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Comparing the Online Learning Capabilities of Gaussian ARTMAP and Fuzzy ARTMAP

for Building Energy Management Systems

Maizura Mokhtara, Joe Howea

aSchool of Computing, Engineering and Physical Sciences, University of Central Lancashire,

Preston, PR1 2HE, UK (email: {MMokhtar, JMHowe}@uclan.ac.uk)

Abstract

Recently, there has been a growing interest in the application of Fuzzy ARTMAP for use in building energy management systems

or EMS. However, a number of papers have indicated that there are important weaknesses to the Fuzzy ARTMAP approach, such

as sensitivity to noisy data and category proliferation. Gaussian ARTMAP was developed to help overcome these weaknesses,

raising the question of whether Gaussian ARTMAP could be a more effective approach for building energy management systems?

This paper aims to answer this question. In particular, our results show that Gaussian ARTMAP not only has the capability to

address the weaknesses of Fuzzy ARTMAP but, by doing this, provides better and more efficient EMS controls with online learning

capabilities.

Keywords: Artificial Neural Network, Adaptive Resonance Theory, ARTMAP, Gaussian Distribution, Gaussian Classifier.

1. Introduction

Fuzzy Predictive Adaptive Resonance Theory (ART), bet-

ter known as Fuzzy ARTMAP, was developed by Carpenter

et. al., 1992 [1] to provide, in response to input patterns: fast

and stable online recognition learning through the process of

incremental supervised learning of recognition categories and

multi-dimensional mapping, and hypothesis testing and adap-

tive naming. Fuzzy ARTMAP, a kind of artificial neural net-

work (ANN), often outperforms other types of feedforward

ANN [1]–[4]. This is because traditional feedforward ANNs,

such as the multi-layer perceptron neural network, incorporate

learning schemes that are slow learning models and are learned

on the average order of the occurrences of its inputs [1]. An

example of this is the back error propagation. Such learning

mechanisms can also cause the ANN to degrade easily when

they are exposed to new information. For example, in the con-

text of building energy management systems or EMS, how the

dynamic changes in the outdoor temperature can affect the out-

put of the EMS-based ANN.

Fuzzy ARTMAP incrementally clusters multi-dimensional

input vectors into stable categories. This incremental learning

process prevents the previously learned maps to be significantly

affected when exposed to new information. This has led to the

growing interest in the application of Fuzzy ARTMAP for use

in energy applications.

Examples of the application of Fuzzy ARTMAP for use in

energy applications include:

1. Fault detection and identification: whereby the authors

of [5] describe the use of Fuzzy ARTMAP for fault di-

agnostics of complex multi circuit transmission systems

under various system and fault conditions. Authors of

[6] describes the employment of the Fuzzy ARTMAP pat-

tern recognition technique to recognise the frequency re-

sponses of the winding admittance of high voltage trans-

formers under varying conditions of winding insulation,

and to also learn to establish the correlations between the

nature and physical location of occurrence of an internal

insulation fault in a transformer winding and its associated

frequency response. Authors of [7] present the application

of Fuzzy ART-ARTMAP to analyse the transient stability

analysis of electric energy systems. Fuzzy ART-ARTMAP

is a type of ANN that consists of the Fuzzy ARTMAP with

an additional Fuzzy ART module (Section 2.1). Lastly,

the authors of [8] describe the use of Fuzzy ARTMAP as

part of a decision making tool that performs automatic de-

tection and classification of voltage disturbances that can

affect power quality of the energy distribution system.

2. Forecasting and prediction: Authors of [9] describe the

use of Fuzzy ART-ARTMAP for electric load forecast-

ing. Authors of [10] present the capabilities of Fuzzy

ARTMAP to perform hourly day-type outputs prediction,

based on which, generation can be forecasted. Authors

of [11] indicates how Fuzzy ARTMAP can be applied to

predict short wind speed, that can increase the effective-

ness of wind power integration to the existing grid. Fuzzy

ARTMAP is also shown capable of predicting the outlet

temperature of the absorption system that utilises a set

of solar collectors that satisfies the thermal necessities of

the vapour generator, with good efficiency. This is as de-

scribed in [12].

