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Abstract

It has become generally accepted that new neurones are added and integrated mainly in two areas of the mammalian CNS, the
subventricular zone and the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus, which is of central
importance in learning and memory. The newly generated cells display neuronal morphology, are able to generate action
potentials and receive functional synaptic inputs, i.e. their properties are similar to those found in mature neurones. Alzheimer’s
disease (AD) is the primary and widespread cause of dementia and is an age-related, progressive and irreversible
neurodegenerative disease that deteriorates cognitive functions. Here, we have used male and female triple transgenic mice
(3xTg-AD) harbouring three mutant genes (b-amyloid precursor protein, presenilin-1 and tau) and their respective non-
transgenic (non-Tg) controls at 2, 3, 4, 6, 9 and 12 months of age to establish the link between AD and neurogenesis. Using
immunohistochemistry we determined the area density of proliferating cells within the SGZ of the DG, measured by the
presence of phosphorylated Histone H3 (HH3), and their possible co-localisation with GFAP to exclude a glial phenotype. Less
than 1% of the HH3 labeled cells co-localised with GFAP. Both non-Tg and 3xTg-AD showed an age-dependent decrease in
neurogenesis. However, male 3xTg-AD mice demonstrated a further reduction in the production of new neurones from
9 months of age (73% decrease) and a complete depletion at 12 months, when compared to controls. In addition, female 3xTg-
AD mice showed an earlier but equivalent decrease in neurogenesis at 4 months (reduction of 63%) with an almost inexistent
rate at 12 months (88% decrease) compared to controls. This reduction in neurogenesis was directly associated with the
presence of b-amyloid plaques and an increase in the number of b-amyloid containing neurones in the hippocampus; which in
the case of 3xgTg females was directly correlated. These results suggest that 3xTg-AD mice have an impaired ability to generate
new neurones in the DG of the hippocampus, the severity of which increases with age and might be directly associated with the
known cognitive impairment observed from 6 months of age onwards . The earlier reduction of neurogenesis in females, from
4 months, is in agreement with the higher prevalence of AD in women than in men. Thus it is conceivable to speculate that a
recovery in neurogenesis rates in AD could help to rescue cognitive impairment.
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Introduction

The classical view that all neurones are generated (via neurogen-

esis) during prenatal development and early postnatal life has been

challenged by the seminal study of Altman and Das (1965) [1] and

now it is generally accepted that neurogenesis does also occur in

adulthood mainly in two areas of the mammalian CNS [1–5]. These

areas, which are involved in both plasticity and stability of the brain,

are the anterior part of the subventricular zone (SVZ) along the

lateral ventricles, which is also an important a site of gliogenesis [6,7]

and the subgranular zone (SGZ) of the dentate gyrus (DG) of the

hippocampus [4,5]. In both areas neurogenesis progress as a complex

multi-step process which starts with the proliferation of precursors

residing in the SVZ or in the SGZ. For the hippocampus, it has been

estimated that several thousand new cells are generated daily [5].

However, within several days after their birth at least fifty percent of

the newborn cells die [5]. The cells surviving this initial period of cell

death differentiate mainly into granule neurones and endure for

several months. These newly generated neurones receive synaptic

inputs, extend axons along the mossy fibres tract and exhibit

electrophysiological properties similar to those of mature dentate

granule cells [8,9]. In addition these new cells express a full

complement of membrane receptors [10]. From a functional point

of view, hippocampal neurogenesis plays an important role in

memory processes. Decline in neurogenesis within SGZ has been

involved in cognitive impairments linked with ageing and neurode-

generative disorders, and was suggested to play a role in Alzheimer

disease (AD) [5,11].

