patients in both 

pre- and post-dialysis conditions. The levels were 20 times lower in pig. Ca 2+  was 

lower in pig compared to human control by a measured factor of 460. This measured 

pig Ca 24  value was obtained by AAS and it is apparently incorrect. In contrast, Ca 2+  

was similar in both pre- and post-dialysis patients compared to healthy human. Mg 2+  

was greatly lower in pig compared to human control. This again was measured by 

AAS and is incorrect. However, in both pre- and post-dialysis patients the Mg 2+  

levels were between 10 and 12 times greater than in pig and but lower than in human 

control. These findings are consistent with work performed by previous studies 

(Taylor and Singh, 1997). The Cl - in pig was again lower than in human control but 

higher than in both pie and post dialysis patients. The human control level of Cl - was 

also higher than the levels found in human pre and postdialysis patients. 
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4.2 Characterisation of Me 2+  transport. 

The findings of this study have demonstrated significant changes on the magnesium 

transport mechanism in erythrocytes taken from both the pig and human in both the 

normal and diseased states. The findings in the pig were similar to the results found in 

the pig and cow (Taylor and Singh, 1997). The findings for the human controls were 

also similar to results found by others (Taylor and Singh, 1996; Abraham and 

Rosenmann et a!, 1987). The aim of the experiment was to characterise magnesium 

transport. It was shown to occur via Na + -dependant Mg 2 The initial step was to 

Load the cells with magnesium. The results in both the pig and human control and 

acute renal failure patients showed an increase in intracellular Mg 2+ (Figures 1 and 

5). On incubation in a solution containing bovine serum albumin to bind and hence 

remove the ionophore, and following 50 min incubation in the Mg 2+  free control 

solution, the intracellular Mg 2+  content of erythrocytes of pig was decreased below 

that of the loaded cells (Figure 1). However, in the human erythrocytes, the 

intracellular Mg 24-  content had increased above that of the loaded cells (Figure 5). In 

stark contrast, in human patient erythrocytes both in pre and postdialysis the highest 

Mg 2+  efflux was seen as the intracellular Mg 2+  content had decreased more greatly 

than the loaded erythrocytes and this was almost the same as the unloaded 

intracellular Mg 2+  content (Figure 5). 

Incubation of erythrocytes in the Mg 2+  free control solution illustrated that loaded 

cells for the two species released Mg 2+  in a time dependent manner, as expected 

(Figures 4, 6 and 7). However, with the exception of the pig erythrocytes (Figure 4), 

the maximum efflux did not appear to have been attained within the 50 minutes 
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permitted, suggesting that the cells from the human controls should be incubated for a 

longer period to assess the maximum efflux time and value. Previous studies 

employing pancreatic acinar cells have shown that loaded cells can release Mg 
2+  in a 

time dependant manner with maximal efflux occurring after 50 mm (Wisdom et a!, 

1996). 

The Mg 2+  efflux was decreased in the presence of amiloride for loaded erythrocytes 

in pig an human patients both pre and post dialysis, as anticipated, due to its action in 

inhibiting sodium transport (Smith and Benos, 1991;, Wisdom et al, 1996; see Figures 

4 and 7, respectively). However, for the human control the same decrease of Mg 
2+  

efflux was observed except for the 10 min incubation period which showed an 

increase (Figure 6). Furthermore, replacing the extracellular Na + with NMDG in the 

Mg 2+  free solution also resulted in a decrease in the Mg 2+ eftlux for both the pig and 

human control, supporting the evidence for a Na * -dependent transport system for Mg 

2+  (Vormann and Gunther, 1993). However, in the human patients the Mg 
2+ efflux 

was increased in the presence of NMDG (Figure 7). Hence for the set of conditions in 

human patient erythrocytes, this does not support evidence for Na -dependent 

transport for Mg 2•  As some Mg 2  efflux did occur in the presence of amiloride, or 

by replacing Na with NMDG would suggest that either another transport mechanism 

is involved with Mg 2-  transport, such as Na + -independent Mg 
24- efflux (Feray and 

Garay, 1986), or that some ionophore remained in the cell membrane and thus 

allowing some difThsion of Mg 2+  to occur. 

The results obtained for human patient erythrocytes both pre and postdialysis did not 

follow the same trend (Figures 7 and 8, respectively). Incubation of loaded-

erythrocytes in the presence of amiloride or by replacing Na + with NMDG did not 

decrease the Mg 2+  efflux compared to controls. Moreover, the efflux in the presence 
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of either amiloride or NMDG was greater than that obtained in the control. This may 

be due to another transport mechanism as the Mg 2+  efflux in the human patient 

erythrocytes both in pre and postdialysis were significantly (P <0.05) higher than in 

human control Mg 2+  free solution (Figures 7 and 8, respectively). Evidence and 

support for Na t  -independent Mg 2+  efflux in human erythrocytes was obtained by 

Vormann and Gunther in 1989. In renal patients were treated via haemodialysis, the 

Mg 24  is higher compared to normal. This erythrocyte Mg 2+ content is caused by 

increased plasma Mg 2+  This has been observed in this study (see table 2 and Figure 

5) and during increased Mg 2+  uptake following haematopoiesis in other study 

(Vormann and Gunther, 1996). The relatively lower erythrocyte Mg 
2+ in 

haemodialysis is produced by a higher rate of Na -Mg antiport (Vormann and 

Gunther, 1996). Early evidence for net magnesium transport in humans in vitro was 

given by Dunn (1974). He showed that magnesium is lost from cells containing a high 

magnesium concentration (5 - 8.7 mM) when they are incubated in media containing 

zero or 0.8 mM magnesium. Efflux is prevented by raising the external magnesium 

concentration above the total cell magnesium content (Flatman, 1988). 