3. Building energy control: we have presented the results of

applying the Fuzzy ARTMAP that can perform thermal

comfort management and energy source control for a uni-

versity building [13]. Fuzzy ARTMAP is shown to out
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perform the existing building management system.

Other applications include: medical applications [14]–[15],

data classification [3]–[4], [16]–[17] and financial prediction

[18].

There are, however, weaknesses to the Fuzzy ARTMAP.

These were first identified by Williamson, 1996 [2]. The two

main weaknesses are: (i) its sensitivity to noisy data, and (ii)

inefficient fuzzy category generation. These weaknesses may

affect the accuracy of the Fuzzy ARTMAP when it is in use. For

EMS applications, this may reduce the EMS accuracy due to

“noise” produced by dynamic weather conditions. Williamson,

1996 [2] has developed the Gaussian ARTMAP to help address

these weaknesses.

This paper analyses the properties of Gaussian ARTMAP and

Fuzzy ARTMAP, and investigates which of the two is better

suited for use in a building energy management system with

online learning capabilities. The paper is organised as follows:

Section 2 provides a brief introduction to the Fuzzy ARTMAP.

Section 3 details its weaknesses. Section 4 summarises the

Gaussian ARTMAP, reiterating its development from the Fuzzy

ARTMAP. Section 5 describes the example building energy

management system used to conduct the comparative analysis,

and how online learning is performed. Section 6 presents re-

sults and analysis. Section 7 concludes the paper.

2. Fuzzy ARTMAP

Fuzzy ARTMAP creates a map of the correlated pairs {a, b},
where a is a set of inputs and b is either:

1. the predictive consequences of the inputs, or

2. the category definition of the presented inputs for a classi-

fication problem.

Fuzzy ARTMAP provides fast learning capabilities by con-

jointly maximising generalisation and minimising predictive er-

ror, in real time, in response to an arbitrary ordering of its input

patterns, using only local information. Fuzzy ARTMAP con-

sists of two Fuzzy Adaptive Resonance Theory (Fuzzy ART)

modules: Fuzzy ARTa and Fuzzy ARTb, which receive the in-

puts a and b respectively. The two Fuzzy ARTs are connected

by an inter-ART module, which also resembles a Fuzzy ART.

Further information on Fuzzy ART and inter-ART are provided

in Sections 2.1 and 2.2 respectively.

2.1. Fuzzy ART

A Fuzzy ART consists of an attentional subsystem (Section

2.1.1) and an orienting subsystem (Section 2.1.2).

2.1.1. Attentional subsystem

In the attentional subsystem, a vigilance parameter ρ cali-

brates the minimum confidence that a Fuzzy ART must have

for the chosen recognition category to be activated by the in-

puts. This is instead of searching for another category activation

through a process of hypothesis testing. The recognition cate-

gory is provided by the orienting subsystem (Section 2.1.2). A

cycle of hypothesis testing is triggered if the degree of match is

less than ρ. This is called a match function. The degree of match

provides a measure of predictive confidence that indicates if the

chosen recognition category represents a, or the novelty of a

with respect to the hypothesis b is symbolically represented by

its recognition category [1].

Hypothesis testing terminates in a sustained state of reso-

nance that persists as long as the input remains approximately

constant. The resonance generates a focus of attention at the

attentional subsystem that selects the bundle of critical features

common to inputs a or I = (I1, ..., IM). M is the number of in-

puts. The resonating categories produced are ( j1, ..., jN). N is

the number of categories.

Each category node j is associated with an adaptive weight

vector w = (wj1 , ...,wjM
). The adaptive weights create the long

term memory or LTM traces for the Fuzzy ARTMAP. Each

LTM trace wji is monotone non-increasing through time (1) and

converges to a limit.

w
(new)

j
= β(I ∧ w

(old)

j
) + (1 − β)w(old)

j
(1)

β is the learning rate parameter β ∈ [0, 1] and a∧ b = min(a, b).