AD is a progressive neurodegenerative disease which is the

primary cause of dementia in the elderly and is characterized by

damage of the brain regions associated with learning and memory,

such as the hippocampus [12,13]. Decline in neurogenic capacity

could participate in AD-associated cognitive impairments and

contribute to early AD symptoms such as the inability to acquire

and store new information [14–16]. Incidentally, the use of

endogenous neuronal precursors to replace lost and/or damaged

cells has been proposed as a potential therapeutic approach to

treat AD [17,18]. Experimental studies of neurogenesis in various
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AD animal models, however, resulted in contradictory findings

[19–26]. For example, animals carrying presenilin or some APP

mutant genes demonstrated an impaired neurogenesis in the DG

[20–22,24,27,28]. Conversely, recent studies, performed on the

APPSw, Ind (Swiss/Indian mutation) PDGF-APP mutant and on

FAD post-mortem human material [18,29], reported an increase

of neurogenesis. It has to be noted, though, that the study on

human FAD cases analysed only immature newly generated

neurones without providing definitive probes of further develop-

ment and/or progress into mature cells.

In the present study we sought to determine the rate and possible

changes in hippocampal neurogenesis in the recently developed

triple-transgenic AD (3xTg-AD) mouse model, that harbours the

mutant genes for amyloid precursor protein (APPSwe), for presenilin

1PS1M146V and for tauP301L [30,31]. These animals are recognised

as relevant AD model since they show temporal- and region-specific

Ab and tau pathology, which closely resembles that seen in the

human AD brain [30,31]. As well as progressively developing

plaques and tangles the 3xTg-AD mice also show clear functional

and cognitive impairments including LTP, spatial memory and long

term memory deficits; which are manifest in an age-related manner

importantly preceding the appearance of histological markers

[30,31]. Cognitive deficits in the 3xTg-AD model correlate with

the accumulation of intraneuronal Ab [30–34]. Subsequently, we

decided to investigate a gender difference in the number of

proliferating cells, because it is well establish that AD affects women

more than men [35,36]. Finally we also aimed to correlate the rate of

neurogenesis with the presence of intracellular b-amyloid.

Materials and Methods

Mice
All animal procedures were performed according to the Animal

Scientific Procedures Act of 1986 under the license from the

United Kingdom Home Office.

The generation of the 3xTg-AD mice was done as previously

described [30,31,37]. Briefly, human amyloid precursor protein

with the Swedish mutation (APPSwe) and human tau with the

P301L (tauP301L) mutation were microinjected into single-cell

embryos from homozygous presenilin 1PS1M146V knockin mice.

The background of the PS1 knockin mouse is a hybrid 129/

C57BL6. The Non-Tg mice used were from the same strain and

genetic background as the PS1 knockin mice, but they harbor the

endogenous wild-type mouse PS1. All 3xTg-AD and Non-Tg mice

were obtained from crossing homozygous breeders. Male and

female mice were independently group housed and kept on daily

12 h light-dark cycles dark schedule. All mice were given ad

libitum access to food and water.

Fixation and tissue processing
Male and female 3xTg-AD and their respective non-transgenic

(non-Tg) controls were anaesthetized with an intraperitoneal

injection of sodium pentobarbital at different time points (2, 3, 4,

6, 9 and 12 months of age; n = 3–7). The brains were fixed by

perfusion through the aortic arch with 25 ml of 3.8% acrolein

(TAAB, UK) in a solution of 2% paraformaldehyde and 0.1 M

phosphate buffer (PB) pH 7.4, followed by 75 ml of 2%

paraformaldehyde. Brains were removed from the cranium and

cut into 4–5 mm coronal slabs of tissue containing the entire

rostrocaudal extent of the hippocampus. This tissue was then post-

fixed for 30 minutes in 2% paraformaldehyde and sectioned at

40–50 mm on a vibrating microtome (VT1000, Leica, Milton

Keynes, UK). To remove excess reactive aldehyde groups, sections

were treated with 1% sodium borohydride in 0.1 M PB for

30 minutes. The tissue sections were then freeze-thawed to

optimize the penetration of immunoreagents. For this procedure,

sections were incubated in cryoprotectant solution containing 25%

sucrose and 3.5% glycerol in 0.05 M PB at pH 7.4 and

subsequently rapidly immersed in chlorodifluoromethane followed

by liquid nitrogen and then thawed at room temperature in PB.

Sections were then rinsed in 0.1 M PB followed by 0.1 M Tris-

buffered saline (TBS), pH 7.6.