Feray and Garay (1986) loaded cells with Mg 2+  using parachloromercuribenzene 

sulphonate (PCMBS) whilst, Ludi and Schartzrnann (1987) loaded cells with the 

calcium ionophore A23 187. Magnesium efflux from magnesium-loaded cells are 

subdivided into two components: a sodium independent "leak" flux and a sodium 

dependent flux (Feray and Garay, 1986). Feray and Garay (1986) estimated the leak 

permeability in their work as seven times greater than the ground permeability of red 

cell membranes to sodium or potassium (Flatmann, 1988). This observation suggested 

that this was not simple diffusion through the membrane lipid but by mediated 
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transport perhaps including residual effects of PCMIBS. The same can be said in terms 

of A23 187 residue observed in the work of Ludi and Schatzxnann (1987). Feray and 

Garay (1986) explained their data by assuming that magnesium was binding to a 

single activating transport site. Ludi and Schatzmann (1987), however, suggested that 

at least two magnesium ions must bind to activate transport. Usage of various 

inhibitors showed that transport does does not occur through the sodium pump, 

calcium pump, Na , K , C1 cotransporter, K , Cl - cotransporter or anion exchange 

system (Flatman, 1988; Wisdom es a!, 1996). Human red cells thus appear to have a 

specialised sodium -dependent magnesium transporter which also depends on the 

metabolic integrity of the cell (Flatman, 1988). 

Ludi and Schat.zmann (1987) suggested that sodium -dependent magnesium transport 

was not simple sodium-magnesium antiport where the energy for magnesium 

transport is obtained directly from the sodium gradient. Ludi and Schatzmann (1987) 

proposed the following models to explain transport. Sodium binds to an external site 

on the transport protein causing a conformational change. The sodium site then has 

access to the cytoplasm and sodium ion may be released here. Internal magnesium 

now has access to its binding sites either (model a) directly or (model b) after 

metabolic input of energy. The protein undergoes another conformational change and 

the magnesium sites now gain access to the external medium either (model a) after 

input of metabolic energy or (model b) directly (see Appendix V for diagram). 

Magnesium efflux therefore requires input of metabolic energy. 
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4.3 Platelet az2regatiOfl 

The aim of this experiment was to observe changes to the aggregation of platelets 

between healthy human controls and humans suffering from acute renal failure. A 

series of experiments were performed to obtain a concentration of ADP that gave the 

best percentage of aggregation. Blood from pig was used initially to develop the 

correct protocol for the study. The initial step was to obtain the plasma. After 

centrifligation of the total blood into its components the platelet rich plasma (PRP) 

and platelet poor plasma (PPP), the optimum ADP concentration which gave the 

most aggregation was to be determined. The suggested range of ADP was (10 M - 

10 2  M) (Royal Preston Hospital Haematology Dept.). The next step was to observe 

any differences in the aggregation in ADP concentrations (10 M - 10 M) during 

perturbation of extracellular magnesium. The normal magnesium value of both the pig 

and human plasma was already established in experiments to measure magnesium in 

plasma (tables I and 2, respectively), hence a range of (1 mM - 7 mlvi MgCl2) was 

used. The initial experiment was to simply test a range of ADP concentrations on 

healthy human platelets. The results of this study showed that as the concentration of 

ADP was increased (from i.e. 10 M to tO " M) the % aggregation of platelets 

increased (Figures 10 and 11). It was decided to employ 10 M ADP for the rest of 

the experiments as this concentration gave maximal response. The next series of 

experiments was performed using extracellular MgCl2 at concentration of 7 mM in the 

presence of varying ADP concentrations (10 1  M - 10 M). It was observed that as 

ADP increased in concentration in the presence of 7 mM MgCl2 the platelet 

aggregation was inhibited via a dose dependent manner (Figure 12). The next sets of 

experiments were performed using varying Mg 2+  concentrations (1.9 mM - 7.9 mM). 
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The results showed Mg 2+  can evoke a dose dependent inhibition of platelet 

aggregation during the application of 10 ' M ADP (Figure 13). These findings are in 

agreement with previous studies (Ravn, Kristensen and Husted, 1996). 

ADP concentration was then kept constant at (10 ' M), and the Ca 2+ levels were then 

varied to observe if perturbation of Ca 2+  would affect platelet aggregation. The range 

of Ca 2+  used was (1- 7 mM). The results show that, at normal Ca 2+ concentration in 

healthy human controls the aggregation was around 23 %. As the Ca 2  levels were 

increased from the levels found in the erytluocytes, 1 mM up to 3 mM the aggregation 

was also reduced to 19%, 18% and 14% respectively. At 5 mM Ca 2+  the aggregation 

began to increase slightly to 17% and at 10 mlvi the aggregation was 18%. The results 

have demonstrated that Ca 2+  exhibited a dose dependent inhibition of aggregation up 

to 3 mM concentration, hence, this was the best concentration to obtain inhibition of 

aggregation (Figure 14). Further discussion on this experiment is not possible as no 

literature has been found regarding Ca 2+  on aggregation. 

Lastly, experiments using ADP at (10 M) were performed on human controls and 

both pre- and post-dialysis patients in the presence of varying Mg 2+ concentrations ( 

I mlvi - 7 mM) (Figure 15). The results showed that an elevation in extracellular Mg 

2+  was associated with marked inhibition in platelet aggregation for human controls. 

These results were again consistent with findings from other studies (Ravn, Vissinger, 

Kristensen and Husted, 1996;, Ravn, Vissenger, Kristensen, Wennmalm, Thygensen 

and Husted, 1996). Again the Mg 2+  showed a dose dependent inhibition of human 

platelet aggregation. 

