
A CRITICAL EVALUATION OF OBJECT-ORIENTED

ANALYSIS AND DESIGN METHODS WITH A SPECIAL FOCUS

ON OBJECT FORMULATION

by

Helen Campbell, Cert Ed, BSc (Hons)

A thesis submitted in partial fulfilment for the requirements of the award of Master of
Philosophy

University of Central Lancashire
May 2001

Contents

Chapter One: Introduction 	 .11
1.1 	Research 	Question .. 11

1.2 The importance of this area of research. ... 14

1.3 	What else 	has 	been 	done9 .. 17

1.4 	Research 	Method .. 24

1.5 	Benefits 	of the 	research .. 24

1.6 	Structure 	of the 	Thesis .. 24

1.7 	Summary 	.. 25

Chapter Two: Research Methods ...26

2.1 	Introduction .. 26

2.2 	Research 	Methods ... 26
2.2.1 	Conceptual 	Study .. 28
2.2.2 	Laboratory experiments .. 28
2.2.3 	Field 	experiments.. 29
2.2.4 	Surveys.. 29
2.2.5 	Case 	Studies .. 30
2.2.6 Phenomenology I Hermeneutics ... 32
2.2.7 	Action 	Research .. 34

2.3 Choice of action research and the implications .. 36

2.4 	Summary ... 39

Chapter Three: Object Orientation and Object-Oriented Systems Development
Methods ... 40

3.1 	Terminology .. 40
3.1.1 	Methodology and Method... 41
3.1.2 	Method 	and 	Operation 	.. 42

3.2 Development of object-oriented methods ... 43

3.3 	Object-Orientation .. 43
3.3.1 	Object-oriented 	thinking ... 45
3.3.2 	Object 	system.. 46

3.4 	Themes 	in 	object orientation .. 46
3.4.1 	Abstraction .. 46
3.4.2 	Encapsulation .. 47
3.4.3 	Inheritance 	.. 47

3.5 Development of object-oriented analysis and design methods SC

3.6 Brief overview of object-oriented analysis methods 52
3.6.1 Event driven approach to object-oriented analysis ... 52
3.6.1.1 Shlaer and Mellor's Object Oriented Systems Analysis (OOSA) 52
3.6.1.2 Coad and Yourdon's Object-Oriented Analysis (OOA) 53
3.6.2 	Model-driven approach ... 54
3.6.2.1 Rumbaugh et al's Object Modelling Technique (OMT)...................................... 54
3.6.2.2 Embley's Object-oriented systems analysis (OSA) ... 55
3.6.2.3 	Martin 	and 	Odell 	Ptech .. 55
3.6.3 	Use case driven approach..
3.6.3.1 Jacobson et al's Object-Oriented Software Engineering (OOSE) SC
3.6.4 	Role 	driven 	approach .. 57
3.6.5 	Responsibility driven approach ... 5

3.6.6 Unified Modeling Language (L) . 59
3.7 Justification of choice of methods to be evaluated 59

3.7.1 	OOA (Coad and Yourdon 	1991)... 60
3.7.2 Object-Oriented Modelling and Design (Rumbaugh eta! 1991)............................ 60
3.7.3 Object Oriented Software Engineering (Jacobson eta! 1998) 61

3.8 	Summary 	.. 61
Chapter Four: Evaluation Framework ..63

4.1 	Background to Methodologies .. 63
4.1.1 	Comparison of Methodologies.. 63

4.2 Strategies for comparing methodologies ... 64
4.2.1 	Taxonomies... 64
4.2.2 	Visual 	Comparisons .. 65
4.2.3 	Descriptive comparisons... 65
4.2.4 	Structured 	thinking 	... 66
4.2.5 	Frameworks 	.. 68

4.3 A Framework for Comparing Methodologies - Avison and
Fitzgerald ... 68

4.3.1 	Philosophy 	.. 69
4.3.2 	Model .. 70
4.3.3 	Techniques and tools... 70
4.3.4 	Scope... 71
4.3.5 	Outputs.. 71
4.3.6 	Practice.. 71
4.3.7 	Product .. 7!

4.4 	MULTIVIEW ... 71

4.5 A Framework for Method Evaluation - NIMSAD 74
4.5.1 Introduction to the NIMSAD framework.. 74
4.5.2 The 	'problem 	situation .. 76
4.5.3 The intended problem solvers and their 'mental constructs' 77
4.5.4 The Problem Solving Process ... 79
4.5.5.1 Stage 	1: Understanding the 'situation of concern' ... 80
4.5.5.2 Stage 2: 	Performing the diagnosis ... 81
4.5.5.3 Stage 3: 	Defining the prognosis outline... 82
4.5.5.4 Stage 4: 	Defining problems ... 83
4.5.5.5 	Stage 5: 	Deriving notiona! systems.. 83
4.5.6 	Phase 	2 	- 	solution design... 84
4.5.6.1 Stage 6: Performing the conceptual/logical design. ... 84
4.5.6.2 Stage 7: Performing the physica! design.. 84

4.6 Phase 3: 	Design implementation. ... 85
4.6.1 	Stage 8: 	Implementing the design... 85

4.7 	Methodology 	evaluation .. 86

4.8 Justification of choice of Evaluation Framework 89

4.9 	Summary 	.. 90
Chapter Five: Critical Evaluation of Object Identification in Object Oriented
Analysis(OOA). .. 91

5.1 Introduction to Object Oriented Analysis (OOA) 91

5.2 Evaluation of OOA focused on Object identification 92
5.2.1 	Element 	1:The 	'problem situation' ... 92
5.2.2 Element 2: The intended problem solver .. 94
5.2.3 Element 3: The problem solving process.. 98
5.2.3.1 	Stage (i) Understanding the 'Situation of concern' ... 99

PAl

5.2.3.1.1 	Investigation models and techniques .. 99
5.2.3.2 Stage (ii) Performing the Diagnosis... 102
5.2.3.3 Stage (iii) Defining the prognosis outline .. 104
5.2.3.4 	Stage (iv) Defining problems... 105
5.2.3.5 Stage (v) Deriving Notional Systems... 105
5.2.3.6 Stage (vi) Performing Conceptual / Logical Design .. 106
5.2.3.7 Stage (vii) Performing the Physical Design ... 107
5.2.3.8 Stage (viii) Implementing the Design .. 108
5.2.4 	Element 4: 	Evaluation.. 108

5.3 	Summary 	.. 109
Chapter Six: Critical Evaluation of Object Identification in Object Modelling
Technique .. 111

6.1 Introduction to Object Modelling Technique (OMT) ill
6.2 Evaluation of OMT focused on Object Identification 113

6.2.1 	Element 	1: The 	'problem situation' .. 113
6.2.2 Element 2: The intended problem solver .. 117
6.2.3 Element 3: The problem solving process.. 120
6.2.3.1 Stage (i) Understanding the 'Situation of concern' ... 120
6.2.3.1.1 	Investigation models and techniques .. 122
6.2.3.2 Stage (ii) Performing the Diagnosis... 122
6.2.3.3 Stage (iii) Defining the Prognosis Outline ... 129
6.2.3.4 Stage (iv) Defining problems... 129
6.2.3.5 Stage (v) Deriving Notional Systems... 130
6.2.3.6 Stage (vi) Performing Conceptual / Logical Design .. 131
6.2.3.7 Stage (vii) Performing the Physical Design ... 131
6.2.3.8 Stage (viii) Implementing the Design .. 132
6.2.4 	Element 4: 	Evaluation.. 132

6.4 	Sunmrnry 	.. 133
Chapter Seven: Critical Evaluation of Object-Oriented Software Engineering 136

7.1 Introduction to Object Oriented Software Engineering (OOSE) 136
7.1.1 	Use case 	driven ... 137

7.2 Evaluation of OOSE focused on Object Identification 139
7.2.1 Element 	1: The 	'problem situation' .. 139
7.2.2 Element 2: 	The problem solver... 142
7.2.3 Element 3: The problem solving process.. 145
7.2.3.1 Stage (i) Understanding the 'Situation of concern' ... 145
7.2.3.1.1 	Investigation models and techniques ... 147
7.2.3.2 Stage (ii) Performing the Diagnosis... 148
7.2.3.3 Stage (iii) Defining the prognosis outline .. 156
7.2.3.4 	Stage (iv) Defining problems ... 156
7.2.3.5 Stage (v) Deriving Notional Systems... 157
7.2.3.6 Stage (vi) Performing Conceptual / Logical Design .. 157
7.2.3.7 Stage (vii) Performing the Physical Design ... 158
7.2.3.8 Stage (viii) Implementing the Design .. 158
7.2.4 Element 4: 	Evaluation.. 159

7.3 	Summary 	.. 159
Chapter Eight: Finding Objects in Practice ... 163

8.1 	Sampling ...

8.2 	Investigation 	Method ... 164

8.3 	Raw 	Data .. 165

8.4 Analysis ..165

5

8.4.1 Problem Situation .166
8.4.2 	Problem 	Solver 	... 166
8.4.3 	Problem Solving Process .. 167

8.5 	Lessons 	Learned.. 170
ChapterNine: Conclusions .. 171

9.1 	Major 	Findings... 171

9.2 Conclusions on object formulation from a methodological
perspective... 175

9.3 Conclusions drawn from evaluated methodologies 180

9.4 Conclusions drawn from the use of NIMSAD.. 182
9.4.1 	Problem 	Formulation .. 184
9.4.2 Framework as a basis for learning .. 185

9.5 	Summary 	.. 186

9.6 	Future 	Work .. 188
References.. 190

Tables and Figures

Figure 2.1 A Framework to aid choice in information systems research approaches..27
Figure 2.2 Organised use of rational thought ... 37
Table 2.1 A Comparison of Positivist Science and Action Research 39
Figure 3.1 	Multiple Inheritance .. 49
Figure 4.1 Ontological notion of a 'system .. 67
Figure 4.2 Epistemological notion of 	'systems' .. 68
Figure 4.3 The Multiview Framework ... 72
Table 4.1 	Methodology Outputs ... 73
Figure 4.5 	NIMSAD elements and stages. ... 75
Figure 4.6 Deriving notional 	systems ... 84
Figure 4.7 The Problem Solving Process ... 86
Table 4.1 	Evaluation 	issues. ... 88
Table 6.1 Criteria used to refine candidate objects .. 124
Figure 6.1 	Identification of relevant classes ... 125
Table 6.2 Criteria used to refine associations ... 126
Figure 6.2 Associations from ATM problem statement ... 127
Table 6.3 Criteria used to refine attributes ... 127
Table 6.4 Criteria used to identify missing objects .. 128
Figure 7.1 Systems development viewed as a process of model building 137
Figure 7.2 A Process changes one model into another... 137
Table 7.1 Problem Solving process in OOSE... 138
Figure 7.3 Can, bottle and crate have common properties inherited from Deposit Item

... 152
Figure 7.4 Interface objects in the recycling machine, customer panel, operator panel,

receipt printer and alarm device ... 153
Figure 7.5 The objects supporting the use case Returning Item................................. 156
Table 	8.1 	Population 	sampling ... 164
Table8.2 	Raw 	Data .. 165
Table 9.1 	Issues raised during evaluation... 187

7

Acknowledgements

I wish to thank my colleagues and friends within the Department of Computing for

their support while I have been involved in this research. Jean Richards, Head of

Department, for her support, forbearance and encouragement without which I could

not have continued. Barbara McManus, Pietro Murano, Linda Snape, Peggy Gregory,

Janet Read, Martin Birch, Christopher Roberts and Tony Nichol for their support and

assistance as fellow research students. Norman Lee, Stuart MacFarlane and Simon

Monk for reading the draft copies and offering a guiding hand.

Professor Nimal Jayaratna and my supervisory team, thank you for your help, support

and enlightening discussions, without your faith in my abilities I would have given up

long ago. Professor Trevor Wood-Harper for the guidance and help in the later stages

of the research. Many thanks to Peter Clare for being there when I needed additional

support and guidance; it was greatly appreciated.

To my husband Alan, thank you for being there, supporting me and helping me

through the bad times. David and Gillian, my children, I appreciate your support. To

Samantha, a blessing in disguise, now I have time to be a 'proper' grandmother.

Abbreviations

AT Artificial Intelligence

CAD Computer Aided Design

CASE Computer Aided Software Engineering

CLOS Common LISP Object System

CRC Classes, responsibilities, collaboration

DFD Data Flow Diagram

DM Dynamic Model

DM1. Data Manipulation Language

ER Entity Relationship

ERA Extended Relational Analysis

FM Functional Model

IE Information Engineering

IS Information Systems

LISP LISt Processing

NIMSAD Normative Information Model-based Systems Analysis and Design

OBM Object-behaviour model

ODMG Object Database Management Group

OlD Object Identifier

OIM Object interaction model

OM Object Model

0MG Object Management Group

OMT Object Modelling Technique

ORM Object-relationship model

OSA Object system Analysis

00 Object Oriented

OOA Object Oriented Analysis

OOD Object Oriented Design

00DB Object Oriented Database

OOPL Object Oriented Programming Language

OOram Object-Oriented Role Analysis and Modelling

OOSA Object Oriented Systems Analysis

I'
rA

OOSE Object Oriented Software Engineering

RDB Relational Database

RDMS Relational Database Management System

SSM Soft Systems Methodology

STD State Transition Diagrams

UI User Interface

UML Unified Modelling Language

W[MP Windows, Icons, Mice and Pointers

10

Chapter One: Introduction

This chapter identifies the research question under investigation. The research is set in

context and then the importance, the implications and the benefits of carrying out the

research are discussed.

1.1 Research Question
Object-oriented methods have developed around object-oriented technology, such as,

object-oriented thinking and themes, systems development process from analysis

through design to implementation. An object-oriented method of systems development

predominantly focuses on software development. A number of texts on system

development e.g. 011e et al. (1991) and Rumbaugh et al. (1991) can give

inexperienced method users the impression that the solution to many business

problems can be achieved by implementing new systems.

Graham (1995) identifies many benefits of the object-oriented approach. Many of

these relate specifically to the benefits of object-oriented programming and reuse of

code, classes or modules. Those that are relevant to object-oriented analysis include:

well-designed objects in object-oriented systems are the basis for systems to

be assembled from large reusable modules.

• The data-centred design approach of object-oriented analysis, because it

subsumes process as well, and is able to capture more of the semantics of a

model in an implementable form.

• Object-oriented systems are potentially capable of capturing far more of the

meaning of the application: its semantics. Since object-oriented methods are

mainly concerned with modelling systems they can be used to carry out

scenario modelling and facilitate changes within the business. This property

leads to greater reversibility in the end product, and enhances the possibility of

reverse engineering systems and tracing features back to requirements.'

This clearly indicates that identification and formulation of objects is central to the

object-oriented paradigm.

For any object-oriented method the single most crucial aspect of the analysis and

design phase is the determination of which objects and classes to include in the model.

Object is a very fundamental concept in object-orientation. In the 'action world', an

11

object could be a real thing that everyone can see such as a car, a book, a bike or a

concept that is a relevant to the 'problem area'. For example, the object 'church' could

be identified as a physical building where people meet for specific services; it could

also be viewed as a conceptual object that includes the religious practices, the people

and the notion of community involved in the church activities.

In object-oriented analysis and design, an object models some unity that exists in

physical or conceptual space, or some new unity that could be realised in the physical

space because someone has thought it out. Users of object-oriented systems

development methods describe object systems of their clients' systems; such systems

are often said to give a 'logical view' of an object system (Booch 1991). For example,

patients and their visits to a clinic, doctors and their work schedules in a clinic can be

partially described as objects of a patient administrative system.

Objects are at the core of any object-oriented system and it requires a clear vision of

which objects belong in the system to produce a relevant object-oriented analysis

model. However there is currently no universally agreed approach to object-oriented

analysis, although recently Rational Rose's Universal Modelling Language (UML)

(Booch et al. 1996; Mellor and Lang 1997) has claimed to be the de facto standard.

This raises the question:

- How do we identify objects?

Inspection of the current literature reveals that the methods for identifying and

formulating objects are based on natural language descriptions of the required system.

This introduces many inherent ambiguities as it also depends on the writer's linguistic

ability rather than the designer's knowledge and experience in a problem domain

(Ramachandran and Taylor 1994).

Few texts discuss how the initial identification of entities or objects may be carried

out, and some suggest that there is no problem.

'The world being modelled is made up of objects... objects are just there for

the picking!' (Meyer 1988)

or that

12

'identifying objects is pretty easy to do. Start out by focussing on the

problem at hand and ask yourself 'what are the things in this

problem'?"(Shlaer and Mellor 1988).

These views are difficult to reconcile with observations of novice and inexperienced

data analysts who frequently find great difficulty in identifying a set of 'relevant'

entities or objects (Lewis 1994).

Coad and Yourdon (1991) recommend that the analyst identify those 'things' that 'are

of relevance and importance to the organisation'. This however only poses further

problems. What do we mean by relevant? 1-Tow do we identify what is and what is not

relevant? Who are they relevant to and in what context?

Object-oriented technology brings a new paradigm for developing information

systems. Nielson (1990) sees an information system methodology as a coherent set of

guidelines. The guidelines prescribe actions both in terms of 'what to do' and 'how to

do'. The elements of 'how' are often referred to as techniques that are precise and

contain concrete actions to be taken to achieve an objective. Techniques are closely

related to tools and models and provide a way of developing systems. An information

systems development methodology is an abstraction of structured thinking and actions

to be taken in the situation of information systems development. Its application in

practice is the concrete action taken.

This raises a related question:

- Do object-oriented analysis methods help us to identify objects?

In order to consider this question, a framework is required within which we can

evaluate the methods under consideration. Many frameworks used to evaluate

methods, (011e et al. (1991); Jayaratna (1994) and Avison and Fitzgerald (1995))

have discussed the issues of information systems development and system

development methodologies. Nielson (1990) calls these issues 'knowledge about

methodology and information systems development'.

These issues led me to question what principles; criteria, models and concepts were

being used in object-oriented analysis and design methods. The methods under

consideration Goad and Yourdon (1991); Rumbaugh et al. (1991) and Jacobson et al.

13

(1998) share commonalities rather than differences. They offer a number of

procedures (layers of abstraction) and notations. They all provide support for the

essential principles of object-orientation - classification, inheritance and

encapsulation. However, they all fail to address the critical issues involved in the

analysis process: -

How do we identify objects?

• How do we derive objects from the requirements determination?

NIMSAD 1 (Jayaratna 1994), a formal framework for evaluating methodologies, is

applied to evaluate the selected object-oriented methods; Coad and Yourdon (1991),

Rumbaugh et al. (1991) and Jacobson et al. (1998) (see Chapter 3). The formal

evaluation framework is used to examine object identification from a methodological

perspective.

1.2 The importance of this area of research.
Data analysis and modelling are widely assumed to be 'neutral' or value-free. This

arises from the claim that data analysis merely uncovers an independently existing,

objectively true, structure of the data in a problem domain, recording this structure

through some form of conceptual data model. Whether this model is a relational

model (Codd 1970), entity-relationship model (Chen 1976) or object-oriented (Shlaer

and Mellor (1988), Kim (1990), Coad and Yourdon (1991), Hughes (1991),

Rumbaugh et al. (1991) and Shlaer and Mellor (1991) it is usually presented as

descriptive of what Cutts (1987) describes as the generic underlying structure of the

organisation's data.

Identification of objects serves two purposes: to promote structuring of our

understanding of the 'real world' and to provide a practical basis for developing

models for implementation for potential users. The decomposition of a problem into

objects depends on judgement and the nature of the problem. The lack of attention

given to the question of how to identify entities and objects may be explained by the

original use of data analysis in the design stages of development, where it is relatively

straightforward to identify the 'things' about which data are required to be held. It was

NIMSAD - Normative Information Model-based Systems Analysis and Design Jayaratna, N. (1994).
Understanding and Evaluating Methodologies NIMSAD A Systemic Framework, McGraw Hill.

An introduction to the NIMSAD framework is given in chapter 4

14

in this context that entities were first represented as generalised descriptions of 'real-

world things', and authors such as Martin (1975) explicitly describe an entity as

something that exists in the 'real-world'; entity occurrences are merely particular

identifiable instances of the same 'real-world' thing.

As the use of data analysis is shifting to earlier stages of development where the

problem is less well defined, one would have hoped that one would understand exactly

what they meant by terms such as 'entity' and 'object' and to declare whether they are

used as ontological labels for parts of the real world, or epistemological devices

through which the nature of the 'real world' may be explored. Unfortunately this has

not occurred and there has been a continued reliance on pragmatic 'common sense'

example led definitions that may be inconsistent (Lewis 1994). In much of the object-

oriented literature the concept of 'object' is described, in that objects have identity,

state, behaviour and properties and can be characterised by the set of operations that

can be performed on it or by it and its possible states.

The 'common sense' of our tradition is that in order to perceive and relate to things,

we must have some context in our minds that corresponds to our knowledge of them.

We cannot, therefore, answer questions from a neutral or objective standpoint - we

subconsciously need to consider tradition - that is, 'way of being'. It is a way of

understanding, a background, with which we interpret and act. Tradition emphasises

historicity of our ways of thinking, the fact that we always exist with a pre-

understanding determined by the history of our interactions with others who share the

tradition. People from substantially different traditions have strange and apparently

arbitrary 'worldviews', which in a multi-cultural society may lead to some interesting

debates on the relevance of particular 'things'.

It is claimed (Coad and Yourdon (1991), Rumbaugh et al. (1991), Embley et al.

(1992), Booch (1994), Conger (1994), Elmasri and Navanthe (1994), Graham (1995),

Kroenke (1995) and Norman (1996) that objects are a more natural representation of

the 'real world', allowing for duplication. However on closer inspection of object-

oriented analysis methods, (Shlaer and Mellor (1988), Coad and Yourdon (1991),

Rumbaugh et al. (1991), Embley et al. (1992), Booch (1994), Booch et al. (1996),

Jacobson et al. (1998)) there is little, in the texts, to differentiate between entities and

15

objects and very little to help the methodology user to determine appropriate objects.

Entities and Objects are variously described as:

Entity: a thing that can be distinctly identified (Chen 1976).

Entity is a 'thing' in the real world with an independent existence (Paton et al. 1996).

An entity is a distinct object (a person, a place or thing, concept or event) in the

organisation that is to be represented in the database (Connolly et al. 1995).

An entity is an object that can be distinctly identified and is important to the

information system of the organisation (Maciaszek 1990).

Object: a concept, abstraction, or thing with crisp boundaries and meaning for the

problem at hand (Rumbaugh et al. 1991).

Object is a uniquely identifiable entity that contains both the attributes that describe

the state of a 'real-world' object and the actions that are associated with a

'real-world' object (Connolly et a]. 1995).

Objects are the basic unit of construction, be it for conceptualisation, design or

programming. These are based, as far as possible, on the real-world entities

and concepts of the application or domain (Graham 1995).

In many cases objects are perceived as being the same as the entities identified by

traditional analysis and design methods. This raises an immediate question as to the

definition of entities and objects.

When the object-oriented literature does offer suggestions, on how to identify objects

and entities, they are drawn from the 'craft knowledge' of experienced practitioners

rather than being derived from any theory of how human beings make sense of their

world or inquire into problem situations. These suggestions include discussions with

probable users, investigating the content of current data stores, studying written

problem statements and / or requirement specifications (how these have been prepared

and by whom is not clear) and intuition and experience. These may be useful but

ultimately the data analyst is forced to make subjective choices on what are relevant

entities or objects. This is particularly evident where data analysis is being used early

in the development; when its rote is to investigate exactly what 'things' we need to

store information about. This indicates that the identification of object is recognised as

a key bottleneck in applying both object-oriented analysis and design.

IN

Traditional structured methods focus on the business functions; data analysis methods

focus on the flows of data and the structure of the data files within the organisation

context. These methods identify entities using textual analysis: nouns and verbs. The

normalisation process removes dependencies and data duplication so that re-creation

of an entity can involve joining multiple tables. The person responsible for writing the

queries needs to have an understanding of the structure of the underlying tables and

the purpose for which the queries are being written. Consequently it can be difficult to

write ad hoc queries and obtain the expected results.

The methods evaluated (Coad and Yourdon (1991); Rumbaugh et al. (1991) and

Jacobson et al (1998) rely heavily on 'craft knowledge and experience in order to

identify and formulate objects'. This is unsatisfactory from a personal and an

academic perspective. How is experience gained? How do you know if it is relevant

experience? What is meant by craft knowledge? There is very little work on the role

of methods in the identification of objects, and an emphasis on 'experience' and 'craft

knowledge' when identifying objects with little justification. This is based on a

pragmatic approach that does not appear to be well argued. Answers to these questions

and related questions arising from the research process are important in order to

clarify our understanding and to assist in formulating a realistic set of criteria by

which objects can be identified and formulated. If identification and formulation of

objects are not considered in this context then we are left with reliance on

'experience', be that of the problem domain or the method and the use of textual

analysis, (Abbott 1983), Kelly grids and other techniques offered for identifying

entities.

1.3 What else has been done?
Literature relating to identification and formulation of objects is very sparse although

sections purporting to cover this are found in textbooks relating to either specific

object-oriented methods or to object-orientation in general be that from a software

engineering perspective, an analysis and design perspective or a database perspective,

for example, (Shlaer and Mellor (1988), Goodman (1989), Khoshafian and Abnous

(1990), Booch (1991), Coad and Yourdon (1991), Rumbaugh et al. (1991), Bertino

and Martino (1993), Conger (1994), Graham (1995) Jacobson et al. (1998)). How

objects are identified depends very much on the authors' perspective and can vary

17

from using entity and object interchangeably to the implication that identification of

objects is not a problem as everyone implicitly knows what objects are.

Lewis (1994) gives a number of quotes from the data modelling and object-oriented

literature showing that many methods assume an objective ontology. Lewis shows that

there is a potential danger with object-orientation in the insistence that objects are a

more natural representation of the real world. When combined with an ontological use

of the concept of 'system' this leads to the representation of data analysis as a non-

complex, though complicated, process concerned with the creation of models that

describe precisely the 'real world'. The commitment to creating data models that

reflect the 'real world' is extremely important, as it suggests a particular philosophical

location for data analysis as an organised means of rational enquiry, where object

modelling is seen as an objective exercise, and classes and associations can be said to

exist independently of people. Problems with object models are associated with a

failure to capture and specify the real requirements. The solution is to improve the

engineering process such that the requirements specification is accurate, complete

consistent, and unambiguous. The assumption that there is agreement on means and

ends leads to a single object model that is suitable for and acceptable to all

stakeholders (Vidgen and Wood 1995).

The emphasis on particular styles of rationalised thought and action means that

'rationalistic tradition' can be distinguished by its narrow focus on certain aspects of

rationality. This often leads to attitudes and activities that are not rational when

viewed in a broader perspective. Rationalistic orientation pervades much of the

computer science, linguistics, management theory and cognitive sciences. A

rationalistic orientation to object identification can be depicted in a series of steps:

• Characterise the situation in terms of identifiable objects with well-defined

properties.

• Find general rules that apply to situations in terms of those objects and properties.

• Apply the rules logically to the situation of concern, drawing conclusions about

what should be done.

It could be argued that many of the developers of object-oriented analysis approaches

adopt a rationalistic perspective, as the first step in their approaches is to characterise

the situation in terms of identifiable objects.

IV

This view is apparent in the literature written by many developers of object-oriented

analysis methods. For example:

The 'strategy (for identification of objects) comes from practice and

experience in the field' (Coad and Yourdon 1991).

'Analysts must consider the problem in which they work... first they must

understand the problem domain at hand.... If an analyst simply assumes

s/he has the subject matter knowledge s/he is likely to indulge in thinking

that will lead to fuzzy requirements' (Coad and Yourdon 1991).

As Coad and Yourdon (1991) initially developed structured analysis methods, one

assumes that they are relying on this past experience. This would suggest that they use

approaches that are familiar to themselves, as authors, without understanding exactly

what principles are being applied and why. Similar statements are to be found in other

texts, with no explanation to their meaning.

'Begin by listing candidate object classes found in the written description

of the problem. Write down every class that comes to mind. Classes often

correspond to nouns (Rumbaugh 1991).

'identifying objects is pretty easy to do. Start by focusing on the problem

at hand and ask yourself ' What are the things in this problem". If your

organisation uses database technology, you probably know how to do this

already (Shlaer and Mellor 1988).

'the world being modelled is made up of objects... objects are just there

for the picking!' (Meyer 1988).

An alternative but complementary approach, first suggested by Abbott (1983) is to

extract the objects and operations from the textual description of the problem. This

relies on the readers having a shared understanding of the problem domain and

perceiving the same problems and objects. Objects correspond to nouns and

operations to verbs. Verbs and nouns can be further sub-classified. For example, there

are proper and improper nouns, and verbs to do with doing, being and having. 'Doing'

verbs give rise to operations, 'being' verbs to classification structures and 'having'

19

verbs to composition structures. Transitive verbs generally correspond to operations,

but intransitive ones may refer to exceptions or time-dependent events; in a phrase

such as 'the shop closes', for example. This process is a helpful guide but may not be

regarded as any sort of formal method. Intuition is still required to develop the best

design.

Object-oriented design techniques (such as OMT) organise systems around real world

objects or conceptual objects that exist in the user's view of the world (Rumbaugh et

al. 1991). Different interpreters will see and talk about different problems. The

subjectivist considers reality to be socially constructed and that there are potentially as

many realities as there are people involved in the development exercise. Object

models are at best agreed inter-subjectively, requiring the participation of many of the

parties affected by a proposed Information System. The more people whose interests

are reflected in the model then the more likely it is that a shared understanding will be

reached with agreement of what classes and associations should be incorporated in the

object model and a successful implementation achieved (Vidgen and Wood 1995).

Many of the descriptions of objects include the choice of relevant 'things'. Quinton

(1973) suggests that the idea of a 'thing' is general and is derived not from our

mastery of the technique of reference to individuals but from the 'thing-predicates',

which are the first predicates we learn. The basic elements of discussion are 'thing-

indications', statements in the form 'Here is a chair', 'Here is an orange' - even if they

are expressed in one word sentences- 'chair', 'orange' are still understandable. We

learn to recognise what is meant by the term and can apply it / recognise it in other

situations. What these primary objects of attention have in common is that they are all

'things', not stuffs, (i.e. milk, coal, rain,) or qualities (i.e. hot, hard, round).

The reason there can be no substantial idea of a 'thing' in the widest possible sense of

the term is that nothing is excluded from its field of application; there are, in the

nature of the case, no defining characteristics that can serve to mark it off from

anything else. The situation is different in the case of the primary, concrete or

perceptible 'things', under consideration. They are in the first place, occupants of

space. This means there must be a boundary or limit where the 'thing' finishes and its

surroundings begin in physical terms. This implies that the 'thing' will have both a

20

shape and a size. The characterisation of primary 'things' in general is not very exact

but this is because our conception of such 'things' is not very exact either.

Rationalistic tradition regards language as a system of symbols that are composed into

patterns that stand for things or explanations in the world. Sentences can represent the

world truly or falsely, coherently or incoherently, but their ultimate grounding is in

their correspondence with the state of affairs they represent. The content words of a

sentence (nouns, verbs and adjectives) can be taken as denoting (in the object-oriented

domain world) objects (nouns), properties, relationships (verbs), or sets of these. A

body of work has been produced that systematically examines meaning from a formal

analytical perspective:

• Semantic correspondence recognises deep ontological problems in deciding

just what constitutes a distant object or in what sense a relation or event exists.

• To study meaning is to take for granted that some kind of correspondence

exists, without making a commitment to its ontological grounding.

There is an on-going debate between those who place meaning within the text and

those who see meaning as grounded in a process of understanding in which the text,

its production and its interpretation all play a vital part. The goal of hermeneutics

theory (Checkland (1981), Checkland and Scholes (1990) and Checkland and Howell

(1998) (theory of interpretation) is to develop methods by which we rid ourselves of

all prejudices and produce an objective analysis of what is really there.

Gadamer (1975) takes an opposing approach that takes the act of interpretation as

primary, and understanding as an interaction between the horizon provided by the text

and the horizon that the interpreter brings to it. Any individual, in understanding his or

her own world, is continually involved in activities of interpretation. Interpretation is

based on prejudice (that which is accepted without question) that includes the

assumptions implicit in the language that the person uses. That language in turn is

learned through activities of interpretation. The individual is changed through the use

of language, and the language changes through its use by individuals. Prejudice

implies that all reasons for a conclusion are an accepted fact and are therefore not

open to further reasoning.

21

Object-oriented analysis methods imply that the analysts can step into any

organisation and undertake an analysis exercise. Shlaer and Mellor (1988), Coad and

Yourdon (1991) and Rumbaugh et al. (1991) state that reading documents and talking

to the client and users will supply the necessary background knowledge and enable the

analyst to understand the problem domain. This implies that the analyst is already

familiar with the problem domain. This can lead to problems whereby the analyst

makes assumptions as to what is required without talking to the users. Having gained

an understanding of the problem domain does not mean that the analyst shares the

same understanding of the terminology used.

Information analysis is concerned initially with understanding the business itself and

business needs. It then considers how the needs can be met by providing an

organisational and technical system. Business needs are rarely considered by object-

oriented analysis methodologies. There is an assumption (Jacobson et al. 1998) that an

in-depth business analysis has been performed prior to the object-oriented analysis.

Coad and Yourdon (1991) and Rumbaugh et al. (1991) concentrate on the perceived

problem area and do not consider the organisational requirements. Indeed Rumbaugh

et al. (1991) state that 'psychological, organisational and political considerations for

doing this (analysis) are deemed to be beyond the consideration of the methodology'.

There are indications that the literature concerning object-oriented analysis is

inheriting some of the lack of conceptual clarity of its predecessors. Object-oriented

analysis methodologies have been compared by a number of authors (de Champeaux

and Faure (1992), Fichman and Kemerer (1992) and livari (1994)), they concentrate

mainly on the notation used and the use of inheritance and other object-oriented

features, none of them consider how objects are identified or determined. Brown

(1989), Bouzeghoub and Metais (1991) and Kroenke (1995) propose semantic object

models, which in some cases are seen as alternatives to object-oriented models, in

others as an intermediate step between traditional data models and object-oriented

models

Object-oriented analysis methods use some of the concepts of classification and

categorisation, although there is rarely any reference to the philosophical

underpinnings. Shlaer and Mellor (1988) suggest five categories: tangible entities,

22

roles, incidents, interactions and specifications. Coad and Yourdon (1991) argue that

the techniques and notation of OOA are based on the 'methods of organisation that

pervade all human thinking'. They claim that analysts should look for things or

remembered events, devices, roles, sites and organisational units, and ways of

classifying objects. They rely on classification theory to validate and justify their

proposals that people think in terms of objects and that therefore these 'thinking tools'

are useful in determination of requirements.

An analyst familiar with an application may formulate objects in many different ways

and choosing the 'best' form of representation is to understand the 'real world'

phenomena in object-oriented terms. Some conceptual objects that are formulated in

the mind may correspond directly to 'real world' objects, such as employees or chairs

but others may correspond to invented categories. The objects that are considered to

be relevant may depend on the application, but this may compromise the reusability of

the object. The more high level our systems become, the more they are regarded as

tools for enhancing communication between humans. The more the human aspect is

emphasised the more the subjective factor in object identification comes to the fore.

More recently the study of Semiotics (Lui et al. 1998; Lui 1999) considers the

identification of objects from semantic, syntactic and pragmatic perspectives and as

such could be usefully integrated with object-oriented analysis. From a semiotics

perspective a proper information analysis exercise can only be done if the people

involved use the same language and have a substantial common understanding of the

problem domain. In semiotics the world to be modelled is constructed by the

community of agents, for example, problem owners. The agents know the meanings of

words in their own world, their interpretations are the only ones justified. It is not

allowed, within semiotics, for an analyst to invent artificial terms or introduce new

concepts when modelling the agent's actions. The purpose of this is to force the

analyst to speak the same language as the problem owners. Any ambiguity in the

terms or concepts used in describing the problem should be resolved by putting them

into a context of actions, which are already described and understood. When doing so,

if the problem-owners are inspired with some new terms, the problem owners and the

analyst may use them only after careful consideration.

23

1.4 Research Method
My study will be of an exploratory nature and will consist of a critical evaluation of

selected object-oriented analysis methods, using a selected framework, and

concentrating on how the methodologies help the analyst to determine appropriate

objects. A pilot study will be conducted using interviews and working through a given

scenario by a small number of academics and practitioners in order to determine what

methods are used in practice to identify objects.

In evaluating three object-oriented methodologies, my research follows an

'interpretivist' approach (Galliers 1991) using Action Research and consideration of

hermeneutics. The object-oriented methodologies will be evaluated using NIIMSAD

(Jayaratna 1994) framework. Chapter 2 discusses the research methods chosen and

justifies the stated choice.

1.5 Benefits of the research
This thesis critically evaluates a number of well-known methods and a small number

of industry practices, this underpins future research in this area which could lead to

the development of a set of criteria to aid object identification and formulation, it also

benefits others researchers in the field.

Although object-oriented analysis and design methodologies have been evaluated

previously (de Champeaux and Faure (1992), Fichman and Kemerer (1992) and

McGinnes (1993)), the comparisons are based on differences in notation or technical

content. They do not consider how the methodologies identify objects. In this respect

this thesis contributes to knowledge in this area.

The final benefit of undertaking this research is in improved teaching. The research

area feeds directly into the teaching situation and students are therefore being asked to

critically evaluate their own methods of identifying objects and to challenge what they

read.

1.6 Structure of the Thesis
The main emphasis of this thesis is how objects are identified in object-oriented

analysis methodologies and why this is important from methodological and practical

perspectives. Three object-oriented analysis and design methodologies are evaluated

24

using the NIMSAD (Jayaratna 1994) framework; the similarities and differences

between the methods are then compared

The thesis consists of three parts and nine chapters. Part 1 comprises four chapters.

Chapter 1 addresses the research issue and Chapter 2 research methods. Chapter 3

introduces object-oriented concepts and terminology in order to ensure a common

understanding for the reader. This chapter also includes an overview of current object-

oriented analysis and design methods and justifies the selection of Coad and Yourdon

(1991), Rumbaugh et al. (1991) and Jacobson et al. (1998) for evaluation. Chapter 4

discusses evaluation frameworks and justifies the selection of NIIMSAD (Jayaratna

1994).