Antibodies
A polyclonal affinity-purified rabbit antiserum raised against

phosphorylated Histone 3 (Upstate, USA; #06-570) and a

monoclonal mouse antiserum generated against GFAP from pig

spinal cord (Sigma-Aldrich Company Ltd., UK; #G3893) were used

for the determination of proliferating cells and glia. Specificity of

these antisera was confirmed by immunoblot and western blot [38].

For identification of intracellular beta amyloid (Ab) deposits we used

a monoclonal mouse antiserum that reacts with abnormally

processed isoforms, as well as precursor forms of Ab, recognizing

an epitope within amino acids 3–8 (EFRHDS; anti-Ab 6E10 [SIG-

39320]. Signet Laboratories, Dedham, MA).The immunolabelling

pattern we obtained with this antibody is equivalent to that obtained

previously in different brain regions [30,31].

To assess for non-specific background labelling or cross reactivity

between antibodies derived from different host species, a series of

control experiments were performed. Omission of primary and/or

secondary antibodies from the incubation solutions resulted in a total

absence of target labelling. These primary antibodies are therefore

regarded as specific to their designated targets.

Immunohistochemistry
To optimize detection of all HH3 and GFAP cells and

containing profiles we used the highly sensitive avidin–biotin

peroxidase complex (ABC) method [39]; and to minimize

methodological variability, sections through the dorsal hippocam-

pus containing both hemispheres of all animals were processed at

the same time using precisely the same experimental conditions.

For this procedure, the vibratome sections were first incubated for

30 minutes in 0.5% bovine serum albumin in TBS to minimize

non-specific labelling. The tissue sections were then incubated for

48 hours at 4uC in 0.1% bovine serum albumin in TBS

containing: (1) rabbit polyclonal antiserum for HH3 (1:1,000)

and (2) mouse monoclonal antiserum for GFAP (1:60,000).

Subsequently, the HH3 and GFAP antibodies were detected in

a sequential manner on the same sections. For HH3 labelling,

sections were washed and placed in (1) 1:200 dilutions of

biotinylated donkey anti-rabbit IgG (Jackson Immunoresearch,

Stratech Scientific Ltd., Soham, UK) and (2) 1:200 dilutions of

biotin-avidin complex from the Elite kit (Vector Laboratories Ltd.,

Peterborough, UK). All antisera dilutions were prepared in TBS,

and the incubations were carried out at room temperature. The

peroxidase reaction product was visualized by incubation in a

solution containing 0.022% of 3,39 diaminobenzidine (DAB,

Aldrich, Gillingham, UK) and 0.003% H2O2 in TBS for

6 minutes. For GFAP labelling, sections were then rinsed again

in TBS and incubated (1) 1:200 dilution of biotynilated horse anti-

mouse IgG (1:200; Vector Laboratories Ltd., Peterborough, UK)

and (2) placed in a 1:200 dilution of biotin-avidin complex from

the Elite kit (Vector Laboratories Ltd., Peterborough, UK). The

GFAP peroxidase product was then visualized in a solution

prepared from the Novared or SGZ kits (Vector Laboratories Ltd.,

Peterborough, UK) for 3–4 minutes. This allowed us to see the

GFAP labelling in red and/or blue respectively; allowing us to

differentiate it from the HH3 labelled cells (brown).

Neurogenesis Reduction in AD
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The same immunoperoxidase approach, but for single labelling,

was used for the detection of intracellular Ab. Briefly, adjacent

sections were incubated for 48 hours at 4uC in 0.1% bovine serum

albumin in TBS containing mouse monoclonal antiserum for Ab
(1:2000). Subsequently, sections were then washed and placed in (1)

1:200 horse anti-mouse IgG (Vector Laboratories Ltd., Peterbor-

ough, UK) and (2) 1:200 dilution of biotin-avidin complex from the

Elite kit (Vector Laboratories Ltd., Peterborough, UK). The

peroxidase reaction product was visualized by incubation in a

solution containing 0.022% of 3,39 diaminobenzidine (DAB,

Aldrich, Gillingham, UK) and 0.003% H2O2 in TBS for 6 minutes.