The next stage of the study was to observe differences in aggregation in human 

patients who were diagnosed as renal failure patients. They were treated by 

haemodialysis and their plasma was then experimented on both in the pre and 
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postdialysis states. The ADP concentration was kept constant at (10 M) as this 

concentration elicited maximal aggregation and the Mg 2+ concentrations were varied 

from (I - 7 mM) as in previous experiments. The results showed that in normal (0.05 

mM) Mg 2+  level both pre- and post-dialysis gave the same degree aggregation 

(Figures 16 and 17, respectively). However, in plasma taken from pre-dialysis 

patients, a perturbation of extracellular Mg 2+  elicited a biphasic effect. When Mg 2+  

was increased from 0.91 mM to 1 mM ADP evoked a small degree in platelet 

aggregation (i.e. from 45 % to 37 %). M extracellular Mg 2+ was increased further to 

3 mlvi, ADP induced a small increase in platelet aggregation (i.e. from 37 % to 40 %). 

This result showed that increasing extracellular Mg 2+ concentration did not cause any 

further inhibition of aggregation but instead a slight promotion of aggregation was 

observed. In the doses 3, 5 and 7 mM the % aggregation did not change significantly 

and remained around 38%. However, in the presence of 10 mM Mg 
2+ the % 

aggregation increased to 45%. For the post dialysis patients a similar pattern to those 

seen in predialysis state was observed except an inhibition at 3 mM Mg 2+  was seen 

(Figures 16 and 17, respectively). 
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4.4 NMR EXPERIMENT 

Use of NMR. 

The NMIR experiment was not successfiul after a series of trial runs. The result 

obtained was not as expected (Figure 18). The blood sample was taken as whole 

blood and placed in a NMR tube containing heparin. An internal standard of 

deutriated water (D20) was added so that the magnet had some thing to lock onto. The 

sample was placed in to the magnet which was set up for proton (H ), and the 

parameters set. The samples were shimmed and the data collected. Four clear distinct 

peaks were obtained when human control blood was used, two of the peaks were 

close together and were large in size and were located around 5 ppm, three smaller 

peaks were also seen but these were more widely distributed. 

Calculation of Mg 2+  from the data obtained was performed using the equation below 

(Rude, Stephen and Nadler, 1991; 1992). 

The chemical shift of the a and 13  phosphoryl groups of ATP is dependent of Mg 
2+  A 

comparison of 8 4 for the cell with that of ATP and MgATP allows for calculation 

of theta (Rude ci a!, 1991; 1992): 

9 = (8 p cell -8 p MgATP / 6 ap ATP - 8 ,p MgATP) 

and subsequent calculation of Mg 2+: 

Mg 2 Kd(MU(Ol) 

WithKd mg MP=  3.8 x 10 5  Mat 37°C and pH 7.2. 
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Experiments on human blood cell intracellular free magnesium has been performed 

by Rude el at, 1991; 1992. Their conclusions and findings, using Mg 2+  depleted 

blood in human control and also patients compared to people with diabetes mellitus, 

showed that RBC reflected Mg 2+  depletion as the RBC Mg 2+  was reduced in all 

subjects tested under Mg 2+  deprivation conditions. This was fhrther supported by the 

fact that the mean RBC Mg 2+  concentration was also significantly lower in 

hypomagnesemia patients. 

From the experiments carried out in our laboratories, there was not sufficient 

experimental data to comment on the findings. The problem was to establish a 

reliable and reproducible set of methods to operate and utilise the NMR method. 

Great difficulty was experienced in achieving this one result which was not repeatable 

due to time constraints. 

4.5 Conclusions 

In conclusion, magnesium transport occurs by a number of different mechanisms, 

either via the Na + independent pump, or via the Na + dependent pump. Magnesium 

levels both extra and intracellularly affect the aggregation process, an increase of 

magnesium up to a certain level seems to inhibit aggregation in the presence of ADP 

in human controls, but in the presence of human blood from acute renal disorders this 

process is affected. These findings can be attributed to the lower levels of intracellular 

magnesium found in this type of blood. The NIvIIR method is a great non-invasive tool 

for measuring Mg 2+  and gives an accurate account of Mg 2+  levels. More work on this 

experimental protocol is required to fully discuss the findings. The results of this 

study have provided a wide insight into the role and mechanism of magnesium 

transport in pig and human erythrocytes in normal and diseased states. 
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4.6 Scope for further studies. 

1). Repeat experiments and account for the Na + and K + levels in both normal and 

diseased states of human blood. 

2). For magnesium efflux experiments use channel blockers and inhibitors such as 

verapamil and ouabain. Also use PCMBS to gain knowledge of energy changes 

during efflux to establish mode of transport. 

3). Use aspirin in aggregation experiments to see how this affects aggregation as it is 

not recommended for use whilst testing. It is also necessary to use thrombin and 

collagen to provide a clearer picture of the differences magnesium causes on rate of 

aggregation. This may help in the treatment and give clues to benefits of Mg 
2+  

supplements. 

4). Complete NMIR experiments to provide an idea of how magnesium is transported. 

5). Measure Mg 2+  in erythrocytes using the fluorescent bioprobe Magfiira 2. 

6). Measure Mg 2+  efflux using the tetra potassium salt of Magfiira 2 employing a 

fluorimetric method. 

7). Investigate the effect of different transport inhibitors on Mg 2+ transport. 
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Appendix I 

Reagent preparation. 

The standard PAR/pak®  was not used. As a replacement ADP was prepared by 

appropriate dilutions to the stock. Thrombin was purchased from Sigma and an 

appropriate dilution series was performed. Another change to the protocol was to use 

varying concentrations of magnesium and calcium. Both the ADP and Thrombin 

solutions were kept in the freezer. 

Equipment Operation. 