Part 2 comprises four chapters. Chapters 5 —7 respectively evaluate the selected

object-oriented analysis and design methodologies using NIMSAD as an evaluation

framework. Chapter 8 evaluates the methods used by practitioners, both in industry

and academia, to identify and formulate objects.

Part 3 comprises one chapter. Chapter 9 identifies the major findings of the research

and then expands on these conclusions from

a methodological perspective,

the perspective of the evaluated methodologies

• the use of the NIIVISAD framework.

1.7 Summary
This chapter identified the research question under investigation, and the importance

of the research issues. The research area was set in context and the implications and

benefits of undertaking the research were identified. The structure of the thesis was

also outlined.

In chapter two I will consider research methods that are relevant for Information

Systems research and justify my choice of action research.

25

Chapter Two: Research Methods

2.11ntroduction

The field of Information Systems is seen as multi-disciplinary and as such choosing an

appropriate research approach in Information Systems has been the focus of much

debate (McFarlan 1984; Mumford et al. 1984; Nissen et al. 1991). These conferences

highlighted the existence of 'radically different' approaches within the Information

Systems research community. By 'radically different', Klein et al. (1991) means

research approaches building on assumptions that are in some way contradictory to

each other. For example, three of the most widely used information systems research

methods, laboratory experimentation, surveys and case studies, are identified as

having a scientific approach, while action research, reviews and descriptive /

interpretive research are categorised as interpretivist. However there is much debate as

to whether case studies should be categorised as an interpretivist research approach,

especially given the particular 'appreciative system' (Vickers 1990) or 'cognitive

filter' (Simon 1978) of the researcher.

Research into information systems can be conducted in a number of ways. The

structure of this chapter is as follows: a brief discussion on typologies of research

methods using some idSs from the two colloquia followed by a brief look at each

research method; the choice of action research for this study and its implications; and

finally a short summary

2.2 Research Methods

According to Galliers (1991) a range of research approaches have been identified for

use in the general field of Information Systems. These have been developed into a

framework (Galliers 1995), to aid choice of information system research approach

(Fig 2.1).

The scientific (objectivist) approach is characterised by realist ontology and a

positivist epistemology. Ontology is concerned with the nature of reality.

Epistemology is concerned with how we gain legitimate knowledge about the world.

Loosely speaking, the objectivist assumes that objects and structures exist

26

independently of human observers and that the appropriate way of gaining knowledge

is by observation and the identification of causal relationships. Scientific approaches

are those that have arisen from the scientific tradition, characterised by repeatability,

reductionism and refutability (Checkland 1981) and which assume that observations

of the phenomena under investigation can be made objectively and rigorously (Klein

and Lyytinen 1985). The subjectivist or interpretivist approach holds that scientific

method is not appropriate for explaining the social world as different people interpret

the world in different ways and any agreement is inter-subjective (Laing 1967;

Checkland 1981; Vidgen and Wood 1995).

Scientific Approaches
	

Interpretevist Approaches

Modes for traditional, positivist approaches
	

Modes for post-positivist approaches

(based on an observation paradigm)
	

(based on an interpretative paradigm)

Object Theorem
Proof

Lab
Exp

Field
Exp

Survey Case
Study

Futures
Research

Simulation Reviews Action
Research

Society * * ** *** ** *** ** *** **

Organisation * ** *** *** *** *** *** ***

individual * *** *** ** ** ** *** *** **

Technology *** *** *** ** * *** *** ** *

Methodology I *** * *** *** *** * *** ***

Key: likely relevance: *** potentially good; ** possible; * less likely

Adapted from (Galliers 1995)

Figure 2.1 A Framework to aid choice in information systems research

approaches

Interpretivist approaches argue that the scientific ethos is misplaced in social scientific

enquiry because of:

the possibility of many different interpretations of social phenomena,

- the impact of the social scientist on the social system being studied,

- the problems associated with forecasting future events concerned with

human ... activity' (Checkland 1981; quoted in Galliers 1991).

The explanation and understanding of the occurrences have therefore to consider the

subjectivity of the actors and the potential impact of the researcher upon the situation.

27

The following sections consider each method, giving a fuller definition and a brief

discussion:

Conceptual study

Laboratory experiments

Field experiments

Surveys

Case Studies

Phenomenological Research I Hermeneutics

Action research

2.2.1 Conceptual Study

This method is to the extreme right of the interpretivist approach (for example, more

idealistic) and is sometimes referred to as 'armchair research'. The implication is that

no actual on-site experimentation is carried out. The development of frameworks for

research and representative models may be seen as falling into this category. A related

approach is that labelled as philosophical research (Jenkins 1985). The basis for the

research may be strictly that of opinion and speculation.

A conceptual study often involves the logical reasoning of causal relations using a

standard set of rules. This ensures that anyone may repeat the process and obtain the

same results. These methods require only the thinking process and no active

experimentation. There is therefore no measurement or observation. The testing of a

hypothesis is therefore also irrelevant. The major drawback with this approach is the

necessity to link the conceptual environment with a 'real environment'. That type of

mapping requires the application of one of the other methodologies in the Information

Systems field.

2.2.2 Laboratory experiments

The key features of the laboratory experiments approach is the identification of the

precise relationships between variables in a designed, controlled, environment (for

example, a laboratory) using quantitative analytical techniques. This is done with a

view to making general statements that are applicable to real world situations. The

major strength of the approach lies in the ability of the researcher to isolate and

control a small number of variables, which may then be studied intensively. The major

weakness of the approach is the limited extent to which identified relationships exist

in the real world due to the over-simplification of the experimental situation and the

isolation of such situations from most of the variables that exist in the real world

(Galliers 1991)

2.2.3 Field experiments

Field experiments are an extension of laboratory experiments into the 'real world' of

organisations/society and include field studies, field tests, adaptive experiments or

group feedback analysis (Dickson et al. (1977), Jenkins (1985)). The idea is to attempt

to construct an experiment in a more realistic environment than is possible in the

artificial laboratory situation. Strengths and weaknesses are the same as for laboratory

experiments but an additional weakness is the difficulty of finding organisations

prepared to be experimented on. In addition replication is problematic, in that it is

extremely difficult to achieve sufficient control to enable replication of the experiment

with only the study variable being altered.

2.2.4 Surveys

Survey research is characterised by Bryman (1989) as entailing

'the collection of data on a number of units and usually as a single junction

in time, with the view of collecting systematically a body of quantifiable

data with respect to a number of variables, which are then examined to

discern patterns of association'.

The systematic collection of data in quantifiable format, primarily through the use of

structured questionnaires and interviews, therefore forms the bedrock of the survey

research method. A sample, which is representative of the target population, is

collected in respect of a number of predefined variables at a particular point in time.

This pool of data is subsequently aggregated and examined, using various rules, to

discern patterns of association between the variables. These patterns are compared

against the hypothesis investigated to determine causality. On the basis that the

sample is representative of the target population, statistical generalisation of the

findings can be deduced. Statistical sampling error techniques are employed to

establish the scientific nature of the findings.

In surveys, involvement on the part of the researcher is limited to composition of

questionnaires and a passive collection of the data from the selected group of

We

respondents. The strength of this research approach is that a large pool of quantitative

data can be obtained on a large number of issues under investigation. Analysis of data

leading to the conception, and inference, of knowledge is often dependent on the

satisfaction of various pre-requisites of the different research approach. One of the

pre-requisites involves the degree of subjectivity that affects the findings. In survey

research the subjective quality of the respondents and the researcher are often not

recognised and considered in the findings. This deficiency can lead to possible

misrepresentations and generalisations of knowledge. Similarly, analysis and

interpretation of the data is open to the subjective bias of the researcher through the

nature of the data collection process.

As object-orientation is increasingly been seen as the preferred development approach

within information systems, a survey of participants within large organisations that

develop information systems could contribute to the broad evaluation of the use of

object-oriented analysis methods within the industry. However, the survey method

would not contribute to the resolution of the problem and difficulties in gaining access

that may have been encountered (Whyte (1984) and Buchanan et al. (1988)) and

acceptance of the participants due to the feeling of suspicion about the impact of

further research. Furthermore the results of a survey would be subject to the personal

interpretations and speculation of the respondents.

2.2.5 Case Studies

Case study research essentially involves the detailed investigation of real world

phenomena. It considers events that take place and relationships that exist, in

particular within a single organisation or a number of organisations. These

observations provide insights that contribute to the building of theoretical knowledge.

In case study research, detailed examination of one or more cases of similar

experiences provides the background for the elucidation of findings and enhancement

of theoretical notions. This is often carried out longitudinally, enabling the

observation of events unfolding over a period of time within particular organisational

settings (Pettigrew 1989). Analysis of the findings, which may take both quantitative

and qualitative forms, leads to increased knowledge of the 'action world'. Case study

research can also be used to explore new areas of knowledge and to test theoretical

30

ideas (Benbasat et al. 1987). Benbasat et al. (1987) identify four criteria to assess the

appropriateness of the case study method. The first is the question of whether the area

of interest can be divorced from its natura! setting. The second is whether or not the

interest lays in current events. The third is the question of the need for control or

manipu!ation of variables. The fourth is the existence of an established theoretica!

base.

Identification and control of independent variab!es is weak in the use of case studies

and interpretations are 'highly subjective'. The area of research may not lend itse!f to

a highly quantified and control!ed situation. The study of a unique situation, occurring

only once, would indicate a case study approach.

Yin (1989) points out that case studies do not necessarily imply a particu!ar type of

evidence or particular mode of data co!!ection. The terms qualitative and case study

are not necessarily synonymous, though often case studies are used to derive

qua!itative as opposed to quantitative data. Case studies might uti!ise questionnaires,

interviews, archival records, documentation, physical artefacts or direct observation as

their source of evidence (Benbasat et al. 1987).

The involvement of the researcher in a case study is genera!!y passive observation and

recording perceptions of the events and interactions that take place. The researcher

adopts the stance of an insider, using flexib!e approaches to gather data over a period

of time, but plays no part in the events and interactions. Detai!ed capturing of data

re!ating to the 'action wor!d' situation is the strength of the approach. However, the

restricted scope of the case study research is considered to be a constraint on its

capacity for generalisation of know!edge. Focused on the interpretations of findings

within the context of the research environment case study research, which often

employs covert means of data co!!ection, is open to the possibi!ity of the Hawthorne

effect (Roeth!is!erger and Dickson 1939) upon the participants. This possibi!ity,

together with the personal attributes of the researchers which influence their

perception of the situation are not overt!y considered in the interpretation of the

findings !eading to distortion of observations.

31

The previous discussion has described the case study approach, when its use might be

appropriate and the various types available. Advantages and disadvantages of the

various approaches have emerged throughout this discussion. These can now be

summarised:

Benbasat et al. (1987) identify three reasons why the case study is appropriate for

information systems research.

1. The study can be conducted in a natural setting, learning about the state of the

art and generating theories for practice.

2. The nature and complexity of the process can be studied.

3. Situations that are new and rapidly changing can be studied using the case

study approach.

The case study lies on the subjective end of the Galliers (1995) framework.

Positioning case studies as a subjective approach to research constitutes the main

source of criticism in the United States. It has been argued that the case study is

relatively 	high 	in cost, 	and control 	is minimal or nonexistent. Offsetting these

disadvantages, the strength of the case study is in its use for study in the natural

situation, including contextual influences, and for provision of deep and

comprehensive analysis, which is unavailable through the application of other

methods (Jenkins 1985).

2.2.6 Phenomenology / Hermeneutics

Boland and Hirschheim (1987) define phenomenology as:

'The methodological study of the consciousness in order to understand the

essence of experience... phenomenology is concerned with the structure of

meaning that gives sense and significance to our immediate experience.'

In other words, the concern is not in finding out how things work but rather in what

things are (Galliers 1991). Boland and Hirschheim (1987) point out that the problem is

basically a hermeneutic problem, that is, one involving the interpretation of situations.

The impetus of this mode of research is that we cannot really understand

communication itself unless we are aware of the context in which that communication

was generated.

32

Hermeneutics has its origins in the interpretation of religious texts. Two schools of

thought exist within hermeneutics; the objectivist school, which wishes to

'decontextualise' the text, thereby producing an objective analysis of what is really

there. This is described in Winograd and Flores (1986). The other school views

interpretation as an essential key allowing us to map from the prejudices of the

communicator to our current set of prejudices.

Heidegger (1962 in (Winograd and Flores 1986)) refutes the idea of the objective

world, which needs no interpretation and the subjective world comprising our

thoughts and feelings only. He argues that the two are not independent, but rather one

does not exist without the other. No objective view of reality exists: it is flavoured by

our subjective perceptions.

Hermeneutics, Palmer (1969) suggests is a way of understanding textual data. It is

primarily concerned with the meaning of a text; that is understanding the text as a

whole and the interpretation of its parts, in which descriptions are guided by

anticipated explanations (Gadamer 1976). It follows from this that we have an

expectation of meaning from the context of what has gone before.

The hermeneutic world-view recognises multiple interpretations of events, based on

the different understandings, motives and reasoning of unique individuals (Webb

1990). Each individual has their own construction of the world and creates their own

reality and their own learning pathway through it (Zuber-Skerritt 1996).

The discussion given to describe this research method would tend to make 'objective'

comparisons with other methodologies difficult. This method may be seen as close to

the subjective end of the spectrum. Its application may not be so much as an

independent method but an approach to use in conjunction with other methods, for

example, action research or case study. Phenomenology / Hermeneutics would not be

appropriate where one wishes to use statistical inference as the guarantor of truth.

There is a plethora of information relating to object-orientation per se but there is little

specifically written about object identification. What is available depends on the

perspective of the author be that a software engineering perspective, a database

33

perspective or a systems analysis perspective. Phenomenology / hermeneutics can be

focused on the literature or past developments, in addition to actual, current,

happenings. This approach is frequently adopted in addition to other approaches in

order to establish the viability of the research question and to limit the scope of

literature search. Critical evaluation of selected texts can lead to significant advances

in knowledge, and the ability to develop theory can be made through in-depth review

of this kind in a particular aspect of subject matter (Galliers 1991).

A phenomenological research approach was taken in order to discover how 'experts'

perform a complex intellectual task; this is described in chapter 8. This was an

exploratory investigation, starting with a minimum of preconceptions and mapping the

main issues that the participants raised.

2.2.7 Action Research

Action Research is sometimes treated as a subset of the case study approach within the

Information Systems research community in North America (Benbasat et al. 1987).

However, it would fail the selection as a research method utilising the 'positivistic or

natural science' criterion. In other words, this criterion would conform to the

assumption that the empirical world is value free, logical and the ultimate reality

(Morgan 1983). The justification of action research is based on the acceptance of the

subjective processes and the possibility that knowledge is socially constructed.

Action research is one of the research strands in social science. The others are pure

basic, which is concerned with a theoretical problem; basic objective, which takes a

general practical problem; evaluation, which assesses some aspect of performance and

applied, which tries to solve a problem by applying the appropriate knowledge (Clark

1972).

Action research is a method that could be described as a paragon of the post-positivist

research methods. It is empirical, yet interpretive. It is experimental, yet multi-variate.

It is observational, yet interventionist (Baskerville and Wood-Harper 1996).

Warmington (1980), who attributes the first explicit use of the method applied to

social problems to the social psychologist Kurt Lewin in the 1940's, has traced the

Im

history of the development of action research. In Warmington's account, the implicit

use of the method by researchers such as F.W. Taylor and E. Mayo in solving

practical organisation problems predates Lewin's work. Lewin's motivation and

contribution was that the researcher ought to be 'useful' as well as being an observer

and that theory needs to be accumulated. Other versions of the method were used in

the 1960's by the Tavistock Institute and by Lancaster University. At Lancaster

Action Research was used extensively in Soft Systems Methodology (Checkland

1981; Checkland and Scholes 1990; Checkland and Howell 1998) which develops the

concept of human activity systems within a system engineering methodology.

These variants will not be discussed further but the essence from the different

interpretations can be captured in the following quote from Hult and Lennung (1980):

'Action research simultaneously assists in practical problem solving and

expands scientific knowledge, as well as enhances the competencies of the

respective actors, being performed collaboratively in an immediate situation,

using data feedback in a cyclical process aiming at an increased

understanding of a given social situation, primarily applicable for the

understanding of change processes in social systems and undertaken within

a mutually acceptable ethical framework'

Action research therefore attempts to link theory and practice, thinking and doing,

achieving both practical and research objectives (Susman 1983). Gaining this

knowledge is seen as an active process, so that beliefs may be re-defined in light of

the outcomes. A representation of reality is not so much desired, but rather is a means

of dealing with reality. Action research is a pragmatic approach which desires to

'come to terms' with the world. This emphasis on the pragmatic is further reflected by

Susman (1983) who states that action research builds on a learning circle. His learning

circle is diagnosis, action planning, action taking, evaluation and the specification of

learning (Susman and Evered 1978). The key point to notice is that the researcher/

actors/ participants/ subjects begin in a real concrete situation and return to it at the

end of the leaning cycle.

This type of learning represents the enhanced understanding of a complex problem.

Information about a particular situation and a particular environment has been

35

obtained, which gives a contingent value to the truth learned. The researcher expects,

however, to generate knowledge that will further enhance the development of models

and theories. The aim is the understanding of the complex human process rather than a

universal prescriptive truth.

Finally, in the process of learning, an explicit clear conceptual framework must exist

which the researcher imposes on the situation. The conceptual framework must be

acceptable to both the researcher and the organisational actors in the action research

study (Warmington 1980). This is needed so that the explicit lessons will emerge from

the research cycle.

In comparing action research with the other methods, three important distinctions

should be brought out.

1. The researcher is actively involved, with expected benefits for both researcher

and organisation.

2. Knowledge obtained can be immediately applied. There is not the sense of the

detached observer, but that of an active participant wishing to utilise any

lessons teamed based on an explicit clear conceptual framework.

3. The research is a cyclical process linking theory and practice.

2.3 Choice of action research and the implications.

The discipline of information systems seems to be a very appropriate field for the use

of action research methods. Information Systems is a highly applied field, almost

vocational in nature (Banville and Landry 1989). Action research methods are cyclical

in nature and place Information Systems researchers in a 'helping hand' role within

the organisations that are being studied. Action research merges research with praxis

thus producing exceedingly relevant research findings (Baskerville and Wood-Harper

1996). Such relevance is an important measure of the significance of Information

Systems research.

The above discussion can be seen within Checkland's intellectual context: the

'organised use of rational thought (Checkland and Scholes 1990). This context is

based on a simple model of a cycle of continuous inquiry where theory interacts with

practice (Fig 2.2)

\M 	Methodology
for using

H1 H u
In tellec ha a
framework

FS

learning about

Area
of
Application

A

P.14.4 	from
the use of NI

Figure 2.2 Organised use of rational thought

(adapted from Checktand 1981)

Depicted in this diagram is the use of a theory, an intellectual framework of linked

ideas F; through a methodology or an intervention process M; to an application area

A. In going through a cycle, learning can be generated about F, M and A.

Within this thesis the area of application is the identification of objects in object-

oriented analysis methods. There are a plethora of object-oriented analysis methods

available, many of which would have us believe that everyone knows what an object

is or identifying objects comes with practice. In order to evaluate a selection of object-

oriented analysis methods a problem-solving framework is required, NIMSAD

framework was selected as an appropriate intellectual problem-solving framework

(chapter 4). The question now is which research method is appropriate to learn about

the theory, the methodology and the identification of objects in object-oriented

analysis?

The need for this learning implies that the practical implications of the three aspects

should be explored. To do this the methodology ought to be used as an exploratory

tool to search patterns in the practical world. Secondly, the assumptions, practical and

otherwise, which are implicit in using the methodology, ought to be identified.

37

Finally, the conditions in which the methodology is useful and non-useful should be

clarified (Weick 1984).

In helping us in the choice of a research method, Galliers (1991) has identified six

general application areas in Information Systems: society, organisation, small group,

individuals, technology and methodology (Fig 2.1 pg 26). He suggests that from these

research methods, mathematical modelling and laboratory experiments are

inappropriate for research into methodologies. The case study approach was rejected

as it is difficult to negotiate access to suitable organisations and as case studies are

longitudinal by nature it was considered too time consuming. The non-involvement of

the author in case study research, and the passive collection of quantitative survey

data, would not have been appropriate and would have encountered similar problems

to those associated with surveys. By reviewing the remaining methods, in order to

choose an appropriate one, elements of hermeneutics are appropriate but there is a

need to combine this with action research in order to fulfil the requirements for

learning in practice mentioned above.

Land (1982) succinctly captures the research requirements, the choice in this study

and the implications in using action research:

If you are going to do research in this area, which method of research is

valid? We're concerned with a multi-dimensional world in which it is very

difficult to analyse cause and effect ... some people call it action research...

develop techniques, methods and methodologies and thus we go into the

world and try them out... find a host who is willing to use these and we try

to see as best as possible how things will work out.... It is difficult to say

what effect is due to the methodology or to some personal or environmental

factors....'

The implications can also be seen in comparison with other methods. As described

above the methods should be viewed as a continuum and the comparison of the

extremes, Laboratory Experiments (Positivist Science) to Action Research is shown in

Table 2.1

Points of Comparison Positivist Science Action Research

Value position Methods are value neutral Methods develop social systems
and release human potential

Time perspective Observation of the present Observation of the present plus
interpretation 	of 	the 	present
from 	knowledge 	of the 	past,
conceptualisation 	of 	more
desirable futures.

Relationship with units Detached 	spectator, 	client Client system members are self
system members are objects of reflective subjects with whom to
study collaborate

Treatment of units studied Cases 	are 	of interest 	only 	as Cases can be sufficient sources
representatives of populations of knowledge

Language for describing units Denotative, observational Connotative, metaphorical
Basis for assuming existence of Exists independently of human Human 	artefacts 	for 	human
units beings purposes
Epistemological aims Prediction 	of 	events 	from Development 	of 	guides 	for

propositions 	arranged taking 	actions 	that 	produce
hierarchically desired outcomes

Strategy 	for 	growth 	of Induction and deduction Conjecturing, 	creating 	settings
knowledge for learning and modelling of

behaviour
Criteria for confirmation Logical 	consistency, prediction Evaluating 	whether 	actions

and control produce intended consequences
Basis for generalisation Broad, 	universal 	and 	free 	of Narrow, situational and bound

content 	
I

by context
From Susman and Evered 1978

Table 2.1 A Comparison of Positivist Science and Action Research

The major consequence of the choice of Action Research method is that the research

is context-bound as opposed to context-free. This means that this produces narrow

learning in its context: understanding object-oriented methods, the NIMSAD

framework and the resulting outcomes.

2.4 Summary

The above discussion considered a number of research methods that have been used

within Information systems research. The selection of Action Research as an

appropriate research method was discussed and justified.

Chapter three considers object-oriented terminology, the development of object-

oriented systems methods, and an overview of current object-oriented analysis and

design methodologies.

Chapter Three: Object Orientation and Object-Oriented
Systems Development Methods

The term object-oriented (00 or 0-0) has its origins in 00 programming languages.

00 concepts are now being applied to many different types of computer based design

software i.e. databases, software engineering, knowledge bases and artificial

intelligence systems. The principles of object technology can be applied across all

aspects of software development. Object technology can be used to construct many

types of software, and many types of software can exhibit characteristics of object

technology.

This chapter gives an overview of the terminology used in this thesis. The

development of object-oriented methods is then considered followed by object-

orientation concepts and terminology. Justification for selecting Coad and Yourdon

(1991), Rumbaugh et al. (1991) and Jacobson et al. (1998) methodologies to be further

evaluated using NIMSAD framework (Jayaratna 1994) follows an overview of the

development of object-oriented analysis methods.

3.1 Terminology

This section provides explanations of some of the terms used in the body of this report

that may be open to interpretation. Specific object-oriented terminology is considered

in section 3.3.

Real World: 	is taken to consist of both the 'thinking world' and the 'action

world' of the intended problem solver (see 'thinking world' and

'action world').

Action World: 	is the situation in which methodologies are used for bringing

about transformations. Many of the scenarios described in object-

oriented analysis texts relate to the 'action world'; that is the

physical reality of the situation (see 'thinking world' and 'real

world').

Thinking World: relates to the conceptual world and the way in which the

methodology user thinks about the situation; that is the different

rioi

ways in which 'reality' can be conceptualised (see 'real world' and

action world').

Paradigm: 	a way of thinking, object-oriented paradigm means thinking in

terms of objects.

3.1.1 Methodology and Method

'Methodology' is a Greek term meaning the 'study of methods'. Within the

information systems field the term 'methodology' has come to mean the same as

'method'. Stamper (1988) expresses dissatisfaction with the use of the term,

methodologies, in this way. He argues that 'methods 'should be used when referring

to specific ways of approaching and solving problems and 'methodologies' should be

reserved for comparative and critical study of methods in general.

At a general level, a methodology is considered to be a recommended series of steps

and procedures to be followed in the course of developing an information system

(Avison and Fitzgerald 1995). The British Computer Society (BCS) Information

Systems Analysis and Design Working Group provided one of the most useful

definitions in 1983. They defined an information system methodology as a

'recommended collection of philosophies, phases, procedures, rules,

techniques, tools, documentation, management and training for developers

of information systems' (Maddison 1983).

Checkland (1981) has distinguished between the terms 'method' and 'methodology

and says that a methodology

'is a set of principles of method, which in any particular situation has to be

reduced to a method uniquely suited to that situation'.

According to Graham (1995) a method consists of at least: a modelling technique, a

process and a notation. The notation could just be natural language. A method should

minimise the amount of notation that must be learnt, minimise the number of

mandatory deliverables from the process and minimise the number of foundation

concepts in the modelling approach (Graham 1995).

41

Jayaratna (1994) defines a methodology simply as,

'an explicit way of structuring one's thinking and actions. Methodologies

contain model(s) and reflect particular perspectives of 'reality' based on a

set of philosophical paradigms. A methodology should tell you 'what' steps

to take and 'how' to perform those steps, but most importantly the reasons

'why' those steps should be taken in that particular order' (Jayaratna 1994).

This differs from the definition of methodologies given by other authors, for example,

Avison and Wood-Harper (1990), Avison and Fitzgerald (1995) and 011e et al. (1991),

which concentrate on the 'what' and 'how'. Avison and Fitzgerald (1995) define an

information systems development methodology as:

'a collection of procedures, techniques, tools, and documentation aids which

will help the systems developers in their efforts to implement a new

information system. A methodology will consist of phases, themselves

consisting of sub-phases, which will guide the systems developers in their

choice of techniques that might be appropriate at each stage of the project

and also help them plan, manage, control and evaluate information systems

projects.'

This definition clearly concentrates on techniques and tools of the methodology - the

'what', and the phases and sub phases of the methodology - the 'how'. 'Why' a

particular methodology should be chosen is not considered. Arguably this implies that

the problem situation is 'taken as given' and a potential solution has already been

identified at the start of the project.

In this thesis 1 will follow the definition as given by Jayaratna (1994); that is

methodology refers to a specific way of approaching and solving problems.

3.1.2 Method and Operation

'Method' in object-oriented terms indicates the behaviours to be carried out by an

object class. There are usually two parts to a class structure: data structure (or

attributes) and methods (operations in Rumbaugh et al. (1991), and Jacobson et al.

(1998) or functions in Coad and Yourdon (1991)). A method is a function applied to

or by an object class, for example, dancing and jumping are methods of an object class

person. Such a usage of method is quite different from a 'method' in systems

42

development. To avoid confusion, 'method' in an object class structure in object-

oriented contexts will be replaced by 'operation', instead of other expressions

mentioned above.

3.2 Development of object-oriented methods

Early object-oriented techniques were developed in Norway during 1960's with the

development of Simula (Nygaard and DahI 1981). The term 'object-oriented' was first

used with the advent of Smalltalk (Goldberg and Robson 1983) during the 1970's.

During the 1980's there was great interest shown in the User Interface (UI). Object-

oriented programming (OOP) supported the development of such interfaces, while the

style of object-oriented languages was heavily influenced by the Windows, Icons,

Mice and Pointers (WIMP) paradigm. This had the effect of creating vast libraries of

objects for interface development, compared to other areas.

From the mid 1970's there was also considerable cross-fertilisation between object-

oriented programming and artificial intelligence (Al) research and development,

leading to extensions of Al languages, notably List Processing (LISP) and Common

LISP Object System (CLOS). These systems were influenced by ideas on knowledge

representation based around semantic networks and frames. These representations

express knowledge about 'action-world' objects and concepts in the form of networks

of stereotypes, objects that can inherit features from more general ones.

As OOP matured, interest shifted, initially, to object-oriented design methods and

more recently to object-oriented analysis or specification. Important questions arise in

this area; such as whether an object-oriented design must be implemented in an

object-oriented language or whether current design methods are in fact tied to specific

languages. The current phase in the history of object-orientation is characterised by

the shift in emphasis from programming to analysis and design and by an awareness

of the issues of open systems and standards.

3.3 Object-Orientation

An object-oriented approach is, according to many texts, for example, Coad and

Yourdon (991), Rumbaugh et al. (1991) and Graham (1995) suitable for the whole

development life cycle and moves much of the system development effort to the

EK

analysis phase of the life cycle. As an object-oriented approach defines a set of

problem oriented objects early in the project and continues to use and extend these

objects throughout the development cycle, the separation of development life-cycle

phases is much less distinct. The seamlessness of object-oriented development makes

it easier to repeat the development steps at progressively finer levels of detail. Each

iteration adds or clarifies features that have already been identified, so there is less

chance of introducing inconsistencies or errors.

As Rumbaugh et al. (1991), state

The object-oriented approach fosters a pragmatic approach to problem-

solving drawing upon the intuitive sense that object-oriented technology

captures and by providing a notation and methodology for using it

systematically on real problems'.

An object-oriented approach takes objects from the application domain, in the first

place, which are then used to understand the problem domain; operations are then

fitted around the objects.

As the terminology used in relation to object-orientation has not settled on one

consistent set of definitions, referring to the definitions given by a number of authors

could lead to conceptual confusion. The following terms will, therefore, be used in the

discussions of object-orientation.

Object: 	 the basic unit of construction for conceptualisation, design or

programming. Objects are based on 'action world' entities

and concepts of the application or problem domain.

Object Class: an abstraction of a set of objects that specifies the common

static and behavioural characteristics of the objects,

including the public and private nature of the state and

behaviour. A class is a template from which object instances

are created.

Object System: 	a description by a system developer of how potential users of

an information system perceive an activity they are going to

manage, control or analyse supported by an electronic

MI

information system, i.e. the designer's description of the

user's mental model of the activity (see section 3.3.4)

Problem Area: a description by a system developer of a field of activity,

which the potential users of the information system intend to

manage, control or analyse.

Area of use: 	those parts of an enterprise in which an information system

becomes used in order to manage, survey, or control a field

of activity.

Information system: 	a set of components organised to realise a dynamic model of

an activity and an interface between this model and its users.

3.3.1 Object-oriented thinking

A new way of thinking (paradigm) is opened up in object-orientation by making a

dynamic concept of 'object' a fundamental building block of descriptions. The

concept of 'entity' from database theory offers a static element of description, whereas

object in an object-oriented sense presumes some kind(s) of behaviour as a

characteristic feature. Nouns like 'persons', 'cars', 'houses' etc orient people about

classes of phenomena. Object class membership is more often than not decided on the

basis of stable, shared features of the members of the object class. Behavioural

properties, generally giving particular members of an object class a limited life span,

are seldom considered when distinguishing object class membership in everyday

conversations.

In object-oriented technology, an object class should be created for individual objects

in two dimensions: data structure modelling and procedure modelling. In addition to

the modelling aspects, operations at the object level are one of the novel features of

object-orientation. Operations capture the behaviour of objects of object classes. For

example, dancing and jumping are operations that can be carried out by or applied to

object class Person.

In object-oriented systems development, object abstraction is used for describing

similar things and gathering them into object classes, including class hierarchies. An

object class is created for describing all instances of this object class at an abstract

level. Thus, object orientation is not only a new way of programming, but also a new

way of thinking for most people involved in systems development.

3.3.2 Object system

A problem area and an object system describe what Jayaratna (1994) would call 'a

part of an action world' and 'a part of a thinking world' respectively. The latter can be

looked on as a designer's description of a small part of a user's understanding based

on 'mental construct'. According to Jayaratna (1994) the object system comprises

among other things 'models and frameworks' in which the object-oriented thinking

should be reflected upon.

Designers base their object systems on descriptions given by some potential users of

an information system. The actual users of the system bring their current 'mental

constructs' to the task of interpreting output and (potentially) 'transform' these into

action. Everyone, from systems users to designers use their 'mental constructs' in

tackling different tasks at different times.

3.4 Themes in object orientation

Object-orientation as a new technology depends on the following concepts and their

interconnections: object, abstraction, encapsulation and inheritance. These all play a

fundamental role within object-oriented technology. The concept of object was

discussed in Chapter one.

3.4.1 Abstraction
In object-oriented technology, abstraction is a process and a means for modelling

'reality' in physical and conceptual spaces. According to Wirfs-Brock and Wilkerson

(1989) people typically understand the world by constructing mental models of

portions of it. People try to understand phenomena in order to interact with them

based on their mental models, which are simplified views of the phenomena. This

construction process can be considered a type of model building, just as systems

development has been viewed as a model building process. Models that people

construct aid in the understanding and interaction. Abstraction as a mental process is

essential in both cases and is crucial in our understanding of 'the action world'.

Firesmith (1993) regards an abstraction as a model that includes all essential

capabilities, properties or aspects of what is being modelled without any extraneous

details. Rumbaugh et al (1991) support this view

'The goal of abstraction is to isolate those aspects that are important for

some purpose and suppress those aspects that are unimportant'.

The power of abstraction in object-orientation lies in selecting relevant objects from a

problem area and constructing a whole system vision. Coad et al. (1997) summarise a

strategy for selecting objects named 'not this time', which holds

'objects that are interesting, ones that you choose to consider, yet for one

reason or another, you have decided not to include at this time'

3.4.2 Encapsulation
The concept of encapsulation, or information hiding, means that the external aspects

of an object are separated from its internal details, and hidden from the outside world.

In this way the internal details of an object can be changed without affecting the

applications that use it, provided that the external details remain the same. This

prevents a program from becoming so interdependent that a small change has massive

ripple effects. The only way to access an object's state is to send a message that

causes one of the operations to execute. Strictly speaking the attributes are values,

shorthand for operations that get and put values. This makes object class equivalent to

abstract data type in programming.

Encapsulation in programming languages derives from the notion of abstract data

types. In this context, an object consists of an interface and an implementation. The

interface is the specification of the set of operations that can be invoked on the object

and are its only visible part. The implementation contains the data, i.e. the

representation or state of the object and the operations that provide, in whatever

programming language, the implementation of each operation (Brown (1991), Elmasri

and Navanthe (1994) and O'Neil (1994)).

3.4.3 Inheritance
Inheritance or classification hierarchy is a concept used by object-oriented methods

when modelling a system structure and the relationships between classes. Inheritance

is a mechanism for expressing similarities between classes, simplifying the definition

47

of classes similar to those previously defined. The ideas of inheritance have their roots

in the study of artificial intelligence (Al), where semantic networks (Quillian 1967)

and frames (Minsky 1975) are techniques for representing knowledge about

stereotypical concepts and objects, and the relationship between more general and

more specialised concepts is handled through the inheritance of properties and

operations.

There is, however, an important difference between inheritance as discussed under

object-oriented programming and that supported by Al. Normally, in object-oriented

programming, objects inherit operations and attributes from their superior classes

(superclasses), but they do not inherit the values of the attributes. An instance inherits

the ability to have certain types of values. In Al and some database applications the

ability to inherit values is supported (Graham 1995).

Several inheritance relations occur between classes, for example, simple and multiple

inheritance; structural and behavioural inheritance. Simple inheritance means that a

subclass is related to only one superclass, whereas multiple inheritance creates a

subclass from more than one superclass. Structural inheritance is a mechanism for

propagating operation declarations from superclasses to their subclasses. By contrast

behavioural inheritance propagates what operations actually do, rather than how they

are declared. It implies that behaviour and data associated with subclasses are always

an extension of the properties of their superclasses.

With the inclusion of inheritance in object-oriented technology, the process of

identifying objects and classes and their characteristics is subtly changed. Inheritance

can be used to create new object classes from classes already recognised and defined.

The process becomes one of recognition and presentation rather than one of

identification - to find characteristics that are largely exhibited by an existing object,

and then to define the specialisation necessary to characterise a new set of objects.

Instances (usually) inherit all the features of the class they belong to, but it is also

possible in an object-oriented system to allow instances to inherit features from more

than one superclass. If we consider a guppy, a typical pet fish, it belongs to both the

class Fish and the class Pet. A guppy should, therefore, inherit properties from both of

IF

these classes; multiple inheritance. The problem with multiple inheritance is that on

rare occasions the properties from two (or more) parents may be directly or partially

contradictory. Referring back to the guppy. A Fish lives in the sea and a Pet lives in

the owner's home, where does a guppy live?

Naming conflicts can arise with multiple inheritance; that is several of the supertypes

for a given subtype may have a property with the same name; furthermore those

properties may or may not be semantically equivalent. If the name of an attribute in a

class is the same as that defined in a superclass, the attribute of the superclass is not

inherited. Another problem arises when multiple inheritance is itself subject to several

different interpretations. For example, some employees are full time and some are part

time. There are also full time and part time programmers and full time and part time

secretaries. In this example an individual programmer inherits either the properties of

full time employees or the properties of part time employees, but not both (Date 1995)

(Fig 3.1).

Figure 3.1 Multiple Inheritance

The important aspect of inheritance is the relationship that is established between the

classes, as a superclass can be a subclass of other classes (Brown (1991), Bertino and

Martino (1993) and Elmasri and Navanthe (1994)). Building an inheritance structure

can start by seeking similarities between classes, similar data structure and similar

behaviour and then assemble them in a system hierarchy. Inheritance can be seen as a

way of increasing the number of classes in a system without changing the entire

ELI

system structure. This feature has been called 'local change' (Jacobson et al. 1998). A

number of abstract classes are essential in an inheritance structure to allow for these

changes.

The concept of class hierarchies and inheritance permits the specification of new types

and classes that inherit much of their structure and operations from previously defined

types or classes. This makes it easier to develop the data types of a system

incrementally and to reuse existing type definitions when creating new types of

objects (Bertino and Martino 1993).