HH3 Area density and Ab cell number
To determine the area density (Sv, number/mm2) of HH3-

immunoreactive neurons, the labelled cells were counted on both

hemispheres in six non-consecutive coronal Vibratome sections,

separate by at least 80 mm, taken through representative sections

of both the dorsal (3) and ventral (3) DG of the hippocampus at

Figure 1. Photomicrographs showing phosphorilated Histone H3 (HH3, a proliferating mitotic marker) within the dentate gyrus of
Non Tg mice. A–B: Single labelling of HH3 positive cells (arrows) in the dentate gyrus of 2 (A) and 12 months (B) Non Tg mice. C–D: Dual labeling
of HH3 positive cells (arrows) and glial cells (GFAP, blue) in the dentate gyrus of 2 (C) and 12 months (D) Non Tg mice. E–F: Bar graphs showing the
area density of HH3 positive cells within the dorsal dentate gyrus (all layers included) of Non-Tg males (E) and females (F) mice. GCL: Granular Cell
Layer, ML: Molecular Layer. ** = p,0.01 compared to 2 months; *** = p,0.001 compared to 2 months;NN = p,0.01 compared to 3 months;
## = p,0.01 compared to 2 and 3 months; ### = p,0.001 compared to 3 months; e = p,0.05 compared to 4 months; ee = p,0.01 compared
to 4 months; ‘ = p,0.05 compared to 4 and 6 months; + = p,0.05 compared to 2, 3 and 6 months.
doi:10.1371/journal.pone.0002935.g001

Neurogenesis Reduction in AD
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levels 1.22 mm/2.46 mm and 2.54 mm/3.80 mm posterior

anterior to bregma, respectively, according to the mouse brain

atlas of Paxinos and Watson (1986) [40]. The number of HH3

positive cells and the area measurements of the complete dentate

gyrus and its different layers (granule cell layer –GCL-, molecular

layer –ML- and hilus) were determined blindly.

The number of Ab containing neurones was examined in the CA1

region of the hippocampus CA1, since this field shows the earliest

and strongest accumulation of Ab intracellular deposits. This

quantification was carried out on six non-consecutive hippocampal

sections of the same animals used for the proliferation analysis.

Statistical analysis
An analysis of variance (ANOVA) was used to examine differences

in the mean area density of labelled HH3 cells between the 3xTg-AD

and non-Tg animals and sexes, followed by unpaired t-test

comparisons at the different time points. Spearman correlation

was used to correlate the mean area density of HH3 positive cells

with the mean number of Ab containing neurons (implemented

through GraphPad Prism 4.0, GraphPad Software, Inc.).

Results

In the dorsal hippocampus and more specifically within the

dentate gyrus of both non-Tg and 3xTg-AD mice a fair number of

newly generated cells could be visualized, as indicated by HH3

immunoreactivity (HH3-IR; Figs.1A, 2A). These newly formed

cells showed the distinctive characteristics of proliferating cells;

they were mainly localized in the inferior part of the granule cell

layer (GCL) and demonstrated typical morphology such as

irregular shape and small size; sometimes they appeared close

together and/or formed clusters (Fig. 1A–B).

Effects of ageing on neurogenesis in non-Tg animals
Quantitative analysis of the rate of cell proliferation showed a

reduction in the number of HH3-IR cells with age. This reduction

was apparent within the dentate gyrus of non-Tg males and

females mice (F5,20 = 5.643, p = 0.0021 and F5,16 = 44.8,

p,0.0001, respectively; Fig 1E–F) and in the GCL where we

observed the highest number of proliferating cells (F5,20 = 5.362,

p = 0.0028 and F5,16 = 17.54, p,0.0001, respectively; Fig 3A–B).

Decrease in proliferation rate with age was quite significant: at

6 months of age in both sexes the proliferation rate was reduced

by more than 60% when compared to the 2 months old animals

(males 2.6460.23 vs. 6.6161.74; females 1.4860.39 vs.

7.4660.45, Fig. 1E–H). Decrease in the number of HH3 cells in

dentate gyrus and the subgranular zone of the GCL appears

earlier in females (3–4 month) than in males as confirmed by the t-

test analysis (Figs. 1E–F; Fig. 3).