I. When the PAP-3 reaches proper operating temperature (3 7 °C), the first 

programmed instruction will come on. This instruction states "INSERT PPP" and 

"INSERT PRP WITH STIR BAR." Place 0.45 ml of PRP and 0.5 ml of PPP into two 

different flat bottomed test tubes (RIO data vials 8.75 x 50mm siliconised, Alpha lab. 

catalog No: 100336). 

2. Incubate the PRP and PPP samples in the incubation block for approximately 3 

minutes in order to bring them to 37 °C. 

3. Following the programmed instructions, insert the PPP sample completely into the 

test well labelled PPP. Place a stir bar (Alpha Lab. catalog No: 100337) into the PRP 

tube and insert the tube completely into the well marked PRI'. This will deactivate the 

red flashing message "ADD STIR BAR TO PRP". The next steps in the procedure 
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will appear "PLATELET COUNT NORMAL - PUSH START BU1TON. Pushing 

the start button will automatically calibrate and standardise the PAP-3. 

However, if the PRP sample in the well has not been prepared correctly resulting in 

either a low or high platelet count corresponding warning indicators illuminate. The 

PAP-3 allows the platelet count in the range 50,000-75,000 per mm 3  to be measured. 

The optimum range for measurement is between 200,000-400,000 per mm 3 . A high 

platelet count is one, which exceeds this domain; hence it is necessary to dilute the 

PRP sample with the corresponding PPP until the required range is achieved. This is 

usually obtained by performing a simple 1:1 or 1:2 NiP: PPP dilution. Verification of 

the correct dilution is attained when the PRY is reinserted into the well and the 

message " PLATELET COUNT NORMAL" appears. 

The experiment proceeds until either it automatically stops this can be from 1-9 

minutes, or it can be stopped manually at any time during the test. For this study the 

time varied from 2-3 minutes up to 5 minutes. Pressing the "STOP TEST BUTTON" 

stops the experiment. The aggregation on the display remains fixed at the final % until 

another test is started. The experiment was modified fUrther by the addition of a third 

variable (varying concentrations of magnesium) in the presence of ADP and 

Thrombin. The Mg 2+  levels varied from 1-10 mlvi. 

Erroneous results at this stage may occur if the following conditions exist: 

1. Light shields were left open during the test. 

2. Test tubes were not completely seated in the test wells. 

3. Incorrect volumes of plasma and reagents were used. 
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Compounds which may affect platelet azliregation reactions. 

A wide range of chemical compounds including many commonly ingested drugs can 

inhibit platelet aggregation. Plasma samples taken from people who have ingested any 

of the following compounds may exhibit abnormal aggregation patterns. 

Aggregation inhibitors include: - 

Cocaine, Aspirin (acetylsalicylic acid), Dipyridamole, Non-steroidal Anti-

inflammatory agents, Tricyclic antidepressants, Antihistamines and alcohol. 

Many common patent and over the counter drugs contain aspirin and thus should be 

avoided. These include Alka-Seltzer, Bromo-Seltzer, cough medicines and a variety 

of cold remedies. See attached appendix if for a more detailed list. 

Caution notes - Test Procedure. 

Erroneous test results can occur if any of the following conditions exist either 

singularly or in a combination: 

I. Blood is drawn in a glass syringe. 

2. Blood specimens are improperly centrifuged resulting in packing or damage to the 

platelets. 

3. Platelet-rich specimens are refrigerated or frozen. 

4. Platelet-rich specimens have not been at room temperature for at least 60 minutes 

before testing. 

5. Platelet-rich specimens have not been capped while standing to prevent changes in 

pH due to CO2 loss. 

6. Outdated reagents are used for testing. 
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7. Incorrectly formulated reagents are used for testing. 

8. Platelet-rich specimens are tested which have been at room temperature for more 

than two hours. 

9. Platelet-rich specimens containing less than 50,000-75,000 per mm platelets are 

used for testing. 

10. The plasmas used were not adequately incubated for at least 2-3 minutes at 37 °C 

before testing. 

11. The plasmas used were incubated at 37 °C for longer than 8-10 minutes before 

testing. 
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Appendix LI 

Buff -a-Camp 

Buftadyne 

Buffadyne 25 

Bufferin 

Bufferin arthritis strength 

Buff inol 

Manufacturer 

Scrip 

Philips Roxane 

Philips Roxane 

Philips Roxane 

Upjohn 

Noyes 
Noyes 

Noyes 

Mites 

Elder 

Elder 

Ulmer 

Lemmon 

Elder 

Lilly 

Whitehall 

Massengill 

Massengilt 

Buffington 

Massengill 

N Amer Pharm 

Spencer-Mead 

Various manu- 

facturers 

Various manu- 

facturers 

Winthrop 

Sutlilt & Case 

Gold Leaf 

Gold Leaf 

Xttriurn 

Lilly 

Lilly 

Li I lv 

Jenkins 

Schlicksup 
Schi icksup 

Ulmer 

8urroughs 

Wel Icom e 

Rorer 

Rarer 

N Amer Pharrn 

Pharmaco 

Central 

Central 

Cole 

Cowley 

Lannett 

Jenkins 

Stanlabs 

Various manu- 

Product 

Aspirin aluminum 

Aspirin childrens 

Aspirin compound 

E Dove(s oowder 

Aspirin-Pb tab 

Aspi rin-secobarbi tal 

Supprettes 

No. 1 & 2 & 3 & 4 

Aspirin Supprettes 

Azpirjen Jr Tabs 

Aspiracalt 

Aspir-phen 

Aspodyne 

Aspodyne E codeine 
Axotal 

B 

Babylove 

Ban-O-Pain 

Bayer 

Sayer thildrens 

Bayer timed-release 

Brogesic 

Bufabar 

Buff-A 

Buffacetin 

C 

Calunin 

Ca in a In lay 

Ca p r a n 

Causslin - 

Cephalgesic 

Cheracol caps 

Cirin 

Clistanal - 

Cadasa tab' 

