In vitro protein adsorption studies on nevirapine nanosuspensions for HIV/AIDS chemotherapy

Shegokar, Ranjita, Jansch, Mirko, Singh, Kamalinder orcid iconORCID: 0000-0001-7325-0711 and Müller, Rainer H. (2011) In vitro protein adsorption studies on nevirapine nanosuspensions for HIV/AIDS chemotherapy. Nanomedicine: Nanotechnology, Biology and Medicine, 7 (3). pp. 333-340. ISSN 15499634

[thumbnail of Publisher's post-print for classroom teaching and training purposes at UCLan.] PDF (Publisher's post-print for classroom teaching and training purposes at UCLan.) - Published Version
Restricted to Registered users only

638kB

Official URL: http://dx.doi.org/10.1016/j.nano.2010.10.012

Abstract

Nevirapine is a poorly water-soluble antiretroviral drug. Intravenous nevirapine nanosuspensions (NS) (457 ± 10 nm) were prepared by high-pressure homogenization. NS were surface modified by stabilizer adsorption, e.g., serum albumin, polysaccharide and polyethylene glycol (PEG) 1000. The NS were characterized for mean particle size, particle size distribution and polydispersity index. The targeting potential of the nonmodified and three surface-modified NS to the mononuclear phagocytic system (MPS) cells that serve as potent viral reservoirs was assessed by in vitro protein adsorption studies using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). The adsorption patterns were qualitatively identical, but showed quantitative differences. The relatively adsorbed high amounts of immunoglobulins indicate uptake by liver and spleen, observed quantitative differences (e.g., the amount of dysopsonin albumin and apolipoproteins) can modulate the organ distribution. Controlled in vitro optimization of the protein adsorption by surface modification of the nanocrystals can reduce the number of animals required for in vivo studies and accelerate development of targeted nanoparticles.


Repository Staff Only: item control page