Figure 2. Brightfield micrographs showing HH3 labelled cells within the dentate gyrus of 3xTg-AD e. A–B: Dual labeling of HH3 positive
cells (arrows) and glial cells (GFAP, red) in the dentate gyrus of 2 (A) and 12 months (B) 3xTg-AD mice. C–D: Bar graphs showing the area density of
HH3 positive cells within the dorsal dentate gyrus (all layers included) of 3xTg-AD males (C) and females (D) mice. GCL: Granular Cell Layer, ML:
Molecular Layer. ** = p,0.01 compared to 3 months; *** = p,0.001 compared to 3 months; N = p,0.05 compared to 2 months NN = p,0.001
compared to 2 months; ## = p,0.01 compared to 2 and 3 months; e = p,0.05 compared to 4 months; ‘ = p,0.05 compared to 2 and 4 months.
doi:10.1371/journal.pone.0002935.g002

Neurogenesis Reduction in AD
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Dual labelling showed that the majority of HH3-IR cells did not

possess the astroglia marker GFAP; in fact, less then 1% of HH3-

IR cells co-expressed GFAP in the dentate gyrus, including the

GCL (data not shown).

Impairment of neurogenesis in 3xTg-mice
Similarly to the controls, the rate of neurogenesis in 3xTg-AD

mice was decreased with age (Fig. 2, 3) in both males and females

throughout the dentate gyrus (F5,20 = 5.437, p = 0.0026 and

F5,18 = 12.39, p,0.0001, respectively) and in the GCL

(F5,20 = 8.524, p = 0.0002 and F5,18 = 11.81, p,0.0001, respectively;

Figs 2C–D). Decrease in proliferation rate in 3xTg-AD animals was

about 60–90% more pronounced compared to control animals: at

6 months compared to the 2 months 3xTg-AD mice (males

2.2360.5 vs. 5.7161.47; females 0.47+0.23 vs 5.0961) Fig. 2 C–

D). Furthermore, at 12 months of age males and females showed

very little capacity of forming new cells within the GCL (Fig. 2 C–D;

Fig. 3); whilst in both males and females non-Tg animals we could

still observe approximately a 20–35% of the number of HH3-IR

observed at young ages (2–3 months ; Fig 3).

Neurogenesis depression in 3xTg-mice is gender
dependent

When we analysed the number of HH3-IR cells within the GCL

of the 3xTg-AD mice and compared it with the cell proliferation

rate of the non-Tg it became evident that at young ages (2 and

3 months) the levels were very similar whilst at older ages,

especially 9 and 12 months the neurogenesis levels have decreased

over 70% in both groups (Figs. 1 E–F, 2 C–D, 3). The

quantification and consequent statistical analysis showed that the

age associated reduction in HH3-IR cells in 3xTg-AD males

compared to non-Tg animals start to be significant at 9 months

(73%; showing a trend to significant difference) and is completely

disappeared at 12 months of age (Fig. 3A; age effect, F5,1 = 53.57,

p,0.0001; group effect F5,1 = 1.73, p = 0.1744; age x group effect

F5,1 = 3.75, p = 0.5353; p,0.05 at 12 months). In contrast in

females 3xTg-AD, compared to non-Tg animals, HH3-IR cells

were already significantly reduced at 4 months of age (63%) being

maximal (88% reduction) at 12 months (Fig. 3B; age effect,

F5,1 = 68.08, p,0.0001; group effect F5,1 = 10.31, p,0.0001; age

x group effect F5,1 = 2.31, p = 0.4961; p,0.05 at 4 and 6 months;

p,0.001 at 9 and 12 months). This impairment in neurogenesis

rate within the 3xTg-AD mice is mainly due to changes at dorsal

more than ventral hippocampal levels (Fig. 3), which is consistent

with their specific preferential roles in learning and memory and

affective behaviour respectively [41].

Relationship between intraneuronal b-amyloid
accumulation and neurogenesis

The 3xTg-AD mice had also an age-dependent increase in the

number of hippocampal neurones accumulating b-amyloid

(Fig. 4A–D). Within the hippocampus neurones containing b-

amyloid could be found as early as 2 months of age, and this

number was higher in females compared to males (Fig. 4C–D).