Codempiral No. 2 & 3 

odessal No. 1 & 2' 

Co Id a t e 

Cotrex 

Colrex compound 

Manufacturer Product Manufactu 

Abbott Cope Glenbraak 

Abbott Coralsone rno{Jiiied Zemmer 

Cordex Uolonn 

Fellows Cardex Forte UDlohn 

American Drug Cordex buUerd Upjohn 

Cordex forte buffered - Uojohn 

Coricidin Schering 

Webster Caricidin "0" Scherung 

Webster Coricidin Demulets Schering 

Jenkins Coricidin Medilets Schering 

McNeil Co-ryd Daniels 

Spencer-Mead Counter-Piin Sgti i bb 

& Robinson Covangesic i',lallinckrc 

Blue Line 

Blue Line D 

Warren-Teed Darvon E ASA Lilly 

Darvon-N E AS 	- Lilly 

Darvon comnoijuid 

Amer Pharm 32 & 65 Lilly 

Daniels Darva-Tran Lilly 

Glenbrook Dasikon Beecharn- 

Glenbrook Massengi 

Glenbrook Dasin caps Beecham- 

Brothers ?ilassenqi 

Philips Raxane Dasin-CS Beecham- 

Mayrand Massengi 

Kay & Dasin 	strenqth - Beecham- 

Bowman Massengi 

Mayrand Decagesic Merck. Sh 

Lemman & Dohm 

Lemmon Delenar Schering 

Bristol-Myers Derfon Cole 

Bristol-Myers Derfule Cole 

Otis Clapp Dolcin -  Dolcin 

Dolene comooul"l I5 Lederle 

Dolor Geriatric 

Pharm 
Dorsey 

Dorsey Doloral' 'Noily 

Bryant- Dorodol Durst 

Vitarine Drinace( Philips Ro 

Amfre-Grant Dristan Tab Whitehall 

Smith. Miller Drocogesic No. 3 Century L 

& Patch Duopac' Soencer-M 

Upjohn Ouradyne Durst 

Zernmer Duragesic Meyer 

McNeil 

Stayner E 
Burroughs Ecotrin Smith. Kli 

& Frenc 
Wellcome 

ErnpiraV Burrough! 
Durst 

Elder 
WelIcort 

Rowell Empirin Burrough 

Rowell 
WelIcorT 

:aps & No. 2 

bar 

sem 

nyl 

t € Dovers powder •  

€ gelsemium 

eltzer 

sIc 

sic E ergotamifle 

dyne - 

atE ASA 

n 

ia E codeine 

ia-D 

vnos 
nco No. I & 2 

ead 

codeine 

Demerol 

gelsemium - 

dyne 

'phen 

a-Zene caps 

compound 

comoound 

Ddeine - 

:o No. 1 & 2 

onen 

phen compound 

,-phen 

deen-30 

iptin 

iptin E codeine 

dine Eab 

rgum 

iac-G 

uac-G E codeine 

iencal 

rite 

rhar 

r-C 

rue 

nfl tUSP) 
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Jc 

prazil-C 

Bgefl 
agesic' 
edrin 
edrin PM 

rinal' 
rinal c codeine 
o- I & 2& 3 •  
nfl 
masal caps & tabs 
ay cold tabs 

iso dyne 

;llodyne 

samal CV 
nasphen 
itadyl & ASA 

trnpound 
pan 

AC' 

ryl' 

imasprin e 
flyassyamus' 

ama1 tab & cap 
leasurin 

ledadent 
ledaprin 
lidol 
lultihist & ARC caps' 

lembudeine 
lembu-Gesic' 
lipirin' 

4o,gesic '  
lovahistine e ARC 

loyrad E ASA' 

)pacedrin 
)pasal 

Manufacturer 

Burroughs 
Wellcome 

Burroughs 
Wellcome 

Lilly 

Wyeth 
Bristol-Myers 
Bristol-Myers 

Sandoz 

Sandoz 
Glenbrook 
First Texas 

Bristol-Myers 

Blue Line 
Fellows Med 

Asrar-Stone 
Drug Products 

Lilly 
Lemmon 

Spencer-Mead 

Ayers 

Borer 

N Amer Pharm 
B reon 
Upjohn 
Upjohn 
Glen brook 
Dorsey 

Abbott 

Abbott 
Eber 
Riker 
Dow Chemical 
Lilly 

Elder 

Elder 

Manufacturer 

Rorer 
Dorsey 
Upjohn 

Upjohn 
Upjohn 
Pan Amer 
Caribe 

Chemical 
Lemmon 
Kremers-Urban 

Beech am- 
Massenqill 

Endo 
Endo 
Endo 
Endo 
Fisons 
Cole 
Robins 

Robins 
Elder 
Elder 

Wyeth 
Blue Line 
First Texas 
Dow Chemical 

Fellows- 
Testagar 

Amar-Stone 
Fellows- 

Testagar 
Mallard 
Stuart 
Philips Roxane 
Daniels 
Upjohn 
Upjohn 

Lemmon 
Robins 
Robins 
Daniels 

Fellows- 
Testagar 

Kenton 
Jenkins 
Kenyon 
Saron 
Kay 

Table Rock 
Beecham-

Massengill 

Product 
	

Manutact! 