3.5 Development of object-oriented analysis and design methods

There is no universally agreed approach to object-oriented analysis and design. In

traditional structured 'waterfall' methodologies developers maintain a rigid distinction

between analysis and design, which may be due to the fact that analysts and designers

frequently occupy different professions. Analysis; when you determined what the

application should do and design; when you decided how to do it. By keeping analysis

and design separate you keep your options open, and avoid situations in which the

system created is hampered by constraints imposed by some unspoken, but assumed

system design.

One of the major problems encountered with structured analysis and design methods

is the lack of overlap or smooth transition between the two. This often leads to

difficulties in tracing the products of design back to the original user requirements or

analysis products. The approach adopted in object-oriented analysis and design tends

to merge the systems analysis with the process of logical design. However, there is

still a distinction between requirements elicitation and analysis and between logical

and physical design. Nevertheless, object-oriented analysis, design and programming,

by working consistently with a uniform conceptual model of objects throughout the

life cycle, at least promises to overcome some of the traceability problems associated

with systems development. In these transitions the unit of currency remains the same:

it is the object. Analysts, designers and programmers can use the same representation,

notation and metaphor rather than having to use data flow diagrams at one stage,

structure charts at the next etc.

RK

Analysis is concerned with devising a precise, concise, understandable and correct

model of the 'real world'. The purpose of object-oriented analysis is to model the real

world system so that it can be understood. To do this the requirements must be

examined and the implications analysed and restated. Important real world features

must be abstracted first and small details deferred until later. A successful analysis

model states what must be done, without restricting how it is done and avoids

implementation decisions. The result of analysis should be understanding the problem

as a preparation for design (Rumbaugh et al. 1991).

Object-oriented analysis contains an element of synthesis. The stages of abstracting

user requirements and identifying key domain objects are followed by the assembly of

those objects into structures that will support physical design at some later stage. The

synthesis is a result of analysing a system, in other words imposing a structure on the

domain.

There are three primary aspects of a system. These are respectively concerned with: a)

data, objects or concepts and their structure, b) architecture or atemporal process: and

c) dynamics or system behaviour. These dimensions are referred to as data, process

and control. Object-orientation combines two of these aspects - data and process - by

encapsulating local behaviour with data. Thus, an object-oriented analysis can be

regarded as a form of syllogism moving from the particular (classes) through the

individual (instances) to the universal (control).

Object-oriented analysis and design methods fall into two basic types, those which

mimic existing structured methods by having separate notations for data, dynamics

and process, and those which assert that, since objects inherently combine processes

(operations) and data, only one notation is required. These approaches have been

referred to as ternary (three-pronged) and unary respectively (Graham 1995).

Three pronged approaches have the advantage that existing practitioners of structured

methods will be broadly familiar with the philosophy and notations, and proceeding in

this way helps to ensure a smooth transition to object-oriented approaches for those

51

already skilled in traditional methods. Against this, unary approaches are a) more

consistent with the metaphor of object-orientation and b) easier to learn from scratch.

OMT (Rumbaugh et a]. 1991) the modified Ptech of Martin and Odell (1992) and

OSA (Embley et al. 1992) are examples of the ternary approach. OOA (Coad and

Yourdon 1991) and CRC (Wirfs-Brock et al. 1990) are examples of unary approaches.

Consideration of the existing object-oriented analysis methods available and

published, highlight a number of points. For example; some, such as Coad and

Yourdon (1991) are simple but lack support for describing system dynamics;

Rumbaugh et al. (1991) OMT and Shlaer and Mellor (1988) are richer but more

complex to learn. Methods like OMT offer little guidance to express business rules

and constraints. Embley et al. (1992) OSA and Martin and Odell's (1992) synthesis of

Information Engineering (IE) with Ptech are slightly simpler three pronged

approaches. OSA allows the analyst to write constraints on the diagrams as an

afterthought. None of these methods support business rules and there is little guidance

on combining the products of the three separate models into a coherent single model,

though OMT does provide slightly more help than others in this respect.

3.6 Brief overview of object-oriented analysis methods.

3.6.1 Event driven approach to object-oriented analysis
Shlaer and Mellor (1988), and Coad and Yourdon (1991) can be described as event

driven approaches to object-oriented analysis. Event orientation is built on the

partition of events and objects, which was introduced by Simula for 'discrete event

simulation'. Event driven approaches are based on the idea that systems are stimulus-

response mechanisms, the concept was originally created to expedite and standardise

the creation of logical process requirements models. One logical process (essential

activity) is created for each event type or class. That process represents the

instantaneous and complete response to that event.

3.6.1.1 Shlaer and Mellor's Object Oriented Systems Analysis (OOSA)
Shlaer and Mellor (1988), object-oriented analysis method is an early example of

object-oriented analysis, but it cannot really be regarded as object-oriented for several

reasons, including the complete absence of any notion of inheritance. Their initial text

is little more than an object based extension of data modelling. A later book (Object

52

Lifecycles: Modelling the World in States; Shlaer and Mellor 1991), introduced

inheritance (entity subtyping) and the idea that modelling the lifecycles of entities

with State Transition Diagrams (STD) could discover methods. Shlaer and Mellor also

consider identifiers as sets of attributes or keys and apply normalisation rules to

objects, regarding them as little more than relational tables.

This method may be classed as ternary and proceeds by creating an information (or

data) model showing objects, attributes and relationships (Graham 1995). A state

model is then developed that describes the states of the objects and transitions

between states. Finally a Data Flow Diagram (DFD) defines the process model. The

method is strongly influenced by relational design: objects are in first normal form

and object identity is not a natural feature of designs.

3.6.1.2 Coad and Yourdon's Object-Oriented Analysis (OOA)
The basis for this method is in entity relationship modelling and was the first widely

published account of a reasonably complete, practical, object-oriented analysis

method and supporting notation, suitable for commercial projects. They shift the

emphasis to the analysis phase as opposed to the design phase.

Coad and Yourdon (1991) suggest that analysis proceeds in five stages, which they

identify as:

• Subjects: the problem area is decomposed into 'subjects' that correspond to the

notion of 'levels' or 'layers' in dataflow diagrams.

• Objects: Objects are identified in detail by searching for business entities in

much the same way as data analysis is performed. Little additional guidance is

given on how to perform this task.

• Structures: Two completely different structures are identified, classification

structures and compositional structures. This is where inheritance is

considered, as the classification structures are specialisationlgeneralisation

trees.

• Attributes: As in conventional data analysis, attributes are detailed and

modality and multiplicity relationships specified using a version of extended

relational analysis (ERA).

53

• Services: This is Coad and Yourdon's terminology for operations. Each object

type must be equipped with operations for creating and deleting instances,

getting and putting values and with special operations characterising the

object's behaviour.

OOA is described as a unary method as it concentrates on analysis of data (Graham

1995). Design specific issues, such as threads of control, specific processors etc are

added to the OOA diagram when the transition is made to Object Oriented Design

(OOD). Great emphasis is placed on the similarity of notation for analysis and design

and the way this eases the transition so sharply felt in traditional methods. However

no real distinction is made between logical and physical design. Coad and Yourdon is

weakest when it comes to specifying the dynamics of systems, but a state transition

approach is suggested for object dynamics though no notation is defined. This method

is critically evaluated using the NIMSAD framework in Chapter Five.

3.6.2 Model-driven approach

This approach is based on proven methods of information modelling and behaviour

specification and is characterised by the development of models to represent different

aspects of the analysis process. In general methods that are classified as using a

model-driven approach include three integrated submodels: an object-relationship

model for representing objects and their relationships to other objects; an object-

behaviour model for representing object behaviour and an object-interaction model for

representing interactions among objects. Building systems analysis models is not a

step-by-step process, but a conceptual framework behind the analysis technique. A

model-driven approach can be seen as a form of extended entity-relationship diagram

and data flow diagrams. Rumbaugh et al. (1991), Embley et al. (1992) and Martin and

Odells (1992) Ptech can all be described as model-driven approaches to object-

oriented analysis.

3.6.2.1 Rumbaugh et al's Object Modelling Technique (OMT)

Object Modelling Technique (OMT; Rumbaugh et al. 1991) is widely regarded as one

of the most complete object-oriented analysis methods published to date. It is a three-

pronged approach with strong roots in traditional structured methods and offers an

extremely rich but complicated and detailed notation (Graham 1995).

54

OMT has three main phases or activities: analysis, system design and object design.

Analysis assumes that a requirements specification exists and proceeds by building

three separate models using three different notations. The first to be built is the Object

Model (OM), which consists of diagrams similar to those of Coad and Yourdon

(1991) and a data dictionary. The notation is fundamentally that of entity relationship

(ER) modelling with operations and other annotations added to the entity icons. Next,

for every object a Dynamic Model (DM) is built consisting of STD's. The third step is

the Functional Model (FM), which to all intents and purposes is identical to DFD's.

Operations discovered in both the DM and FM are then added to the OM and a

walkthrough is performed, after which the analysis report, including the deliverables,

is produced. This method is critically evaluated using the NIMSAD framework in

Chapter Six.

3.6.2.2 Embley's Object-oriented systems analysis (OSA)
In this method the whole process of analysis is developed around models. OSA

(Embley et al. 1992) begins with an object-relationship model (ORM), which permits

the description of attributes, classification and aggregation structures and data

semantics in the form of associations. More general constraints are written on the

diagrams in note form next to the object they relate to, thus constraints have no

relation to inheritance. The claimed advantage of this approach is that it does not

constrain the analyst.

A state transition notation allows the analyst to describe the behaviour of each object.

This object-behaviour model (OBM) defines the operations for the object, but the

ORM need not be extended to include them. Message passing is described in a

dataflow-like object interaction model (OIM). OSA is 'model-driven' in the sense that

a model is constructed rather than asking the analyst to follow a fixed series of steps.

3.6.2.3 Martin and Odell Ptech

The ideas behind Ptech (Martin and Odell 1992) are based on the metaphor of process

engineering as the production of systems assembling reusable components, an

approach that separates analysis and logical design from implementation. The

emphasis is therefore on what is done rather than how it is done. In that sense Ptech is

process-oriented rather than strictly object-oriented. Ptech combines this process-

driven view with the abstraction features of more data-centred, object-oriented design

55

and some ideas from set theory and artificial intelligence. Edwards (1989) the author

of Ptech, stresses the need for a formal basis for any object-oriented method and

criticises what he calls 'naïve' methods of object-oriented analysis such as Coad and

Yourdon (1991) orOMT (Rumbaugh et al. 1991).

Ptech consists of three types of diagram: concept diagrams (broadly equivalent to

extended entity relationship diagrams) called object schemata or concept schemata;

event diagrams, which fulfil the role of state transition diagrams; and activity/function

diagrams (with the same purpose as DFD's).

In methodological terms Ptech consists of four main activities: object structure

analysis, object behaviour analysis, object structure design and object behaviour

design. Object structure analysis involves building concept schemata showing classes,

associations, classifications and composition. Object behaviour analysis uses event

schemata and shows state transitions, event types, trigger rules, control conditions and

operations. Object structure design adds implementation dependent aspects to the

object structure analysis and object behaviour design adds the details of the

operations. Ptech is described as having a very rich and expressive notation and

method, but it is horrendously complicated to apply and 'takes a real expert to use it

well' (Graham 1995).

3.6.3 Use case driven approach

The use case driven approach has made contributions to systems development as an

industrial process. It stands out as being a truly object-oriented method, in which both

the process and the methods are represented as objects. Use case is the core concept

providing the linkage between requirements, development, testing, and final customer

acceptance. System requirements included in use cases can be formally expressed and

systematically tested. The use case model illustrates, in a straightforward way, the

function of the business and the business processes they offer to the outside world.

OOSE (Jacobson et al. 1998) is a prime example of the use case approach.

3.6.3.1 Jacobson et al's Object-Oriented Software Engineering (OOSE)

Object-Oriented Software Engineering (OOSE; Jacobson et al. 1998) is a method for

object-oriented analysis and design derived from Jacobson's Objectory. Many of the

ideas of OOSE are similar to those of other object-oriented analysis methods, but one

gro

original idea stands out: the use case. Use cases are descriptions of how users interact

with a system. These can be viewed as either process bubbles in a DFD style context

diagram or as scripts similar to those found in Al research. Scripts (or use cases) can

have subscripts to deal with exceptions. The advantage of this approach is that

requirements can be traced right through the lifecycle, and this is what OOSE

emphasises. It is also straightforward to generate test scripts from use cases.

Use cases appear in the requirements model along with actors. Actors are external

entities with which the system interacts. The actors are used to find the use cases and

are instantiated in actual interactions with users. An event can initiate several use

cases depending on the state of the system (mode) and the purpose and subsequent

behaviour of the user. The use case model is used to generate a domain object model

with objects drawn from the entities of the business. This is then converted into an

analysis model by classifying the domain objects into three types: interface objects,

entity objects and control objects. Entity objects emphasise storage and are stable in

the sense that they persist longer than a use case. Control objects emphasise

behaviour. The analysis model supports inheritance and instance associations, which

are used to record aggregation. The analysis model is then converted to a design

model expressed in terms of 'blocks' that are implementations of one or more objects

This method is critically evaluated using the NIMSAD framework in Chapter Seven.

3.6.4 Role driven approach

Object-Oriented Role Analysis and Modelling (OOram; Reenskaug et al. 1996) is an

object-oriented method that assumes an object can play several roles. Analysis

describes subproblems of encapsulating behaviour in the objects of an object model,

which is termed a role model. A role model functions as a conceptual model that

combines the expressiveness of the object and the class. All information that can be

expressed in a class-based model and an object-based model can be expressed in a

role-based model. The most important contribution of this method is the 'added

leverage' (Reenskaug et al. 1996) provided by role modelling, for example, how to

create object-oriented models of interesting phenomena, compared with the

conventional class modelling.

57

OOram consists of some basic concepts: objects, role, types and object class. Every

object has its own identity and attributes, and is encapsulated so that the messages it

sends and receives constitute all its externally observable properties. The object

abstraction entails three kinds of abstraction around recognised roles: why, what and

how. The 'why' abstraction is a concept called 'role', which represents the task of

the object within the organised structure of objects. All objects that serve the same

purpose in a structure of collaborating objects, as viewed from the context of some

area of concern, play the same role. The type is the 'what' abstraction. All objects

that exhibit the same externally observable properties belong to the same type. The

class is the 'how' abstraction. All objects that share a common implementation are

considered to belong to the same class.

This method focuses on three critical operations: roles, synthesis and structuring. It

models small subproblems initially, and then combines small models into larger ones

in a controlled manner using both inheritance (synthesis) and run-time binding

(structuring) (Reenskaug et al. 1996). These operations are based on encapsulation,

inheritance and dynamic binding.

3.6.5 Responsibility driven approach

Responsibility driven design by Wirfs-Brock and Wilkerson (1989) is a method that

models an application in terms of classes, their responsibilities and the collaborations.

Responsibilities are a way to apportion work among objects that comprise an

application. This approach focuses on what actions must be accomplished and what

objects accomplish the actions. How each action is accomplished is deferred until

after an object model and its interactions have been created and understood. The

'system's' responsibilities are analysed and allocated to the classes of the 'system'

Finally, the collaborations between classes of objects that must occur in order to fulfil

the responsibilities are defined. This gives a preliminary design, which can be further

explored through hierarchies, subsystems and protocols. -

Responsibilities include two key items: the data that an object maintains, and the

actions that an object can perform. They are meant to convey a sense of the purpose of

an object and its place in the system. The responsibilities of an object are all the

operations it provides for all objects that communicate with it. In this manner,

M.

common responsibilities are grouped together. Object classes fulfil their

responsibilities in one of two ways: performing the necessary computation themselves

and collaborating with other objects classes. Involving superciasses embodies general

responsibilities and subclasses that specify operations and hierarchies of object

classes.

3.6.6 Unified Modeling Language (UML)
The lack of standardisation for object-oriented modelling was identified as a serious

problem during the 1990's, and the fact that every method, tool and practice had its

own set of symbols and terminology resulted in confusion. Rumbaugh, Booch and

Jacobson's Unified Modelling Language (IJML) (Rational 1997) was developed to

solve some of the perceived problems of the object-oriented community. UIVIL is

based on the methods of Rumbaugh et al. (1991), Booch (1994) and Jacobson et al.

(1993) and is aimed at creating a standard modelling language not a methodology.

There are important differences between a methodology and a modelling language. A

methodology is an explicit way of structuring one's thinking and actions. A modelling

language lacks a process or the instructions for what to do, how to do it, when to do it

and why it is done (Booch et al. 1996; Rumbaugh 1996; Mellor and Lang 1997;

Eriksson and Penker 1998; Harmon and Watson 1998)). IJIML is described as a

modelling language and leaves the initial choice of approach to analysis to the analyst.

It would, therefore, be difficult to determine how the modelling language assists the

analyst in determining objects when they can generate an initial object model by using

Jacobson et al. (1993) use cases, Rumbaugh et al's (1991) object model or Booch's

(1994) object 'bubbles'.

3.7 Justification of choice of methods to be evaluated

Given the vast range of methods available a decision had to be made as to which

object-oriented analysis methods would be considered for critical evaluation, the

decisions taken were subjective. However, the chosen methods had to meet the

following criteria:

a) be well-known and dominant

b) be used in teaching and training

c) be used in industry and have software support

d) be available as a text.

59

Cost and lack of coverage of systems development steps were considered as selection

criteria and rejected as not being relevant to the identification and formulation of

objects.

3.7.1 OOA (Coad and Yourdon 1991)

Coad and Yourdon's (1991) OOA satisfies the criteria identified above. OOA was the

first widely published account of a reasonably complete, practical object-oriented

analysis method suitable for commercial projects. OOA is described as taking a unary

approach, that is, one model is developed that incorporates information about data,

processes and dynamics or system behaviour. This is claimed to be in keeping with

the philosophy of object-orientation and makes it easy to learn (Graham 1995).

OOA has been used by a number of authors, de Champeaux and Faure (1992),

Fichman and Kemerer (1992), livari (1994) and Losavio et al. (1994) who compared

object-oriented analysis methodologies using varying sets of criteria. OOA is also

described in many textbooks (Rumbaugh et al. 1991; Graham 1995; Jacobson et al.

1998) that consider object-oriented analysis methodologies.

'Object Models, Strategies, Patterns and Applications' (Coad et al. 1997) was

considered as being more 'up-to-date' than Object Oriented Analysis (Coad and

Yourdon 1991). However, the approach taken in 'Object Models, Strategies, Patterns

and Applications' (Coad et al. 1997) is to present a number of scenarios (initially

transcripts of interviews) using different problem domains and to apply a number of

strategies in order to develop object models. Having worked through the examples, in

the text, the reader is deemed to have 'experiential background' and can then select

the relevant strategies and patterns to apply to any problem domain. 'Object Models,

Strategies, Patterns and Applications' (Coad et al. 1997) uses the notation of OOA

(Coad and Yourdon 1991) but has little if any theoretical explanation as to why the

specified strategies have been chosen, hence my decision to concentrate on the initial

text.

3.7.2 Object-Oriented Modelling and Design (Rumbaugh et al 1991)

Rumbaugh et al's (1991) Object Modelling Technique (OMT) again satisfies each of

the criteria listed above. OMT is described as taking a ternary approach, and a model

Ell

driven approach (Graham 1995) as three separate models are developed to represent

data, process and dynamics. OMT makes use of the principles of entity-relationship

modelling, state transition diagrams and data flow diagrams. These are seen to be

broadly similar to approaches taken by traditional structured methods, as a result

transition from traditional approaches to object-oriented approaches should be easier

for those already skilled in traditional methods.

de Champeaux and Faure (1992) and livari (1994) used OMT as one of their selected

methods when comparing object-oriented analysis methodologies. OMT is also

frequently described in textbooks, for example, Graham (1995) and Jacobson et al.

(1998).

3.7.3 Object Oriented Software Engineering (Jacobson et at 1998)

Jacobson et al's (1998) OOSE takes a use-case driven approach to object modelling.

Use cases are descriptions of how users interact with a system. These can be text

based or process 'bubbles' as in a DFD. The use case model is then used to generate a

domain object model with objects drawn from the entities of the business. OOSE is a

simplified version of Objectory. Objectory was derived from experience in building

telephone exchange systems and is one of the oldest object-oriented methods.

However, as OOSE is a subset of Objectory it is said to be inadequate for use in

production (Jacobson et al 1998) as much of the complexity of Objectory deemed

necessary for production is missing. Jacobson et al (1998) recommend that in order to

use OOSE for production you need to buy consultancy.

de Champeaux and Faure (1992) and livari (1994) consider OOSE in their

comparisons of methodologies. Rumbaugh et al. (1991) and Graham (1995) also

consider OOSE in their comparisons of object-oriented analysis methodologies.

3.8 Summary

This chapter considered the terminology, both the general terminology and the

specific object-oriented terminology used within the thesis. Development of object-

oriented systems and object-oriented concepts were then considered. The development

of object-oriented analysis methods followed and a small number of object-oriented

61

analysis methods were described in order to demonstrate the various approaches taken

by object-oriented analysis developers. The selection of methodologies to be

evaluated was then justified.

Chapter four considers different strategies for comparing methodologies. These

include the use of taxonomies, visual comparisons, descriptive comparisons,

structured thinking and evaluation frameworks. Mulitview (Avison and Wood-Harper

1990), Avison and Fitzgerald's framework (1995) and NIIMSAD (Jayaratna 1994) are

considered as evaluation frameworks. The selection of NJMSAD is also justified.

RIO

Chapter Four: Evaluation Framework

The previous chapter identified and justified the choice of methodologies to be

critically evaluated. In order to critically evaluate methodologies it is necessary to use

an evaluation methodology or a framework that will enable us to focus on specific

aspects of the methodology under investigation.

This chapter initially considers why it is important to compare methodologies; this is

followed by strategies for comparing methodologies. These include the use of

taxonomies, visual comparisons, descriptive comparisons, structured thinking and

evaluation frameworks. Mulitview (Avison and Wood-Harper 1990), Avison and

Fitzgerald's framework (1995) and NIMSAD framework (Jayaratna 1994) are

considered as evaluation frameworks. The choice of NIMSAD (Jayaratna 1994) as the

evaluation framework, to be used, is then justified.

4.1 Background to Methodologies

In 1994 it was estimated that there were over 1000 brand-name methodologies in use

all over the world (Jayaratna 1994). Many of these are similar and are differentiated

only for marketing purposes; others are internal to individual companies and have

been developed in-house (Avison and Fitzgerald 1995). In order to compare

methodologies it is necessary to apply 'a set of criteria' or 'a framework' to ensure

that the methodologies under investigation are treated in the same way. Comparisons

based on 'a set of criteria' are generally found in methodology books, for example,

Wirfs-Brock and Johnson (1990), Page-Jones (1992), Rumbaugh et al. (1991); and

journal or research papers, for example, de Champeaux and Faure (1992), livari

(1994) and Fichman and Kemerer (1992). The methodology books tend to compare

their own methodology with those of others, whereas an independent comparison is

made among chosen methodologies in journal or research papers.

4.1.1 Comparison of Methodologies

There are two main reasons for comparing methodologies:

• An academic reason: to better understand the nature of methodologies (their

features, objectives, philosophies etc) in order to perform classifications and to

improve future information systems development

63

• A practical reason: to choose a methodology, part of a methodology, or a number

of methodologies for a particular application, a group of applications or for an

organisation as a whole.

The two reasons are not totally separate as academic studies help in the practical

choices and the practical reasons influence the criteria applied in the academic studies.

The earliest attempts to compare methodologies were a series of conferences known

as CR15 (Comparative Review of Information Systems Design Methodologies). These

conferences were organised by the IFIP (International Federation of Information

Processing) working group. The first conference in 1982 invited authors of

methodologies to describe their methodologies and apply them to a case study. The

chosen case study was the organisation of an IFIP conference that was specified to the

authors. The most interesting outcome of this was to illustrate the wide differences

between methodologies and what they produced from the same case study.

The second conference in 1983 consisted of a series of papers, which analysed and

compared the features of various methodologies and the third conference in 1986

addressed the issues of improving the practice of using methodologies. A fourth

conference in 1988 examined the ways in which computers could be used during the

construction of information systems. 011e et al. (1991) is based on the work of these

conferences. However the conferences failed to resolve any of the issues they set out

to achieve.

4.2 Strategies for comparing methodologies

4.2.1 Taxonomies
This approach involves the invention of a classification scheme in which each

methodology is placed at an appropriate position in the scheme. For instance Davis

and Wood-Harper (1990) categorise requirements determination methodologies

according to their main information-gathering approach. Their categories are (a)

asking, (b) deriving from the existing system, (c) synthesising from the utilising

system and (d) discovering from experimentation with an evolving information system

(prototyping).

Lyytinen (1987) presents a more abstract taxonomy of the various approaches to

information systems development. Lyytinen stresses the importance of assigning equal

weighting to technology, language and organisation. For each methodology, he asks

which contexts the methodology incorporates and for what types of system the

methodology is suitable. Lyytinen is interested in identifying the fundamental

assumptions made by each methodology, which are often left unstated. His framework

classifies methodologies into five groupings, for example,

Grouping 	 Author/Example
Technical design-oriented 	Most well-known and widely used methodologies, such

as structured analysis and ISAC
Socio-technical 	 ETHICS
Decision oriented 	DSS (Keen and Scott-Morton 1978)

Mason and Motroff's MIS programme
Sense making 	 Boland
Communication oriented 	Lyytinen and Lehtinen

(adapted from (McGinnes 1993))

4.2.2 Visual Comparisons
Another popular way of comparing methodologies is to rate them in various ways and

then to plot the ratings as co-ordinates in a two dimensional space. Although it is

claimed that 'positioning' methodologies in this way can assist in understanding their

relationships to one another, the methodologies sometimes do not fit the

classifications neatly. An example of a visual comparison is given by Wood-Harper

(1985) who discusses a highly abstract two-dimensional framework that positions

methodologies using two dimensions (a) subjective/objective and (b)

conflict/regulation.

4.2.3 Descriptive comparisons

Possibly the most common approach for comparison of methodologies is to define a

set of criteria and then to describe or evaluate how each methodology addresses each

criteria. The set of criteria may be very simple or very complex. Wilson (1984)

categorises methodologies in a very simple way, according to whether they (a) focus

on verbs or nouns, and (b) consider information or data. Maddison (1984) gives a very

comprehensive analysis with many separate points of comparison.

Inherent in any comparison of information systems methodologies is a view of what

the methodologies are for and what their priorities ought to be. Many of the

comparative frameworks outlined take a predominantly technical view, concentrating

65

on the construction of information systems as a technical problem solving exercise.

Davis and Wood-Harper (1990) point out that ideally, an information system

methodology will be able to address both technical and social or political issues. They

consider methodologies under four headings which help to bring out these important

issues: (a) the methodology's assumptions about reality, (b) assumptions about the

information system, (c) objectives in using the methodology, and (d) conceptual

models/constructs used by the methodology.

4.2.4 Structured thinking
Jayaratna (1994) argues that a fundamental distinction should be made between two

modes of use of the notion of 'systems' when formulating problems. These two modes

(ontological and epistemological) guide methodology users to structure thinking from

different philosophical assumptions of reality. One takes a 'system' as something

existing in an enterprise independent of various actors, for example, designers. The

problem solvers or system designers require a correct, but possibly incomplete,

description of the system. This view is based on positivistic paradigms that help to

structure 'reality' by making the methodology users look for 'factual' data about a

single correct state. This data model then becomes a 'true' representation of the

situation. Many structured methodologies have adopted this view; for example,

DeMarco (1979) and Coad and Yourdon (1991). Although there is an acceptance of

multiple views, object-oriented methodologies believe in the definition and creation of

one final correct system.

In structured methodologies, the notion of 'systems' is used in an ontological sense,

that is systems are taken as given without question. Methodology users search for the

system and do not question its boundary. Methodology users are frequently

unconsciously conditioned by clients to arrive at a given system's boundary with

which they agree Fig 4.1. (Jayaratna 1994)

These 'hard' systems approaches are concerned with finding a solution to a given

problem (Lewis 1994). However, in many instances, a potential solution is already

seen to exist, in this respect the 'hard' systems approach is similar to an engineering

approach. For example, the civil engineers work begins when the need for a river to be

crossed has been identified; that is, there is already a solution in mind prior to the

design phase. The 'hard' systems approach uses the concept of 'system' ontologically,

that is, as a label for things in the 'action world' and analysis proceeds on the basis

that the world is composed of systems and subsystems.

There is th.
System 	 - --

C 	--_ - -
-

The methodology
user The situotion

Figure 4.1 Ontological notion of a 'system'.

(Jayaratna 1994)

An epistemological mode takes a 'system' as a way of conceptualising the analysis of

the situation of concern, from this perspective no 'system' can be taken 'as given' and

several systems could be constructed to support analysis and discussion. This mode of

thinking can help to follow hermeneutic paradigms and can make the methodology

user search for many states, any or all of which could be argued to have the same

truth-value. Checkland (1981), Mumford (1983a and 1983b), Checkland and Scholes

(1990) and Checkland and Howell (1998) use this mode in Soft Systems Methodology

(SSM). Methodology users employ this notion for conceptualising many system

boundaries, any of which can be considered as relevant and useful for gaining an

insight into the situation. This means that the methodology user has to justify why he

or she considers a particular selection as a system Fig. 4.2. (Jayaratna 1994)

Soft systems' thinking differs from other systems approaches in a number of ways: it

abandons the goal-seeking model of human behaviour and rejects the aims of

engineering systems that will meet objectives. Soft systems approach considers the

concept of 'system' to be an epistemological device for thinking about some part of

the 'action world' rather than an ontological description of part of the 'action world'

(Lewis 1994). From a soft systems perspective the notion of system and sub-system

are only 'mental constructs' through which we may choose to make sense of the

external world.

II
I can consider any 	System 1

collective set as o
-

r**r~Spt. ~-i i

0 	 — —

,,# -
--

S

The methodology user 	 The 'situation
of concern

Figure 4.2 Epistemological notion of 'systems'.

(Jayaratna 1994)

4.2.5 Frameworks

The aim of a conceptual framework is to assist the methodology user in understanding

the problem situation. The 'real world' used in literature serves to distinguish between

academia and industry or between theory and practice. This implies that the latter is

complex and full of action and the former is less complex and involves only thinking

(see section 3.1).

The clients concern for change in the 'action world' prompts them to seek the help of

external problem solvers. However, both clients and problem solvers may have some

initial expectations of the possible outcomes. For a framework to be effective it should

consider not only the problem situation (the methodology context) but also the 'mental

constructs' of the intended problem solver and the methodology under scrutiny

(Bessagnet et al. 1994).

4.3 A Framework for Comparing Methodologies - Avison and
Fitzgerald

Avison and Fitzgerald's (1995) framework for comparative analysis builds on the

earlier work of Wood-Harper and Fitzgerald (1982) and Fitzgerald et al. (1985). The

analysis is based on a discussion of the approaches in terms of three criteria:

paradigm, model and objective. In the framework the analysis is extended to include a

variety of other criteria. There are seven basic elements to the framework:

Philosophy
• Paradigm
• Objectives
• Domain
• Target

Model
Techniques and tools
Scope
Outputs
Practice

• Background
• User base
• Players

Product.

The headings are not mutually exclusive and there are inter-relationships between

them. For example, aspects of philosophy are reflected in some sense in all other

elements

4.3.1 Philosophy

The question of philosophy underpins all other aspects of a methodology, and it

distinguishes a methodology from a method. The choice of areas covered by the

methodology, the systems, data or people orientation, the bias or otherwise towards

computerisation, and other aspects are made on the basis of the philosophy of the

methodology. Paradigm, objectives, domains and applications are seen as guiding the

philosophy.

Wood-Harper and Fitzgerald (1982) identify two paradigms of relevance: the science

paradigm, characterised by most of the hard scientific developments in the latter part

of the twentieth century and the systems paradigm, characterised by a holistic

approach.

The stated objectives offer an obvious clue to the methodology philosophy. Some

methodologies state that the objective is to develop a computerised information

system. The problem with concentrating solely on the aspects to be computerised is

that this is an artificial boundary in terms of the logic of the business. A methodology

that concerns itself solely with analysing the need for a computer solution is quite a

different methodology from one that does not.

Early methodologies, such as the conventional life cycle approach saw their task as

overcoming a particular and sometimes narrow problem. The solution of a number of

these kinds of problems on an ad hoc basis at a variety of different points in time can

lead to a mish-mash of different physical systems being in operation at the same time.

More recent methodologies take a wider view of their starting point and initially are

not looking to solve a particular problem.

The last aspect of philosophy is the applicability of the methodology. Some

methodologies are specifically targeted at particular types of problem, environment, or

type or size of organisation, whilst others are said to be more general.

4.3.2 Model

The model is the basis of the methodology's view of the world; it is an abstraction,

and a representation of the important features of the information system or the

organisation. The model works at a number of levels: a means of communication; a

way of capturing the essence of a problem or a design, it represents an insight into the

problem or area of concern. Traditionally abstraction is to a conceptual level, logical

level and physical level. The conceptual model is a high level description of the

universe of discourse or the object system from a particular perspective. Conceptual

models cause confusion as the term is used in different ways in various contexts.

Confusion is created due to the language of conceptual modelling being the same as

for logical modelling. The logical level is a description of the information system

without any references to technology that could be used to implement it. The physical

level is a description of the information system including the technology of the

particular implementation.

4.3.3 Techniques and tools

A key element of a methodology is the identification of the techniques and tools used

in the methodology. These can include: rich pictures, root definitions, entity

modelling, normalisation, data flow diagrams, decision trees, decision tables,

structured English, Action diagrams, entity life cycle, object orientation, structure

diagrams and matrices.

70

4.3.4 Scope

Scope is the indication of the stages of the life cycle of systems development that the

methodology covers. An analysis of the level of detail at which each stage is

addressed is useful. The problem with using stages of the life cycle as a basis for the

examination of scope is that there is no real agreement on what are, or should be, the

stages of the cycle.

4.3.5 Outputs

It is important to know what the methodology is producing in terms of deliverables at

each stage and, in particular, the nature of the final deliverable. This can vary from

being an analysis specification to a working implementation of the system.

4.3.6 Practice

This is measured according to: the methodological background; the user base; the

participants in the methodology; and what skill levels are required. The practice

should also include an assessment of difficulties and problems encountered, and

perceptions of success and failure. It is also important to assess any differences there

appear to be between the practice and the theory of the methodology.

4.3.7 Product

This is what the customers actually receive at the end of the development process.

This may consist of software, written documentation, and agreed number of hours

training, a telephone help service, consultancy etc.

4.4 MULTI VIEW

The foundations of Multiview (Avison and Wood-Harper 1990) as an enquiring

framework for IS development rest on a recognition that the needs of computer

artefacts, organisations and individuals must be jointly considered. Multiview

perceives information systems development as a hybrid process involving computer

specialists, who will build the system, and users, for whom the system is being built.

The methodology therefore looks at both the human and technical aspects of

information systems development (Vidgen 1998).

71

The approach adopted has been used on a number of projects, and the methodology

itself has been refined using 'action research' methods, that is the application and

testing of ideas developed in an academic environment into the 'real world. Avison

and Wood-Harper (1990) describe Multiview as an exploration in information systems

development. It therefore sets out to be flexible: a particular technique or aspect of the

methodology will work in certain situations but is not advised for others.

The stages of the Multiview methodology and the inter-relationships between them

are shown in Fig 4.3. The boxes refer to the analysis stages and the circles to the

design stages. The arrows between them describe the inter-relationships. Some of the

outputs of one stage will be used in a following stage. The dotted lines show other

major outputs.

•- 	InIn.nWicsb4ps

Outpwi

£ L1p42M0U'PUIS 4 ntusuty for Non.
I .ççlicadoc Aitas

(will ailed
I wytniebc

ialttcoirqiiw

AWM

— -

r - - - - -
/ AppLiciaI(wMtwillitdo7)

la,iamsioa Retinal itt!
/ infcoua&ciwW lid?)

M.N. (it! Si in
involved?)
Diaba.te Miii,tn,sncs (bow
do I maintain the database?)
Cootsol (what mu, we

Rscovay (whit hapc.s when
it goes wiong?)

' 	Monitming Oh the system
" pexfoiuthigaslpecifted?)

Tecboioi

4 	
— -

Modd / Cric

Ptimuy Task Social Aspect (bow Will ii affect tWYto

&Des.p 	yg7)
Socio~Technxid 	Point (will my job cha5t?)

Aspect. 	 People lash (what will Issue 10

Figure 4.3 The Multiview Framework

(adapted from Avison 1992)

The five stages are:

1. Analysis of human activity

2. Analysis of information (information modelling)

3. Analysis and design of socio-technical aspects

4. Design of the human-computer interface

72

5. Design of the technical aspects.

They incorporate five different views that are appropriate to the progressive

development of an analysis and design project, covering all aspects required to answer

the vital questions of the users. These five views are necessary to form a system that is

complete in both technical and human terms. The outputs of the methodology, shown

as dotted lines in Fig 4.3 are listed in Table 4.1 together with the information they

provide and the questions they answer.

Outputs Information

Social Aspects How will it affect me?

Role-set Will my job change? In what way?

People Tasks What will I have to do?

Human.Computer Interface How will I work with a computer?

What inputs and outputs are there?

Database What data are involved?

Database Maintenance How will I maintain the integrity of the data?

Recovery What happens when it goes wrong?

Monitoring Is the system performing to specification?

Control How is security and privacy dealt with?

What errors are detected?

Information Retrieval What information will I get?

Application What will the system do?

Inputs and Outputs necessary for Non-Application

Areas

Will it affect anything else on the computer

subsystem?

Table 4.1 Methodology Outputs

(adapted from Avison 1992)

Because it is a multi-view approach, it covers computer related questions and also

matters relating to people and business functions. It is part issue-related and part task-

related. An issue-related question is 'What do we hope to achieve for the company as

a result of installing a computer?' A task-related question is: 'What jobs is the

computer going to have to do?'

The first stage looks at the organisation: its main purpose, problem themes and the

creation of a statement about what the information system will be and what it will do.

The second stage is to analyse the entities and functions of the problem situation

described in stage one. This is carried out independently of how the system will be

73

developed. The philosophy behind the third stage is that people have a basic right to

control their own destinies and that if they are allowed to participate in the analysis

and design of the systems that they will be using, then implementation, acceptance

and operation of the system will be enhanced. This stage emphasises the choice

between alternative systems, according to important social and technical

considerations. The fourth stage is concerned with the technical requirements of the

user interface. The design of specific conversations will depend on the background

and experience of the people who are going to use the system, as well as their

information needs.