Quantitative analysis showed that in both males and females

3xTg-Ad mice there was an age-dependent increase of b-amyloid

containing neurones that was maximal and very significant at

9 months of age when compared to young animals (Fig. 4 C–D;

F4,10 = 4.231, p = 0.0293 and F4,10 = 4.948, p = 0.0184, respec-

tively). The fully formed b-amyloid plaques within the neuropil,

however, were observed much later, at 9 and 12 months (Fig. 4B).

Increase in the number of b-amyloid containing hippocampal

neurones seem to match with the reduction of GCL proliferating

cells in both males and females (Fig. 4E–F). However, only females

showed a significant indirect correlation between the number of

HH3-IR cells with the number of b-amyloid positive cells

Figure 3. Bar graphs showing the mean area density HH3 labelled cells within the GCL of the dentate gyrus of both 3xTg-AD and
control nonTg-AD mice. A–B: Males (A) and females (B) dorsal GCL. C–D: Males (C) and females (D) dorsal GCL. Asterisks indicate a significant
difference in the means.
doi:10.1371/journal.pone.0002935.g003

Neurogenesis Reduction in AD
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(R2 = 0.7018; Fig 4F). This finding showing a higher prevalence of

b-amyloid positive cells in 3xTg-AD females is also in agreement

with the recently reported 20% increase in plaque load observed in

APP23 transgenic mice females when compared to males [42].

Furthermore,The presence of high number of b-amyloid contain-

ing neurones and occurrence of plaques at 12 months were

occasionally concomitant with the first appearance of phosphori-

lated Tau (Fig. 4G).

Figure 4. Photomicrographs showing the presence of b-amyloid within the pyramidal neurones of CA1 as well as the presence of a
plaque in 12 months 3xTg-AD mice (B) compared to a nonTg control animal (A). C–D: Bar graphs showing the number of cells containing
b-amyloidin the hippocampal CA1 of males (C) and females (D) 3xTg-AD mice. E–F: Linear correlations between the mean number of cells containing
b-amyloid in the hippocampal CA1 and the mean area density of HH3 positive cells in the GCL of the dentate gyrus of males (E) and females (F) 3xTg-
AD mice. In G we can see the accumulation phosphorilated Tau within the CA1 of a 3xTg-AD mice. Or: CA1 Stratum Oriens, Py: CA1 stratum
Pyramidale, Rad: CA1 Stratum Radiatum, LMol: CA1 Stratum Lacunosum Moleculare. * = p,0.05 compared to 2 months; ** = p,0.01 compared to
2 months; ‘ = p,0.05 compared to 3 months.
doi:10.1371/journal.pone.0002935.g004

Neurogenesis Reduction in AD
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Discussion

In the present study we have used single and dual labelling

immunohistochemistry to demonstrate changes in cell prolifera-

tion and neurogenesis within the hippocampal dentate gyrus of an

AD animal model. The experiments were performed on a recently

developed 3xTg-AD mouse model, which is recognised as an

extremely relevant, since these transgenic animals show temporal-

and region-specific Ab and tau pathology, which closely resembles

that seen in the human AD brain [30,31]. These pathological

hallmarks are concomitant with clear functional and cognitive

impairments including LTP, spatial memory and long term

memory deficits, which are manifest in an age-related manner

[30–34]. We found that only a very small proportion of HH3-IR

proliferating cells in either 3xTg-AD or Non-Tg mice express

GFAP (,1%), suggesting that those HH3-IR cells are likely of a

neuronal lineage and thus are an indicator of neurogenesis.

Our main findings are that 3xTg-AD mice have a decreased GCL

neurogenesis, which is also is gender dependent. As happens in

normal rodents (including our control non-Tg animals) the decrease

in the dentate gyrus GCL neurogenesis develops with age [5,14]

However, we found that this effect is much exacerbated in 3xTg-AD,

being at least 60% stronger than in normal animals. These results are

in agreement with findings in other transgenic models of AD in

which transgenic mice having mutant forms of APP or presenilin-1

demonstrated impaired neurogenesis [20–22,24,27,28]. Since none

of models used previously fully reproduces the features of familial

and/or sporadic AD, our findings made in the 3xTg-AD mice

become of major relevance and importance.