Monotone non-increasing is achieved through a step called

complement coding. Complement coding incorporates the on-

cell of the input a and its off-cell ac = 1 − a. Complement

coding normalises the inputs while preserving the amplitudes

of its features. Without complement coding, a Fuzzy ART cat-

egory only encodes the degree to which its critical features are

consistently present in the training of that category. With com-

plement coding, both the degree of absence and the degree of

presence of features are represented by the category weight vec-

tors. Without this additional processing, this could lead to cat-

egory proliferation as too many adaptive weights will converge

to zero.

For each input I that activates node j, the recognition cate-

gory T j is defined by (2).

T j(I) =
|I ∧ wj|
α + |wj| (2)

|p| ≡ ∑M
i=1 |pi|, α is the choice parameter and α > 0. α →

0 because small values of α tend to minimise recoding of wJ

during learning or resonance. Moreover, during resonance, if

wJ is a subset of I, wJ should remain unchanged and is therefore

conserved (3).

|I ∧ wJ | = |wJ | (3)

Resonance occurs if the match function (4) of the chosen cat-

egory J meets ρ or |x| = |I ∧ wJ |, when |I ∧ wJ | ≥ ρ.

I ∧ wJ

I
≥ ρ (4)

If otherwise, mismatch reset occurs and wJ = 1.

In short, within the attentional subsystem, the activity vector

x obeys (5).
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x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

I, If input I is novel and no recognition category

is activated and cannot represent the inputs.

I ∧ wJ , If otherwise, a recognition category is activated

and Jth node is chosen.
(5)

2.1.2. Orienting subsystem

Fuzzy ART makes a category choice (the chosen recognition

category that best represents the inputs) when at most one J has

become active (2)–(5). The category choice is chosen using (6)

and is indexed by J; and that J satisfies (4).

TJ = max{T j : j = 1, ...,N} (6)

2.2. Inter-ART

The inter-ART module consists of a map field, which controls

the learning of an associative map from Fuzzy ARTa recogni-

tion categories to the Fuzzy ARTb recognition categories. A

recognition category classifies inputs or similar properties into

one category. Inter-ART allows the mapping between the a

recognition categories to the b recognition categories to not di-

rectly associate each other, but rather, associates the symbolic

representation between the two recognition categories [1].

The map field also controls match tracking of the Fuzzy

ARTa and Fuzzy ARTb recognition categories. Match tracking

is designed to create the minimal number of Fuzzy ARTa recog-

nition categories needed to meet the accuracy criteria described

by the match function and to prevent category proliferation.

Match tracking prevents category proliferation by employing

the minimax learning rule. The minimax learning rule utilises

a vigilance parameter ρ. ρ of Fuzzy ARTa (ρa) is increased by

the minimum amount required to search for and if necessary

learn of a new Fuzzy ARTa category that closely matches the

category activation produced by Fuzzy ARTb. The increase in

ρa is instigated by a predictive failure at Fuzzy ARTb, which

sacrifices the minimum amount of generalisation necessary to

correct the predictive error at Fuzzy ARTb.

The minimax learning rule enables the Fuzzy ARTMAP to

learn quickly, efficiently, and accurately as it conjointly min-

imises predictive error and maximises predictive generalisation.

Inter-ART ρ, therefore, performs back propagation of informa-

tion, whereby the search initiated by inter-ART can shift the

attention to a novel cluster of features that can be learned into

a new Fuzzy ARTa recognition category that better predicts b.

The lower the value of ρa, the larger the categories are formed.

Lower value of ρa leads to a broader generalisation, higher

code compression and smaller categories compactness [1].