Finally the design of the technical subsystem concerns the specific technical

requirements of the system to be designed, and therefore to such aspects as computers,

databases, control and maintenance. Although the methodology is concerned with the

computer only in the latter stages, it is assumed that a computer system will form at

least part of the information system.

4.5 A Framework for Method Evaluation - NIMSAD

4.5.1 Introduction to the NIMSAD framework
The Normative Information Model-based Systems Analysis and Design (NIMSAD)

(Jayaratna 1994) framework defines a problem solving methodology as a goal-

directed way of solving problems. The NItvISAD framework is a systemic meta-model

for understanding and evaluating a methodology, and explains the process of solving

problems. NIMSAD has four essential elements to assess the problem-solving

capabilities of each methodology. These elements and their relationships are shown in

Fig 4.5.

This figure gives a complete picture of the framework, which covers elements, phases

and stages for solving a problem. The evaluation as an essential element should be

carried out in order to measure how effective the methodology is in solving the

problem, although phases and stages can differ from one methodology to another.

74

Intended Problem Solver 	 'Problem Situation'

ation

Methodology

Problem -solving Process

Elements Phases Stages

The 'problem situation'

The problem solver'

The problem solving process Problem Formulation Understanding the 'situation of

concern'

Performing the diagnosis

Defining the prognosis outline

Defining 'problems'

Deriving notional systems

Solution design Performing logical design

Performing physical design

Design implementation Implementing design

Evaluation The 'problem situation'

The problem solving process

The problem solver - (before,

during and after the intervention)

Figure 4.5 NIMSAD elements and stages.

(Jayaratna 1994)

The four elements include:

• The 'problem situation' (the methodology context) in which one special

methodology is going to be applied, and the information systems will be designed,

implemented and operated in this situation;

• The intended problem solvers (the methodology users) and their 'mental

constructs', which influence their thinking processes and actions,

• The problem solving process (the methodology), which deals with the concrete

phases, stages and steps to identify and resolve problems. This element focuses on

the major parts of a methodology;

75

• The evaluation of the above three elements before, during and after the

methodology application.

The NIMSAD framework does not limit itself to situations that are perceived as

causing problems, or to well-structured problems, the framework can be equally well

applied to badly structured problems. The framework aims to assess systems

methodologies that purport to transform a current state into a desired state.

4.5.2 The 'problem situation'

Organisations are perceived as the contexts for information systems. Thus, the

'problem situation' is identified by clients within the context of an organisation, and

investigated by the intended problem solvers.

To know the 'problem situation' is to know the organisation where the methodology

will be applied. Jayaratna (1994) suggests that a useful way to gain this knowledge is

to take the organisation as purposeful systems. The intended problem solvers have to

consider organisational issues in the 'problem situation' whether or not they are

directly related to information systems. This is because organisational issues may

constrain the current requirements; if they are taken into consideration a 'fuller

picture' of the problem situation is derived that could affect IS development in the

future. By concentrating effort on the area where a problem is perceived to occur the

intended problem solvers are determining a boundary that may not be central to the

problem situation. The 'current states' should be transferred into 'desired states' by

intended problem solvers. The 'desired states' expected from users should be

transformed to a desirable situation for the organisation. An important point for

discussion is that there is a difference between the two 'states', (i.e. a problem). At a

conceptual level this allows us to define any problem as:

'... the difference between perceived 'reality' and perceived 'expectation' for

that 'reality', together with a desire to make the perceived 'expectation'

become 'reality" (Jayaratna 1994).

If the two 'states' were seen to be the same then there would not be a problem and the

services of an intended problem solver would not be required.

76

To make a better transformation, Jayaratna (1994) identifies 'interpersonal

relationships with clients and others as an ongoing process' which is as important as

the management of the 'problem situation'. Communication between different people

involved in the process is seen as an important issue as they facilitate better dialogue.

However, they do not guarantee the discovery of 'desired states'.

4.5.3 The intended problem solvers and their 'mental constructs'.

In the discussion of intended problem solvers, Jayaratna (1994) pays much attention to

what makes them perceive and resolve problems in particular ways. The framework

helps to identify pre-conditions of the 'mental constructs' in an explicit way. The

'intended problem solvers' could be thought of as the 'methodology users', who apply

methodologies to solve problems, i.e. analysts, users, or clients.

The NIMSAD framework advocates that effective problem solvers need to acquire the

richest possible understanding of the organisation, not merely rely on their clients. The

'mental constructs' of the intended problem solvers reflect their individual

characteristics and these together with their understanding of the organisation should

result in the success of effective and efficient information processing systems design

and development. On this basis, Jayaratna (1994) explores what makes the intended

problem solver select some elements of the 'action world' as relevant, significant and

useful while dismissing others as being irrelevant, insignificant and useless (Jayaratna

1994). This selection process is shaped by several characteristics that constitute the

intended problem solvers 'mental constructs'. A 'mental construct' differs from one

person to another. Its importance, expressed explicitly in Jayaratna (1994), is unique

in the way that 'mental constructs' of intended problem solvers identify important

personal characteristics that affect the way in which the role is carried out.

Methodologies cannot structure all issues within a problem situation, some issues rely

on 'shared understanding' etc. The problem solver(s) need to be aware of their pre-

conceptions, prejudices, values etc that may have a bearing on how they interpret the

problem situation.

According to Jayaratna (1994) 'mental constructs' are dynamic, which means external

inputs and critical self-reflection can influence the intended problem solver and

77

thereby change their future actions. The problem solver could, therefore, derive new

meanings from the same situations, consequently the problem solver should be aware

of any influencing factors that are likely to modify his/her understanding of the

problem situation. Jayaratna (1994) identifies the elements that influence 'mental

construct' as:

Perceptual process: One of the most influential characteristics of the intended

problem solver's 'mental model'. 'It acts as a filter of information to the 'action

world' and determines what information is to be significant' (Jayaratna 1994). The

perception of the intended problem solver could be different from that of the client

who is defining the problem, awareness of this enables the methodology user to make

an effort to understand the filtering process used by others.

Values: The intended problem solver's beliefs of what is considered to be 'good', their

principles or standards, these beliefs, standards and principles are accepted without

question as they are an intrinsic part of the being and/or the culture to which one

belongs.

Ethics: This relates to the standards placed on a person's expected behaviour.

Motives: The needs that people try to satisfy in a given situation, but keep to

themselves. This includes the personal motives for being involved in the problem-

solving situation that we may or may not be explicitly aware of. While these will

provide a major range of 'easy', and 'obvious' solutions, the same models may

prevent us from exploring new ideas or becoming effective listeners to others' ideas.

Reasoning: The ability to abstract essential aspects from any situation and to

understand the concepts underlying the thought processes, that is, determine what

makes us reason in a particular way. 'Systems thinking' can be used as a reasoning

process.

Prejudices: These can be defined as persistent opinions that are formed from one's

values, experiences or insecurities. They are useful in that they can reduce time spent

on information gathering, but can also prevent methodology users from receiving

valid information. Feedback from others is very useful for examining one's

prejudices. As far as possible prejudices should be acknowledged and effort made to

ensure that they do not unduly influence the information gathering process.

Experiences: An invaluable source for developing knowledge and skills for forming

implicit models for constructing the understanding of situations. Experience makes the

intended problem solver more confident and able to assume 'expert' status.

Vt'

Knowledge and skills: These are acquired from education, training and experience and

are required in order to practice a methodology. The intended problem solver ' must

become very conscious of the knowledge sets and skills that are required to practice a

methodology, and the methodology creators must state what knowledge sets and skills

we should possess if we are to become effective users' (Jayaratna 1994).

Structuring processes: These are unique to each individual. A methodology may be

used to explicitly structure, an intended problem solvers, thinking and actions. By

reconstructing their thinking and actions the problem solver gains new insight about

the situation.

Roles: These can be defined as the set of explicit behavioural characteristics that can

be attributed to someone responsible for performing a set of tasks. 'The intended

problem solvers must examine what kind of role they are expected to perform or adopt

in a given situation and take full responsibility for their role clarification and actions.

It is the duty of the methodology creators to explain the role expectations implied by

their methodologies' (Jayaratna 1994). Within the framework, the intended problem

solver could act as an adviser, an analyst, a consultant, a designer, an implementer or a

facilitator. 'Role conflicts' are caused by the difference between the intended problem

solver's role expectations and the expectations others may have of that role.

Models and framework: A framework is a static structure, which can be perceived as a

metamodel showing the connections of a set of models. Modelling helps to develop

one's reasoning abilities.

4.5.4 The Problem Solving Process

Methodology users need to ask how specific methodologies help them formulate and

solve problems. Systems analysis, as normally understood in the context of systems

development, is the study of an existing system taken 'as given'. Systems design is the

process of improving an 'existing' system, the boundaries of which are not in

question. This means systems analysis and design are based on a view of systems 'as

given' and explains why critical enquiry into problem formulation has largely

remained outside the domain of most systems development methodologies. According

to the NIMSAD framework, systems could be more usefully viewed as 'human

constructs' and when applying this view to the activities of systems analysis and

design, Jayaratna (1994) refers to them as systemic analysis and systemic design.

79

Systemic analysis is applied when determining the problem situation in problem

formulations 'a process of critical enquiry of situations with the use of the notion of

'systems", while systems analysis is ' the study of an existing system' (Jayaratna

1994).

NIMSAD consists of eight phases, five of which are concerned with the problem

formulation, a further two phases are concerned with solution design and the

remaining phase is concerned with implementation. To some extent, failures or

weaknesses in conducting one phase inevitably cause problems for subsequent phases.

4.5.5. Phase 1 - Problem formulation

4.5.5.1 Stage 1: Understanding the 'situation of concern'
The intended problem solvers understand and appreciate a dynamic situation by their

dynamic 'mental constructs' taking a system as a 'human construct'. Activities carried

out during this stage include; drawing a system boundary, determining 'what'

information is required and selecting the most appropriate methodologies of

investigation for information gathering.

The identification of a boundary on the situation helps to identify possible areas of

interest. If intended problem solvers do not subject their 'mental constructs' to self

critical examination they may end up accepting the boundaries as defined by the

clients. Implicit boundaries may also be constructed subconsciously, thus we are

unaware of why or where those boundaries have been drawn. Since the boundary

determines the focus of the investigation and establishes the 'situation of concern', we

need to examine whether we have identified relevant elements (persons, materials,

activities, flows) in the situation for study. The use of epistemological notion of

system enables the construction of boundaries not simply for practical reasons i.e.

client definitions. For example: During the development of an order processing system

the client is asked if this includes supplier payment, if a negative response is elicited

then the use of epistemological notions could alert the client to the implications of

leaving the supplier payments out of the proposed system, and establishes both

intellectual reasons as well as practical reasons for the inclusion or otherwise of

particular processes in the system. Unless we are prepared to operate at this level of

EDJ

awareness (ability to examine why and how we select relevant elements), we may not

recognise the effects of a chosen methodology on our boundary construction

4.5.5.2 Stage 2: Performing the diagnosis

Performing the diagnosis is the way to express the understanding of the 'situation of

concern' from stage 1. Diagnosis should be explicitly identified as conceptual/logical

and physical expressions, which the problem solvers should formulate according to

the techniques in an applied methodology. In NIIMSAD, the expressions at this stage

create a basis for all subsequent problem-solving stages, particularly for the

logical/conceptual and physical design (stages 6 and 7). The diagnosis serves three

additional needs:

• To help methodology users identify gaps in knowledge or misunderstandings;

• To help methodology users to communicate - particularly with the client and

problem owners, to derive agreed understanding, to clarify differences of

perception and to explore the different 'world images' of the participants;

• To serve as the basis for understanding further activities in problem solving

(Jayaratna 1994)

Techniques/tools provided by methodologies differ from one to another, for example,

object models, object relational models etc. In addition, the expressions should be

described and documented in different models i.e. diagnosis models 1 and 2 for

logical and physical aspects of the situation. These models deal with explaining the

'current state' of the 'situation of concern'. Later on, the models can be used to re-

examine the 'situation of concern'. It is important to note that the content within the

boundary provides a description of the situation, while the outline shape of the

diagram expresses an impression of the state of the situation (Jayaratna 1994). The

diagnosis is a result of the interactions of two dynamic processes; the 'situation of

concern' and the intended problem solver's 'mental constructs'. The problem solver

constructs the expressions by applying their 'mental constructs' to the 'situation of

concern', the expressions may not, therefore, accurately reflect the action world.

There is, therefore, a potential risk of problem solvers solving the wrong problem. The

diagnosis captures a 'current state' of the 'situation of concern', i.e. 'where are we

now?

FF

4.5.5.3 Stage 3: Defining the prognosis outline

During this stage the 'desired state' is emphasised, i.e. 'where do we want to be and

why?' To understand 'why' requires a shape of the feature of the 'desired state', not

the content of the prognosis model. The 'current state' is what the intended problem

solvers find at stages 1 and 2, (what currently happens) whereas the 'desired state' is

defined as a prognosis outline at this stage.

The intended problem solvers can only define an outline shape for the prognosis

without content. This means that the shape could be considered in the design stages

later on. Such a shape can be understood as a 'desired state with supporting reasons'

(or 'why') once designs are finished. The difference between the two 'states' reflects

the existence of a 'problem'. One of the most serious weaknesses of many

methodologies is that they force their users, in an intellectual sense, to accept the

'desired state' of the client without question or critical examination. This can be

problematic as the users may or may not formulate their expectations in a rigorous

way, even though they may be knowledgeable about their own domain (Jayaratna

1994).

Most methodologies do not alert their users to the 'desired states', they remain private

to the clients and problem owners. 'Desired states' of clients are analogous with the

requirements specifications of the system, if the specifications are not questioned in

order to determine a better understanding, i.e. Why is the system required? Who is

going to use the system? What is the purpose of the system? Then effectively there is

no problem to solve only a system to be developed. Failure to question the validity of

the 'desired state' may lead to irrelevant solutions, expensive investments and

implementations, and significant maintenance. Once a 'desired state' is accepted

without question, for whatever reason, there is little or no opportunity to discover the

'real' problem issues. This could be compared to an architect and builder, an architect

gives a builder a blueprint for a new building (requirements specification) the builder

does not ask about the purpose of the building, why the building is required or who

the building is for; he simply takes the blueprint and constructs the building.

E;tA

4.5.5.4 Stage 4: Defining problems
This is the process of identifying and critically examining the absence of elements

and/or the current arrangement of elements in the diagnosis model that prevent the

'current state' from changing to the 'desired state'. The result leads to the

identification of a problem area, which can be described in a set of problem

statements. 'What' and 'when' questions should be asked about this problem area.

'In information systems domains these statements cover not only gaps or

failures of information, but also the associated roles, responsibilities,

processes, functions, structures, cultures and relationships. In order to

generate these statements, intended problem solvers need to ask questions of

the type what and why, and not of the type how and who (Jayaratna 1994).'

4.5.5.5 Stage 5: Deriving notional systems.

Notional systems are those systems that need to be developed if the client organisation

is to overcome the previously defined 'problems', thereby helping to transform the

'current state' to the 'desired state'. The description of notional systems features and

their expected behaviour is called the 'systems specification' or the 'requirements

specification ' document. If clients/problem owners are unable to express clearly and

precisely their expectations there is no identifiable shape in the prognosis stage Fig

4.6.

When this happens, the situation could be considered to be an 'ill-structured' one

(Jayaratna 1994). Explication of the situation of concern and the client's concern

should be examined instead of accepting the client's notional system without a

question.

'The object here is to make the intended problem solver examine the

concerns of the clients and problem owners in depth, and to make explicit

the legitimacy and validity of the prognosis outlines, the 'problems' and the

notional systems of the clients and the problem owners,' (Jayaratna 1994).

RE

PROBLEM FORMULATION PHASE

go

Pro gnø iii 	 Ding neda

F-1,.'ulnJ

Figure 4.6 Deriving notional systems

(adapted from Jayaratna 1994)

4.5.6 Phase 2 - solution design
Solution design is defined by Jayaratna as 'the creative activity of constructing

elements and organising them into integrated wholes, each capable of realising the

notional system(s)' (Jayaratna 1994). Solution design includes both the

conceptual/logical design and the physical design.

4.5.6.1 Stage 6: Performing the conceptualllogical design.
Methodology users have either to rely on implicit models or develop explicit

logical/conceptual models in order to transform the notional system into a logical

design. The outcome of this stage is the production of an agreed and acceptable

logical design specification, which states the nature, and the function of the logical

elements formulated from the diagnosis model. At this stage, modelling and design

techniques included in the methodology are considered. The implementation of the

logical design will differ with the methodology under consideration, i.e. some

methodologies integrate logical design with physical design. For our purposes logical

design is considered to be the realisation of the notional system and is seen as the

basis of the physical design.

4.5.6.2 Stage 7: Performing the physical design.
Physical design can be considered as the deliberation and selection of 'ways and

means' of realising the logical design. At this stage, the intended problem solvers

realise the features of the logical design by considering physical resources and

constraints. Constraints may include economic, social, political and cultural

environments, in which the proposed design models are expected to operate or

perform, as well as input and output formats, data organisation, human computer

interface, document standards etc. In this way a logical design is transformed into a

physical model by addressing questions such as 'how' and 'whom'. Different design

criteria for measuring reliability, accuracy, security and usability should be applied in

order to determine the appropriateness of the physical design.

4.6 Phase 3: Design implementation.

4.6.1 Stage 8: Implementing the design.

In NIMSAD, design implementation is concerned with the realisation of the notional

system within the context of a 'situation of concern' to fulfil the function of

information systems development. The major aspects in implementation are: the

'situation of concern'; the models generated from previous phases of the problem

solving process; and the need to discover a way of bridging the gap between design

and realisation. According to Jayaratna (1994) these three aspects can be organised

into five sets of tasks: environment preparation, systems development, changeover,

strategy and planning, management and control.

'I consider the design implementation as a transformation from the 'thinking

world' to the 'action world' at the end of the problem solving process.

Collaboration among the intended problem solvers, the problem owners,

stakeholders and clients, is needed to make the implementation a success. In

particular, the significance of the collaboration has been recognised as a useful

strategy for refining the diagnosis and prognosis models in face of continuous

changes of the 'situation of concern'. Problem solvers need the support and

the co-operation of clients and stakeholders to make the design realisable and

contribute to organisation effectiveness (Jayaratna 1994).'

A complete problem solving process can now be shown diagrammatically Fig 4.7

RE

PM1

/ 2 Extra persons
(Miss X to tabulate

HI

Dynamic situation

Solution design phas. 	 Problem formulation p1w..

- - 	 ptua l/Log ica l
ann mndel

7 	 - Problem area
7

Dynamic 'Mental Construct'
-

rO
Intended problem 	-

solver

Implementation

'Boundary
of

Physical design model 	 Concern'

Design lmpl.msntatlon phas.

Figure 4.7 The Problem Solving Process

(Jayaratna 1994)

The intended problem solvers are located at the centre of the figure. They confront a

dynamic situation, help to conceptualise the essential features, transform their

structures by using models, and implement the solutions and examine the effects of

the transformations. In order to achieve this they need to have communication and

monitoring links with those involved in the situation and ensure that the

methodological activities are applied appropriately.

4.7 Methodology evaluation

Methodology evaluation is regarded as the last and most important element in

NIMSAD. Evaluation is carried out before, during and after the methodology

application and is conducted for the other three elements of the framework: the

problem situation, the intended problem solver and the problem solving process. The

evaluation element helps in the identification of the lessons learned from using the

methodology. Jayaratna (1994) identifies a number of questions that could be used to

aid the evaluation process. These questions are summarised in Table 4.1.

The salient points of table 4.1 being:

It is the methodology users who determine how the original methodology should be

used, adapted/adopted and put into action, all of which influence the 'methodology' in

use and the problem solving process. Any weakness in the methodology must be

overcome by the intended problem solver's efforts or with the help of others.

Jayaratna (1994) stresses that it is the methodology users that bring about the

transformation of situations and not the methodology itself. The methodology can

only help in the structuring of thinking and actions.

E;1'

Table 4.1 Evaluation issues.

The 'problem situation' The problem solver The problem solving
process

Before intervention To understand the reasons To understand what Why a methodology

for the clients' concerns 'mental constructs' the should be used;

and expectations problem solvers already Selecting a

the 'desired states; have and distinguish those methodology;

constructs from what the

situation requires.

To gain an understanding

of issues and the clients'

commitments to action;

To select a methodology Changes made and

in the situation why.

During intervention To assess how the To know how you (the Predefined method in

situation is unfolding; methodology user) are action -
performing

Are there any aspects that What mistakes are being To use a
need managing? made? methodology for a

particular problem

solver in a particular
problem situation.

Are things going What skills/knowledge are Learning about

according to plan? necessary? changes.

After intervention To assess to what extent To assess the lessons Lessons learned from
(1) the designed systems learned and methodologies experience of using a
were implemented within users' satisfaction with the methodology. What

the limits of resource, methodologies and lessons modifications are
time and effort; for themselves necessary?

(2) do systems do what
they are supposed to do?

(3) Have the problems
been resolved? - the

relevance of the action

system to the problem

situation

Overall Resolution of client To help the methodology The assessment of a
concerns in the 'problem users understand their methodology and the
situation'. strengths and weaknesses degree of assistance it

Three levels of by using 'mental provides in terms of
satisfaction: constructs' models, concepts,

techniques, tools etc.

Model system has become

action_system;

Systems do what they are

supposed to do;

System has transformed

the situation.

4.8 Justification of choice of Evaluation Framework

The choice of framework within which the selected object-oriented analysis

methodologies were to be evaluated had to:

a) provide a frame of reference

b) be a problem-solving framework

c) have been used to evaluate methodologies

d) be available as a text.

The NIMSAD framework was chosen as it satisfies all the above criteria. NIMSAD

defines an intellectual problem solving methodology as a goal-directed way of solving

problems. Jayaratna (1994) states that the framework serves three purposes:

understanding the area of problem-solving in general and of any nature; evaluating a

methodology before, during and after use; and assisting in evaluating

business/commercial practice. This provides a clear frame of reference within which

to work.

NIMSAD framework has been used not only as a framework for evaluating problem-

solving methodologies, at an academic level, but also within a business context.

NIMSAD has been used by Jayaratna (1994) to evaluate three significantly different

methodologies: Structured Analysis and Systems Specification (DeMarco 1979),

ETHICS methodology ((Mumford (1983a) and (1983b)) and 'Soft' Systems

Methodology ((Checkland 1981) and (Checkland and Howell 1998)). Jayaratna also

refers to the use of NIMSAD framework within a business context.

Oates and Jayaratna (1995) used the NIMSAD framework to evaluate Yourdon

Systems Method; while in Oates (1995) she used NIMSAD to evaluate NIMSAD as a

methodology, she concludes that NIIvISAD provides a useful conceptual framework

within which to evaluate methodologies that solve problems. Barker (1997) used

NIIMSAD to critically evaluate Jackson Structured Design (JSD) but he draws no

conclusions on the usefulness or otherwise of NIMSAD framework. Zhang (1999)

used NIMSAD to critically evaluate how user participation is considered in Object

Oriented Software Engineering (Jacobson et al. 1998), Object Modelling Technique

(Rumbaugh et al. 1991) and Object Models, Strategies, Patterns and Applications

(Coad et al. 1997).

FTYJ

The NIMSAD framework as a problem-solving framework was useful throughout my

research as it helped to focus the mind on the important issues being raised by the

various methodologies. However I also found that NIMSAD did not have the

flexibility for semantic considerations that are seen as central to object identification.

The structure and concepts of NIMSAD framework will be used to evaluate three

object-oriented analysis methodologies in Chapters Five to Seven.

4.9 Summary

This chapter considered different approaches for comparing/evaluating

methodologies. Approaches considered included, taxonomies, visual comparisons,

descriptive comparisons, structured thinking and frameworks. Avison and Fitzgerald's

(1995) framework, Multiview (1990) and NIMSAD (1994) framework were

considered.

NIMSAD framework was chosen, as an appropriate problem-solving framework, as

the identification and formulation of objects is perceived as a problem in object-

oriented analysis. The choice of NIMSAD was also justified.

Part two comprises the next four chapters and uses the NIMSAD framework to

critically evaluate the selected methodologies (chapters five, six and seven); Coad and

Yourdon's OOA (1991), Rumbaugh et al's OMT (1991) and Jacobson et al's OOSE

(1998). Each chapter has an emphasis on how the methodology assists the

methodology user in identifying objects. Chapter eight explores how objects are

identified in practice; the chapter represents the results of a number of semi-formal

interviews with a small number of colleagues (academics) and practitioners who use

object-oriented analysis methodologies as part of their teaching or normal working

practices.

Chapter Five: Critical Evaluation of Object Identification
in Object Oriented Analysis (OOA).

5.1 Introduction to Object Oriented Analysis (OOA)

According to Coad and Yourdon (1991) Object Oriented Analysis (OOA) is based on

concepts that we learned in kindergarten: objects and attributes, wholes and parts,

classes and members, because we instinctively use these classifications and concepts

Goad and Yourdon assert that this is a 'natural ' way to approach analysis.

In essence OOA Goad and Yourdon (1991) was developed to create object-oriented

systems models. It produces a five-layer model of the system, identifying objects,

structures, subjects, attributes and services. It consists of five activities: -

• Define Objects and Classes These include Structures, events, roles, other systems,

devices, and organisational procedures.

• Define Structures The relationships between classes are represented as either

general-to-specific or whole-to-part structures.

• Define Subjects Subject areas are identified in the top-level objects and refined to

minimise interdependencies.

• Define Attributes The objects are examined in terms of their characteristics and

associative relationships.

• Develop Services All the Services performed by classes and objects are identified.

However the activities are not viewed as sequential steps rather as a looping construct

where a Glass-&-Object may be identified, then its Structure, Subjects, Attributes and

Services. Further Glass-&-Objects are then identified and the process repeated. In this

way the documentation is constantly being referred to and clarification sought from

domain experts, managers, etc. until the entire problem domain has been considered.

At any point during the analysis process one could have Glass-&-Objects that are

specified by name only; Glass-&-Objects with Structures; Class-&-Objects with

Structures, Attributes and Services specified; or Subjects (sub-domains) that are

completely specified describing all associated Glass-&-Objects, Structures, Attributes

and Services. If a large or complex problem domain is being considered it may then be

very difficult to determine when all aspects have been considered and therefore when

the analysis could be said to be complete.

91

QUA has a strong focus on techniques - in most situations it would be feasible for two

or more technically competent OOA methodology users to derive different object

models. It could be argued that because of the cyclic nature of the methodology

objects that are missed initially may be uncovered at a later stage and, due to its

relative immaturity, analysts may be still developing their techniques and determining

which problem situations are most applicable. Coad and Yourdon (1991) include

application examples, using OOA that are stated as being applicable to most

businesses and industries. These include: point-of-sale application; warehousing

application; order processing application; soft real-time application and hard real-time

application. OOA is applied to application examples, within the text, with objects

identified from users' accounts of their business and object classes named by

following the users' vocabulary.

5.2 Evaluation of OOA focused on Object identification

The rest of this chapter uses the NIMSAD framework to examine what OOA has to

say about the problem situation, the intended problem solver and the problem solving

process with an emphasis on object identification. Object identification is the starting

point of any object analysis or object modelling methodology and is concentrated in

the activities, defined by Coad and Yourdon (1991) as; define objects and classes,

define structures and define attributes. Evaluation using the NIMSAD framework will

concentrate on these activities.

5.2.1 Element 1:The 'problem situation'

NIMSAD alerts the problem solver to consider wider issues surrounding the use of a

methodology - for example the size and the nature of the organisation, the identity

and belief of the people within it (namely the client and the stakeholders), the

behavioural patterns of the stakeholders, and their perceptions of the current situation.

Therefore it is essential that a methodology is able to explore and consider a given

'problem situation'.

The 'problem situation' is drawn from an organisation and its business and is

described by the members of the organisation. In order to understand the problem

domain: 'why this system' and 'why now' become necessary questions to ask as it is

important to get domain experts to agree upon a formulated system purpose and

features. What the organisation needs from this application system and why the

system is required are not considered by the methodology nor are the implications of

ignoring such questions.

The problem situation is viewed through the filter of the problem solver, who in turn

may have compiled this view through discussions with the client. This can be

problematic as there is a risk that the 'problem solver' may conceptually reduce the

client or client organisation to the status of 'object' and this may lead the problem

solver to misinterpret the client's view on the nature of the problem situation, and the

required system which is intended to provide a solution.

The OOA methodology provides a basis for an initial expression of the system

context, however, a diagram, drawn by a systems analyst making a technical decision,

does not define the context. This indicates that Coad and Yourdon have adopted an

ontological notion of systems. The boundary of the 'problem situation' is not explored

although Coad and Yourdon (1991) acknowledge that:

'clients, managers, analysts, competitors, government regulators and

standard bearers all affect the system context over time. System context is

an indication of how much of the problem domain will be embraced by the

automated system, what data will be held over time, and how much

processing sophistication will be included'.

If disagreement exists amongst stakeholders as to the nature and scope of the 'problem

situation' then OOA will not alert the user to this, nor will it provide any means of

resolving conflicts.

Coad and Yourdon (1991) refer to "system's responsibilities' as an arrangement of

things accountable for, related together as a whole'. Used in this way 'system's

responsibilities' are considered as the pre-specified boundaries of the problem

situation with 'system' being used in an ontological sense, i.e. analysis process

assumes that the world is composed of systems and sub-systems. 'Systems' and the

problem situation, are taken as given without question, as is the boundary of the

problem situation. This is at variance with a previous statement by Coad and Yourdon

93

'approaches to analysis are 'thinking tools' used to help in the formulation of

requirements.' The 'thinking tools' referred to are the approaches considered by Coad

and Yourdon during the development of OOA; functional decomposition, data flow

modelling, information modelling and object-oriented programming. Coad and

Yourdon are talking not about models for understanding a 'situation' but models to

organise a solution.

The implication of this is that the analysts do not question the motivations and

justifications for the 'system' nor do they question the relevance or otherwise of the

boundaries perceived by the clients. Effectively any difficulties with the final solution

can be claimed to be outside the system boundaries. This creates a 'safe' problem for

which there could be a desired solution already in existence. For example: in an order

processing system, the client states that supplier information is outside the problem

domain. By accepting this statement and not considering the implications from the

business perspective any problems related to supplier information in the implemented

solution can then be identified as being outside the originally stated problem domain

and therefore not considered. A more realistic approach would be to make the client

aware of problematic issues that may arise relating to supplier information and only

when all implications have been discussed should a decision be made.

5.2.2 Element 2: The intended problem solver

NIMSAD focuses on the role of the problem solver's 'mental constructs' that help to

understand the complexity of the 'problem situation'. A methodology is a 'brain

structuring' mechanism, and if it is to be used successfully, then its user must have the

necessary characteristics and preparation. Additionally

'it helps us to examine whether the methodology alerts us to the need for

developing our 'mental constructs' to a desirable level in order to apply the

methodology successfully' (Jayaratna and Oates 1995).

The text (Coad and Yourdon 1991) is written for a specific target audience, that is

those currently employed in an analysis capacity.

We have aimed this book at the practising systems analyst, the person

who has to tackle the real-world systems development projects every

day... the strategy used to identify objects comes from practice and

experience in the field'.

Coad and Yourdon (1991) assume a fundamental understanding of computer

technology and systems analysis concepts, experience of data flow diagrams and

entity relationship diagrams as pre-requisites of object-oriented analysis. The

methodology creators state that OOA constructs come from Entity Relationship

Modelling, Semantic Data Modelling, Object-Oriented Programming and Knowledge

Based Systems. From the perspective of data analysis and database design, the

underlying logic for this statement needs to be challenged. Entity Relationship (ER)

diagrams can be seen as the end result of the data analysis process and are therefore

the first step in a design strategy. If they inform an analysis method then the analysis

method is design led and the ER diagrams are part of a solution-defining problem.

Coad and Yourdon (1991) are attempting to shift the design principles used into

analysis as there is little or no real understanding of the analysis process from the data

perspective, their previous experience being from a task or process oriented approach

(Yourdon 1989).

Coad and Yourdon (1991) identify problem domain understanding as one of the

major difficulties associated with traditional systems analysis and imply that an

object-oriented approach will help with problem domain understanding. Object

Oriented Analysis is identified as 'the challenge of understanding the problem

domain'. Structured analysis methods are considered to be too limiting to be used in

an object-oriented environment and therefore object-oriented analysis techniques need

to be developed. Coad and Yourdon (1991) state

'analysis is the process of extracting the 'needs' of a system - what the

system must do to satisfy the client, not how the system will be

implemented.'

However, there is an underlying assumption about the design method and the coding

language to be used. This also determines to a large extent the way the problem is

initially perceived. This is confirmed by the following statement from the

methodology creators

'the underlying concepts of the object oriented approach have had a

decade to mature and attention has shifted from issues of coding, to issues

of design, to issues of analysis. The underlying technology for building

95

systems has become more powerful. The way of thinking about systems

analysis is influenced by preconceived ideas of how we would design a

system to meet its requirements ' (Coad and Yourdon 1991).

Coad and Yourdon (1991) state,

'an analyst needs to communicate throughout the analysis effort. He needs

to communicate in order to extract information about the problem domain

and requirements from the client. He may also need help in steering the

client away from requirements that cannot be met within budget and

schedule constraints.'

OOA makes the assumption that all participating groups can agree a requirements list,

but the methodology does not offer any techniques for facilitating the resolution of

such issues. The methodology does not attempt to highlight the ethical/moral issues or

other elements of a 'mental construct' that need to be considered. In common with

several other methodologies, OOA projects the problem solver in the role of defining

how the system will fulfil the requirements of the specification, and the client in the

role of defining what those requirements are.

OOA does not alert its users to their 'mental constructs', because of this lack of

guidance as to the epistemological nature of the process and the fact that OOA does

not provide models to identify the reasons for potential 'clashes' between differing

opinions, it is possible that the methodology user may produce solutions which are

inappropriate to the situation context.

In the organisational environment, object modellers as methodology users look for

objects and organise object classes according to the information they receive during

their initial observations, discussions and investigations. These discussions and

investigations involve the future system users, referred to as 'domain experts' in

OOA. These people have experience of working in a specific area of concern. This

assumes that the information about the problem domain is objective and waiting to be

discovered. There is no acknowledgement that the problem solvers have a

responsibility for interpreting the information. The interpretation placed on the

information by the problem solver influences the client / situation and cannot be seen

as neutral. OOA does not alert the intended problem solver to this.

!Ii1

Jayaratna (1994) suggests that a useful way to gain this knowledge is to take the

organisations as purposeful systems. If the intended problem solvers assume that they

have the required subject/organisational knowledge they are likely to allow their own

perceptions to 'colour' the requirements, that is they will not critically question the

'desired state' of the client. This also supports the argument by Jayaratna (1994) that

many methodologies force their users to accept, particularly in an intellectual sense,

the 'desired state' of the client without critical examination or question.

A methodology is meant to help people to develop their understanding and structure

their thinking; OOA identifies the stages to be considered and gives examples, in the

text, as to how the strategies can be applied in 'action world' situations. The

methodology user is not given any other guidance on how to develop their experience,

other than work through the given examples and then apply them in the target problem

domain.

Coad and Yourdon (1991) imply that by taking an object-oriented approach to

analysis a greater understanding of the complexity of the problem domain will be

achieved. This must depend on the competence and expertise of the analyst; an

experienced person is just as likely to miss the complexity of the problem domain

using this methodology as with any other methodology, as is an inexperienced analyst.

00 concepts only help to focus on formal operations performed by or on data.

According to the NIMSAD framework, system developers 'mental constructs'

function in a dynamic situation and we should be aware of the characteristics that

constitute our 'mental constructs'. Experience and knowledge are identified as

helping to 'form explicit models for structuring our understanding'. Experience comes

from solving earlier problems. The more experience we have of a particular problem

domain or working environment the easier it may be for us to assess similar situations.

Previous experience is used while using a new methodology and should be recognised

as part of the system developer's 'mental constructs'.

OOA talks about the experience element of the framework but it does not alert its

users to their 'mental constructs' nor does it 'help them to examine the high level of

97

preparation they should have in order to use the methodology successfully' (Jayaratna

1994). It is evident that OOA assumes that the use of its techniques will yield the

same results irrespective of the nature of the 'mental constructs' of its users.

The ability, of the intended problem solver, to identify appropriate objects is implicit

within OOA. Objects are seen as abstractions of the real world that provide a focus on

significant aspects of the problem domain and the system's responsibilities. However,

OOA does not provide explicit ways of performing this abstraction. Coad and

Yourdon state

'the principle (of data abstraction) can be the basis for organisation of

thinking and of specification of a system's responsibilities.'

The examples, given in the text, assume that the intended problem solver is familiar

with the problem domain and can identify any objects that are appropriate in the given

situation. The methodology does not alert the methodology users to the effect that

culture; beliefs, shared understanding and knowledge can have on choice of relevant

objects nor does it alert the methodology user to the importance of having a shared

understanding of the terminology used in the problem domain. Users need to check

the meanings incorporated into the specifications in order that results of the analysis

can be verified. This can be difficult and users are unlikely to be able to make an

adequate check on the meaning of words. The risk arising from this situation is that

the analysts may wrongly understand the user's requirements. Inaccurate requirements

may be sought, though represented in a correct syntax.

An emphasis on semantics, as part of the analysis phase, is a possible solution, in

addition a way of preserving and clarifying meaning in requirements analysis should

be considered.

5.2.3 Element 3: The problem solving process

The problem solving process has three essential phases: problem formulation, solution

design and design implementation (Jayaratna 1994).

The NIIMSAD framework sub-divides these phases into eight systemically based

stages. By analysing the situation in a systemic way, it should be possible to make the

transition from 'current state' to 'desired state'. Systemic design can then be utilised

to obtain models of notional systems, any or all of which should be able to facilitate

the desired notional system(s)

5.2.3.1 Stage (I) Understanding the 'Situation of concern'
OOA does not alert its users to the conceptual construction of boundaries or

identification of a 'situation of concern'. Boundary construction is either trial and

error or predefined by the client. Questioning 'why' the system is required

corresponds to understanding the 'boundary of concern' within the NIMSAD

framework. Boundary constructions are based on the data that are meaningful to the

OOA user, data that is considered by the OOA user to be relevant to the requirements

list and that data which the client insists on as being relevant for their systems.