Sigmagen' 
	

Schering 
Sine-Off 
	

Menley & 
James 

Spirin Suffered 
	

Schlicksu 
Stan bat k 
	

Stanback 

Stero-Darvon € ASA 
	

Lilly 
St. Joseph 
	

Plough 
St. Joseph for Children 

	
Plough 

Supac 
	

Mission 
Super-Anahist 
	

Warner- 

Lambe' 
SynalgoC 
	

I yes 

Synalgos-DC' 
	

Ins 

Synirin' 
	

Poythres5 

T 
Tetrex-APC € Bristamin Bristol 

Theophorin-ACt 
	

Roche 

Toloxidyne 
	

Durst 
Trancogesic 
	

Winthrop 

Trancoprin - 
	

Winthrop 

Triaminicin 
	

Dorsey 

Trigesic 
	

Squibb 
Triocin 
	

Cornmerc 

V 
Vanquish 
	

Glenbroc 

z 
Zactirin' 
	

Wyeth 

Zactirin compound 
	

Wyeth 

Unlisted products identified in 5 
community Dharmacies: 

Bi-Act cold tabs Sauter Li 

Defencin Grove U 

Haysma Haysma' 

Monacet Rexall 

Quiet World Whitehal 

Saleto Mallard I 

Sine-Aid Johnson 
Joflnsc 

Soltice cold tabs Ciattem 

& Chef 

Co- 

'On prescription only. 

toiscontinued 

Product 

P 
Paadon' 
Pabirin 
PAC compound tab' 

PAC compound ë 
codeine' 

PAC E Cyclopal 
Palgesic' 
PC.65' 

Pedidyne 
Pentaqesic 
Pentagil I 

Percobarb' 
Percobarb-Demi' 
Percodan 
Percodan-Denii 

Pe vs 1st in 
Paactab' 
Phenapflen' 
jhenaphen E codeine 
Prepcasal 
Prencaset improved 
Phenergan 

compound tabs' 
Phenodyne 
Pheno-Formasal' 

Phensal 
Pirseal 

Polygesic CT' 
Ponodyne 

Predsal' 
Pronalre-B' 
Pyrasal 
Pyrnst 
Pyrroxane 
Pyrroxane E codeine' 

R 
Rhinex 

Robaxisal' 
Robaxisal-PH' 
Ryd 

S 
Sal- Acorn 

Sal-Fayne 
Salibar Jr' 
Sal ipral' 

Sarogesic 
Sedagesic' 
Sedalgesic' 
Semaldyne' 
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Appendix m 

Recipes for solutions. 

2 Mg +  -Loading solution. 

140 mM KCI. 

50 mM sucrose. 

5 mM glucose. 

30 mM Hepes / Iris PH 7.4. 

12 mM MgCI3. 

6 tLM A23 187 (ionophore). 

Mg2 ' -free solution (for efflux). 

140 mM NaCl. 

50 mM sucrose. 

5 mM glucose. 

30 mm Hepes / Tris pH 7.4. 

Washing solution. 

1% BSA (seals holes) in loading media. 
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2+ Assay Mg  

100 tl supernatant diluted with 1 ml 10% TCA / 0.175% LaCI3. Measured by Atomic 

absorbance spectrophotometry. 

Protein assay. - Bio rad protein assay 

(Standard assay protocol). 

1). Preparation of working reagent. 

Add 20 .xl of reagent S to each ml of reagent A that will be needed for the run. (this 

working A' is stable for one week even though a precipitate will form after one day). 

If a precipitate forms, warm the solution and vortex. If the samples do not contain 

detergent, you may omit step 1) and simply use reagent as supplied. 

2). Prepare 3-5 dilutions of each protein standard containing from 0.2 mg / ml to about 

1.5 mg / ml protein. A standard curve should be prepared each time the assay is 

performed. For the best results always prepare standards in the same buffer as the 

sample. 

3). Pipette 100 R1  of standards and samples into clean dry test tubes 

4). Add 500 p1 of reagent A' or A into each test tube. 

Vortex. 

5). Add 4.0 ml reagent B into each test tube and vortex immediately. 

6). After 15 minutes, the absorbance can be read at 750 nm. the absorbance will 

remain stable for at least 1 hour. 
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Method. 

Control :- (repeat 5 times for statistical analysis). 

I). Centriftige I ml blood sample (not Mg 2+  loaded). 

2). Supernatant -* Assay Mg 2+ 

3). Sediment -+ haemolyse cells in 750 R'  H20. 

Centrifuge + assay supernatant for Mg 2+  (i.e. Mg 2+  released from cells). 

Protein assay also (to express per cell protein). 

Experiment. 

Centrifuge blood at 1000g for 10 minutes -, remove plasma + buffy coat. 

1). Incubate 101/o cell suspension in Mg 2+  loading solution for 30 minutes at 37 °C. 

(30-50 R1  in total) shaking water bath. 

2). Wash 34 times (i.e. centrifuge, decant etc), to remove A23 187 -* sample to check 

for [Mg 21  loaded i.e. haemolyse cell + protein assay. 

3). Suspend cells in 50 ml of Mg 2+  free solution. 

4). Time course -> take 5 x I ml sample at 5, 10, 20, 30, 40, 50 minutes. 

5). Centrifuge each sample at 10,000g for 1 minute. 

Supernatant -* Mg 2+  assay. 

Sediment -> protein assay. 

6). At 50 minutes also assay cells for Mg 2+  i.e. haemolysis -* supernatant. 

Mg 2+  contents to determine Mg 2+  still remains in red blood cells. 

4 
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A23187: 10 3 M of stock. 

0.1 ml madeup to I nA= 10M. 

0.1 mlmadeupto 10ml = 10 5 M. 

0.1 mlmadeupto 100ml10M. 

SOp.xlmadeuptosoml= 10M. 

30 .il  made up to 30 m1 = 10 M. 

iso .xl made up to 30 ml = 6 x 10 M = 6 i.LM. 

Atomic absorbance spectrometry. 

M902 standards 0.01 mm -->0.00625 mm. (10 mM 1: 10 3 times). 

10mM stock. 

0.1 ml made up to 100 ml (99.9 ml dist H20). + 0.01 mM. 