3. Weaknesses of Fuzzy ARTMAP

As described in the Introduction, Williamson, 1996 [2] indi-

cates that Fuzzy ARTMAP has two potential weaknesses: (i)

sensitivity to noise and (ii) inefficient category creation.

3.1. Sensitivity to noise

When the Fuzzy ARTMAP makes a false prediction (i.e, the

recognition category of Fuzzy ARTa does not match that of

Fuzzy ARTb), a new category is created. If the input falls near

the boundary between two categories, the newly created cate-

gory will be small enough to fit within this space.

When the training data is noisy, the categories within the fea-

ture spaces are created randomly in response to the different

predictions. The random creation of categories result in the cat-

egory proliferation. Category proliferation is also partly due to

the use of large ρ value that allows for the fast learning mecha-

nism. Reducing ρ may address this issue.

3.2. Inefficient categories

The minimax learning rule indicates the categories are cre-

ated with the simplest statistics of the data: the minimum and

maximum values of the category range created to conjointly

minimise the predictive error and maximise the predictive gen-

eralisation. This creates a rectangular classification of data

which may not be suitable for the classification of the data.

Williamson, 1996 [2] indicated that this method is best suited

to data that are uniformly distributed within a category.

Williamson, 1996 also [2] points out: if the problem scales

to higher dimension, the ratio of the hypersphere volume to the

hyper-rectangular volume with equal diameter against that of

its dimension, as feature spaces approaches higher dimensions,

the volume of the hyper-rectangular category will be dominated

by the corners. He has developed the Gaussian ARTMAP to

address this issue.

4. Gaussian ARTMAP

Gaussian ARTMAP replaces the minimax learning rule

within the Fuzzy ART with a Gaussian classifier. This, there-

fore, creates a Gaussian ART. Gaussian classifier is in place of

the minimax learning rule, because Williamson, 1996 [2] indi-

cated that the minimax learning rule is ill-posed and the smooth

mapping of input-to-output is one of the weakest and most gen-

eral assumption to make. He indicated that a priori assump-

tions are required and the use of Gaussian distribution is ideal.

Gaussian classifier creates a category based on the Gaussian

distribution of the data, with mean, variance and a prior prob-

ability used to define the category. Hence, the introduction of

the Gaussian ARTMAP.

4.1. Learning

Gaussian ARTMAP is an incremental learning Gaussian

classifier, in which each output is determined during training to

correspond to any numbers of sources of the Gaussian distrib-

uted data. One limitation to this is that the Gaussian ART can

fit the variance along a dimension, but not covariance between

the dimensions. However, Williamson, 1996 [2] indicated that

separable Gaussian ART allows the Gaussian ART to have stor-

age and computational requirements similar to that of the Fuzzy

ART.
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Each Gaussian ART category j is defined by M-dimensional

vector mean µ j and variance σ2
j . The number of training sam-

ples it has coded is given by n j. Therefore, Gaussian ART

category requires 2M + 1 components to represent the M-

dimensional input I = {I1, ...., IM}.
When a new category is generated, IJ = µJ . When a category

J learns an input sample I, nJ , µJ and σ2
ji are updated using (7)–

(9) to represent the current sample vector.

nJ := nJ + 1 (7)

µJ := (1 − n−1
J )µJ + n−1

J I (8)

σ2
Ji :=

⎧⎪⎪⎨⎪⎪⎩
(1 − n−1

J )σ2
Ji + n−1

J (µJi − Ii)
2 if n j > 1

γ2 otherwise
(9)

γ2 is the variance initialisation parameter that determines the

isotropic spread in the feature space of a new category’s distri-

bution about its first sample.

4.2. Choice function

The choice function picks the most likely category for a given

input. A category’s likelihood is determined by the likelihood

that the input belongs to its distribution, as well as by the cate-

gory’s a priori probability used to define the category.

The Gaussian ART chooses the recognition category J, with

the maximum discriminant given its input I is given by (10) [2].