The OOA methodology creators state that

'structures focus the attention of the analyst and problem domain experts

on the complexity of multiple Class-&-Objects using Structures the

analysts push the edges of the system's responsibilities within a domain,

uncovering additional Class-&-Objects (implicit in the requesting

document that might otherwise be missed)'.

The initial system boundary is 'taken as given' by the client, the previous statement

reveals the implicit recognition of the artificial nature of the boundary construction.

However, the methodology users' 'mental constructs' that determine the nature of the

boundary construction is not explained. Consideration of objects in structure terms i.e.

generalisations, specialisation, inheritance and whole-part structures, may indicate that

there are interface objects or control objects that were not apparent from

documentation or discussion. These are the objects that are seen as 'pushing the edges

of the system's responsibilities'.

5.2.3.1.1 Investigation models and techniques

The OOA methodology authors state that information is captured through interviews

with stakeholders, and interpretation of the requirements specification as prepared by

the client. How these interviews are structured in order to elicit the required

information is not stated. As a result stakeholders may not elucidate their opinions and

concerns about the current systems, or they may make assumptions because something

seems so obvious to them that they believe it will be obvious to anyone else, and in

doing so not pass important information to the problem solver. Moreover the problem

solver may not become aware of problems associated with the data, or the various

opportunities that may arise through its use

The effects of differing interpretations by stakeholders and problem solver with regard

to the situation may not be taken into account, resulting in a system which may

operate in a way fundamentally different from established working practice within the

organisation, thus causing possible discontent and resistance to change amongst the

workers.

Most people involved in the IT sector now accept that as technology changes and

more and more clients/customers realise the strength of the technology they expect

applications to be able to instantly react to those changes - be they changes in

requirements or technology changes. A thorough initial analysis should be able to

identify those areas that are liable to change as well as the core areas of the business /

problem situation that are unlikely to change. It is assumed that the 'true

requirements' referred to by Coad and Yourdon (1991) are those central to the

business/problem situation that are unlikely to change over time, or as a result of

technology change, i.e. the way in which data is used may change but not the data

itself. This assumes that the data is useable regardless of the situation.

Encapsulation offers a technique for making systems resilient to changes in

implementation caused by changes in data format. For example: British Telecom

recently changed the format of many telephone numbers. Software written in an

object-oriented style suffers less from the effects of such change since the internal

implementation of 'phone-no' is hidden and the only changes that occur should be

within this object, with other parts of the system not needing major changes (Graham

1995).

Coad and Yourdon (1991) state

'systems analysis usually begins with a requesting document (from the

client, or perhaps from the marketing division) and a series of discussions.

In any case the audience includes, problem domain experts, developers and

100

possibly other interested parties (auditors, contracting officers, etc.) who

may need to understand and agree with the proposed set of requirements'

By taking a requesting document as a start point, the methodology creators are

accepting that the client has identified a problem and an outline solution may also

have been proposed. The inclusion of many of the stated stakeholders implies that

there are many political, financial and organisational considerations that are not

acknowledged by the client and the methodology user may not be made aware of.

Differences in personal experiences, values and expectation can create difficulties in

understanding. As soon as there is a problem in understanding, people come back to a

base level, and from there they can expand their common knowledge and reach their

new agreement. (Dik 1989) refers to personal possession of knowledge and experience

as 'pragmatic' information. If two participants in a conversation are from the same

cultural community, they have a large amount of shared pragmatic information.

Incorrect assumptions of the pragmatic information of the opposite side can lead the

conversation astray. Therefore it is important for a speaker to acknowledge the

assumptions shared with the hearer before communication occurs. Apart from the

shared knowledge, the context where the communication takes place is important to

the pragmatic affects.

Coad and Yourdon (1991) state,

'an analyst needs to communicate throughout the analysis effort. He needs

to communicate in order to extract information about the problem domain

and requirements from the client'

The OOA methodology gives little advice as to relevant or appropriate methods of

investigation, although it is stated that interviews and questionnaires may be

employed. Observation is identified as an important investigation method as the

intended problem solver 'strives to get an intuitive feel for the challenges and

frustrations your client faces.'

The lack of attention to methods of investigation has serious implications for systems

development. It means that OOA users may not be alerted to

101

'the different nature of problems, opportunities, or the effect that methods of

investigation may have on the nature, content and subsequent interpretations

attributed to data. The factors that influence these interpretations are

interpersonal relationships, influence and authority of individuals, personal

motives and prejudices. Given that the methodology is not alerting the

methodology users these will have to be addressed by the methodology

users using their own skills and knowledge '(Jayaratna 1994).

5.2.3.2 Stage (ii) Performing the Diagnosis

Diagnosis is defined by Jayaratna (1994) as 'an expression of our understanding of a

situation of concern'. The methodology should therefore help the user to understand

the nature and scope of the situation, and any issues that surround them, in an explicit

and clear fashion. There are two separate facets to this determination of issues -

firstly, the methodology should provide clear help in outlining the 'problem situation',

and secondly, it should help the user to clarify the reasoning that underlies the

'situation of concern'. OOA attempts to gain an understanding of the current 'problem

situation' by 'identifying' objects that are relevant to, or have an effect upon the

problem situation.

Coad and Yourdon (1991) identify strategies for determining the requirements based

on notation, where to look, what to look for and what to consider and challenge. These

strategies however do not question the 'mental constructs' of the intended problem

solver nor do they question the clients' perception of the problem situation or their

motivations.

OOA makes a useful contribution to performing the diagnosis by providing techniques

for defining objects, classes, structures and subjects. The activities in OOA are based

on identifying and specifying details of Class-&-Objects. A class is the generalised

grouping and objects are individual instances of a class. For example: Class Person,

Object Helen: Helen can be considered to be an individual representation of a

PERSON, she has certain characteristics/attributes that are common to all PERSON

objects, that are of interest within the problem situation. Object Alan could be added

to the PERSON class in which case there would be certain characteristics that are

common to both Helen and Alan that are inherited from the PERSON class. There are

102

likely to be other attributes associated with either Helen or Alan that are unique to

them which may or may not be relevant to the problem situation. Only attributes

relevant to the problem situation are included

Coad and Yourdon (1991) state 'strategy (for identification of objects) comes from

practice and experience in the field'. The OOA methodology creators use approaches

that they are familiar with, without understanding exactly what principles are being

applied and why. The initial starting point for identifying objects, according to Coad

and Yourdon (1991), is to identify the nouns within the discussion transcripts and the

documents provided. These potential objects, identified by nouns, are related mainly

to the data requirements of the stated problem situation. The approach taken by the

OOA methodology creators indicates that the methodology user should determine

what they can about the problem domain and problem situation by asking questions.

Clients, users and experts should all be consulted as should any documents; invoices,

receipts, reports etc. This is no different to the approach taken by structured systems

analysis methodologies.

The problem situation is then considered, against the following set of criteria;

generalisation and specialisation structures; other systems that interact with the

information system under consideration; peripheral devices; events or time based

processes; roles played; operational procedures; other sites and organisational units

that the information system may need to interact with. This is a mechanistic approach

to validating objects that have been identified, in order to justify their inclusion as

potential objects. The relevance of the selected objects is left to judgement and

experience of the methodology user.

The methodology is not assisting the methodology user to identify appropriate

strategies, and gives little insight into how objects can be identified. Textual analysis

is used initially to identify potential objects. This assumes that methodology users,

clients and other stakeholders consulted have a shared understanding of both the

terminology and semantics used within the organisation. Having achieved this

classification theory is then applied in order to identify appropriate Class & Objects.

Coad and Yourdon (1991) state that

103

'Analysis notation and strategy can build on three constantly employed

methods of organisation. In practice applying 'Objects and Attributes',

'whole and parts', and 'classes, members and distinguishing between

them' provides significantly greater insight into a problem domain and a

system's responsibilities than applying only 'objects and attributes".

This is based on classification theory and the organisation of knowledge. OOA does

not alert the methodology user to this nor does it offer any assistance, relying on the

methodology user(s) experience and knowledge to determine appropriate

classifications.

Experience is an invaluable source for developing knowledge and skill, and helps to

form implicit models for structuring our understanding of situations. These models

dictate what information to seek or what action to take in a given situation. The more

experience we have of a particular working environment, the easier it may be for us to

assess similar situations. Experience makes us more confident and enables us to

assume 'expert' status. However, while experience-based models may reduce time,

provide a range of easy and 'obvious' solutions and help to develop confidence, the

same models may prevent us from exploring new ideas or becoming effective listeners

to others' ideas (Jayaratna 1994).

5.2.3.3 Stage (iii) Defining the prognosis outline

By 'defining the prognosis outline' NIMSAD means that the methodology should be

able to facilitate the identification of a clear defined 'desired state' in relation to the

'situation of concern'. Jayaratna (1994) expresses this as defining 'where we want to

be and why?'

As OOA does not make its users aware of how to perform the diagnosis it cannot help

them to understand or, more significantly, question the rationale for the clients'

'desired states'. OOA relies on the clients being clear about the rationale for their

requirements. It does not offer any steps for examining the validity of these

expectations.

104

5.2.3.4 Stage (iv) Defining problems
NIMSAD uses this stage to investigate what the methodology can offer in terms of

providing an answer to the question ' What are the problems which currently prevent

the transformation of the 'problem situation' from its 'current state' into the desired

state'?

As OOA does not concern itself with the clients 'desired states' (prognosis outline) it

has no means of defining problems either. Problems are formed at a client level. Some

of the changes to requirements are legitimate, as they are made in response to changes

in the environment, for example: legislation, customer preferences etc. However,

many are due to weaknesses in clients' problem formulation processes and their

methodologies. Many clients do not spend sufficient time and effort on explicit

reasoning about their requirements. In other words, clients very often do not use

methodologies for arriving at their requirements. OOA is not dealing with the

relevance of problems but the construction of solutions to a requirement.

In order for the problem solver to realise the existence and severity of these problem

areas, they are reliant upon the client having a sufficiently wide and in-depth

understanding of the situation and the issues surrounding it, and the ability to explain

these issues explicitly. In the absence of such help, the problem solver needs to rely on

their experience to understand the nature of the problem.

5.2.3.5 Stage (v) Deriving Notional Systems
NIMSAD defines notional systems as

'those systems which need to be developed if the client organisation is to

overcome the previously defined 'problems', thereby helping to transform

the 'current state' to the 'desired state' (Jayaratna 1994).

This means identifying systems using the 'mental construct', which, if designed and

implemented, would eradicate one or more of the perceived problems with the current

system.

As OOA does not help its users to participate in the definition of 'desired states' it

cannot define problems, nor can it arrive at notional systems. The concern of the

methodology is to record the features of the notional system(s) expressed by the client

It'll

in a concise form in order to facilitate its design tasks. In practice, user requirements

guide the whole methodology process and they are taken into account at the beginning

of the project. The methodology helps to explore the definition of elements that can be

expressed in class, object and structure form.

5.2.3.6 Stage (vi) Performing Conceptual / Logical Design
The conceptual and logical design of a system is intended to formalise the structures,

roles, tasks, functions, information and attitudes of the notional system(s) into a form

that represents a clear, logical method of achieving the ideas identified in the notional

system(s).

OOA recognises that roles played by objects, structures and interfaces, both with users

and with other systems are necessary. Techniques are available within the

methodology to assist the methodology user in capturing the relevant data.

'Requirements also include interfaces that the software must deal with,

environments that software must accommodate and any other applicable

design constraints' (Coad and Yourdon 1991).

However, any judgement is based on the methodology user's 'mental constructs' i.e.

past experiences and subjective interpretation of the system. The methodology relies

on its users' considerable experience for gaining an impression of the state of the

situation.

There is no distinction between logical and physical aspects of modelling. The

diagram sets are modified and expanded as further Class-&-Objects are identified /

discovered. It is the methodology user's knowledge of the problem domain that

determines which Class-&-Objects are relevant or are included in the model. Coad

and Yourdon (1991) state that the identification of objects and classes matches the

technical representation of a system more closely to the conceptual view of the real

world. However they do not expand on this statement, they imply that the

development of the object model closely resembles the conceptual view of the real

world and as the object model can be implemented as object and class in an object-

oriented programming language, the technical representation therefore matches the

conceptual model. This is a solution driven and opportunity seeking approach and it

raises a number of issues. As there is not one conceptual view of the world it must be

106

asked 'Whose view of the 'real world'?' By using Soft System Methodology

(Checkland and Howell (1998) and Mumford (1983a)) an accommodating view of the

'action world' may be derived but in the absence of any discussion by Coad and

Yourdon (1991) are we correct in assuming that the 'action world' is the methodology

user's view of the consensus viewpoints of all the stakeholders? The emphasis is not

on matching the technical requirements, but rather finding out what problems there are

in the 'action world'. In fact this is mixing up current/desired states and the use of

design concepts to derive desired states (Jayaratna 1994).

5,2.3.7 Stage (vii) Performing the Physical Design
The physical design of a system is the process of transforming the logical / conceptual

design into a form suitable for implementation (given a set of identified constraints).

The boundary domain of the design is set by the client's requirements. In OOA this is

referred to as the problem domain. The domain is established in consultation with the

client. In OOA the model is progressively developed and modified as new Class-&-

Objects are identified, the classes are then further refined by considering

generalisation /specialisation of the classes and whole part structures. As a result there

is no clear distinction between the analysis phase and the design phase, nor is there a

distinction between the conceptual design and the physical design. As OOA can be

developed cyclically it is possible to have Class-&-Objects in the same model at

different stages of development.

Coad and Yourdon (1991) state,

'OOA maps problem domain and systems responsibility directly into a

model instead of indirect mapping from a problem domain to function/sub

function or problem domain to flows and bubbles',

having initially developed traditional analysis methods using flows and bubbles it

appears that they are abandoning their previous convictions. It could be argued that by

analysing the data and selectively applying the rules of first normal form then one also

has a direct mapping between the problem domain and system's boundaries and a

design model.

107

5.2.3.8 Stage (viii) Implementing the Design
The implementation of a system is the realisation of the notional system(s) within the

'situation of concern' (Jayaratna and Oates 1995).

As OOA does not cover implementation issues it cannot be evaluated in practice.

Therefore OOA cannot be considered to be a problem solving methodology rather it is

a design methodology. As a method we can examine what it is good at, in addition to

a way of organising data into a new user oriented way rather a process oriented way.

5.2.4 Element 4: Evaluation

'It is the evaluation which helps us to measure the effectiveness of the problem

solving process and the problem solver in the 'problem situation' - unless the element

is considered there is no way of establishing that the 'problems ' have been

successfully resolved' (Jayaratna and Oates 1995).

Evaluation of OOA occurs prior to intervention. The methodology creators

acknowledge that 'analysis means extracting the 'needs' of a system - what the system

must do to satisfy the client, not how the system will be implemented'. A discussion

on the suitability of application areas to an object-oriented approach also considers the

methodology prior to intervention.

Object-oriented methodologies are described as a new paradigm, the OOA

methodology creators do raise some questions to alert the methodology users to the

applicability and suitability of the methodology. For example: Is this the time to start

using OOA? Is the object-oriented paradigm mature? Is there a good object-oriented

implementation technology? Is the organisation sophisticated enough? Is the

organisation building systems that will exploit object-oriented techniques?

There is no evaluation within OOA during and after the application of the

methodology.

5.3 Summary

This chapter began with a brief introduction to OOA and then evaluated OOA using

the NIMSAD framework with an emphasis on object identification. The main findings

of this evaluation are as follows.

OOA was developed to create object-oriented systems models and is based on

classification theory and the organisation of knowledge: objects and attributes, wholes

and parts, classes and members. OOA does not alert the methodology user to this nor

does it offer any assistance on how to apply this theory. Instead OOA relies on the

methodology users experience and knowledge to determine appropriate

classifications. OOA does not provide explicit ways of performing this abstraction.

The examples given in the text, assume that the intended problem solver is familiar

with the problem domain and can identify appropriate objects in the given situation.

OOA does not alert the methodology users to the effect that culture; beliefs, shared

understanding and knowledge can have on choice of relevant objects nor does it alert

the methodology user to the importance of having a shared understanding of the

terminology used in the problem domain.

The initial starting point for identifying objects, in OOA, is to identify the nouns

within the discussion transcripts and the documents provided. The approach taken by

the OOA methodology creators indicates that the methodology user should determine

what they can about the problem domain and problem situation by asking questions.

Clients, users and other stakeholders should be consulted as should any documents;

invoices, receipts, reports etc. This is no different to the approach taken by structured

systems analysis methodologies.

This assumes that methodology users, clients and other stakeholders have a shared

understanding of both the terminology and semantics used within the problem domain.

Experience is implicitly assumed to be gained by working through the given examples

and applying the strategies to the target problem domain. OOA relies on the

methodology users considerable experience to gain an impression of the state of the

situation.

109

The OOA methodology takes an ontological view of the problem situation in so far as

the boundary of the problem situation is not explored but taken as given. The rationale

for the requirements is not considered by the OOA methodology as a result of this

there is no clear 'desired state'. To this end OOA is not dealing with the relevance of

the problems but the construction of solutions to a requirement.

Methodology evaluation is of considerable importance to organisations and the

NIMSAD framework is useful in that evaluation. OOA, however, limits the evaluation

of the methodology to that conducted prior to intervention.

110

Chapter Six: Critical Evaluation of Object Identification in
Object Modelling Technique

This chapter gives a brief overview of Rumbaugh et al's. (1991) Object Modelling

Technique (OMT). OMT is then evaluated using NIMSAD framework. The

evaluation concentrates on how OMT helps the methodology user to determine what

objects to use when modelling the problem area.

6.1 Introduction to Object Modelling Technique (OMT)

Object Modelling Technique (OMT) (Rumbaugh et al. 1991) was developed to cover

both the analysis and design phases of the software development life cycle. It is based

on entity relationship modelling, which is extended to model classes, inheritance and

behaviour. Three models are developed that cover different aspects of a software

system: data, control and function. In OMT, the development process is divided into

steps according to a development life cycle. Analysis in OMT is concerned with

understanding and modelling the application and the domain within which it will

operate. The initial input to the analysis phase is a problem statement that describes

the problem to be solved and provides a conceptual overview of the proposed system.

Systems analysts build the object model and other models based on the problem

statement. OMT has four phases: analysis, system design, object design and

implementation. The first step is to generate a 'problem statement'; this is expressed

as three models of the system, representing objects, behaviour and transformations.

The procedure for creating these models is:

• Object Model focuses on the problem domain and the identification of relevant
object classes from the application domain.

Identify objects and classes
Prepare a data dictionary
Identify associations between objects
Identify attributes of objects and links
Use inheritance to organise and simplify object classes
Verify that access paths exist for likely queries
Iterate and refine the model
Group classes into modules

• Dynamic Model modelling the application in terms of users and their actions.
Prepare scenarios of typical interaction sequences
identify events between objects
Prepare an event trace for each scenario

111

Build a state diagram

• Functional Model concerns all object categories, covering both static and dynamic
constraints alike.

Identify input and output values
Build data flow diagrams to show functional dependencies
Describe functions
Identify constraints
Spec(fy optimisation criteria

The principle tools used by the methodology are:-

• object diagrams and data dictionaries for object modelling;

scenarios, event traces and state diagrams for dynamic modelling and

• data flow diagrams for functional modelling.

An object model describes the possible patterns of objects, attributes and links that can

exist in a system. The attribute values and links held by an object are called its state.

Over time the objects stimulate each other, resulting in a series of changes to their

states. An individual stimulus from one object to another is an event.

The dynamic model consists of multiple state diagrams; one state diagram for each

class with important dynamic behaviour, and shows the pattern of activity for an entire

system. Each state machine executes concurrently and can change state independently.

The state diagrams for the various classes combine into a single dynamic model via

shared events. An event is something that happens at a point in time. An event has no

duration. One event can logically precede or follow another, or the two events may be

unrelated.

The functional model consists mainly of data flow diagrams (DFD), which specify the

meaning of operations and constraints. A DFD shows the functional relationships of

the values computed by a system, including input values, output values and internal

data stores. A data flow diagram shows the flow of data values from their sources in

objects through processes that transform them to their destinations in other objects.

This is the same model used by structures analysis methodologies, which show the

flow of data values from their source in entities through processes. This implies that

for Rumbaugh et al there is no significant difference between an object and an entity

as they use the terms interchangeably.

112

The functional model specifies what happens, the dynamic model specifies when it

happens and the object model specifies what it happens to. The functional model

specifies the results of a computation without specifying how or when they are

computed.

Further objects may be identified during the discussion of states and functions but in

the main the majority of objects within the problem domain are identified during the

development of the object model. 'The object model is most fundamental, however,

because it is necessary to describe what is changing or transforming before describing

when or how it is changes' (Rumbaugh et al. 1991).

The actual development process of OMT is iterative and as the methodology creators

state the seamlessness of object-oriented development makes it easier to repeat the

development steps at progressively finer levels of detail. Rumbaugh et al (1991) see

each iteration as adding or clarifying features that have already been identified, they

do not acknowledge that each iteration could also lead to conflicts, inconsistencies and

errors.

6.2 Evaluation of OMT focused on Object Identification

The rest of the chapter uses the NIMSAD framework to examine what OMT has to

say about the problem situation, the intended problem solver and the problem solving

process with an emphasis on object identification. Object identification is the starting

point of any object analysis or object modelling methodology and is concentrated in

the activities, defined by Rumbaugh et al. (1991) as; identify objects and classes;

identify associations between objects; and identify attributes of objects and links.

6.2.1 Element 1: The 'problem situation'

NIMSAD requires the problem solver to consider wider issues surrounding the use of

a methodology - for example the size and the nature of the organisation, the identity

and belief of the people within it (namely the client and the stakeholders), the

behavioural patterns of the stakeholders, and their perceptions of the current situation.

Therefore it is essential that a methodology is able to explore and consider a given

'problem situation'.

113

Rumbaugh et al state that

'the problem statement describes the problem to be solved and provides a

conceptual overview of the proposed system'.

The implication of this is that the analysts do not question the motivations and

justifications for the 'system' nor do they question the relevance or otherwise of the

boundaries perceived by the clients. The methodology creators are therefore adopting

an ontological notion of systems and are accepting the problem statement as given.

OMT methodology states that the analysts must work with the requester (client) to

refine the requirements in order to determine more clearly what it is the requester

actually wants. This involves:

'challenging the requirements and probing for missing information.

However psychological, organisational and political considerations for

doing this are deemed to be beyond the consideration of the methodology'

(Rumbaugh et al. 1991).

How can systems developers identify the 'real' needs of system users without

considering the organisational issues? The 'hard' systems thinking model that has

influenced IS thinking in the past is that organisations can be fully understood as

being goal-seeking, adaptive-regulatory mechanisms. This is now being rejected in

favour of more complex systems models of human organisations as

'purposeful, socio-political systems in which shared meaning and symbolic

relationships are maintained and modified through human discourse and

interaction' (Lewis 1994).

In failing to empathise with the ways in which potential users understand their world,

the developers might easily design information systems that breach particular, norms

or taboos. These norms and taboos may be perfectly rational in the context of the

organisation and rely on a shared understanding of the problem domain and the

terminology used. To enable one person to understand another, there must be some

norms governing the use of signs, which are established and shared in a language

community. Meaning can only be understood if the context where the sentence is

uttered is taken into account (Lui 1999).

114

'Challenging the requirements and probing for missing information' does not

constitute determining what the client actually wants. OMT methodology creators

adopt an ontological perspective and accept the problem statement as given. They do

recommend the methodology user to clarify requirements but at no point do they

undertake systemic analysis and conduct a critical enquiry of the situation of concern

(Jayaratna 1994). The methodology creators are effectively concentrating on the

organisational actions and decisions that have observable, substantive outcomes such

as inventory levels or average time taken to satisfy an order, i.e. identifying task

responsibilities, charting the flow of material, data and are not considering how the

organisational activities are perceived, interpreted and legitimated.

How to distinguish the 'real' needs of system users without considering the

organisational issues is unclear in OMT, particularly when those requirements do not

represent the 'real' ones from the systems users' perspective. Statements such as

'... If you do exactly what the customer asked for, but the result does not

meet the customer's real needs, you will probably be blamed anyway'

(Rumbaugh et al. 1991),

indicate that in the methodology creators opinion system developers could be blamed

even if the system functions as the customer requested. Here, the issue is related to the

measurement of system success and must be related both to managing the client as

well as the problem solving process. As suggested in OMT, system success may

depend on trade off priorities (Rumbaugh et al. 1991). The limited advice given

testifies that they present their methodology based on a solid background of designing

software application systems. This means they are well aware of the psychological,

organisational and political considerations in the context of developing and

implementing new or changed software application systems but are not prepared to

state them or offer guidance on their consideration.

According to Rumbaugh et al. (1991) developers can identify a system boundary by

listing the inputs and outputs. Illustrative examples, of a problem statement, within the

text, show that this statement is taken as delimiting a software application system. For

example: the text uses a case study of an Automated Teller Machine (ATM), in this

example all interaction between the 'system' and the outside world pass through the

ATM, all input and output values are parameters of ATM events. By identifying the

115

input and output values, for example: bank code and card code from a cash card;

password, transaction type, amount from the ATM user; cash, receipt and messages

from the ATM; a diagram comparable to a context diagram in a traditional systems

analysis methodology is being considered. The system boundary is therefore being

predefined and is not open to negotiation or further consideration. The OMT creators

suggest that a problem statement is the starting point for stating requirements;

accordingly, what they call 'system boundary' has a more limited scope than the

'boundary of concern' suggested by NIIvISAD. System boundaries, according to

OMT, can be explored by considering how the boundary conditions, initialisation,

termination and failure, are handled.

The problem situation is viewed through the filter of the problem solver, who in turn

may have compiled this view through discussions with the client. This can be

problematic as there is a risk that the 'problem solver' may conceptually reduce the

client or client organisation to the status of 'object' and this may lead the problem

solver in misinterpreting the client's view on the nature of the problem situation, and

the required system which is intended to provide a solution.

The 'action world' system described by the problem statement must be understood,

and its essential features abstracted into a model. Statements in natural language are

often ambiguous, incomplete and inconsistent. The analysis model is a precise,

concise representation of the problem situation that permits answering questions and

building a solution. The process of constructing a rigorous model of data relevant to

the problem domain forces the developer to confront misunderstandings of the data

and associated relationships early in the development process while they are still easy

to correct.

The OMT creators consider their methodology as suitable to all kinds of environments

and applications. The text includes descriptions of implementation of object-oriented

designs in various target environments, including object-oriented languages, non-

object-oriented languages and relational databases. Software application systems

development lies in understanding system requirements, planning a solution, and

implementing a program in a particular language. OMT creators state that the

methodology applies equally well whether applied using a rapid prototyping approach

116

or more traditional life cycle approach. The notion of objects provides a solid basis for

specifying, designing and implementing software in one pass, or gradually building

software through multiple passes, evidenced by the examples given in the text by the

methodology creators. Rumbaugh et al demonstrate this in the text by presenting a

number of case studies of object-oriented applications that cover a variety of

application domains and implementation targets ranging from object diagram

compiler to computer animation and electrical distribution design systems, case

studies of object-oriented applications developed by the authors while working at the

General Electric Research and Development Centre are also presented.

6.2.2 Element 2: The intended problem solver

NIMSAD focuses on the role of the problem solver's 'mental construct' that helps

understand the complexity of the 'problem situation'. A methodology is a 'brain

structuring' mechanism, and if it is to be used successfully, then its user must have the

necessary characteristics and preparation. Additionally

'it helps us to examine whether the methodology alerts us to the need for

developing our 'mental constructs' to a desirable level in order to apply the

methodology successfully (Jayaratna and Oates 1995).

The text, (Rumbaugh et al. 1991), is intended for use by both software professionals

and students, and although prior knowledge of object-oriented concepts is not required

the authors assume familiarity with basic computing concepts. The methodology

creators use terminology that is

'universally accepted when possible, otherwise they try to choose the best

terms among various alternatives' (Rumbaugh et al. 1991).

The methodology creators do not discuss how this is achieved nor do they alert the

methodology user to the implied beliefs or shared understanding that the methodology

creators assume.

The text is presented in a number of sections focusing initially on object-oriented

concepts, then the Object Modelling notation. OMT provides substantial details on

techniques, advice, practical tips and exercises to guide its users on how to apply the

methodology. This makes the methodology users believe they will achieve success.

The ability of the intended problem solver to understand the notation is very

117

important, again the methodology creators do not discuss how this can be achieved

other by already familiar examples in the text.

A methodology is meant to help methodology users to develop their understanding

and structure their thinking. OMT identifies the stages to be considered and gives

examples in the text as to how the strategies have been applied in 'action world'

situations. The methodology user is not given any other guidance on how to develop

their experience, other than work through the given examples and then apply them to

the target domain.

Abstraction is viewed as an important theme in object orientation by the OMT

methodology creators and is perceived as a fundamental human capacity that permits

us to deal with complexity. Abstraction focuses on the individuals' competencies and

reasoning abilities. A model is created as a result of abstraction.

'To build complex systems, the developer must abstract different views of

the system, build models using precise notations, verify that the models

satisfy the requirements of the system, and gradually add detail to transform

the models into an implementation' (Rumbaugh et al. 1991).

Abstraction is seen as having two meanings in the OMT methodology: a feature of

object-orientation and an ability of system developers. The text does not assist the

methodology user in developing their abilities in abstraction. Rather abstraction is

seen as an innate ability of the methodology user. The reasoning abilities of the

methodology user relates to the discussion of 'mental constructs' of methodology

users in NIMSAD. According to Jayaratna (1994) system developers learn to

understand the concepts underlying their own thought processes, such as what makes

them reason in a particular way, and clearly articulate those thought processes. The

methodology does not alert the methodology user to the importance of this ability,

consequently if an ill-considered abstraction is identified the resulting object model

may not reflect the same meaning as that intended by the client or user.

The OMT authors state

Objects are distinguished by their inherent existence and not by description

of properties'.

118

For example: all classes must make sense in the application domain, unnecessary or

incorrect classes can be discarded by considering whether they are: - redundant

classes; irrelevant classes; vague classes; attributes; operations; roles; or

implementation constructs. There is no guidance given to the methodology users as to

how one identifies which are relevant objects in a problem domain, rather the

methodology creators

'attempt to foster a pragmatic approach to problem solving drawing upon

the intuitive sense that object-oriented technology captures using it

systematically on real problems' (Rumbaugh et al 1991).

The relevance or irrelevance is based on the methodology users judgement and

opinion, which is very subjective and depends, to a large extent, on the methodology

users understanding of the problem domain and on the shared understanding of the

client, users and problem solver.

An OMT object model provides

'an intuitive graphical representation of a system and is valuable for

communicating with customers and documenting the structure of a system'

(Rumbaugh et al. 1991).

This indicates that customers are treated as problem owners but not as problem

solvers. Users co-operate with systems analysts in building an object model, but as

OMT emphasises models, techniques and tools, users are considered as problem

owners and not methodology users. The OMT creators do not alert their methodology

users to the abstract features of the graphical representation of a system that they

advocate. Without learning it how can the system users understand the representation,

thereby validating the proposed model?

OMT is presented as a series of steps, with techniques and notational conventions

associated with each step, but the order of steps can be interchanged or combined

when appropriate.

'You can combine several steps once you are experienced... If you are just

learning object modelling, however, we recommend that you follow the

steps in full detail the first few times' (Rumbaugh et al. 1991).

There is no further explanation of how to combine steps and under what conditions.

This is left to 'experience'. By implication the novice user lists all candidate objects

119

and then considers each one in turn, to determine its relevance to the problem domain

and to confirm whether it is an object or an attribute. The 'experienced user', by

implication selects appropriate objects from the problem domain intuitively and

differentiates between relevant and irrelevant objects without writing them down. The

danger of this is that the experienced user relies on previous practice and application

areas and may 'see' an 'obvious solution' without exploring the problem situation in

sufficient detail. There is no further explanation of what might facilitate the transition

from a new to an experienced user, although experienced users seem to play an

important role in the OMT methodology.

There is no attempt to highlight the ethical issues or other elements of the

methodology users' 'mental constructs', which should be consciously considered

according to the NIMSAD framework.

6.2.3 Element 3: The problem solving process

The problem solving process 'has three essential phases: problem formulation,

solution design and design implementation' (Jayaratna 1994).

6.2.3.1 Stage (I) Understanding the 'Situation of concern'

OMT does not alert its users to the conceptual construction of boundaries or

identification of a 'situation of concern'. Boundary construction is either trial and

error or predefined by the client. Questioning 'why' the system is required

corresponds to understanding the 'boundary of concern' within the NIMSAD

framework. Boundary constructions are based on the data that are meaningful to the

OMT user, data that is considered by the OMT user to be relevant to the requirements

list and that data which the client insists on as being relevant for their systems.

Problem solvers recognise the 'problem situation' after perceiving the user's problem

statement, and formulate it in their own ways to develop 'notional systems' (Jayaratna

1994). The methodology creators assert that

'analysis begins with a problem statement generated by clients and possibly

the developers. The problem statement should state what is to be done and

not how it is to be done, it should be a statement of needs, not a proposal for

a solution' (Rumbaugh et al. 1991).

120

The methodology creators recognise that the problem statement may be incomplete or

informal and that analysis makes it more precise and exposes ambiguities and

inconsistencies,

'most problem statements lack essential information, which must be

obtained from the requester or from the analyst's knowledge of the real

world problem domain' (Rumbaugh et al. 1991).

To rely on the analyst's knowledge of the problem domain could lead to disastrous

results because of the possibility of assumptions being made by the analyst that are in

conflict with the clients perspective. The consequence of developing an object model

and subsequently a solution based on erroneous assumptions could be catastrophic.

The purpose of analysis is to fully understand the problem and its implications.

Within OMT the problem statement serves as the methodology context and therefore

has a predefined boundary. OMT does not attempt to discuss broader issues; instead

the 'application domain experts' are involved in problem formulation and

interpersonal communication with the methodology users as problem solvers. The

initial problem domain is taken as given and little consideration is given to the wider

context in which the problem is located. Since the boundary determines the focus of

the investigation and establishes a 'situation of concern', there is a need to examine

whether relevant elements (persons, materials, activities, flows) have been identified

in the situation for study. By failing to do this we may well be solving the 'wrong

problem'. For example: difficulties are experienced with producing appropriate

information relating to courses from a student record system. If administrators have

been identified as the users a different interpretation of the problem will be given to

that perceived by academics. The resulting system could still be seen as problematic

when taken from an academic perspective.

Rumbaugh et al. (1991) argue that

'an object-oriented approach takes objects, in the first place, which are then

used to understand the problem domain'.

As stated in OMT

'we define an object as a concept, abstraction, or thing with crisp

boundaries and meaning for the problem at hand. Objects serve two

purposes; they help to promote a particular understanding of the real world

121

and provide a practical basis for computer implementation' (Rumbaugh et

al. 1991).

Thus a problem boundary in terms of object becomes essential in formulating an

object model and describing the structure of objects.

The 'problem situation' is abstracted in terms of objects and their relationships, from a

problem statement formulated by the requester. The objects are exactly defined by the

graphical notation system of OMT.

6.2.3.1.1 Investigation models and techniques
The analyst works with the requester to refine requirements; there is no indication or

assistance within the text, to assist the methodology user or to help them determine

appropriate methods. It is implicit that interviews, both formal and informal, and

questionnaires are used to elicit the required information. The dynamic model uses a

series of scenarios of typical dialogues within the application area in order to extract

events that can then be used to further clarify the requirements.

6.2.3.2 Stage (ii) Performing the Diagnosis
Diagnosis can be defined as the 'thorough analysis of facts or problems in order to

gain understanding'. The methodology should therefore help the user to understand

the nature and scope of the situation, and any issues that surround them, in an explicit

and clear fashion. There are two separate facets to this determination of issues -

firstly, the methodology should provide a clear outline of the 'problem situation', and

secondly, it should help the user to clarify the reasoning that underlies the 'situation of

concern'. The methodology creators state

'problem statement should state what is to be done and not how it is to be

done. It should be a statement of needs not a proposal for a solution'

(Rumbaugh et al. 1991).

If, as Rumbaugh et al imply, the problem statement is a statement of needs, what is

the role of the problem solver? And who is performing the diagnosis?

OMT states that the

'problem statement is written in consultation with requesters, users and

domain experts'

122

and acknowledges that problem statements often lack essential information, in

addition 'many problem statements, mix 'true' requirements with design decisions.'

The methodology user is encouraged to communicate with the requester to 'clarify

ambiguities and misconceptions' and to identify the 'true' requirements. How this is

achieved is not explicit within the text. Missing information can be

'obtained from the requester or from the analyst's own knowledge of the

'real world' domain' (Rumbaugh et al 1991).

This implies that the users are not involved with the development of an object model

once the initial problem statement has been written. Rumbaugh et at. (1991) state

'problem statement is just a starting point for understanding the problem,

not an immutable document. The purpose of subsequent analysis is to fully

understand the problem and its implications'.

From whose perspective the problem statement is written is not identified or discussed

further.

OMT attempts to help problem solvers gain an understanding of the current 'problem

situation' by 'identifying' objects that are relevant to, or have an effect upon the

problem situation: identifying relationships (associations) between objects and

identifying attributes. Rumbaugh et al. (1991) offer little guidance as to how objects

should be identified other than intuitively claiming that they 'foster a pragmatic

approach to problem solving'. Guidance on object identification is restricted to

examples, given in the text, and left to the experience of the methodology user. OMT

has specific stages devoted to object identification, however much of the text is

devoted to descriptions and guidelines of what an object is. These are generally not

sufficient because they rely heavily on identification of nouns which is the same

approach taken by many of the traditional structured analysis methodologies when

identifying entities. The methodology creators' state;

'Decomposition of a problem into objects depends on judgement and the

nature of the problem.'

Problems cannot be decomposed into objects, although it is possible to subjectively

abstract relevant objects from a problem situation. OMT however does not offer any

guidance to is users on how this can be achieved. There is no indication that the

methodology user should ask for clarification from the problem owner, in order to

123

obtain assistance with the abstraction of relevant objects. It is left to the methodology

user themselves to determine what are relevant objects.