We also demonstrated that the impairment of neurogenesis in the

dentate gyrus of the hippocampus is closely associated with AD

pathogenesis. Indeed hippocampus is affected early in AD; impaired

memory related to hippocampal damage may be associated with

deregulations of neurogenesis [5,11,29,43]. Two previous studies,

however, are in contradiction with our findings; one performed on

the APPSw, Ind (Swiss/Indian mutation) mutant and one on FAD

post-mortem human material, reporting an increase of neurogenesis

[18,29]. These discrepancies could be explained by methodological

and preservation differences, including the post-mortem fixation

delay which could contribute to antigen masking and in consequence

a misevaluation of the proliferation rates [44]. In addition, in these

studies the Doublecortin (Dcx) labelling, which marks both young

and immature neurons was used. This could affect the data

interpretation because more than 50% of the newborn cells die

[5]. Another discrepancy may reside in the fact that even if they use

5-Bromo-29-Deoxyuridine (BrdU) as an accurate index to label

proliferating cells, very few of them survives to 4 weeks [28].

Furthermore, these methods suffer from uncertainty since they may

not detect a distinct proliferative state but instead mark repaired

DNA in post-mitotic neurons and/or an abortive cell cycle [45,46].

In this study we also investigated the gender difference of the rate

of neurogenesis in 3xTg-AD mice. We found that neurogenesis in

female 3xTg-AD mice is affected earlier; already at 4 months of age

we found significant depression of neurogenesis in female AD

animals. This difference is in line with the recently reported sexual

dimorphism observed in cognitive performance such as the Morris

water-maze in which female 3xTg-AD mice also perform worse than

males [37]. In addition, it correlates to the well known fact, that AD

affects women earlier and with more severity than men (according to

some findings the incidence of the disease is double in females

[35,36]. Importantly such a gender-based predisposition toward

females is specific of AD and not found in other dementias [36].

Several lines of evidence suggest that this prevalence is directly

related with the circulating levels of estrogens [35,36,47]. As a result

females have higher levels of cell proliferation, but not cell survival

when compared with males cell proliferation rate in turn depends on

the endocrine status [48]. Only proestrus females, with high levels of

estradiol, show higher levels of cell proliferation; which seems to be

mediated through its effect on estrogen receptors [34,48,49]. Be it all

as it may, all these results are in agreement with our findings of a

greater degree of Ab pathology in female versus male 3xTg-AD

animals from 4 months of age; this is also in agreement with recent

results observed in anothere AD transgenic mouse model (APP23) as

well as in line with clinical evidence of higher prevalence of AD in

females [35,36,42,50,51]. However, future studies are needed to

confirm this estrogen active role on cell proliferation and

neurogenesis whilst lately it has been shown controversial evidence

in some mouse strains, such as C57BL/6, in which female

hippocampal cell proliferation is not influenced by estrous cycle or

ovariectomy [52].

Generation of new neurones is an important feature of the adult

brain; in hippocampus the newborn neuronal cells, governed by

multiple factors, undergo complex stages of morphological and

functional maturation and integrate into existing neural circuitry

[53]. The hippocampal neurogenesis can be directly involved in

variety of cognitive processes; decreased neurogenesis negatively

affects certain learning and memory processes such as spatial

memory [51,53]. In contrast, increased load on the cognitive

processes (e.g. enriched environment) and physical exercises

positively affect neurogenesis [54]. On the other hand the role of

impaired neurogenesis in cognitive deficits in neurodegenerative

diseases is much less characterized. However, our observations

showing an impairment in neurogenesis correlate with the recent

evidence of age dependent impairment in spatial and long-term

memory tasks observed in the 3xTg-AD animals [32–34]; suggesting

a critical implication of neurogenesis in cognitive deficits

Thus, we consider that our data are specifically important as we

directly addressed the contradicting issue of the neurogenesis status

in the AD. By using longitudinal study on newly developed

transgenic model of the disease we demonstrated clear inhibition

of neurogenesis in diseased animals; this inhibition is specifically

pronounced in females, which correlates with clinical observations.

Therefore we conclude that inhibited neurogenesis can play an

active role in development of cognitive deficits and progression of

the AD.
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