J = max{g j(I) : j = 1, ...,N} (10)

N is the number of category activated.

g j(I) = log((2π)
M
2 p(I| j)P( j)) (11)

= −1

2

M∑

i=1

(µ ji − Ii)
2

σ2
ji

−1

2
log(

M∏

i=1

σ2
ji) + log(P( j))

P( j) =
n j∑N

j′=1 n j′
(12)

4.3. Match function

The match function is based solely on the likelihood that the

input belongs to a category distribution, discounting its a prior

probability (13).

g′j(I) = gJ(I) − log(P(J)) (13)

= log((2π)
M
2 p(I| j))

= −1

2

M∑

i=1

(µ ji − Ii)
2

σ2
ji

− 1

2
log(

M∏

i=1

σ2
ji)

The Gaussian ARTMAP provides the prediction output that

is interpreted as picking the class with the highest net proba-

bility. Therefore all category predictions are summed to yield

the most likely net prediction of a class, rather than basing the

prediction on the maximum Fuzzy ART category.

In summary, the replacement of the minimax learning rule

with the Gaussian classifier can address the two weaknesses of

Fuzzy ARTMAP. Gaussian classifier that incorporates Gaussian

distribution, with their smoothness and generalisation proper-

ties, are also ubiquitous to real world conditions. This is be-

cause the distribution of information in the real world is the

result of the summation of independent random variables oc-

curring in the environment [2]. The energy management sys-

tems are a good example of the real world applications that are

susceptible to the randomness of a dynamic environment.

5. Building Energy Management System

There are a number of energy management systems (EMS)

developed with the incorporation of Fuzzy ARTMAP. Exam-

ples of this are that described in [5]–[13]1.

This paper presents a similar case study to that presented in

[13]; however, limiting the analysis to just the boiler controls

for the building. The boilers are used to heat and maintain

the hot water temperature required by the centralised heating

system. The aim of the EMS is to ensure that the hot water

produced can maintain the building to its desired temperature

values.

The boiler controls are developed with the Fuzzy ARTMAP

and Gaussian ARTMAP, separately. Fuzzy ARTMAP and

Gaussian ARTMAP are compared to identify which of the two

is better at:

Function 1 Providing the required switching mechanism for

the boilers system: ON↔ OFF.

Function 2 Indicating the desired hot water temperature to be

maintained by the boilers.

Fuzzy ARTMAP and Gaussian ARTMAP are to provide these

two functionalities given the desired and actual building (in-

door) and environment (outdoor) temperatures.

5.1. Online learning

In common with other ANNs, the main disadvantage of

Fuzzy ARTMAP and Gaussian ARTMAP is that their black-

box characteristics limit the users’ ability to analyse the input-

to-output relationships established by the network. Due to

this limitation, an additional component is added to both the

Gaussian ARTMAP and Fuzzy ARTMAP. This component, la-

belled Supervisor in Figure 1 allows seamless interactions be-

tween the Gaussian ARTMAP and the Fuzzy ARTMAP and its

users. This will help promote transparency for the EMS.

1In [13], the authors indicated the use of ARTMAP, but the functionalities

employed by the EMS are that of the Fuzzy ARTMAP
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When new thermal and energy characteristics are required

by the building, the user will instigate the learning of the new

characteristics by presenting the new desired configuration to

the input of ART b (Figure 1). The presented supervisory infor-

mation corresponds to the input data provided to ART a.

The Supervisor will monitor the input presented to and

output provided by the Gaussian ARTMAP or the Fuzzy

ARTMAP. The Supervisor indicates when the Gaussian

ARTMAP or the Fuzzy ARTMAP has adapted its network to

the new input-to-output relationships. This seamless instigation

of learning allows the adaptation of the Gaussian ARTMAP or

the Fuzzy ARTMAP without any need to re-code the software

infrastructure. This will promote and ensure transparency of

the EMS.

!"#$!%&

Time 
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.

.

’()*+,-./+&

Energy 
Profile 

Human Input:  
Desired Room Temp. 

mArtmap

Room Temp. 