OMT methodology creators advise that candidate object classes can be found in the

written description of the problem. It is suggested that the methodology user should

write down every class that comes to mind. This does not help with the identification

of potential object classes within the problem domain. The list of candidate classes is

then refined so that it includes only those objects and classes that are deemed to be

essential / relevant within the problem domain. OMT provides a list of criteria (see

table 6.1) to assist the methodology user in this task but ultimately the inclusion or

otherwise of objects is left to the methodology users discretion and his/her

understanding of the problem domain.

Criteria Reason for exclusion

Redundant classes If 2 classes express the same infomiation the most

descriptive name should be kept
Irrelevant classes A class that has little or nothing to do with the

problem domain should be eliminated. This

involves judgement as in another context the class
could be important

Vague Classes should be specific

Attributes Words that describe individual objects should be
regarded as attributes

Operations If word describes an operation that is applied to

objects and not manipulated in its own right, then

it is not a class
Roles Should reflect the intrinsic nature and not the role

it plays in an association

Implementation constructs Constructs relevant to implementation should be

removed from analysis model - may be needed at

design stage.

Table 6.1 Criteria used to refine candidate objects

The methodology creators also state that 'additional classes can be identified from our

knowledge of the problem domain'. No explicit help is given to help the methodology

user identify these additional classes. It is implied that a thorough understanding of the

problem domain and experience, in both the problem domain and the methodology,

will enable the intended problem solver to determine appropriate objects.

The ATM example is used, presumably because it is familiar to most readers, to

identify all classes from the problem statement and the additional ones based on

knowledge of the problem domain. The use of familiar examples may be useful to

124

/ vague

I System

Security
Provision

$ecordkeepin
Provision

" 	implementation '-

[Transacti 	Access

Sanki

Good Classes

Accountj I ATM J I Bank j 	Bank
u 	

J Cash 	(Cashier]
Compter L2!rd

attribute 	'\

[Account 	Receipt
Data

[Gash I

explain the steps of the methodology but it is difficult to translate how these steps are

performed in an unfamiliar or new problem situation. The methodology creators do

not offer any further assistance to the methodology user, other than a reliance on

'experience'. These classes are then refined in order to remove irrelevant classes (Fig

6.1)

Isuftwarel LcierI

eankJ (Account I 	frransactiorij
computer i

I 	Central
[computer

Cash 	User
Card

ATM ,j Fconsortiumi I Bank

Cashier 	Accthiiil Ilransactlon
station I data 	[_data

Cash I ReceIpt iSystem

[Reccrdkeeping 	Security 	I Access] 	Cost 	(Customer I
L provision 	provision

ATM classes extracted from problem statement nouns

Comm unicetioni] 	Transactiifl
line 	I 	log 	I

ATM classes identified from knowledge of problem domain

Bad Classes

Eliminating unnecessary classes from ATM problem

Figure 6.1 Identification of relevant classes

(adapted from Rumbaugh et at 1991)

125

Any dependency between two or more classes is an association. A reference from one

class to another is an association. Associations are similar to the notion of

relationships in entity relationship modelling. Associations often correspond to verb

phrases (next to, part of, contained in, drives, talks to, has) again OMT advises the

methodology user to extract all the candidates from the problem statement, get them

down on paper first and refine later. For example: Vendors own House, Potential

Buyers view a House.

These associations are those that would be identified during the normalisation process

in structured analysis methodologies or in data oriented design methodologies used in

database design. Some associations depend on 'action world' knowledge or

assumptions. For example: Potential buyers make an Offer for a Property. These must

be verified with the requester, as they may not be explicit in the problem statement.

Again the methodology creators provide a mechanistic set of criteria to be applied in

order to identify irrelevant associations (see table 6.2).

Criteria Reason for exclusion
Associations between eliminated classes Is one of the classes has been eliminated then the

association no longer exists
Irrelevant or implementation associations If the association is outside the problem domain

or deals with implementation details it should be
removed

Actions Associations should not identify transient events
Ternary or derived associations Associations that can be restated in terms of other

associations should be eliminated

Table 6.2 Criteria used to refine associations

Using the ATM example the methodology creators identify verb phrases and implicit

verb phrases from the problem statement. Again by assuming the reader is familiar

with the problem domain the methodology creators identify those verb phrases which

depend on knowledge of the problem domain i.e. how an ATM functions (Fig 6.2).

The process used to identify these is not explicit relying on the 'experience' of the

methodology user.

126

Verb Phrases
Banking network includes cashiers and AIMs
Consortium shares AIMs
Bank provides banks computers
Bank computer maintains accounts
Bank computer processes transactions against account
Bank owns cashier station

Cashier station communicates with bank computer
Cashier enters transaction for account
AIMs communicate with central computer about transaction
Central computer clears transaction with bank
ATM accepts cash card
ATM interacts with user
ATM dispenses cash
ATM prints receipt
System handles concurrent access
Banks provide software
Cost apportioned to banks

Implicit Verb Phrases
Consortium consists of banks
Bank holds accounts
Consortium owns central computer
System provides record keeping
System provides security
Customers have cash cards

Knowled2e of problem domain
Cash card accesses accounts
Bank employs cashiers

Figure 6.2 Associations from ATM problem statement

(adapted from Rumbaugh eta! 1991)

Attributes are unlikely to be fully described in the problem statement. The

methodology users are encouraged to draw on their knowledge of the application

domain and the real world to find them and to consider only attributes that directly

relate to a particular application. For example: in a mailing list, city could be

considered as an attribute, however in a census, City would be an object. The

methodology creators provide a mechanistic list of criteria to assist the methodology

user in identifying irrelevant attributes (see table 6.3).

Criteria Reason for exclusion

Objects If independent existence of the 'thing' is

important rather than its value, then it is an object.

Distinction between object and attribute may

depend on application context
Qualifiers I Names If the value of an attribute depends on a particular

context then it may be a qualifier on an

association rather than an attribute. A name may

also indicate a qualifier on an association
Identifier Object ID's are implicit in object models and

should not be classed as attributes.

table 6.3 Criteria used to refine attributes

127

The OMT methodology creators provide practical tips and guidelines that are 'gleaned

from practice in constructing object models'. These examples offer descriptive

statements as to how objects, associations and attributes can be identified but

essentially the final decision is based on the 'experience' of the methodology user.

In line with object-oriented concepts OMT supports the notion of aggregation,

generalisation, specialisation and inheritance. Inheritance can be added in two

directions: by generalising common aspects of existing classes into a superclass

(bottom up) or refining existing classes into specialised subclasses (top down). Some

attributes or classes may have to be redefined slightly to fit generalisation or

specialisation. OMT methodology sees this as acceptable and states that some

generalisations will suggest themselves based on 'existing taxonomy in the real

world.'

An object model, within OMT, is rarely complete after a single pass. The entire

system development process is one of continual iteration, different parts of a model

are often at different stages of completion. If a deficiency is found, the methodology

user is encouraged to return to an earlier stage if necessary to modify or refine it.

Some refinements can only come after the dynamic and functional models are

completed. The methodology creators offer a list of criteria to apply to determine

whether there are any missing objects (see table 6.4). Unnecessary classes can be

identified by a lack of attributes, operations and associations.

Criteria Solution
Asymmetry in associations and generalisations Add new class by analogy
Disparate attributes and operations on a class Split class so each part coherent
Difficulty in generalising clearly One class may be playing 2 roles, create an

additional class
An operation with no good target class Add missing target class
Duplicate associations with the same name and
purpose

Generalise to create missing superclass that unites
them

A role substantially shapes the semantics of a
class

Create a separate class

Table 6.4 Criteria used to identify missing objects

Rumbaugh et al (1991) use scenarios of both typical dialogues and exception cases in

order to identify events that occur in the problem domain. There is no suggestion that

scenarios could identify additional objects (Jacobson et al. 1998).

128

OMT helps to provide a graphical representation of objects and their relationships

located within the problem domain, it does not provide a clear outline of the 'problem

situation' not does it clarify why or how the problem has been identified. OMT is

presented as a scientific way of undertaking systems development yet many of the

stated criteria depend on subjective statements.

6.2.3.3 Stage (iii) Defining the Prognosis Outline
By 'defining the prognosis outline' NIMSAD means that the methodology should be

able to facilitate the identification of a clear defined 'desired state' in relation to the

'situation of concern'. Jayaratna (1994) expresses this as defining 'where we want to

be and why?'

OMT relies on the clients being clear about the rationale for their requirements. It

does not offer any steps for examining the validity of these expectations. OMT does

not assist the methodology user in the identification of 'current state' and 'desired

state' what it is doing is taking the problem statement and producing an object model

to represent the requirements of the problem statement. Rumbaugh et al. (1991) state

that the problem statement 'should be a statement of needs, not a proposal for a

solution'. By modelling the 'needs' the object model is perceived to have 'solved' the

problem without initially identifying what the problem is.

6.2.3.4 Stage (iv) Defining problems
NIMSAD uses this stage to investigate what the methodology can offer in terms of

providing an answer to the question ' What are the problems which currently prevent

the transformation of the 'problem situation' from its 'current state' into the desired

state'?

As OMT does not concern itself with the clients 'desired states' (prognosis outline) it

has no means of helping in defining problems either. Problems are formed at a client

level. Some of the changes to requirements are legitimate, as they are made in

response to changes in the environment, i.e. legislation, customer preferences etc.

There may be political or organisational reasons for the requirements but the analyst

should recognise that these externally imposed design decisions are not essential

features of the problem domain. However, OMT does not offer any techniques for

129

facilitating such issues, the methodology creators stating 'psychological,

organisational and political considerations ... are deemed to be beyond the

consideration of the methodology'.

According to Rumbaugh et al (1991) many clients do not spend sufficient time and

effort on explicit reasoning about their requirements. In other words, clients very often

do not use methodologies for arriving at their requirements. OMT is not dealing with

the relevance of problems but the construction of solutions to meet a requirement.

This is implied by the methodology creators when they suggest that the methodology

users check the problem statement from clients and make their own decision about the

problem they should solve,

'because the statement may be informal, incomplete and lacking essential

information. Analysts must work with the requester to refine the

requirements so they represent the requester's true intent. This involves

challenging the requirements and probing for missing information'

(Rumbaugh et al. 1991).

6.2.3.5 Stage (v) Deriving Notional Systems
NIMSAD defines notional systems as

'those systems which need to be developed if the client organisation is to

overcome the previously defined 'problems', thereby helping to transform

the 'current state' to the 'desired state' (Jayaratna 1994).

This means identifying systems using the 'mental construct', which, if designed and

implemented, would eradicate one or more of the perceived problems within the

current system.

As OMT does not help its users to participate in the definition of 'desired states' it

cannot define problems, nor can it arrive at notional systems. The concern of the

methodology is to record the features of the notional system(s) expressed by the client

in a concise form in order to facilitate its design tasks. In practice, user requirements

guide the whole methodology process and they are taken into account at the beginning

of the project. The methodology helps to explore the definition of elements that can be

expressed in class, object and structure form.

130

6.2.3.6 Stage (vi) Performing Conceptual / Logical Design
The logical and conceptual design of a system is intended to formalise the structures,

roles, tasks, functions, information and attitudes of the notional system(s) into a form

that represents a clear, logical methodology of achieving the ideas identified in the

notional system(s).

The goal in constructing an object model is to capture those characteristics from the

'action world' that are important to a software application system. It is a conceptual

process, independent of programming language until the final stages (Rumbaugh et al.

1991). In OMT, the logical and conceptual design of a software application system is

intended to formalise its structure, to organise the system into sub-systems, to allocate

sub-system to processors and tasks and to handle access to the global resources. With

OMT, functionality is the major concern when partitioning the system into sub-

systems.

The methodology provides support to this stage by considering related issues in

system design, such as the architectural framework, data store, interface, dynamic

simulation and hardware. The techniques that OMT utilises are sufficiently rigorous to

make them fairly useful tools for methodology users to enable representation of

logical components (sub-systems) and their interactions. OMT methodology does not

pay much attention to the 'problem situation', but rather to the technical support to

handle the problem situation by considering objects and models.

6.2.3.7 Stage (vii) Performing the Physical Design

The physical design of a system is the process of transforming the logical / conceptual

design into a form suitable for implementation (given a set of identified constraints).

The systems design phase of OMT, is the process of establishing a suitable system

architecture that organises the system into sub-systems based on both the analysis

structure and the proposed architecture. The steps in achieving the architectural design

include dividing a system into sub-systems, choosing the implementation of control,

and choosing approaches for handling data to be stored.

During system design, decisions are made about how software application system

problems will be resolved. In other words, system design is a high level strategy for

131

solving the software application system problems, which may provide a solution to a

business problem. Here, systems design belongs to the logical design of an overall

organisation of a system called 'system architecture' by Rumbaugh et al. (1991).

6.2.3.8 Stage (viii) Implementing the Design
The implementation of a system is the realisation of the notional system(s) within the

'situation of concern' (Jayaratna 1994). The object design phase of OMT is the

process of defining classes, their interface and implementation. Internal classes are

added when needed, and algorithms and data structures are optimised. Data structures

and algorithms needed for implementation are the focus of object design. Both

application domain objects and computer domain objects are considered within object

design. In implementation, the object classes and relationships developed during

object design are finally translated into particular programming language, database

and hardware.

The object design phase elaborates and refines the analysis model, which is then

optimised to produce a practical design. During object design there is a shift in

emphasis from application concepts towards computer concepts. First the basic

algorithms are chosen to implement each major function of the system; the structure

of the object model is optimised for efficient implementation based on these

algorithms. The design must also account for concurrency and dynamic control flow

as determined during system design. The implementation of each association and

attribute is determined. Finally the sub-systems are packaged into modules. The lack

of explicit diagnosis and prognosis models, as discussed in the NIMSAD framework,

can be expected to make implementation a more demanding task.

6.2.4 Element 4: Evaluation

'It is the evaluation which helps us to measure the effectiveness of the problem

solving process and the problem solver in the 'problem situation' - unless the element

is considered there is no way of establishing that the 'problems have been successfully

resolved' (Jayaratna 1994).

Rumbaugh et al (1991) compare their own methodology with other software

engineering approaches, including the object-oriented approaches of Booch (1994),

Meyer (1988), Coad and Yourdon (1991). The OMT methodology creators base the

132

comparison for identifying strengths and weaknesses of each approach on 'a set of

flexible criteria'. The purpose for such a comparison is to identify major differences

and similarities between DM1 and other approaches and effectively only contributes

to an evaluation of OMT before application.

This comparison does not replace a methodology evaluation using the NTTvISAD

framework. The OMT methodology creators do not consider assessing the

methodologies before, during and after application. The OMT methodology creators

do not raise questions relating to the influence of object-oriented thinking on systems

developers with experience of function-oriented system development. Object-oriented

methodologies are described as a new paradigm but again no questions are raised to

justify this viewpoint. The comparison of methodologies used by the OMT creators is

more likely to raise questions relating to the differences between object-oriented

methodologies and function oriented methodologies, and also question why object-

oriented thinking should be introduced.

6.4 Summary

This chapter began with a brief introduction to OMT and then evaluated OMT using

the NIMSAD framework with an emphasis on object identification. The main findings

of this evaluation are as follows.

OMT methodology creators adopt an ontological perspective and accept the problem

statement as given. They recommend that the methodology user clarify requirements

but at no point do they undertake systemic analysis and conduct a critical enquiry of

the situation of concern. The methodology creators are effectively concentrating on

the organisational actions and decisions that have observable, substantive outcomes

such as inventory levels or average time taken to satisfy an order, identifying task

responsibilities and charting the flow of material etc and are not considering how the

organisational activities are perceived, interpreted and legitimated.

The methodology creators claim to use terminology that is 'universally accepted when

possible, otherwise they try to choose the best terms among various alternatives'. How

133

this is achieved is not discussed nor does OMT alert the methodology user to the

implied beliefs or shared understanding that the methodology creators assume

Abstraction is viewed as an important theme in object orientation by the OMT

methodology creators and is perceived as a fundamental human capacity that permits

us to deal with complexity. Abstraction focuses on the individuals' competencies and

reasoning abilities. OMT does not alert the methodology user to the importance of

reasoning ability and abstraction, nor does it assist the methodology user in

developing his/her abilities in abstraction. Rather abstraction is seen as an innate

ability of the methodology user.

OMT has specific stages devoted to object identification; these are generally rely

heavily on identification of nouns which is the same approach taken by many of the

traditional structured analysis methodologies when identifying entities. The relevance

or irrelevance is based on the methodology users' judgement and opinion, which is

very subjective and depends, to a large extent, on the methodology users

understanding of the problem domain and on the shared understanding of the client,

methodology user and other stakeholders.

Additional classes can be identified from knowledge of the problem domain; however,

no explicit help is given to help the methodology user identify these additional classes.

It is implied that a thorough understanding of the problem domain and experience, in

both the problem domain and the methodology, will enable the intended problem

solver to determine appropriate objects. The OMT methodology creators provide

practical tips and guidelines that are 'gleaned from practice in constructing object

models'. These examples offer descriptive statements as to how objects, associations

and attributes can be identified but essentially the final decision is based on the

'experience' of the methodology user.

The experienced user appears to play an important role in OMT, being able to select

appropriate objects from the problem domain intuitively and then differentiate

between relevant and irrelevant objects without writing anything down. The danger of

this is that the experienced user relies on previous practice and application areas and

may 'see' an 'obvious solution' without exploring the problem situation in sufficient

134

detail. Despite the emphasis on experienced users OMT methodology offers no

explanation of what might facilitate the transition from a new to an experienced user.

OMT relies on the clients being clear about the rationale for their requirements. It

does not offer any steps for examining the validity of these expectations. OMT does

not assist the methodology user in the identification of 'current state' and 'desired

state' what it is doing is taking the problem statement and producing an object model

to represent the requirements of the problem statement. By modelling the

requirements the object model is perceived to have 'solved' the problem without

initially identifying what the problem is.

The techniques that OMT utilises are sufficiently rigorous to make them fairly useful

tools for methodology users to enable representation of logical components

(subsystems) and their interactions. OMT methodology does not pay much attention to

the 'problem situation', but rather to the technical support to handle the problem

situation by considering objects and model.

135

Chapter Seven: Critical Evaluation of Object-Oriented
Software Engineering

This chapter gives a brief overview of Jacobson et al's (1998) Object-Oriented

Software Engineering (OOSE). OOSE is then evaluated using NIMSAD framework.

The evaluation concentrates on how OOSE helps the methodology user to determine

what objects are relevant when modelling the problem domain.

7.1 Introduction to Object Oriented Software Engineering (OOSE)

Object-Oriented Software Engineering (OOSE) (Jacobson et al. 1998) is a

methodology for object-oriented analysis and design derived from Jacobson's

Objectory. 2 Objectory is a proprietary methodology and OOSE is said to be a

simplified version, which is inadequate for use in production.

'You will need the complete... description which, excluding large examples,

amounts to more than 1200 pages' (Jacobson et al. 1998).

Objectory is unusual among 00 methodologies as it attempts to address the entire

system development life cycle.

The underlying enterprise philosophy implies that tools provide support for activities

in three categories: architecture, method and process. Architecture signifies the choice

of techniques to be utilised, the methodology makes explicit the procedures to be

followed and the process provides for scaling the methodology up. The development

of software systems is presented as analogous with the construction industry.

Development is progressive, involving iterative cycles of analysis, construction and

testing.

OOSE develops five different models to capture different aspects of an information

system, as shown in Fig 7.1, requirements model, analysis model, design model,

implementation model and test model. An earlier model becomes the input for the

next model. For example the analysis model is built upon the basis of the requirements

model.

2
Objectory was formulated in 1985 and initially presented at OOPSLA'87 (Jacobson et al 1993)

136

The creators of OOSE view system development as a sequence of successive changes

resulting in a number of versions of an information system over its life cycle, the

changes are based on requirements for new or changed systems.

new or changed requirements

Systems Development

	

Analysis 	 Construction 	Testin2

Require- —0 Analysis 	Design—Pimplem-Test
ments 	Model 	Model 	entation 	Model
Model 	 Model

new or changed information sysi

Figure 7.1 Systems development viewed as a process of model building

(Jacobson et al. 1998)

OOSE creators also view the transformation from one model to the next as a process

of change. Fig 7.2 illustrates this in the transition from an analysis model to a design

model via a design process. Such a model change comprises shifting from one frame

of reference, i.e. from an analysis space that includes the consideration of behaviour,

presentation and information, to another frame, a design space that adds

implementation environment to the analysis space for the information system under

development.

Analysis space 	 Design space

Behaviour 	 Behaviour

Information

Implementation

Design Analysis IIj-~ ElF—' Design I
Model

Model

Figure 7.2 A Process changes one model into another

(Jacobson et al. 1998)

7.1.1 Use case driven

All models that apply OOSE are use case driven. Use cases denote descriptions of the

functionality expected from an information system by its potential users in their

137

different interactions with it. The importance of use cases lies in the idea that they can

be controlled by users and taken by system developers as part of the requirement

model. The use cases and how they are connected are described in a special 'use case

model' (Jacobson et al. 1998).

The use case model is built during the first analysis activity, the requirements analysis.

It constitutes an integrated part of the requirements model. It is also used as the basis

in building all remaining models. In these later models it may have to be rechecked

and elaborated in collaboration with potential users. As all models, after the

requirements model, are related to the use case model, the traceability of features is

supported from one model to another, aiding documentation reuse.

The concept of use cases was employed before the advent of object-orientation. This

means that system users risk using function-orientation when thinking in terms of use

cases. However, this provides a way for systems' users to participate in systems

development without learning the object-oriented thinking and views that the OOSE

methodology offers. Table 7.1 shows the sequence of events identified by the OOSE

methodology creators, and the order in which it is suggested that they are carried out.

Getting a requirements specification
Analysis process
- 	Building requirement models

o Formulating a domain object model

Formulating a use case model
Formulating an interface description

- 	Building an analysis model
• 	Defining entity, interface and control objects
• Constructing a system structure by subsystems

Construction process
- Constructing a design model
- 	constructing an implementation model

Testing process
Formulating testing model
Performing unit test
Performing integration testing

Performing system testing

Table 7.1 Problem Solving process in OOSE

(Jacobson et al. 1998)

IM

7.2 Evaluation of OOSE focused on Object Identification

The rest of the chapter uses the NIMSAD framework to examine what OOSE has to

say about the problem situation, the intended problem solver and the problem solving

process with an emphasis on object identification. Object identification is the starting

point of any object analysis and is concentrated in the activities defined in OOSE as;

formulating a domain object model and defining entity objects, interface objects and

control objects.

7.2.1 Element 1: The 'problem situation'

How does OOSE alert its methodology users to this need for a broad outlook at the

start of a systems development project? The OOSE methodology creators issue a

warning that in some cases systems development can be preceded by enterprise

development.

'When the requirements of the enterprise are less well known, the

specification work is preceded by enterprise development... In some cases,

the customers are highly experienced and can provide the specification

during the initial contact with the potential producers. In other cases, the

customer approaches a producer and solicits assistance in solving his

problems' (Jacobson et al. 1998).

The OOSE creators ignore any deeper understanding, or questioning related to the

problem situation, as they presume that appropriate enterprise development has

already occurred. In response to who are the clients? posed by NIMSAD framework

the answer is 'an orderer as in other cases of product development' (Jacobson et al

1998). OUSE users are alerted to the fact that the clients and other stakeholders may

raise different requirement specifications. OOSE methodology users are also alerted to

the fact that direct users, supported by an information system, serve a number of

indirect users, whose work will also be influenced by a new system. The importance

of capturing 'requirements from a user-oriented perspective' is stressed (Jacobson et

at 1998). However, the methodology creators state that

'the success of the system is highly dependent upon whether it has been

possible to capture and formulate the users' requirements in such a way that

139

the requirements can be formalised and transformed into working programs

(Jacobson et al. 1998).

This claims to assist the methodology user in arriving at 'good' requirements

specifications. There is little discussion, in the text, as to how the methodology user

determines 'goodness', nor is there any explicit help in the methodology, (see section

7.2.3.2 for a discussion on 'goodness' of objects).

The OOSE methodology does not encourage its users to ask questions such as: What

can and will the users do differently once their purported information needs are met?

How committed are the users to changing their actions? Raising these and similar

questions when reflecting on the problem situation, as suggested by the NIMSAD

framework (Jayaratna 1994) could help to integrate information system development

with organisational development. The OOSE methodology does not give any explicit

advice as to how its methodology users could encourage future systems users to

consider the effects of the new information system on those users who are only

indirectly involved.

NIMSAD framework warns methodology users not to take the 'problem situation' as

stated by the client 'as given'. OOSE methodology users are not alerted to the fact that

they must not take the first requirements specification provided by their client 'as

given'.

Throughout the text OOSE creators assume that any enterprise development needed

has been or will be undertaken in parallel with the work of the methodology users. As

shown by several examples in Jayaratna (1994), relying on such suppositions may turn

out to be a costly mistake. By alerting managers to the need for some integrated

enterprise development work, methodology users can improve the success rate of their

information system in satisfying requirements. Such enterprise development, will in

many cases, necessity future system users becoming more involved.

The methodology creators advise their methodology users to take clients requirements

specifications only as a starting point. According to OOSE receiving the requirements

specification, in some form, is the starting point for systems development. The

methodology creators stress the need for carefully checking the requirements

tic

specification that is received initially. They advise methodology users to do this in

collaboration with current system users and potential system users when building the

requirements model. OOSE creators regard requirements specifications as being the

functional requirements for data processing and data presentation that information

systems have to meet. At an early stage of systems development, the main 'problem',

according to OOSE, seems to be producing a requirements specification precise

enough to become part of a contractual agreement between a client and a software

producer.

This may create a problem if the client is not very familiar with the work situation of

people within the area of use. The delivered information system, in most cases may

not be used by the client, but by a number of indirect users (Mumford 1983a; 1983b).

For this reason OOSE alerts its users to the importance of understanding the users

information requirements, rather than those of their clients (Jacobson et al 1998). In

many cases of information system development, this shift of attention from a client to

a number of intended information system users will be of benefit. However in cases

where both the client and other stakeholders form the user group, there may be real

conflicts of interest between parties. The advice to 'listen to the users' then becomes

an ambiguous statement, which users? How does the methodology user determine the

most appropriate perspective? The OOSE methodology users are not alerted to this

risk.

By following the OOSE philosophy it is possible to assume that requirements are the

input to the production of an information system. The output (the information system)

will not solve any real problems if the production is based on incorrect input. To avoid

solving 'irrelevant' problems, systems development should always explicitly relate to

organisational development. According to Jayaratna (1994), organisational needs

should be seen as the purpose of systems development, and solution design should

contribute to the effectiveness. In OOSE, the methodology users do not become

explicitly alerted to this kind of thinking.

All organisations are confronted by endless changes. This causes the well-known

problem of systems 'maintenance', which could be called keeping systems relevant in

an ever-changing environment. OOSE methodology confronts these problems as a

141

methodology for effectively producing a series of system versions over the whole life

cycle of an information system. The OOSE creators achieve this by presenting what

they call ' a strategy of incremental development (Jacobson et al. 1998).

7.2.2 Element 2: The problem solver

NIIMSAD focuses on the role of the problem solvers 'mental construct' that helps

understand the complexity of the 'problem situation'. Additionally

'it helps us to examine whether the methodology alerts us to the need for

developing our 'mental constructs' to a desirable level in order to apply the

methodology successfully' (Jayaratna and Oates 1995).

OOSE makes a distinction between different system developers according to their

experience and knowledge in system development, for example: experienced OOSE

methodology user; experienced software engineer; newcomer to the field, and

manager. The methodology creators suggest that the above groups each read different

parts of the text. For the roles of system analyst, project manager and designers, the

OOSE methodology creators suggest different education programmes to teach them

what they need to know about OOSE prior to initiating the first project.

According to NIMSAD the system users not only have to learn how to use an

information system, but they also need encouraging to understand models of handling

business problems embedded in the information system, such as forecasting and

inventory management. The OOSE user-directed documentation identifies the need

for users to understand some of them. The problem of elucidating embedded business

models, however, has not been explicitly addressed in OOSE.

The ability to apply object-oriented thinking is identified, by OOSE methodology

creators, as being important when using their methodology. Object-oriented thinking

belongs to the discussion of 'mental constructs' in NIMSAD, it is only one aspect

influencing problem solvers' 'mental constructs'. In discussing 'knowledge and skills'

Jayaratna (1994) states,

'as intended problem solvers, we must become very conscious of the

knowledge sets and skills that are required to practice a methodology, and

methodology creators must state what knowledge sets we should possess.'

142

Implicitly this can be interpreted to cover the skill of 'object-oriented thinking' as

advocated as necessary by the 0OSE methodology creators. A shift from a function-

oriented perspective to an object-oriented perspective could also be interpreted as

being part of 'reasoning ability' in Jayaratna (1994). Human ability to reason about

some field of common interest is largely contingent upon a traditional way of talking

about it. 'Reasoning ability' within NIMSAD is discussed at an individual level only.

Object-oriented thinking integrates static and dynamic aspects of entities. It is a

change for methodology users from function-oriented system development. OOSE

purports to teach its methodology users an object-oriented view by introducing

fundamental concepts of object-orientation and applying them in different cases. In

0OSE, this new approach to thinking is mainly offered to problem solvers. System

users are not informed or trained to develop such thinking, although they join in use

case formulation. This means that system developers and users will generally have

different styles of thinking. One is a dynamic object-oriented view and the other a

function-oriented view. The 00SF methodology creators alert the methodology user

to the importance of object-oriented thinking but they do not consider whether the

system users should also be made aware of the differences between function-oriented

thinking and object-oriented thinking.

The creators of 00SF discuss the risk of conflicts when discussing information

systems. There may occasionally be conflicts of interest behind some of the

differences in views on information needs between client and users. These differences

generally exist because the client knows less about the users' requirements than they

think they do. This is the limited type of conflict, within a customer organisation, that

00SF makes its methodology users aware of. 00SF creators suggest that system

developers should develop information systems with the system users and not the

clients. The co-operation they stress is only between system developers and users.

Conflicts between clients' requirements and those of the users could be ignored. The

OOSE methodology does not give any reasons why the methodology users should

take the system user's perspective, nor does it instruct its users how to handle conflicts

with respect to a requirements specification between them and the clients, despite

explicitly mentioning this type of conflict.

143

System users play a central role in formulating the 'right problem'. This clearly

indicates that methodology users, as problem solvers, go directly to the problem

owners to get the 'right' problems defined and solved. Jayaratna (1994) repeatedly

alerts the reader to the fact that in the enterprise, which will become the context for an

information system, there will be conflicts of interest, which could become obstacles

to the effective use of that system.

OOSE methodology creators recognise that

'it is important to carry on a dialogue with the prospective orderers and

users, so that the system that is built is really what is wanted. In the analysis

phase, it will then be possible to build models that will make it easier for us

to understand the system' (Jacobson et al. 1998).

The problem solvers understanding of the system is increased in different stages. This

means that the problem solvers learn incrementally. Incremental understanding does

not involve every system developer, since each role only conveys limited tasks in

system development activities. The education programme advocated by the

methodology creators (Jacobson et al. 1998 chapter 15) does not offer all system

developers the same learning content, but only a global view of the methodology. Nor

is it possible for all system developers to go through the whole process.

In systems development, system users are often defined as people who (will) use the

system, whereas the problem solver in NIMSAD is taken as a role, which could be

played by different people. 'Role conflict', as a phenomenon, has been discussed in

the 'mental constructs' (see Chapter 4). It is described as a kind of mismatch of role

expectations between problem solvers and others (users, clients, stakeholders etc).

Jayaratna (1994) also suggests that methodology creators should explain the role

expectations implied by their methodologies.

OOSE specifies a number of roles on the basis of competence implied by each role in

the systems development phases, i.e. analysis, construction and testing. Different

phases need different competencies. According to NIMSAD the client may play the

role of the intended problem solver, even if not explicitly stated, the repeated use of

the phrase ' clients and problem solvers' indicates that a problem owner could play the

144

role of an intended problem solver. The creators of OOSE assign this role only to

information systems professionals.

System developers transcribe and consolidate use cases, received from the system

users, into a use case model. Use cases, as described by system users, for the most

part will not be framed in an object-oriented way. When methodology users transform

these into a use case model as part of their requirements model, they should apply an

object-oriented view. How this transition is achieved has not been explicitly addressed

in OOSE, for example: what questions should the methodology users ask the systems

users in order to check for accuracy in translating the model. When use cases seem

unclear or incomplete in building later models, there may be a risk that they go back

to the original documented descriptions given by system users and not to a dialogue

with the system users themselves. This risk is not explicitly discussed in OOSE.

7.2.3 Element 3: The problem solving process

The problem solving process 'has three essential phases: problem formulation,

solution design and design implementation' (Jayaratna 1994)

The NIMSAD framework sub-divides these phases into eight systemically based

stages. By analysing the situation in a systemic way, it should be possible to make the

transition from 'current state' to 'desired state'. Systemic design can then be utilised

to obtain models of notional systems, any or all of which should be able to facilitate

the desired notional system(s).

7.2.3.1 Stage (i) Understanding the 'Situation of concern'
According to Jayaratna (1994) a rational problem solving process should start with an

understanding of the organisational situation and methodology users should not take

the 'problem situation' as stated by a client for granted. They should, in dialogues,

with clients, problem owners and other stakeholders, determine where to draw a

boundary around a dynamic 'situation of concern', i.e. around the field of activities

which is to be considered in the systems development work.

The OOSE creators write about the concept of 'boundary' in the context of delimiting

an information system, in terms of what is and can be bounded by the use case

scenarios. They call it the 'system border' and it is used to indicate a clear distinction

145

between what refers to an information system to be developed and what belongs to the

'surrounding world' with respect to using the system (Jacobson et al. 1998). OOSE

creators offer no guidance on how to determine whether a realistic 'system border' has

been identified other than referencing the use case scenarios.

The context in which the OOSE creators introduce the concept of a 'system boundary'

is the transition from an analysis model to a design model. In terms of NTIVISAD this

means a transition from logical design to physical design within the 'solution design'

phase. The OOSE design model includes a modelling technique called 'interaction

diagrams'. In these, the interactions of the information systems objects should be

documented, however, due to implementation considerations, these objects generally

will not show a one-to-one mapping of the problem area objects of the analysis model.

For this reason the objects of the OOSE design are called 'blocks'.

In Jacobson et al. (1998) the criterion for distinguishing 'system borders' has been

stated in the following way,

in almost all the interaction diagrams we have a bar for the surrounding

world, namely for what is outside that which we want to describe (in the

OOSE design model). We usually call this bar the system border. This bar

represents the interface with everything outside the blocks in the diagram,

such as external actors, and consequently it can correspond to different

interfaces outside the system. There may be many such border bars'

(Jacobson et al. 1998).

This shows that distinguishing an OOSE system border has an entirely different

purpose than deciding on a 'boundary of concern' within the problem formulation

phase of NIMSAD. The OOSE concept of 'system border' belongs to the solution

design in NIMSAD, however it has been discussed here as the OOSE term 'system

border' may give the impression of covering the same broad area of a 'boundary of

concern' as discussed in NIMSAD. The interaction diagrams of OOSE, in some

cases, might also be useful in the context of delimiting a 'boundary of concern'.

The actions users undertake, based on data from an existing information system,

belong to their field of activity. The boundary of the 'boundary of concern' will cut

across these fields of activity and often through the fields of activity of other

stakeholders

7.2.3.1.1 Investigation models and techniques

The OOSE analysis process starts with the building of a requirement model. The

methodology users have to base this model on descriptions of use cases furnished by

potential system users. To acquire an adequate set of these presupposes effective

communication between system developer and system users. Having the users draw

use cases on paper and utilising prototyping in dialogue with systems developers are

two suggested means of investigation. 'Close participation' is the term used to

describe the process of formulating use cases. In order to do this for a number of use

cases, users have to imagine themselves in many different interactions with the

system. This means they have to see themselves in a number of shifting roles, called

'actors' in OOSE. To what extent can they see the difference between these roles? If

they are unable to distinguish between roles then the use cases are likely to be

distorted. The expected information needs they express in the use cases may then

differ considerably from the information needs in the corresponding future

interactions with the system. The OOSE methodology does not go further in advising

how to achieve communication skills.

Semantic analysis begins by identifying agents/actors who create the social world

around them. An agent has some abilities to accomplish things. These abilities are

identified and put into the analysis model to construct a picture of the world. Semantic

analysis focuses attention of analysis on the agents and the actions.

In semiotics the world to be modelled is constructed by the community of agents, i.e.

problem owners. The agents/actors know the meanings of words in their own world,

their interpretations are the only ones justified. It is not allowed, within semiotics, for

an analyst to invent artificial terms or introduce new concepts when modelling the

agent's actions. The purpose of this is to force the analyst to speak the same language

as the problem owners. Any ambiguity in the terms or concepts used in describing the

problem should be resolved by putting them into a context of actions, which are

already described and understood. When doing so, if the problem-owners are inspired

147

with some new terms, the problem owners and the analyst may use them only after

careful consideration

7.2.3.2 Stage (ii) Performing the Diagnosis
Diagnosis can be defined as the 'thorough analysis of facts or problems in order to

gain understanding' (Jayaratna 1994). The methodology should therefore help the user

to understand the nature and scope of the situation, and any issues that surround them,

in an explicit and clear fashion. Jacobson et al (1998) appear to agree with this

definition of analysis as they state

'the purpose (of analysis) is to formulate the problem and to build models

able to solve the problem under ideal conditions'.

OOSE begins by developing a problem domain model in order to determine the scope

and nature of the problem. This is identified as a logical view of the system using

objects that have a 'direct counterpart in the application environment that the system

must know about'. The problem domain model identifies the actors / roles played by

people (or other systems) interacting with the system we are interested in.

The methodology creators state,

objects can be found as naturally occurring entities in the application

domain. An object becomes typically a noun, which exists in the domain....

often a good start to learn the terminology for the problem domain'

(Jacobson et al. 1998).

This assumes a shared understanding of the problem domain and a common set of

norms and values. These are not discussed within the text nor is the methodology user

made aware of them. The identification of nouns, used within the application domain,

is making use of selected areas of textual analysis although the methodology creators

do not refer to this. According to Jacobson et al. (1998) analysis of the terminology

allows the methodology user to identify candidate objects in the system, these can

then be evaluated to determine how the system needs to handle the objects, inclusion

of the object in the final model is then based on this evaluation.

The methodology creators further assert that,

148

'there is no problem in finding objects, the difficulty is in selecting those

objects relevant to the system' (Jacobson et al. 1998).