Dilute 1/2 and 1/2 dist. 1120. = 0.0025 mM. 

0.00125 mm. 

0.000625 mm. 

5 standards entered in tiM. 

0.625 (first). 

1.25 

2.5 

5 

10 	(last). 

Need 10% TCA / 0.175% LaCl 3 (mw 371.4) in each sample. 

i.e. I sample: 10 TCA I LaCI 3. 
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Mg 2+ loading solutions. 

For 500 R1  solutions 

70 mmoles KCI (mw 74.56) = 5.2 192g. 

25 mmoles sucrose = 8.5575g. 

2.5 mmoles glucose = 0.4504g. 

15 mmoles Hepes = 3.5745g. 

(KOH). 

MgCl 2 :- make up I Msolution (mw203.3). 

i.e. 203.3g in litre = I M or 20.33g in 100 ml. 

I mI(0.1 M)in 100 ml H20 = 1 mM. 

or 12 ml in 100 ml 1-120 = 12 mM. 

In 500 need 12 x 5 = 60 ml. 

i.e. 60 ml MgCl2 solution (0.1 M) in 500 ml total solution. 

gassed for 15 minutes (95% 02, 5% CO2). 

Add KOH until pH 7.4. 

Mg 2+ fne solution. 

For 500 ml solution. 

70 mmoles NaCl (mw 58.44) + 4.0908g, 

25 mmoles sucrose = 8.5575g. 

2.5 mmoles glucose = 0.45504g. 

15 mmoles Hepes (mw 238.3) = 3.5745g. 

Gas for 15 minutes (95% 02, 5% CO2). 

KOH for pH 7.4. 

**s**s DO NOT ADD IONOPHORE A 23187 IJNTILREQUIRED "' 

CAN STORE BOTH Mg 2+  LOAD. SOL. & Mg 2+  FREE SOL. IN 

FRIDGE. 
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Mz z  assay 

Mg 2+  efflux was determined by diluting the supernatant 1: 1000 with TCA / LaCl3 

and Mg 2+  measured by AAS. 

The Mg 2+  content for the unloaded cells, loaded cells following 50 minutes efflux. 

was determined by haemolysing the cells in a 1: 100 dilution with Triton X 100 

overnight. The solution was then diluted with 1: 10 with 10% TCA / 0.175% LaCL 3  

to give a final dilution of 	1000. 

Mg 2+  was measured with AAS. 

Protein assa 

Cells haemolysed by I: 100 dilution with 10% TCA / 0.175% Lad 3 . The protein 

content of each sample was measured using the Bio-rad detergent -compatible protein 

assay kit. 

1). 250 p1 of reagent A was added to 50 1.il of each sample and vortexed for 5 seconds. 

2). 2 ml of reagent B was added and each sample vortexed for a further 5 seconds. 

3). Following incubation at 37°C in a shaking water bath for a minimum of 15 

seconds, the absorption of each sample was measured at 750 nM. 

4). Using BSA standards a calibration curve was then used to convert the absorbance 

readings to protein concentration. 
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Protein assay BSA standards. 

(0.050g) 50 mg BSA made up to 5 ml volume with 1% Triton X-I00. = 10 mg/mI 

(0.045g) 45 mg BSA made up to 5 ml volume with 1% Triton X-100. = 9 mg/mI 

(0.040g) 40mg BSA made up to S ml volume with 1% Triton X-100. = 8 mg/mr 1  

(0.035g) 35 mg BSA made up to 5 ml volume with 1% Triton X-100. = 7 mg/mr' 

(0.030g) 30 mg BSA made up to 5 ml volume with 1% Triton X-100. = 6 mg/mr' 

(0.025g) 25 mg BSA made up to 5 ml volume with 1% Triton X-100. = 5mg/mi 1  

(0.024g) 24mg liSA made up to 6 ml volume with 1% Triton X-100. = 4 mg/mI -1  

(0.021g) 21 mg BSA made up to 7 ml volume with 1% Triton X-l00. = 3 mg/mI 

(0.016g) 16mg BSA made up to 8 ml volume with 1% Triton X-100. = 2mg/mI 1  

(0.009g) 	9mg liSA made up to 9 ml volume with 1% Triton X-100. = I mg/mI -1 

(0.00675g) 6.75 mg BSA made -* 9m1 volume with 1% Triton X-100. = 750 .tg/mF' 

(0.0045g) 4.5 mg BSA made —*9 ml volume with 1% Triton X-100. = 500 sg/mr' 

(0.00225g) 2.25 mg BSA made -* 9 ml volume with 1% Triton X-100. = 250 .tg/mr' 

For the blank use 1% Triton X-100 in 10 ml volume = 0 mg/mI -1  

For standard assay 

13 x 100 mmtesttubes. 

Reservoir for working reagent (size is dependant on amount of reagent that will be 

prepared). 

Pipettes accurately delivering 100 j.xl, 500 R1,  and 4.0 ml. 

Graduated cylinders or pipettes for reagent preparation. 

Spectrophotometer set to 750 nm. 

vortex mixer. 

Plastic or glass cuvettes with 1 cm path length matched to the laboratory 

spectrophotometer. 

Test tube rack to hold 13 x 100mm test tubes. 
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Atomic Absorption Spectrometer (A.A.S). 

I. Switch on the compressor, the A.A.S., the Ibme cabinet. 

2. Switch on the A.A.S. 

3. Clean the burner - take the cover off the front, unplug the burner. Clean with 

green mesh, run a piece of card through the aperture. Replace the burner. 

4. Press the home key on the board to access main menu. 

5. Enter system set-up. 

6. Press next for next page. 

7. MODE- flame absorption. LAMP 4 for Ca I Mg. 

Take off the covers for the lamps, and manually rotate lamps round to required 

lamp. Once lamp is on (press on button on programme), leave for fifteen minutes 

to warm up. 