.

.

.

!
"
#$
%$ !"#$&$

!’’()*%+,-$
.-/(01$

Instigate learning 

Figure 1: Supervisor monitors the online learning for the EMS.

5.2. Inputs to the ARTMAP

Inputs to the Fuzzy ARTMAP and Gaussian ARTMAP are:

1. Current date and time.

2. OT (t), OT (t − 1), OT (t − 2), OT (t − 3), OT (t − 4). OT is the

outdoor temperature. OT (t − x) is the outdoor temperature

at the previous x hour.

3. Iy(t), Iy(t− 1), Iy(t− 2), Iy(t− 3), Iy(t− 4). Iy is the average

building y temperature. Iy(t − x) is the average building

y temperature at the previous x hour. Average building y

temperature is calculated by averaging the measured tem-

perature values of all rooms in the building.

4. WO(t), WO(t−1), WO(t−2), WO(t−3), WO(t−4). WO is the

return water temperature from the building. WO(t−x) is the

return water temperature from the building at the previous

x hour.

5. WI(t), WI(t − 1), WI(t − 2), WI(t − 3), WI(t − 4). WI is

the provided water temperature for the building WI(t − x)

is the provided water temperature for the building at the

previous x hour.

6. Instigate learning = 1: The user forces the Gaussian

ARTMAP and the Fuzzy ARTMAP to learn of a new hot

water temperature setting for the boiler. The Supervisor

(Figure 1) provides the output Learn = 1.

Instigate learning = 0: The user is happy with the provided

heat and the Supervisor provides the output Learn = 0.

When Instigate learning = 1, the user sets the hot water

temperature for the boilers, and learning is instigated for

Gaussian ARTMAP and the Fuzzy ARTMAP with the new

desired hot water temperature setting for the boilers.

(1)–(3) are the inputs indicating the energy demand. (4)–(5)

are the inputs indicating the energy resource. (6) is the human

interrupting signals to the Supervisor.

During the learning period (Instigate learning = 1), the

Gaussian ARTMAP or the Fuzzy ARTMAP takes in the user

desired temperature setting and learns of the desired switching

(Function 1) and hot water temperature setting for the boilers

(Function 2). The Supervisor sets the signal Learn = 1 and

helps provide the desired value for learning according to the

following rules:

If building temperature > desired building temperature

Then boiler switch = OFF;

Else if the building temperature <
(desired building temperature - 2oC)

Then boiler switch = ON;

The desired room (or building) temperature is set to 23oC.

The hot water temperature is set to 80oC when high heat de-

mand is required (for example, during the winter months); and

less (for example to be maintained at 2 x room temperature) if

there is lesser heat demand. Learning stops (Learn switches 1

→ 0) when the building temperature = desired building temper-

ature after a suitable time period (six number of samples).

5.3. Online learning

In the experiments conducted for this paper, the Instigate

learning signal is set at 0. However, online learning does take

place:

If desired building temperature - 2oC > building temperature

or building temperature > desired building temperature

Then Learn = 1 and learning of new classification is

instigated.

During this learning period (Learn = 1), Supervisor provides

the following supervisory inputs:

If building temperature > desired building temperature

Then boiler switch = OFF and

its desired hot water temperature setting is linearly reduced

until building temperature ≈ desired building temperature.

If desired building temperature - 2oC > building temperature

Then boiler switch = ON and

the desired hot water temperature setting is linearly increased

until the building temperature ≈ desired building temperature.

Learning stops (Learn = 0) when the building temperature ≈
desired building temperature after six samples.