In order to select relevant objects the methodology user is advised to consider the

modifications that are likely to occur to the object during its lifetime as,

'objects which are to remain essential throughout the system's life cycle will

probably always exist' (Jacobson et al. 1998).

OOSE methodology users are advised to put the candidate objects into context in

order to determine whether it is an appropriate object. What is really of interest is how

an object interacts with and reacts to other objects and under what conditions.

The methodology creators assert that

'you cannot draw any conclusions about ('right' object types) until a system

has been changed a number of times'.

The most important criterion, according to Jacobson et al, for determining a 'good

object' is

'that is should be robust against modification and help the understanding of

the system' (Jacobson et al. 1998).

This is no help to analysts working on a new problem domain or new system as it

implies that 'good' objects are only recognised after a period of time has elapsed and

modifications made. The 'good' objects are those that remain or have evolved.

All information systems that are built will be modified at some point in time, the

OOSE methodology creators assert that in order to accommodate these changes a

robust model must be created initially. Jacobson et al. (1998) claim

'after we have worked with a model for a while, a stable structure will

evolve for the system'.

How is a stable structure identified? Who determines whether the structure is stable?

The methodology creators give no guidance or criteria on which to base the definition

of stability. Jacobson et al (1998) assert that

stability also depends on the fact that modifications often begin from some

of these items (essential and always exist)'.

It is unclear from the text what timescale is being referred to, as in some instances

modifications clearly refer to those made over a long period of time,

149

'by working a long time with the early models, we (system developers) will

obtain a good understanding of the system' (Jacobson et al. 1998).

Here the system refers to an information system to be designed and implemented in its

nth version. The implication here is that only time will tell if you have created a

'good' object model. This opinion is based on the methodology creators experience of

block based design techniques used within the telecommunications industry.

According to Jacobson et al. (1998) use cases may be viewed as objects as they

describe the interactions between an actor and the system, this is explained as the

actor invoking new operations on a specific use case.

The methodology users refer to the initial objects that are identified from the original

requirements as problem domain objects, having developed a requirements model and

had it signed off by the client the analysis model is then started. The analysis model

describes the system using three different types of object; entity object, interface

object and control object, which the methodology creators argue allows for an

overview of the system. The methodology creators argue that by identifying only one

type of object, for example, Coad and Yourdon (1991) only a simple or general model

can be created. Developing the analysis model entails distributing the behaviour

specified in the use case descriptions among the objects in the analysis model. In this

way the behaviour each object is responsible for in the use case can be explicitly

stated.

Entity objects model the information in the system that should be held for a long

period of time, these objects should survive particular use cases. The methodology

creators advise the methodology user to consider the needs of the use case as a

guideline for justifying those entity objects that should be included. Jacobson et al.

(1998) state

'most entity object are found early and are obvious. These 'obvious' entity

objects are often identifies in the problem domain object model. Entities

usually correspond to some concept in real life. The hard thing is to model

only the entity objects actually needed'.

There is an assumption of a shared understanding of the problem domain and

language being used, evidenced by the assumption that entity objects are obvious. The

150

methodology creators state that only the entity objects that can be justified from the

use case descriptions should be included. As methodology users we should look at the

information that must be kept for a long period of time as a source of 'needed' entity

objects. Examples of using use cases to identify entity objects are given in the text see

below, italics indicate information functionality.

'When the customer returns a deposit item, it is measured by the system.

The measurements are used to determine what kind of can, bottle or crate has

been deposited. If accepted, the customer total is incremented, as is the daily

total for that specific item type. If the item is not accepted, the light for NOT

VALID' is highlighted on the panel. When the customer presses the receipt

button, the printer prints the date. The customer total is calculated and the

following information printed on the receipt for each item type:

name

number returned

deposit value

total for this type

Finally the sum that the customer should receive is printed on the receipt'

(Jacobson et al. 1998).

From this information the methodology creators reason that because we need to

remember how many cans, bottles and crates of each type have been deposited each

day, we need something that handles this information. The entity objects; can, bottle

and crate, are therefore identified. These entity objects can also handle size, deposit

values and other information tied to these objects, because some of the information is

common to these entity objects we can extract the common properties (i.e. deposit

value, day total) and place them in an abstract entity object, deposit Item (Fig 7.3).

This is a relatively simple example that the methodology creators expect the readers

to understand without further explanation. The same entity object may be identified in

other use case descriptions. The methodology creators expect the methodology users

to transfer the technique used in these relatively simple scenarios to the application

area under investigation but no additional help is given as to how this should be

conducted. The methodology user is warned that an entity object identified in one

scenario can be an attribute in another scenario.

151

0
DCpDSIL item
14

ha,' \ihs ihs

000
Can 	Bottle 	Crate

Figure 7.3 Can, bottle and crate have common properties inherited from Deposit

Item

(adapted from Jacobson et al. 1998)

For example: we need to model and car and its owner. Are these two separate entity

objects? In one system we can develop two entity objects, Car and Owner. In another

system we could have an entity object Car with an attribute owner, in yet another

system we could have and entity object Person with an attribute car. We need to

consider the use cases in order to determine the most appropriate representation. In the

first case, two use cases could use Owner and Car independently of each other, in the

second Owner is always used in combination with its owned Car, and in the third case

Car is only used in association with a specific owner or Person.

Interface objects describe communication between the system and the user. The

methodology creators assert that interface objects can be identified easily as they can

be clearly identified from the system interface descriptions that accompany the

requirements model. In addition they usually start from an actor and describe what the

actor does and how they communicate with the system. An example of an interface

object is the user interface functionality for requesting information about a person.

Jacobson et al (1998) state that

interface objects are quite simple to identify'

and they propose three strategies for identifying them.

1. 'Either they are clearly identified from the system interface description

accompanying the requirements model

2. or we can start from the actors

152

3. or we can read the use case descriptions and extract functionality that is

interface specific'.

In order to demonstrate the strategies the methodology creators use a recycling

machine problem scenario and from this identify 'concrete' actors; customer and

operator each of which needs its own interface object. The customer needs the panel

with push buttons and slots in which to insert items to be recycled. The operator needs

an interface to change information in the system and to generate daily reports. An

interface object to call the operator when an alarm is raised is also needed, as is an

interface to print receipts. These interface objects are represented diagrammatically as

Fig 7.4.

0'

I
I

I

ftis 7 Asceipt receiver 	. 1hs

I
/ 	 I

/ 	 I

	

/ 	 I
F

/ 	a
Aecipi printer

	

- i 	
Operatc

Customer panel

Cuslome, 	 Ajarrn
Oprakx

Figure 7.4 Interface objects in the recycling machine, customer panel, operator panel,

receipt printer and alarm device

(adapted from Jacobson et al. 1998)

Both of these strategies rely on the methodology users understanding of the problem

situation and a shared understanding, by users and methodology users, of what a

recycling machine needs in order to operate. No further explanation is given by the

methodology creators to expand on how these strategies should be applied.

The third strategy, identifying interface objects from the use case is demonstrated by

an example from the recycling machine where interface functionality is marked in the

textual description. For example:

153

'When the customer returns a deposit item, it is measured by the system. The

measurements are used to determine what kind of can, bottle or crate has been

deposited. If accepted, the customer total is incremented, as is the daily total for

that specific item type. If the item is not accepted, the light for NOT VALID' is

highlighted on the panel. When the customer presses the receipt button, the

printer prints the date. The customer total is calculated and the following

information printed on the receipt for each item type:

name

number returned

deposit value

total for this type

Finally the sum that the customer should receive is printed on the

receipt.'(Jacobson et al. 1998)

From these italicised areas the same interface objects, customer panel, operator panel,

receipt printer and alarm device are identified. By using the three strategies together

the methodology user can double check that all reasonable interface objects have been

identified, although the methodology creators do not explicitly recommend the

methodology user to do this.

Control objects, according to the methodology creators, are 'the most ephemeral and

last only as long as the use case'. Control objects usually contain the behaviour that

does not belong to the interface object or to the entity object. An example of a control

object is calculating taxes using several different factors. This behaviour could be

placed on any of the other types of object but the actual behaviour does not belong to

any specific entity object or interface object. Jacobson et al. (1998) give some

heuristics to help find and specify control objects. Each use case normally involves

interface objects and entity objects, any behaviour that remains after the interface

objects and entity objects have been assigned their behaviour will be placed in the

control objects. Usually one control object is assigned for each concrete and abstract

use case. Typical types of functionality placed in control objects are transaction-

related behaviour, or control sequences specific to one or more use cases, or

functionality that separates the entity objects from the interface objects. The same use

case description is used to identify functionality typical of control objects, see below.

154

'When the customer returns a deposit item, it is measured by the system. The

measurements are used to determine what kind of can, bottle or crate has been

deposited. If accepted, the customer total is incremented, as is the daily total for

that specific item type. If the item is not accepted, the light for NOT VALID' is

highlighted on the panel. When the customer presses the receipt button, the

printer prints the date. The customer total is calculated and the following

information printed on the receipt for each item type:

name

number returned

deposit value

total for this type

Finally the sum that the customer should receive is printed on the

receipt.'(Jacobson et al. 1998)

This is a concrete use case that inherits an abstract use case Print. The first option, one

control object for each (abstract and concrete) use case would give two control

objects. Returning Item is a use case that involves coupling the interface objects and

the entity objects together - a good candidate for a control object. The methodology

creators do not assign a control object to Print because the behaviour, printing to a line

printer, should be tied to the interface object.

The methodology creators state that

'descriptions of other control objects can be found indirectly from the use

cases by checking how the use case runs over the other object types

however there is no further guidance on how to carry out this exercise given in the

text.

Each use case description is examined in order to identify entity objects, interface

objects and control objects. As new objects are identified previous use cases are re-

examined in order to verify decisions already made. When all the entity objects,

interface objects and control objects have been identified for a use case description

they are combined in a use case view which shows how the objects will be used in the

use case Fig 7.5

155

0
Customer panel 	 oepcsit item recei%tr 	 Aecsipt printer

Receipt basis 	 Deposit item

14\
lnher$,l ' 	inhijrits 	\inherits coo

Figure 7.5 The objects supporting the use case Returning Item

(adapted from Jacobson et at 1998)

According to Jacobson et al (1998) the analysis model gives a

'conceptual configuration of the system, consisting of control objects,

interface objects and entity objects'.

The purpose of this model is to develop a robust and extensible structure as the base

for construction

7.2.3.3 Stage (iii) Defining the prognosis outline
By 'defining the prognosis outline' NIIMSAD means that the methodology should be

able to facilitate the identification of a clear defined 'desired state' in relation to the

'situation of concern'. Jayaratna (1994) expresses this as defining 'where we want to

be and why?'

OOSE does not make its users aware of how to perform the diagnosis, nor does it help

them to understand or question the rationale for the clients 'desired states'. OOSE

relies on the client being clear about the rationale for the requirements. It does not

offer any steps for examining the validity of these expectations.

7.2.3.4 Stage (iv) Defining problems
NTMSAD uses this stage to investigate what the methodology can offer in terms of

providing an answer to the question ' What are the problems which currently prevent

156

the transformation of the 'problem situation' from its 'current state' into the desired

state'?

As OOSE does not concern itself with the clients 'desired states' (prognosis outline) it

has no means of defining problems either. OOSE spends time with both clients and

users discussing use cases in order to create a requirement specification that can be

'signed off'. The reasoning behind these requirements is never explicitly considered.

OOSE is not dealing with the relevance of problems but the construction of solutions

to requirements.

7.2.3.5 Stage (v) Deriving Notional Systems
NJMSAD defines notional systems as 'those systems which need to be developed if

the client organisation is to overcome the previously defined 'problems', thereby

helping to transform the 'current state' to the 'desired state' (Jayaratna 1994). This

means identifying systems using the 'mental construct', which, if designed and

implemented, would eradicate one or more of the perceived problems with the current

system.

Documenting a requirements specification according to NIMSAD belongs to 'deriving

the notional system'. The OOSE creators presume, as a general case, that a

comprehensive enterprise development analysis has been made. As OOSE does not

help its users to participate in the definition of 'desired states' it cannot define

problems, nor can it arrive at notional systems, these are implicitly found in the minds

of the users.

7.2.3.6 Stage (vi) Performing Conceptual / Logical Design
The logical and conceptual design of a system is intended to formalise the structures,

roles, tasks, functions, information and attitudes of the notional system(s) into a form

that represents a clear, logical method of achieving the ideas identified in the notional

system(s).

In addition to use cases, a requirement model also documents a problem domain

object model and interface descriptions. The requirements model is then used to

produce a robust analysis model. The OOSE creators stress the need to maintain an

updated analysis model. Such a model documents the logical design of an information

157

system. They stress that this analysis model has to be kept free from consideration of

its physical implementation. They reason that an implementation independent analysis

model gives a better starting point for later versions, which may be implemented on a

new technical platform.

7.2.3.7 Stage (vii) Performing the Physical Design

The physical design of a system is the process of transforming the logical / conceptual

design into a form suitable for implementation (given a set of identified constraints).

Solution design is based on the work of the problem formulation phase (Jayaratna

1994). The reason for this lies in the fact that an information system alone cannot

increase the effectiveness of an enterprise or any part of it. Beneficial effects have to

be co-produced by actions of managers, system users and other stakeholders. In other

words an information system has to contribute to a resolution of a business problem.

The OOSE construction process is intended to give a design model and an

implementation model. The design model has to take the implementation environment

into consideration. This corresponds to the stage of physical design within NIIMSAD.

Without documented diagnosis and prognosis models the OOSE methodology users

lack some of the documents required for their implementation planning.

7.2.3.8 Stage (viii) Implementing the Design

The implementation of a system is the realisation of the notional system(s) within the

situation of concern' (Jayaratna 1994).

In order to support an industrialised form of software production, the construction

process aims at building a model of an information system, which describes it in a

way that allows it to be built largely by assembling existing components. In

undertaking this design, the OOSE creators instruct methodology users to do this in a

way that makes the new components exhibit functionality and be useful as building

blocks in other systems as well. The keyword here is reuse. Reuse is generally taken

as the use of results from earlier development work, including code reuse and

documentation reuse. In OOSE the suggested reuse 'should occur on several different

levels of granularity' (Jacobson et al. 1998). The OOSE methodology creators discuss

reuse at the lowest level, which consists of components from which to build

application modules. Reuse is not considered in NIMSAD.

158

7.2.4 Element 4: Evaluation

'It is the evaluation which helps us to measure the effectiveness of the problem

solving process and the problem solver in the 'problem situation' - unless the element

is considered there is no way of establishing that the 'problems have been

successfully resolved' (Jayaratna 1994).

The OOSE methodology does not advise its users to evaluate the effectiveness of the

methodology in use, nor does it offer models/criteria to probe into whether the

business problem is given adequate consideration. The NTMSAD framework gives

serious consideration to this problem.

The OOSE methodology creators compare their methodology with other object-

oriented system development methodologies Booch (1991), Coad and Yourdon

(1991), Rumbaugh et al. (1991), and Wirfs-Brock and Wilkerson (1989). The aim of

these comparisons is to influence potential users of the OOSE methodology. Their

comparative assessment is less comprehensive than that suggested by NIMSAD

framework and is mainly at the descriptive level. The OOSE methodology creators do

not consider assessing the methodology before, during and after application.

7.3 Summary

This chapter began with a brief introduction to OOSE and then evaluated OOSE using

the NIMSAD framework with an emphasis on object identification. The main findings

from this evaluation are as follows.

OOSE takes a development approach that is used in the construction industry and

applies the same principles to information systems development. The underlying

enterprise philosophy implies that tools provide support for activities in three

categories: architecture, method and process. The development of software systems is

presented as analogous with the construction industry. Development is progressive,

involving iterative cycles of analysis, construction and testing.

The ability to apply object-oriented thinking is identified, by OOSE methodology

creators, as being important when using their methodology. Object-oriented thinking

159

integrates static and dynamic aspects of entities. It is a change for methodology users

from function-oriented system development. OOSE purports to teach its methodology

users an object-oriented view by introducing fundamental concepts of object-

orientation and applying them in different cases. The OOSE methodology creators

alert the methodology user to the importance of object-oriented thinking but they do

not consider whether the system users should also be made aware of the differences

between function-oriented thinking and object-oriented thinking.

OOSE creators suggest that system developers should develop information systems

with the system users and not the clients. The co-operation they stress is only between

system developers and users. Conflicts between clients' requirements and those of the

users could be ignored. The OOSE methodology does not give any reasons why the

methodology users should take the system user's perspective, nor does it instruct its

users how to handle conflicts with respect to a requirements specification between

them and the clients, despite explicitly mentioning this type of conflict.

The methodology creators advise their methodology users to take clients'

requirements specifications only as a starting point. According to OOSE receiving the

requirements specification, in some form, is the starting point for systems

development. At an early stage of systems development, the main 'problem',

according to OOSE, seems to be producing a requirements specification precise

enough to become part of a contractual agreement between a client and a software

producer.

This may create a problem if the client is not very familiar with the work situation of

people within the area of use. The delivered information system, in most cases may

not be used by the client, but by a number of indirect users. For this reason OOSE

alerts its users to the importance of understanding the users information requirements,

rather than those of their clients.

All models that apply OOSE are use case driven. Use cases denote descriptions of the

functionality expected from an information system by its potential users in their

different interactions with it. The importance of use cases lies in the idea that they can

be controlled by users and taken by system developers as part of the requirement

160

model. The use cases and how they are connected are described in a special 'use case

model'

OOSE relies on the identification of nouns, used within the application domain, to

identify relevant objects. According to Jacobson et al. (1998) analysis of the

terminology allows the methodology user to identify candidate objects in the system,

these can then be evaluated to determine how the system needs to handle the objects,

inclusion of the object in the final model is then based on this evaluation. This

assumes a shared understanding of the problem domain and a common set of norms

and values. These are not discussed within the text nor is the methodology user made

aware of them.

ODSE methodology creators do not perceive identifying objects as difficult. The

difficulty arises in selecting objects relevant to the system. OOSE methodology users

are advised to put the candidate objects into context in order to determine whether it is

an appropriate object. What is really of interest is how an object works with other

objects and under what conditions.

The most important criterion, according to Jacobson et al, for determining a 'good

object' is 'that it should be robust against modification and help the understanding of

the system' (Jacobson et al. 1998). This is no help to analysts working on a new

problem domain or new system as it implies that 'good' objects are only recognised

after a period of time has elapsed and modifications made. The 'good' objects are

those that remain or have evolved.

Each use case description is examined in order to identify entity objects, interface

objects and control objects. As new objects are identified previous use cases are re-

examined in order to verify decisions already made. When all the entity objects,

interface objects and control objects have been identified for a use case description

they are combined in a use case view which shows how the objects will be used in the

use case.

OOSE does not make its users aware of how to perform the diagnosis, nor does it help

them to understand or question the rationale for the clients' 'desired states'. OOSE

161

relies on the client being clear about the rationale for the requirements. It does not

offer any steps for examining the validity of these expectations.

As OOSE does not concern itself with the clients' 'desired states' (prognosis outline)

it has no means of defining problems either. OOSE spends time with both clients and

users discussing use cases in order to create a requirement specification that can be

'signed off'. The reasoning behind these requirements is never explicitly considered.

OOSE is not dealing with the relevance of problems but the construction of solutions

to requirements.

162

Chapter Eight: Finding Objects in Practice.

Having critically evaluated a number of object-oriented analysis and design

methodologies in order to determine how they recommend users to define / identify

objects the next task was to determine how users identify / define objects in practice.

This would answer the part of the research question that asks 'how do we identify

objects?' and 'how do we derive objects from the requirements determination?' An

exploratory phenomenological approach (see 2.2.6) was taken to conduct 6 semi-

formal interviews. The aim of the interviews was to identify how the target group

thought they identified objects and by using a case study scenario determine what they

do in practice.

The participants were known to the researcher; the advantages of this were

• less explanation was required immediately prior to the expert's account;

therefore there was less danger of influencing the outcome.

Participants were more motivated to give a complete account because they

wanted to help the researcher.

The disadvantages were:

• a less representative sample was obtained, however see 8.1.

• a smaller range of object-oriented methods was acknowledged, as all

participants were associated with the same university.

Each participant was interviewed twice (see 8.2).

• On the first occasion to discover how they thought they identified objects

• On the second occasion to discover whether they used the processes they had

described during the first interview when given a complex scenario.

This chapter is based on the results of 6 semi-formal interviews with 3 academic

colleagues and 3 practitioners who use object-oriented analysis methodologies as part

of their teaching or normal working practices.

Differentiation between software engineers and systems analysts has been made, but

not, in general, between academics and practitioners, as there were few significant

differences in the results.

163

8.1 Sampling

My sample was serendipitous and consisted of three academics and three practitioners

and both software engineers and systems analysts. Table 8.1 identifies the variables

within the sample. One academic was an analyst the other two software engineers; one

practitioner was a software engineer the other two systems analysts. My sample also

consisted of three females and three males. The sample was as varied as possible

given the size. The participant's age range was late 20's to mid 50's with an even

spread between academics and practitioners.

Academics Practitioners

Software Engineers 2 1

Systems Analysts 1 2

Female 2 1

Male 1 2

Table 8.1 Population sampling

There was no correlation between these variables. The female academics had

previously been practitioners and one of the male practitioners has previously been an

academic.

8.2 Investigation Method

The participants were involved in two sessions, each lasting an hour. The initial

session was a semi-structured interview (Smith 1995) during which the participant

was asked how they identified objects. The purpose of this was to determine whether

practitioners used approaches recommended by various object-oriented analysis and

design methodologies or other methods. Participants were given the choice of writing

down their thought processes, explaining them while I made notes or a combination of

the two.

For the second session, the participants were given a complex scenario to read and

model. Participants were asked to identify the objects from the scenario. The purpose

here was to determine whether participants identified / defined objects from the

scenario using the processes they had described in the first session. In other words did

the participants actually do what they said or thought they did? Observational

methods (Coolican 1990) were used as a technique for this part of the investigation as

naturally occurring behaviour was being observed.

8.3 Raw Data

Table 8.2 indicates the issues raised by the participants during the interviews. I have

not differentiated between the first and second interview nor have I differentiated

between academics and practitioners, as there were few significant differences in the

results.

Software Engineers Systems Analysts

Looking for nouns 3 3

Relevant things/entities 3 3

Events 2 3

Attributes/objects 2 3

Relationships 1 3

Divide into 'sub-systems' 1 3

Textual description 2 2

Object model 3 1

Code-ability 3 -

Iterati on/redraw - 3

Boundary definition - 2

Operations 	to 	be 	carried

out

3 -

ER modelling 1 2

Abstraction 2 1

Formal methodology 1 -

Questions for clarification - 1

Table 8.2 Raw Data

8.4 Analysis

Having briefly described the techniques used for this investigation and tabulated the

raw results I shall now evaluate the responses using the NIMSAD framework. This

165

will ensure that the same criteria used to evaluate the methodologies are used to

evaluate the participant's responses.

8.4.1 Problem Situation

All participants assumed they were working from a written description of the problem

situation. All participants began by looking for nouns or 'things' that make sense in

the problem domain. They used arbitrary judgement to decide which objects were

outside the problem situation and therefore unimportant to the current model. One

analyst stated she would produce a list of questions / queries/issues that would need to

be clarified before an acceptable model could be produced. The software engineers

took an ontological perspective of the given scenario and did not question the

boundaries of the problem situation. They all assumed the requirement specification,

as given, was as complete as was necessary.

The problem situation from an academic perspective is bound by the description

given, further exploration of the problem domain was not considered. This is due

mainly to the teaching situation, whereby material presented to students' has, in

general, tightly defined boundaries. Looser descriptions would leave much of the

problem situation 'open to question', which would be difficult to handle in the

teaching context.

8.4.2 Problem Solver

Only one of the participants stated he would use any formalised methodology - UIML.

The other participants relied on their own experience of analysis methods: be they

traditional structured methods or object-oriented methods, no one explicitly stated the

methodology they were using.

Those participants with software engineering backgrounds, selected objects on the

basis of code-ability, that is on identifiable state or behaviour that would ultimately

need to be coded. This indicates a reliance on experience of similar scenarios or

problem domains, whereby seemingly relevant 'chunks of code' could be identified.

There was an implication that one of the criteria for identifying relevant objects was

the ability to code the actions with which the object could be associated.

166

The analysts were not interested in code-ability they were more interested in the

relationships between objects. The analysts stated they would redraw the model a

number of times and re-arrange objects and relationships in order to clarify them.

They would also re-visit the description and clarify issues in order to identify extra

objects I attributes / operations.

8.4.3 Problem Solving Process

The analysts selected individual areas of the case study to develop/model in depth.

Having created a model for each identified sub-system they linked them together.

'I look for things - entities I can see, then I look for events - entities that

happen at a particular time, these might be objects or attributes of the thing

the event happens to. Then I construct an ER diagram, I look for entities

that have attributes in common, for example: people, places, transactions

and make super-objects/classes from these' (Analyst 1).

'I read through the description and list the main objects (as I think). I'm

probably looking for nouns, but I would filter out repetitions and what I

perceive to be attributes and nouns that represent the 'system'. I start to

develop a diagrammatic model from this list, then I go back and check the

model against the description to find missing elements and to look at

cardinalities of relationships' (Analyst 2).

The analysts did not initially consider the operations to be carried out by identified

objects. These were considered to be part of the design phase and as such were left

until an initial model had been developed. As the model was developed the

relationships between objects were continually revisited until the analyst felt that the

model was 'accurate'.

The software engineers identified central objects with primary operations. Other

objects were then identified and relationships with the central objects identified.

'I list candidate classes from descriptions supplied from requirements

capture, especially from use cases, - i.e. I look for noun phrases. I rule out

candidate classes that are outside the system being modelled, synonyms of

other candidates and those that are just plain silly' (Software Engineer 1).

167

The criteria being used to rule out classes that are outside the system being modelled

were not identified and by implication they relied on 'experience'.

'I look for 'things' usually specific nouns; either common (groups) or proper -

specific objects rather than abstract objects. Not everything will ultimately be

included, things that are trivial - usually scalar (single fields i.e. colour) and

with no obvious significant operations will become attributes of objects. Once

a group of potential classes has been identified I look to see if abstracting out

common properties/operations can sensibly identify abstract classes. There

may be other things that make sensible classes, for example: if the problem

involves a group of objects, it may make sense to have a collection class

representing that group. Relationships between classes may give rise to

additional classes, i.e. records containing details of a transaction. Additional

objects/classes may be identified when considering the user interface'

(Software Engineer 2)

One software engineer stopped himself during the modelling process and stated 'that's

wrong I'm supposed to be using UML'. This was the only participant to claim to be

using any formal object-oriented methodology

All participants stated they would look for nouns or 'things' within the stated problem

situation. Effectively participants selected 'important things' from the problem

domain case study, i.e. those things that had some relevance to the case study from the

participants' own perspective. Academics described these 'things' as 'nouns' in order

to justify their selection and ultimately in order to assist students in selecting

appropriate objects. Most 'important things' were expressed as concepts that made it

easy for the participants to formulate them into an object model according to the noun-

selection principle. The 'important things' were then re-considered in order to create

object classes.

Some methodologies i.e. Wirfs-Brock and Wilkerson (1989); Coad and Yourdon

(1991); Rumbaugh et al. (1991) and Booch (1994) recommend object identification

from text descriptions of the problem situation. The nouns represent objects and the

W.

verbs represent operations on the objects and relationships between objects. These

methodologies reveal something in common:

• Nouns are keys to objects

• Text descriptions are a source of needed objects

Systems analysts define object classes. They act as object selectors.

Everything is to be viewed as an object in an object-oriented system. Different people,

for example: system users and developers understand the concept 'object' from their

own perspective. The system users field of activity can be seen as an organisational

context from which they select concrete and abstract 'things' i.e. products to be sold,

the concept 'sales' appears to be more abstract than the product sold. System users

understand their business in terms of concrete and visible things.

'Important things' express unique insights, useful in defining objects and object

classes. 'Things' are system users views on 'objects' and are acceptable for their

requirements. 'Objects' are defined by developers from a systems development

perspective. The defined objects satisfy the needs of the requirements specification in

respect of analysis, design and implementation.

In theory and practice 'important things' are not exactly equal to objects in the field of

object-orientation. According to the applied methodology, systems analysts determine

where those things should go - i.e. what kind of model. Different things can be

formulated into different models for different purposes, i.e. object model, function

model and control model of OMT, which things are included in the object model

depends on how significant those things are to the system and not just to the system

users' field of activity. Systems analysts select from the 'important things' those

objects that are to be considered as classes.

The aim of finding 'important things' lies in defining the right objects for an object

model. The essential and important are selected from the non-essential and

unimportant. A model only integrates the essential part according to its closeness to

the purpose of modelling a system. The problem associated with the question of what

is and is not 'essential' is one of understanding and semantics, and for research

169

put-poses permits us to say that importance is relevant to what the system users want

and expect from a system.

Picking 'important things' differs from 'drawing out nouns' even though 'important

things are expressed in the form of nouns. Noun drawing is based on the requirements

specification, which has already been constructed by someone else such as managers.

Systems analysts pick up the nouns and define them in object models. A requirements

specification in this sense should not be taken 'as given' but as a way of opening

communication between system developers and users.

8.5 Lessons Learned

The sample is too small to draw any reliable generalised conclusions, but the results

do indicate that there is scope to conduct a larger scale study involving both

academics and practitioners.

The results indicate that both academics and practitioners rely on nouns or 'important

things', within the written description, as a source of objects. Experience in using a

methodology or familiarity with a problem domain are relied upon to abstract relevant

classes from the listed objects. Software engineers were different from systems

analysts in that they considered code-ability, the operations to be carried out and

worked directly with object models, although only one identified a formal

methodology being used. Systems analysts were more concerned with the data and

relationships and went through more iteration before they were satisfied with their

model; they also questioned the boundary definitions.

170

Chapter Nine: Conclusions

Having examined three seminal texts (chapters 5, 6 and 7) and conducted 6 semi-

formal interviews using an exploratory phenomenological approach (chapter 8) this

chapter begins by identifying the major findings. In the following three sections I

expand on these conclusions:

• from a methodological perspective

• from the evaluated methodologies

• from the use of the NIMSAD framework.

The chapter concludes with a discussion of future work.

9.1 Major Findings

This work supports the claims that object-oriented representations are more natural:

• nearer to the real world 'things' being modelled

• nearer to natural human ways of thinking about them

An object-oriented analysis approach focuses on objects, their classification,

generalisations and specialisations. (Coad and Yourdon 1991; Rumbaugh et al 1991;

Embley et al 1992; Booch 1994; Conger 1994; Elmasri and Navanthe 1994; Graham

1995; Kroenke 1995; Norman 1996). The identification of objects is therefore

essential if we are to develop realistic models of the problem domain.

This work does not support the claim that:

object-oriented approaches are a radically different way of thinking about

problems.

The researcher finds this claim neither proved nor disproved but her current view is:

object-orientation is the recommended approach to data modelling (Graham

1995; Booch 1991; Booch 1996);

Traditional structured analysis methods (Yourdon 1991; DeMarco 1979; Cutts 1987)

focus on the business functions; data analysis methods focus on the flow of data and

the structure of the data files within the organisation context. The normalisation

process removes dependencies and data duplication so that re-creation of an entity can

171

involve joining multiple tables (Connolly 1995; Codd 1970; Chen 1994). An object-

oriented approach is seen as more 'natural' as we think in terms of objects.

• object identification is done by practitioners (Goad and Yourdon 1991;

Rumbaugh et al 1991; Jacobson et al 1998), but the methodology creators,

teachers and researchers cannot clearly say how it is done

When the object-oriented literature does offer suggestions on how to identify objects

and entities, they are drawn from the 'craft knowledge' of experienced practitioners

rather being derived from any theory of how human beings make sense of their world

or inquire into problem situations (Goad and Yourdon 1991; Rumbaugh et al 1991;

Jacobson et al 1998). The danger of this is that the experienced user relies on previous

practice and application areas and may 'see' an 'obvious solution' without exploring

the problem situation in sufficient detail.

• texts do not differentiate between objects and entities

In much of the object-oriented literature the concept of 'object' is described, in that

objects have identity, state, behaviour and properties and can be characterised by a set

of operations that can be performed on it or by it and its possible states (Shlaer and

Mellor 1988; Goad and Yourdon 1991; Rumbaugh et al 1991; Embley et al 1992;

Booch 1994; Booch 1996; Jacobson et al 1998). In many cases objects are perceived

as being the same as entities identified by traditional analysis and design

methodologies.

The lack of attention given to the question of how to identify entities and objects may

be explained by the original use of data analysis in the design stages of development,

where it is relatively straightforward to identify the 'things' about which data are

required to be held. The use of data analysis is shifting to earlier stages of

development where the problem is less well defined. There is a continued reliance on

a pragmatic 'common sense' approach to identify objects (Lewis 1994). The 'common

sense' of our tradition is that in order to perceive and relate to things, we must have

some context in our minds that corresponds to our knowledge of them. Organisational

172

culture may give relevance to items/things/entities/objects that appear strange to

'outsiders'.

Literature relating to identification and formulation of objects is very sparse although

sections purporting to cover this are found in textbooks relating to either specific

object-oriented methods or to object-orientation in general be that from a software

engineering perspective, an analysis and design perspective or a database perspective,

for example, (Shlaer and Mellor (1988), Goodman (1989), Khoshafian and Abnous

(1990), Booch (1991), Coad and Yourdon (1991), Rumbaugh et al. (1991), Bertino

and Martino (1993), Conger (1994), Graham (1995) Jacobson et al. (1998)). How

objects are identified depends very much on the authors' perspective and can vary

from using entity and object interchangeably to the implication that identification of

objects is not a problem, as everyone implicitly knows what objects are.

it is important that we understand how we identify objects

'Object' is a fundamental concept of object-orientation. For any object-oriented

method the single most crucial aspect of the analysis and design phase is the

determination of which objects and classes to include in the model. It requires a clear

vision of which objects belong to the system to produce a relevant object-oriented

model (see 1.1).

Inspection of the current literature revealed that the methods for identifying and

formulating objects are based on natural language descriptions of the required system.

This introduces many inherent ambiguities as it depends on the writer's linguistic

ability as well as the designer's knowledge and experiences in the problem domain

(Ramachandran and Taylor 1994). Some texts, for example Meyer (1988) and Shlaer

and Mellor (1988) suggest that there is no problem in identifying objects. This is

difficult to reconcile with observations of novice and inexperienced data analysts who

frequently find great difficulty in identifying a set of 'relevant' entities or objects

(Lewis 1994).

173

Identification of nouns as a 'first pass' method of identifying objects is the same

approach taken by traditional structured analysis methods where nouns and verbs are

selected to identify entities and processes.

Object-orientation advocates a different way of thinking about data

As many of the creators of object-oriented analysis and design methodologies initially

developed structured analysis methods one assumes they are relying on this past

experience when identifying objects. This would suggest that they are using

approaches they are familiar with without understanding what principles are being

applied and why. Jacobson et al (1998) explicitly advocate an object-oriented way of

thinking but do not expand on how this can be achieved; neither Coad and Yourdon

(1991) nor Rumbaugh et al (1991) explicitly discuss object-oriented thinking.

If we cannot formulate a method for thinking in terms of objects we neither

understand what we are advocating nor can we transmit our new insight to others.

• It is difficult to improve the performance of object-oriented models if we do

not understand the method used to produce them

The methodologies considered used an object-oriented approach to model the current

problem situation, none of them explicitly stated how by using an object-oriented

approach any problems would be solved.

• It is difficult to teach by relying on craft knowledge

If worked examples are used students attempt to identify a 'pattern' or unstated

approach being used and then transfer this approach to future problems. Reverting

back to familiar methods such as nouns and verbs is seen as a 'safe' approach.

• In the real world there are many potential objects and classifications. How you

find them depends on shared understanding of the problem domain, context

174

and requirements. How you chose relevant objects and classifications depends

on the context.

The following sections expand and discuss the conclusions I have reached.

9.2 Conclusions on object formulation from a methodological
perspective

Object identification is an essential area of any object-oriented analysis methodology.

In OOA object identification is restricted mainly to descriptive statements and

'education by example' i.e. methodology users learn object modelling through

different application examples. Nouns are selected that are seen to be relevant to the

problem situation. These potential objects are related mainly to the data requirements

of the stated problem situation. The approach taken by the OOA methodology creators

indicates that the methodology user should determine what they could about the

problem domain and problem situation by asking questions. Clients, users and other

stakeholders should be consulted as should any documents; invoices, receipts, reports

etc. This is no different to the approach taken by structured systems analysis

methodologies.

Guidance on object identification in OMT is restricted to examples given in the text

and left to the experience of the methodology user. OMT has specific stages devoted

to object identification, however much of the text is devoted to descriptions and

guidelines of what an object is. These rely heavily on identification of nouns which is

the same approach taken by many of the traditional structured analysis methodologies

when identifying entities. Additional classes, according to OMT, can be identified

from knowledge of the problem domain. However, no explicit help is given to help the

methodology user identify these additional classes. It is implied that a thorough

understanding of the problem domain and experience, in both the problem domain and

the methodology, will enable the intended problem solver to determine appropriate

objects.

175

OOSE relies on use case scenarios to identify entity objects, control objects and

interface objects. The methodology user enlists the support of various system users in

order to identify the various objects. Initially noun phrases are used to identify objects

The identification of nouns, used within the application domain, is making use of

selected areas of textual analysis although the OOSE methodology creators do not

refer to this. According to Jacobson et al. (1998) analysis of the terminology allows

the methodology user to identify candidate objects in the system, these can then be

evaluated to determine how the system needs to handle the objects, inclusion of the

object in the final model is then based on this evaluation.

The most important criterion, according to Jacobson et al, for determining a 'good

object' is 'that is should be robust against modification and help the understanding of

the system' (Jacobson et al. 1998). This is no help to analysts working on a new

problem domain or new system as it implies that 'good' objects are only recognised

after a period of time has elapsed and modifications made. The 'good' objects are

those that remain or have evolved.

There is no guidance given to the methodology users as to how one identifies which

are relevant objects in a problem domain. The relevance or irrelevance is based on the

methodology users' judgement and opinion, which is very subjective and depends, to

a large extent, on the methodology users' understanding of the problem domain and

on the shared understanding of the client, methodology user and other stakeholders.