8. FLAME SET UP (usually already set up on air / acetylene). Turn on gas cylinder 

at pressure .7 BAR (10 Ib). Ignite flame. The flame should be a blue colour. 

9. Press next until the standards page is seen. Enter the standards. 

10. Analyse. Wait until "ASPIRATE BLANK AND PRESS RUN" appears on screen. 

Run all standards beginning with the most dilute. 

11. Run all samples. 

12. On completion of analysis press STOP. 

13. Clean nebuliser with deionised water. 

14. Press off button to extinguish flame. Turn off the acetylene cylinder. Press off 

button to release any acetylene left in the pipe. 

15. Press "home" key on the consul and the lamp set up page. Switch off the lamp. 
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16. Switch off the A.A.S., frame cupboard and compressor at the plugs. 
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OPERATING THE CHLORIDE TITRATOR 

Add lSrnl acid buffer & 10 drops gelatin to pot & stir. 

2. Add 20p1 lOOmmolIl Cl - then press cond. for 2 sec. 

3. Display should increase then stop at above 100. 

4. Repeat 2. Display should stop at - 100. 

5. Titrator is now calibrated in units of rnmol/1 [Cl -]. 

6. Add 20p.l of sample, press titrate for 2 sec. 

7. Display should zero, then increase to give [sample]. 
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OPERATING THE FLAME PHOTOMETER 

1. Turn on natural gas supply at main stop-cock and on the bench. 

2. Switch "Power on", if "fiwne on "  LED does not illuminate switch 
off for 2 sec and repeat. 

3. Select correct filter using lever. 

4. Place tube in d.H10 for 15 min then adjust "blank" till display 
reads 0.00 

5. Aspirate top standard, wait 20sec then adjust reading using 
"coarse" & 'fine" 

6. Aspirate d.H 20 for 20 sec, adjust to 0.00 using "blank" then 
remove tube. 

7. Repeat 5. & 6. until readings stabilise then the aspirate remaining 
standards to produce a standard curve. Aspirate samples. 
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Appendix IV. 

NMR Protocol. C 

ING sA:pLES ON THE Y.YIN-YRl HSVSTE:: 	VT YORK 
	

Vita Led - 	cc 	JE 

a insert your sampte as : ' ormai. 
Starr the sample spinnin. Lt should spin a: O Hz. 
use the spin incas button to check. 

cl Once ok turn off the display 

Type 
edccrtn> 
Enter your sample details 
File - 
i.e. jb02h34 
Experiment number- 10 

Type 	 - 
rpar E&QjQN all <rtn> 	-. 
(NB Unix is case sensitive so this must be typed exactly!) 
Type 
eda 
In the pink parameter box at the bottom of the eda box type 
prosol 
Click the button next to Prosol it should then read TRUE 
Click on save 

ai In the XWIN-NMR window TYPE:-
lock CD'Ci-3 	c: 
Wait until finished. 

a) Type:- 
edte 
A new box will appear. 

b) Click on the load parameters box and select the appropriate 
paramters. Usually 	qnp.norm 	should be selected. 
N.B. Make sure that there is gas flowing through 
the probe (Should be éJ 1/hr), the probe glassware may be 
damaged if this is not 5-L4_L,__ _c3c e$- 

C) Quit the display, the error message is bug! 

a) 	Type:- 
te (Desired temperature) 
N.B. specify the temperature to .2K i.e. te 303.21 = 30oC 

te 303.0 = 290C 
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N.B. CDCI3 floiis at 330.2K 
DO NOT EXCEED THIS TEMPERATURE 

N Type:- 
teset 	(This transfers the temperature defined by 'te' to the 

heater system 
c) Type:- 

temon 	(temperature monitor) 
d) 	Type:- 

xau heater_on 

a) Once the desired temperature is reached type:- 
tune manual_shim 	 -. .• 	- 	 -'-•-.. 	1; 	 - 

Wait until finished. 
bi 	Type:- 

xaua 	(This will automatically acquire the data 

c) Type:- 
xaup 	(This will automatically process the data) 

(a) If another temperature is required 
Type: - 
edc 

Increase the experiment number by 1 	i.e. I: 
	 VT 

(b) Type:-
rpar P-RO-T&N all  

(C) go back to step 6 and repeat sequence. 

WHEN FINISHED 
(a) 	Type:- 

xmac hnoff 
b) 	Type:- 

te 293.2 
teset 

c) Wait until the temperature has dropped below 30oC / 303.2K 
.d) Insert standard sample. 
e) Make sure that spinning is off. 
f) Type:- 

bye 
wait until xmac finished is displayed at bottom of screen. 

f) Select File in the xwin-nmr window and exit. 
If all samples have been run ignore the messages and click 
ok 

g) From Toolchest 
click Desktop 
click Logout.. 
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Appendix V 

(model a) 

	

V 	Na protein 	
M 

j~4bind ing site  

1± 

V 

	

4, 	
Mg 

2+ binding site 

Cell membrane 

Cytoplasm 

(model b) 

Na + protein 	2+j 

fly/1lbinding site 

• d ____ 
4 

Mg 2+ binding site 

Cell membrane 

Cytoplasm 

Proposed schematic models of Mg 2+ transport in red blood cells (Ludi and 

Schatzmann, 1987) (a / b) Na binds to sodium binding site on the cell membrane. It 

causes a conformational change in the protein which allows sodium to enter into the 

cytoplasm. The presence of Na allows the internal Mg 2+  to gain access to its binding 

site. Mg  21  which is bound to the binding site is then transported out of the cell by 

either a passive process (Model a) or an active process (model b) in the presence of 

ATP. 
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