At the start of the simulation/experiment, both the Fuzzy

ARTMAP and the Gaussian ARTMAP have one classification:

boiler switch = ON, desired hot water temperature = 80oC and

Learn = 1. The inputs and outputs from the Fuzzy ARTMAP

and Gaussian ARTMAP are sampled and provided every 15

minutes. Fuzzy ARTMAP vigilance parameter ρ = 0.75. The

outputs produced are in response to the provided outdoor tem-

peratures between 5th March 2012 to 25th May 2012; omitting

the values between 22nd March 2012 09:00 to 24th March 2012

22:25 because no temperature data were collected during these

time. The outdoor temperature is depicted in Figure 2.
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Figure 2: The recorded outdoor temperature.

6. Results

6.1. Function 1: Providing the required switching mechanism

Four categories of switching outputs are produced by the

Gaussian and Fuzzy ARTMAP. The switching output are pro-

duced given the simulated building temperatures, boilers water

temperatures and output temperatures. The four are:

Blue ◦ indicates that the Gaussian and Fuzzy ARTMAP have

created a new category that causes the boilers to be

switched ON. A new category is created when no recog-

nition category is activated. When this occurs, Learn =

1.

Cyan + indicates that the Gaussian and Fuzzy ARTMAP have

created a new category that causes the boilers to be

switched OFF, and Learn = 1.

Red 
 indicates the boilers are to be switched ON, and the in-

puts have activated a recognised category or are part of a

learned category. Learn = 0.

Magenta ∗ indicates the boilers are to be switched OFF, and

the inputs have activated a recognised category (Learn =

0).

Figures 3 and 4 show the results of the EMS. When compar-

ing the two figures, it shows Gaussian ARTMAP provides a bet-

ter categorisation of data (recognition categories) than that of

the Fuzzy ARTMAP. This is because, when utilising the Fuzzy

ARTMAP there are a large mix of:

1. New and learned categories, and

2. When the boiler switch has to be switched ON or OFF.

The large mix of new and learned recognition categories are

because, when the input falls near the boundary between two

learned categories, the inputs are considered as novel; and a

new recognition category is to be generated. In this instance,

the new recognition category is small in order to fit between the

two categories. This causes the category proliferation. Fuzzy

ARTMAP ρ = 0.75.

6.2. Function 2: Indicating the desired hot water temperature

for the boilers

Similar observations are seen when the Gaussian ARTMAP

and the Fuzzy ARTMAP were used to categorise and indicate

the desired hot water temperature to be produced and main-

tained by the boilers. By comparing the two figures in Fig-

ure 5, shows the Gaussian ARTMAP is better than the Fuzzy

ARTMAP because, similar to the previous function (Section

6.1), the Gaussian ARTMAP provides:

1. Variable desired weather temperature to suit the variable

demand of the building.

2. Lesser new recognition categories generated.

6.3. Summary of results

The figures shows the Gaussian ARTMAP has provided clear

distinctions when the boilers should be switched ON in order to

produce and maintain to the required hot water temperature and
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Figure 3: The four categories produced by Gaussian ARTMAP, with clear decision boundaries are made that indicates when best to switch ON or OFF the boilers

(Function 1 described in Section 5). The definitions of the categories are described in Section 6.1.
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Figure 4: The four categories produced by Fuzzy ARTMAP indicating when best to switch ON or OFF the boilers (Function 1 indicated in Section 5). The

definitions of the categories are described in Section 6.1. Large mixing of categories are resulted from category proliferations.
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Figure 5: Comparing Gaussian ARTMAP and Fuzzy ARTMAP in indicating the desired hot water temperature for the boilers (Function 2 indicated in Section 5).

Gaussian ARTMAP provides variable temperature settings for the boilers (blue ◦ and red 
), which helps minimise heat waste.
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when to switch OFF. The figures also show that the Gaussian

ARTMAP indicates the need for hot water temperature when

the output temperatures are low and the building temperatures

are below the desired building temperature values. This clear

distinction was not provided by the Fuzzy ARTMAP.