All three methodologies choose noun phrases as a way of identifying objects. Thus the

requirements specification becomes an original source for objects. Each methodology

involves clients, users and other stakeholders, to some extent, in clarifying the

requirements specification. However after the initial input from clients and other

stakeholders the methodologies rarely consult them again. The models are rarely

checked for accurate reflection of the requirements or understanding of the problem.

Classification of the initial objects, according to Coad and Yourdon (1991), is based

on concepts that are learned in kindergarten: objects and attributes, wholes and parts,

classes and members. The selection of those objects relevant to the problem situation

176

is seen as a 'natural ability' of the methodology users and is implicit in OOA. OOA

does not alert the methodology user to this nor does it offer any assistance on how to

apply classification theory. Instead OOA relies on the methodology users experience

and knowledge to determine appropriate classifications.

Abstraction is viewed as an important theme in object orientation by the OMT

methodology creators and is perceived as a fundamental human capacity that permits

us to deal with complexity. Abstraction focuses on the individuals' competencies and

reasoning abilities. OMT does not alert the methodology user to the importance of

reasoning ability and abstraction. The text does not assist the methodology user in

developing their abilities in abstraction. Rather abstraction is seen as an innate ability

of the methodology user.

OOA identifies the steps to be taken when applying the methodology and gives

examples in the text, but there is no other guidance on how the methodology user can

develop their experience. Experience is implicitly assumed to be gained by working

through the given examples and applying the strategies to the target problem domain.

The experienced user plays an important role in OMT, being able to select appropriate

objects from the problem domain intuitively and then differentiate between relevant

and irrelevant objects without writing anything down. The danger of this is that the

experienced user relies on previous practice and application areas and may 'see' an

'obvious solution' without exploring the problem situation in sufficient detail.

Despite the emphasis on experienced users OMT methodology offers no explanation

of what might facilitate the transition from a new to an experienced user.

Experience is an invaluable source for developing knowledge and skill, and helps to

form implicit models for structuring our understanding of situations. The more

experience we have of a particular working environment, the easier it may be for us to

assess similar situations. Experience makes us more confident and enables us to

assume 'expert' status. However, while experience-based models may reduce time,

provide a range of easy and 'obvious' solutions and help to develop confidence, the

same models may prevent us from exploring new ideas or becoming effective listeners

177

to others' ideas. OOA relies on the methodology users considerable experience to gain

an impression of the state of the situation.

The OOA methodology takes an ontological view of the problem situation in so far as

the boundary of the problem situation is not explored but taken as given. The given

requirements are discussed with a variety of stakeholders and existing documents are

consulted in order to determine what is being modelled. The rationale for the

requirements is not considered by the OOA methodology as a result of this there is no

clear 'desired state'. To this end OOA is not dealing with the relevance of the

problems but the construction of solutions to a requirement. Producing object-oriented

solutions for a requirement is likely to be as error prone as solutions produced using

traditional methodologies.

OMT methodology creators adopt an ontological perspective and accept the problem

statement as given. They recommend that the methodology user clarify requirements

but at no point do they undertake systemic analysis and conduct a critical enquiry of

the situation of concern. The methodology creators are effectively concentrating on

the organisational actions and decisions that have observable, substantive outcomes

such as inventory levels or average time taken to satisfy an order, identifying task

responsibilities and charting the flow of material etc and are not considering how the

organisational activities are perceived, interpreted and legitimated.

OOSE takes a development approach that is used in the construction industry and

applies the same principles to information systems development. The underlying

enterprise philosophy implies that tools provide support for activities in three

categories: architecture, method and process. The development of software systems is

presented as analogous with the construction industry. Development is progressive,

involving iterative cycles of analysis, construction and testing.

OOA does not help its users to participate in the definition of 'desired states' it cannot

define problems, nor can it arrive at notional systems. The concern of the

methodology is to record the features of the notional system(s) expressed by the client

in a concise form in order to facilitate its design tasks.

178

OMT relies on the clients being clear about the rationale for their requirements. It

does not offer any steps for examining the validity of these expectations. OMT does

not assist the methodology user in the identification of 'current state' and 'desired

state' what it is doing is taking the problem statement and producing an object model

to represent the requirements of the problem statement. By modelling the

requirements of the problem statement the object model is perceived to have 'solved'

the problem without initially identifying what the problem is.

According to OOSE receiving the requirements specification, in some form, is the

starting point for systems development. At an early stage of systems development, the

main 'problem', according to OOSE, seems to be producing a requirements

specification precise enough to become part of a contractual agreement between a

client and a software producer. OOSE does not make its users aware of how to

perform the diagnosis, nor does it help them to understand or question the rationale for

the clients' 'desired states'. OOSE relies on the client being clear about the rationale

for the requirements. It does not offer any steps for examining the validity of these

expectations. As OOSE does not concern itself with the clients' 'desired states'

(prognosis outline) it has no means of defining problems either. OOSE spends time

with both clients and users discussing use cases in order to create a requirement

specification that can be 'signed off'. The reasoning behind these requirements is

never explicitly considered. OOSE is not dealing with the relevance of problems but

the construction of solutions to requirements.

Methodology evaluation is of considerable importance to organisations and the

NIMSAD framework is useful in that evaluation. It is important for methodology

users to know how effective the methodology is and the lessons that can be learned

after applying a methodology. OOA, however, limits the evaluation of the

methodology to that conducted prior to intervention, as do OMT and OOSE.

Rumbaugh et al (1991) compare their own methodology with other software

engineering approaches, including the object-oriented approaches of Booch (1994),

Meyer (1988), and Goad and Yourdon (1991). The OMT methodology creators base

the comparison for identifying strengths and weaknesses of each approach on 'a set of

flexible criteria'. The purpose for such a comparison is to identify major differences

179

and similarities between OMT and other approaches and effectively only contributes

to an evaluation of OMT before application.

The 00SF methodology does not advise its users to evaluate the effectiveness of the

methodology in use, nor does it offer models/criteria to probe into whether the

business problem is given adequate consideration. The 00SF methodology creators

compare their methodology with other object-oriented system development

methodologies Booch (1991), Coad and Yourdon (1991), Rumbaugh et al. (1991), and

Wirfs-Brock and Wilkerson (1989). The aim of these comparisons is to influence

potential users of the 00SF methodology. Their comparative assessment is less

comprehensive than that suggested by NIIMSAD framework and is mainly at the

descriptive level. The 00SF methodology creators do not consider assessing the

methodology before, during and after application.

9.3 Conclusions drawn from evaluated methodologies

Object-oriented methodologies address the object model and class structure in order to

reflect states and transition of states in the 'real world.' This has been called object-

oriented thinking or object-oriented view in object-oriented methodologies.

The ability to apply object-oriented thinking is identified, by OOSE methodology

creators, as being important when using their methodology. Object-oriented thinking

integrates static and dynamic aspects of entities. It is a change for methodology users

from function-oriented system development. 00SF purports to teach its methodology

users an object-oriented view by introducing fundamental concepts of object-

orientation and applying them in different cases. The OOSE methodology creators

alert the methodology user to the importance of object-oriented thinking but they do

not consider whether the system users should also be made aware of the differences

between function-oriented thinking and object-oriented thinking.

None of the three object-oriented methodologies considered systemic analysis and

design advocated by Jayaratna (1994). They generally paid little attention to problem

formulation, instead they move from requirements specification directly to systems

design. This indicates two problems:

UM

• the three methodologies are weak at identifying business problems;

by taking a new information system 'as the given notional system' narrows the

system boundary

This can be seen as a reason why OOSE and OMT do not stress the 'why' questions

and why OOA only addresses 'why' questions when checking 'real' information

needs. The three methodologies guide their users on information systems analysis and

design actions, rather than on broadly considering how to resolve a 'problematic

situation' and transforming it into a desired situation.

The three methodologies cover the last three stages of the problem solving process as

described by NIIMSAD, i.e. performing logical design, performing physical design and

implementing design. For these stages the three methodologies cover more detail than

the NIMSAD framework. They discuss such features as documentation, testing,

testing and to some extent non-functional requirements (OMT and OOA) that are not

explicitly covered by NIMSAD framework.

The first five stages of problem formulation, as described by NIMSAD, comprise

understanding the 'situation of concern', diagnosis, prognosis outline, defining

'problems' and deriving notional systems. The three methodologies take the

requirements specification as given and do not consider wider implications of the

'proposed system' they are limited to accepting the 'proposed system' as the notional

system. Therefore no problem solving is being conducted. Rather the methodology

takes the requirements specification as given and develops an information system

based on that information. Different techniques are used to enable user participation in

deriving valid specifications for design, for example: OOSE recommends use cases

and enterprise development if specifications remain unclear, and OMT and OOA

recommend talking to users in order to clarify requirements. These techniques do not

equate to an inquiry corresponding to the critical questions raised by NIIMSAD when

applying the first four stages of problem formulation.

Coad and Yourdon (1991) have created an object-oriented methodology where object

components are a central concept. Rumbaugh et al (1991) present a methodology that

to a high degree seeks a compromise with traditional analysis and design

181

methodologies and contains many practical instructions. Jacobson et al (1998)

emphasises a thorough description of the computerised systems use based on a

development approach used in the construction industry.

Object-oriented analysis methodologies imply that the analysts can step into any

organisation and undertake an analysis exercise. Shlaer and Mellor (1988); Goad and

Yourdon (1991); Rumbaugh et al. (1991) state that reading documents and talking to

the client and users will supply the necessary background knowledge and enable the

analyst to understand the problem domain. However having gained an understanding

of the problem domain does not mean that the analyst shares the same understanding

of the terminology used.

Information analysis is concerned initially with understanding the business itself and

business needs it then considers how the needs can be met by providing an

organisational and technical system. Business needs are rarely considered by object-

oriented analysis methodologies. There is an assumption (Jacobson et al. 1998) that an

in-depth business analysis has been performed prior to the object-oriented analysis.

Goad and Yourdon (1991) and Rumbaugh et al. (1991) concentrate on the perceived

problem area and do not consider the organisational requirements. Indeed Rumbaugh

et al. (1991) state that 'psychological, organisational and political considerations for

doing this (analysis) are deemed to be beyond the consideration of the methodology'.

9.4 Conclusions drawn from the use of NIMSAD

The discussion of 'mental constructs' helps problem solvers to recognise their

competence in solving any problem. The dynamic feature of this construct will guide

system developers to act in a dynamic situation. It is important that problem solvers

recognise the 'mental constructs' that they have, and those that they will need when

the situation changes, for example: when an enterprise adopts new ways of marketing

or production. NIMSAD does not pay explicit attention to the changes within system

developers 'mental constructs' needed when shifting from one methodology to

another or from one method of systems development to another radically different

one. For example: how the existing knowledge and experience of the systems

182

developer influences them when they move from function-oriented to object-oriented

development

The NIIMSAD framework is weak in technical aspects for evaluating object-oriented

methodologies and the three object-oriented methodologies are weak in formulating

business problems. 'Why' questions; considered in every element of NIMSAD, in

order to put the information system development into a broader context and to

consider the effects of making particular decisions; are rarely considered in the

methodologies studied. Instead, 'how' issues have been the main focus of all three

methodologies. Traceability and reusability exist as the most important features in

object-oriented methodologies, but are beyond the consideration of the NTMSAD

framework.

NIIvISAD framework can be utilised, in a broad sense, not only for methodology

evaluation but also for project managers and intended problem solvers from an

organisational perspective. This means that the framework does impact on the

theoretical and practical development of systems development methodologies.

According to Jayaratna (1994) a framework has several structural properties and has

the potential to become a methodology. This assumes that potential methodology

users 'decide to select the stages of the problem solving process and create a structure

in which to carry out the chosen steps' (Jayaratna 1994). Furthermore potential

methodology users have to 'justify to themselves the rationale for undertaking the

steps, in that order'. This should also apply to methodology creators when they design

a methodology.

OOA methodology creators (Coad and Yourdon 1991) do not discuss methodology

philosophy or frameworks. They advise their methodology users to take modelling

activities in any order. Steps are unimportant in the problem solving process but their

examples all exhibit some order in modelling activities. OOA methodology creators

distinguish between experienced and inexperienced methodology users.

Generally speaking, the sequence of stages in OMT (Rumbaugh et al. 1991) is

important. This methodology prescribes its work steps in an ordered sequence. The

183

OMT methodology creators, however, think that an ordered sequence of steps is not as

important to experienced developers. The object model should be formulated before

the dynamic model and the function model, since the 'experienced developers are able

to combine several steps or perform certain steps in parallel for portions of a project'

In OOSE methodology (Jacobson et al. 1998) have taken an early version of their

'rationale enterprise philosophy' as a framework for their methodology. The first

version of a coherent methodology description for OOSE existed in 1986. Since then,

their framework has been further developed along with their methodology. A

framework explicit or not can be seen as a necessary step toward methodology

creation.

A methodology evaluation framework draws attention to what is included in a

methodology, while a methodology focuses on what is to be accomplished and how.

They are also different in use. Users of a methodology, not users of a framework,

resolve business and information systems problems. People can however, use a

framework to evaluate a systems development methodology.

NIMSAD framework as a problem-solving framework was useful during the project

as it helped to focus the mind on the important issues being raised by the various

methodologies. However, issues of semantics and semioitics could not be effectively

resolved using the NIMSAD framework. With the benefit of hindsight, Multiview

may have been more useful in this area.

9.4.1 Problem Formulation

The biggest difference between the evaluated methodologies and the framework lies

in the problem formulation, which has been stressed in NIIvISAD. The phenomena, as

stated by Jayaratna (1994) are quite common:

'Most methodologies guide their users to accept the client's notional

systems at the initial entry stage of the project and let this condition their

enquiry and boundary construction. This can have serious and undesirable

consequences. If the problems, particularly their contributory factors,

remain outside the 'situation of concern' then no matter what improvements

are introduced, the problems will continue to persist' (Jayaratna 1994).

Om

What will happen if the client's notional system at the entry stage is accepted? The

stages of 'defining the prognosis,', 'defining problems' and 'deriving notional

systems' are carried out unconsciously by the client and offered during stage 1

'situation of concern'. OMT and OOSE do not alert their users to the risks involved

in uncritically accepting the client's requirements as given. One reason could be that

the methodology creators take the information systems development problem as the

problem to be solved. This means they consider a problem with a very narrow

meaning compared to that advocated by the NIMSAD framework. Object-oriented

methodologies often offer solutions to information systems problems.

From my evaluation of object-oriented methodologies I found that 'problem

formulation' differs considerably from the other phases (solution design and

implementation design) of the problem solving process of NIMSAD. Problem

formulation can be carried out in many ways. The most important issue is considering

what should be included in a notional system and whether a notional system

accurately reflects the stakeholders' needs and requirements. A requirements

statement from clients or stakeholders should not signify the end of their participation

in the information systems development, but the beginning. User roles are becoming

more significant in information systems development and they (users) should be

consulted for requirements specification, prototyping and interface design. In this

respect, OMT takes the 'user statement' in natural language as a starting point for

discussion. OOSE suggests that methodology users use 'requirements specification'

from system users, but still co-operate with other users i.e. formulating use cases to

construct information systems. OOA advocates starting from the requirements

specification but also talking to the users and watching their work practices.

All three methodologies implicitly assume that the client or stakeholders and the

problem solver have a shared understanding of the problem domain and the

terminology being used.

9.4.2 Framework as a hasis for learning

The NTJVISAD framework helps problem solvers (or methodology users) with their

thinking processes (Jayaratna 1994). The learning task for a methodology user is

185

ongoing. Methodology learning aims at understanding and using the methodology

more effectively in order to build appropriate information systems. A framework such

as NIMSAD provides a possible means of evaluating a methodology as it generates

questions about methods.

There are three kinds of teaming provided by the NIMSAD evaluation framework:

• the methodology users must become familiar with the problems to be solved

from the 'problem situation' - context learning; 	 -

the methodology user must become familiar with their own ability to solve

information systems problems by examining their own 'mental constructs' -

self-learning;

the methodology users must understand the selected methodology being used

to solve information systems problems - methodological learning.

In addition methodology users can increase their competence by solving many

different information systems problems.

The OOSE methodology presents particular features for training and supporting

systems developers. It can be seen as one way of learning through methodology

application.

9.5 Summary

Table 9.1 summarises the issues that were identified when evaluating OOA, OMT and

OOSE using the NIMSAD framework. The activities identified constitute a

framework from which many instances of a particular methodology can be

constructed. This allows the problem solver to be guided by the domain expert when

constructing parts of the object model.

What could be learned from the NIMSAD framework in this context is that the

methodology user should have reasons for inclusion of steps and the ordering of those

steps.

In order to answer the research questions:

How do we identify objects?

IRR

C
)

S
i

ci
-

o

9

C

C
)

0

0

C
)

t
o

1
C

)
0

0
0

0

C
.
-

0

v
C

)
2

H

0
. C

)
0

0

>

C)
C

C

t
:
E

C
 	

C
)

j
I

LC

0

C
)
C

0

ci
H 	

0

0
2

0.
t

c

U

C
)

c
i

DO
C

c
.E

2

2
-
2

R
E

DO

0
0
E

e4
.H

c
i
o
C

q
.

O
2

2
C

)
tC

)
C

-

u
H

H
.

u
>

C
)

C
)
0
0
0

C
>

t.E
C

)

C

C

Ca

o
C

c
i

.
0
t

O
o

C
)
0

0
C

)
C

)

C
)

C

C
)

C
)

D
O

D

o
c
i

D
O

C

0

O

0 >

-= ci
Ca

0
0

0

U

.)
C

)
C)

E
a

-
t
f
f

I-.
v

0

DO
c
i
c

0

.5
c
°

0
4

0
.

C

0

.0

0

a

ci
tO

C

)C
)

C
)

U

C
)

DO
L

t

C

C
)

tC
)

C

C
i

04
- C

C?
C

C
)

-C

ci
ci
0
.

0
-

ci
a

-
c

0
-

H
O

c
i

O
c
n

<

C

)
94

C

I-
D

o

O

-
o

.H

DO
0

C

o

C
04

C
)C

.2

C)
E

t

C

'
>

bO

c
o

ci

0

C

C)

a
t

0

o

Eb
C)

C)
H

C
o

t
C

)
0

C)

9
9

.
5

C

C
>

C

ci

c
i)C

04
t

.
C

-
C

t
.

C
C

.H

>

C
c
i0

CM

C
O

—

—

C
a

L
)

H —
 UH

CM

CM

>
€

C
)C

)
>

'
>

).
C

C
)

C
C

)

O
O

v
,
t

0

C
.

C)
C

)E

C
)
-

2

C

0

.5

C)

a

'
•

.b
o

-

o

H
0

o
 •

0
0

.E

CM
0
9
t

o
ci

00
U

t

>

U

C

0

°
-

.o

H
U

t)
C

c

0
0

0

—
,

C
)

• —
 	

D
O

C

E
D

O

2

C
>

C)
0

C

5

0
.0

ca 	
-

E

H
o
°

c
H

t
0

.
C

.
,

H
H

g

•
E

2

.0

ci
C

0

tc

C

0

.
•
-
0

Q
z

V
 -

C)

•
c
i

C

t

z

00
C.)

0
0

0

0

C
'

C.?

C
t

a

a

N

0
0

Do object-oriented analysis methods help us to identify objects?

I considered three seminal texts to determine how they helped us to identify objects

and concluded that all the methods considered rely on,

Language features

Experience

Expertise of the user.

All the methods rely on a shared understanding of:

• Terminology of the problem domain

Terminology of the methodology

• The context in which the problem is set.

As an academic it is important to encourage students to question what they read and

hear. In academia we need to constrain scenarios in order that students concentrate on

particular areas or aspects. In practice some scenarios may also have very precise

clearly defined boundaries but many may be open to interpretation.

On reflection I set out to do action research instead I have conducted an exploratory

investigation that has included semi-formal interviews and observation. Action

research is the next phase of the research.

9.6 Future Work

Future research will concentrate on refining and developing methods to carry out

object-oriented construction. This should take into account different world-views and

different social contexts in which people make sense of their worlds.

Future work would include:

• Investigating claims that object-oriented approaches are radically different

ways of thinking about problems.

This could be developed in several ways including:

• Developing a theoretical basis for conducting object-oriented modelling

• Action research with companies with a view to understanding the relevance of

the concepts in practice in order to determine:

- what experience and prior knowledge do practitioners rely on in order to

understand the problem domain?

- do practitioners use particular object-oriented methodologies?

References

Abbott, R. J. (1983). "Program Design by Informal English Descriptions."

Communications of ACM 26(11): 882 -894.

Avison, D. E. (1992). Information Systems Development. A Database Approach.

Alfred Wailer.

Avison, D. E. and G. Fitzgerald (1995). Information Systems Development:

Methodologies, Techniques and Tools, McGraw-Hill.

Avison, D. E. and A. T. Wood-Harper (1990). Multiview: an Exploration in

Information Systems Development. Oxford, Blackwell Scientific Publications.

Banville, C. and M. Landry (1989). "Can the field of MIS be disciplined?"

Communications of ACM 32(January): 48- 61.

Barker, S. (1997). Critical Evaluation of Jackson Structured Design (JSD) Using The

NIMSAD framework. Information Systems Methodologies, 5th International

Conference on Information Systems Methodologies, Preston.

Baskerville, R., L and A. Wood-Harper, T (1996). "A Critical Perspective on Action

Research as a Method for Information Systems Research." Journal of Information

Technology 11: 235 - 246.

Benbasat, I., D. Goldstein and M. Mead (1987). "The Case Research Strategy in

Studies of Information Systems." MIS Ouarterly 11:369-386.

Bertino, E. and L. Martino (1993). Object-Oriented Database Systems, Concepts and

Architecture, Addison Wesley.

Bessagnet, M. N., J.-M. Larrasquet and N. Jayaratna (1994). Object Oriented

Approaches to the Analysis and Design of Information Systems to Support Modem

Organisational Forms. Second Conference on Information Systems Methodologies.,

Edinburgh.

Boland, R. J. and R. Hirschheim, Eds. (1987). Critical Issues in Information Systems

Research. Wiley Series in Information Systems.

Booch, G. (1991). Object-Oriented Design with Applications., Benjamin Cummings.

Booch, G. (1994). Object Oriented Analysis and Design with Applications, Benjamin

Cummings.

Booch, G., I. Jacobson and J. Rumbaugh (1996). The Unified Modeling Language for

Object Oriented Development, Rational Software Corporation.

Bouzeghoub, M. and E. Metais (1991). Semantic Modeling and Object Oriented

Modeling: Two Complementary Paradigms. Proc 10th Tnt. Conf. on Entity-

Relationship Approach., San Mateo, California.

Brown, A. (1991). Object-Oriented Databases. Applications in Software Engineering,

McGraw-Hill.

Brown, A. W. (1989). "From Semantic Data Models to Object Orientation in Design

Databases." Information and Software Technology 31(1): 39 -46.

Bryman, A. (1989). Doing Research in Organisations, Routledge.

Buchanan, D., D. Boddy and J. McCalman (1988). Getting In, Getting On, Getting

Out, and Getting Back. Doing Research in Organisations. A. Bryman, Routledge.

Checkland, P. and J. Scholes (1990). Soft Systems Methodology in Action, Wiley.

Checkland, P. B. (1981). Systems Thinking, Systems Practice. Chichester, Wiley.

191

Checkland, P. B. and S. Howell (1998). Information. Systems and Information

Systems: Making sense of the field, Wiley.

Chen, P. P.-S., Ed. (1976). The Entity-Relationship Model - Towards a Unified View

of Data. Readings in Database systems (1994), Morgan Kaufmann.

Clark, A. (1972). Action Research and Organizational Change. London, Harper &

Row.

Coad, P., D. North and M. Mayfield (1997). Object Models: Strategies, Patterns and

Applications. New Jersey, Yourdon Press.

Coad, P. and E. Yourdon (1991). Object Oriented Analysis. Eaglewood Cliffs, NJ:,

Prentice Hall.

Codd, E. F., Ed. (1970). A Relational Model of Data for Large Shared Data Banks.

Readings in Database Systems (1994), Morgan Kaufmann.

Conger, S. (1994). The New Software Engineering. Belmont, California, International

Thomson Publishing.

Connolly, T., C. Begg and A. Strachan (1995). Database Systems A Practical

Approach to Design. Implementation and Management, Addison-Wesley.

Coolican, H. (1990). Research Methods and Statistics in Psychology Hodder and

Stoughton

Cutts, G. (1987). SSADM: Structured Systems Analysis and Design Methodology,

Paradigm.

Date, C. J. (1995). An Introduction to Database Systems, Addison Wesley.

192

Davis, L. and A. T. Wood-Harper (1990). Multiple Perspectives in Desk-top

Computing. Desktop Information Technology. K. M. Kaiser and H. J. Oppelland,

North-Holland.

de Champeaux, D. and P. Faure (1992). "A Comparative Study of Object Oriented

Analysis Methods." Journal of Object Oriented Programming 5(1, Mar/Apr): 21 -33.

DeMarco, T (1979). Structured Analysis, Yourdon Press.

Dickson, G. W., J. A. Senn and N. L. Chervany (1977). "Research in Management

Information Systems: the Minnesota Experiments." Management Science 23(May):

913 -925.

Dik, S. C. (1989). The Theory of Functional Grammar, Part 1: the Structure of the

Clause. Dordrecht, Netherlands, Foris Publications.

Douglas, J. D. (1976). Investigative Social Research. Beverly Hills, Sage.

Edwards, J. (1989). Lessons learned from more than ten years of practical application

of the object-oriented paradigm. Proc CASExpo-Europe, London.

Elmasri, R. and S. B. Navanthe (1994). Fundamentals of Database Systems, Benjamin

Cummings.

Embley, D., B. Kurtz and S. Woodfield (1992). Object Oriented Systems Analysis - a

Model Driven Approach.

Eriksson, H.-E. and M. Penker (1998). TJML Toolkit, Wiley.

Fichman, R. G. and C. F. Kemerer (1992). Object-Oriented and Conventional Analysis

and Design Methodologies. Comparison and Critique. Computer: 22 - 39.

Firesmith, D. G. (1993). Object-Oriented Requirements Analysis and Logical Design,

Wiley Professional Computing.

193

Fitzgerald, 0., N. Stokes and J. R. G. Wood (1985). "Feature Analysis of

Contemporary Information Systems Methodologies." Computer Journal 28(3).

Gadamer, H.-G. (1975). Truth and Method, Seabury Press.

Gadamer, H.-G. (1976). The Historicity of Understanding. Critical Sociology,

Selected Readings. P. Connerton, Penguin Books: 117- 133.

Galliers, R. D. (1991). Choosing Appropriate Information Systems Research

Approaches: A revised taxonomy. Proc. of IFIP TC8IWG/8. Information Systems

Research: Contemporary Approaches and Emergent Traditions.

Galliers, R. D. (1995). "A Manifesto for Information Management Research." British

Journal of Management 6: 545 -552.

Goodman, N. (1989). "Object Oriented Database systems." INFOD FaIl 89.

Goldberg, A. and D. Robson (1983) Smalltalk-80: The language and its

Implementation. Addison-Wesley.

Graham, I. (1995). Object Oriented Methods, Addison-Wesley.

Harmon, P. and M. Watson (1998). Understanding IJML The Developers Guide. San

Francisco, Morgan Kaufmann.

Hughes, J. (1991). Object Oriented Databases, Prentice Hall.

Hult, M. and S.-A. Lennung (1980). "Towards a definition of action research: a note

and bibliography." Journal of Management Studies 17(May): 241 - 250.

Husserl, E. (1936). The origins of geometry. Phenomenology and Sociology. T.

Luckman. Harmondsworth, Penguin.

194

Hutt, A. T. F., Ed. (1994). Object Analysis and Design: Comparison of Methods.,

Wiley.

livari, J. (1994). "Object Oriented Information Systems Analysis: a comparison of six

object oriented analysis methods." Methods and Association tools for the information

Life Cycle: 85 - 110.

Jacobson, I., M. Christerson, P. Jonsson and G. Overgard (1998). Object Oriented

Software Engineering - A Use Case Driven Approach, Addison Wesley.

Jayaratna, N. (1994). Understanding and Evaluating Methodologies NIMSAD A

Systemic Framework, McGraw Hill.

Jayaratna, N. and B. J. Oates (1995). Evaluation of Yourdon Systems Method using

the NIMSAD conceptual framework. 2nd Scandinavian Research Seminar on

Information and Decision Networks.

Jenkins, M. (1985). Research methodologies and MIS research. Research Methods in

Information Systems. E. Mumford, R. Hirschheim, G. Fitzgerald and A. T. Wood-

Harper. Amsterdam,

North-Holland: 103- 117.

Khoshafian, S. and R. Abnous (1990). Object Orientation: Concepts, Languages,

Databases, User Interfaces, Wiley.

Kim, W. (1990). Introduction to Object Oriented Databases, MIT Press.

Klein, H. K., R. Hirschheim and H.-E. Nissen (1991). A Pluralist Perspective of the

Information Systems Research Arena. Information Systems Research: Contemporary

Approaches and Emergent Tradition, Copenhagen, Elsevier Science.

Klein, H. K. and K. Lyytinen (1985). The Poverty of Scientism in Information

Systems. Research Methods in Information Systems. Proc. of the IFIP WG 8.2

Colloquium, Manchester.

195

Kroenke, D. (1995). Database Processing. Fundamentals. Design and Implementation,

Prentice Hail.

Laing, R. D. (1967). The Politics of Experience and the Birds of Paradise, Penguin.

Land, F. F. (1982). Adapting to Changing User Requirements. Information Analysis:

Selected Readings. R. D. Galliers, Addison-Wesley: 203 - 229.

Lewis, P. (1994). Inform ation-S ystems Development, Pitman.

Losavio, F., A. Matteo and F. Schlienger (1994). "Object Oriented Methodologies of

Coad and Yourdon and Booch: Comparison of Graphical Notations." Information and

Software Technology 36(8): 503 - 514.

Lui, K. (1999). Semiotics in Information Systems Engineering.

Lui, K., A. Alderson, H. Shah, B. Sharp and A. Dix (1998). Applying Semiotic

Methods to Requirements Recovery. Methodologies for Developing and Managing

Emerging Technology Based Information Systems.

Sixth International Conference on Informaion Systems Methodologies., Salford,

Springer.

Lyytinen, K. (1987). A Taxonomic Perspective of Information Systems Development:

Theoretical Constructs and Recommendations. Critical Issues in Information Systems

Research. R. J. Boland and R. A. Hirschheim, Wiley.

Maciaszek, L. A. (1990). Database Design and Implementation, Prentice Hall.

Maddison, R. N., Ed. (1983). Information System Development: A Flexible

Framework. London, British Computer Society.

196

Maddison, R. N. (1984). A Feature Analysis of Five Information System

Methodologies. Beyond Productivity: Information Systems for Organisational

Effectiveness. T. H. Benelmans, North-Holland.

Martin, J. (1975). Computer Data-Base Organisation, Prentice Hall.

Martin, J. and J. Odell (1992). Obiect-Oriented Analysis and Design, Prentice Hall.

McFarlan, F. W. (1984). The Information Systems Research Challenge. Proc. of the

Harvard Business School Research Colloquium, Boston, Harvard Business Press.

McGinnes, S. (1993). A Framework for the Comparative Evaluation of Information

Systems Methodologies. Conference on the Theory, Use and Integrative Aspects of IS

Methodologies, Edinburgh.

Mellor, S. and N. Lang (1997). Using IJIML. www.projtech.com .

Meyer, B. (1988). Obiect-Oriented Software Construction. New York, Prentice Hall.

Minsky, M. (1975). A framework for representing knowledge. Mind Design. J.

Haugeland, MIT Press.

Morgan, G., Ed. (1983). Beyond Method: Strategies for Social Research, Sage.

Mumford, E. (1983a). Designing Participatively. Manchester, Manchester Business

School.

Mumford, E. (1983b). Designing Human Systems. Manchester, Manchester Business

School.

Mumford, E., R. Hirschheim, G. Fitzgerald and A. T. Wood-Harper (1984).

Information Systems Research - a dubious science? Proc. of IFIP WG 8.2 Colloquium,

Manchester UK.

197

Nielson, P. A. (1990). "Approaches to Appreciate Information Systems

Methodologies." Scandinavian Journal of Information Systems 2.

Nissen, H.-E., H. K. Klein and R. Hirschheim (1991). Information Systems Research:

Contemporary Approaches and Emergent Traditions. Proc of IFIP TC8/WG/8.

Norman (1996). Object Oriented Systems Analysis and Design.

Nygaard, K and 0. J. DahI (1981) The Development of the Simula Language" IN

Wexelblat, R.L (eds) (1981) History of Programming Languages. Academic Press

Oates, B. (1995). Evaluation of the NIMSAD conceptual framework. (Normative

Information Model-based Systems Analysis and Design). Information Systems

Methodologies 1995 3rd Conference on information Systems Methodologies, North

East Wales Institute, Wrexham.

Oates, B. J. and N. Jayaratna (1995). Evaluation of Yourdon Systems Method using

the NIMSAD conceptual framework. Proceedings of Second Scandinavian Research

Seminar on Information and Decision Networks.

011e, T. W., J. Hagelstein, I. G. MacDonald, C. Rolland, H. G. Sol, F. J. M. Van

Assche and A. A. Verrjin-Stuart (1991). Information Systems Methodologies - A

Framework for Understanding. Wokingham, Addison-Wesley.

ONeil, P. (1994). Database: Principles, Programming, Performance, Morgan

Kaufmann.

Page-Jones, M. (1992). "Comparing Techniques by Means of Encapsulation and

Connascence." Communications of ACM 35(4): 63- 69.

Palmer, R. (1969). Hermeneutics: Interpretation Theory in Schleiermacher, Dilthey.

Heidegger. and Gadamer, Northwestern University Press.

101

Paton, N., R. Cooper, H. Williams and P. Trinder (1996). Database Programming

Languages, Prentice Hall.

Pettigrew, A. M. (1989). Issues of Time and Site Selection in Longitudinal Research

on Change. The Information Systems Research Challenge: Qualitative Research

Methods, Harvard Business School.

Quillian, M. R. (1967). "Word Concepts: a Theory and Simulation of Some Basic

Semantic Capabilities." Behavioural Sciences 12: 410 -430.

Quinton, A. (1973). The Nature of Things, Routledge and Kegan Paul.

Ramachandran, M. and M. Taylor (1994). Requirements for Obiect Oriented Analysis

Methods. Second Conference on Information Systems Methodologies.

Rational (1997). UIvITL Notation Guide Version 1.1.

Reenskaug, T., P. Wold and A. Lehne (1996). Working with Obiects: The OOram

Software Engineering Method, Manning Publications.

Roethlislerger, F. J. and W. J. Dickson (1939). Management and the Worker. Mass.,

Harvard University Press.

Rumbaugh, J. (1996). "To Form a More Perfect Union: Unifying the OMT and Booch

methods." JOOP 8(8): 14 -18.

Rumbaugh, J., M. Blaha and W. Premerlani (1991). Obiect Oriented Modeling and

Design. Englewood Cliffs, NJ:, Prentice Hall.

Shlaer, S. and S. Mellor (1988). Object Oriented Systems Analysis, Modelling the

World in Data, Prentice Hall.

Shlaer, S. and S. J. Mellor (1991). Obiect Lifecycles: Modelling the World in States,

Yourdon Press.

199

Simon, H. A. (1978). "Rationality as Process and as Product of Thought." American

Economic Review 68(2): 1-16.

Smith, 	J. A. (1995). Semi-Structured Interviewing and Qualitative Analysis.

Rethinking Methods in PSychology. J.A. Smith, R. Harre, L.V. Langenhove. Sage.

Stamper, R. (1988). "Analysing the Cultural Impact of a System." International

Journal of Information Management 8(3).

Susman, G. (1983). Action Research: a sociotechnical system perspective. Beyond

Method: Strategies for Social Research. G. Morgan, Sage: 95 - 113.

Susman, G. and R. Evered (1978). "An assessment of the scientific merits of action

research." Administrative Science Quarterly 23(December): 582 - 603.

Vickers, G. (1990). "Education in Systems Thinking." Journal of Applied Systems

Analysis 7: 3- 10.

Vidgen, R. (1998). Using Multiview2 Framework for Internet-Based Information

Systems Development. Sixth International Conference on Information Systems

Methodologies, Salford, Springer.

Vidgen, R. and J. R. G. Wood (1995). Information Systems Development: methods,

modelling and metaphors in an Object-Oriented world. UK Systems Society Fourth

International Conference, Critical Issues in systems Theory and Practice.

Warmington, A. (1980). "Action Research: its method and its implications." Journal of

Applied Systems Analysis 7(April): 23 - 29.

Webb, G. (1990). Putting Praxis into Practice. Proceedings of 1st World congress on

Action Research, Brisbane, Acorn.

200

Weick, K. E. (1984). Theoretical Assumptions and Research Methodology Selection.

The Information Systems Research Challenge. F. W. McFarlan. Boston, Harvard

Business School Press: 111 - 132.

Whyte, W. F. (1984). Learning from the Field: A Guide from Experience, Sage.

Wilson, B. (1984). System Concepts: Methodologies and Applications, Wiley.

Winograd, T. and F. Flores (1986). Understanding Computers and Cognition. Reading

MA, Addison-Wesley.

Wirfs-Brock, R. and B. Wilkerson (1989). "Object-Oriented Design: a Responsibility-

Driven approach." Signlan Notices 24(10).

Wirfs-Brock, R., B. Wilkerson and L. Wiener (1990). Designing Obiect-Oriented

Software, Prentice-Hall.

Wirfs-Brock, R. J. and R. E. Johnson (1990). "Surveying Current Research in Object-

Oriented Design." Communications of ACM 33(9): 104 - 124.

Wood-Harper, A. T., Ed. (1985). Research Methodologies in Information Systems:

using Action Research. Research Methodologies for Information Systems, North-

Holland.

Wood-Harper, A. T. and G. Fitzgerald (1982). "A Taxonomy of Current Approaches

to Systems Analysis." Computer Journal 25(1).

Yin, R. (1989). Case study Research: Design and Methods, Sage.

Yourdon, E. (1989). Modern Structured Analysis, Prentice Hall.

Zhang, X. (1999). User Participation in Object-Oriented Contexts - From

Methodological and Practical Perspectives. Department of Informatics. Lund, Lund

University: 180.

201

Zuber-Skerritt, 0., Ed. (1996). New Directions in Action Research, Falmer Press.

202