The clear decision boundary provided by the Gaussian

ARTMAP can produce better switching mechanisms for the

boilers system. This is shown when comparing the two fig-

ures in Figure 6, where the Gaussian ARTMAP provides lesser

switching ON↔ OFF of the boilers in comparison to the Fuzzy

ARTMAP; as well as better at achieving the desired building

temperature (Figure 7). The frequent switching provided by the

Fuzzy ARTMAP is because of category proliferation or the cre-

ation of small categories generated at the occurrence of novel

inputs. The high frequency of switching may, over time, reduce

the efficiency of the boilers.

Gaussian ARTMAP provides similar output for the building

with lesser switching frequency for the boilers system. This is

shown in Figure 6.

6.4. Varying the vigilance parameter ρ

Carpenter et. al., 1992 [1] and Williamson, 1996 [2] have

suggested that reducing the ρ values can prevent category pro-

liferation. Therefore, to investigate such effects, the build-

ing simulation model was simulated with Fuzzy ARTMAP

ρ = 0.25, ρ = 0.5 and ρ = 0.9. In the earlier Fuzzy ARTMAP

simulation, ρ = 0.75.

Table 1 shows the frequency of switching of the boilers with

varying ρ values. The table shows the higher the ρ value, the

higher the frequency of switching.

Table 1: Frequency of Switching for Different Values of Fuzzy ARTMAP ρ

ρ
Frequency =

Number of change in states / Number of states

0.25 0.1714

0.50 0.1714

0.75 0.1714

0.90 0.1201

Gaussian
0.0130

ARTMAP

Furthermore, by comparing the switching outputs indicated

in Figures 8–9, demonstrates that the category proliferation can

be avoided, to an extent, by reducing the values of ρ. The fig-

ures show more new recognition categories are generated when

ρ = 0.9, in comparison to ρ = 0.5.

7. Conclusion

There is a growing interest in the application of Fuzzy

ARTMAP for use in energy management system. However, as

this paper has demonstrated, there are weaknesses to the Fuzzy

ARTMAP. The Fuzzy ARTMAP is sensitive to noisy data and

category proliferations. The Gaussian ARTMAP was devel-

oped to address these weaknesses. This paper analysed which

of the two ARTMAPs is better for use in building energy man-

agement system. Results indicated that despite reducing the ρ
values of the Fuzzy ARTMAP, Gaussian ARTMAP still pro-

vides better boiler controls than that of the Fuzzy ARTMAP.

Gaussian ARTMAP provides:

1. Clearer decision boundaries: clearer definition on when to

switch ON or OFF the boilers,

2. Clearer defined desired hot water temperature values re-

quired by the building given its building and environmen-

tal conditions (inputs), and

3. Lesser category proliferation.

This has resulted in lesser frequency of change in state (lesser

frequency of switching between ON ↔ OFF) provided by

the Gaussian ARTMAP; this is in comparison to the Fuzzy

ARTMAP. Furthermore, high frequency of change in state,

change between the ON ↔ OFF states, over time may reduce

the effectiveness and efficiency of the building energy manage-

ment system.

The Gaussian ARTMAP can also maintain greater consis-

tency with the desired objective of the system: to more accu-

rately maintain the desired building temperature. As a result

of the analysis conducted, the Gaussian ARTMAP is the better

choice for building energy management.
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Figure 6: The desired and actual boilers water temperature for the boilers provided by Gaussian ARTMAP and Fuzzy ARTMAP.
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Figure 8: The four categories produced by Fuzzy ARTMAP with ρ = 0.9 and ρ = 0.5, indicating when best to switch ON or OFF the boilers.
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Figure 9: The four categories produced by Fuzzy ARTMAP with ρ = 0.9 and ρ = 0.5, indicating the desired water temperature of the boilers.
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Highlights

1. We created a UCLan Westlakes Samuel Lindow Building heat simulation model.

2. We created a Fuzzy ARTMAP Building Energy Management System with online learning.

3. We created a Gaussian ARTMAP Building Energy Management System with online learning.

4. We compared which of the two creates a more efficient Building Energy Management System.

5. Gaussian ARTMAP is better for use in Building Energy Management System with online learning.


