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ABSTRACT 

The divalent abundant cation Magnesium (Mg2 ) has been known to play an important 

regulatory role in the stimulus-secretion coupling events in a number of epithelial 

secretory cells including the exocrine pancreas, lachrymal and the parietal cells. Since 

the salivary glands acinar cells have a similar structure and function as the exocrine 

pancreas, the stomach and the lachrymal gland, it was decided to investigate specifically 

the effect of perturbation of extracellular magnesium ([Mg 2 o) on both basal and 

secretagogue-evoked amylase secretion and total protein output and intracellular free 

calcium concentrations ([Ca211)  in the rat submandibular and parotid glands using 

spectrofluorimetry and spectroscopic techniques. The results have shown that both zero 

and elevated (5 and 10 mM) [Mg 2 ] o  can significantly (Pc0.01) inhibit basal amylase or 

protein output compared to normal (1.1 mM) [Mg2 o . Either acetylcholine (ACh), 

noradrenaline (NA) or Phenylephrine (Phe) can elicit marked increases in amylase 

secretion and total protein output from the isolated parotid and submandibular gland 

segments respectively in normal [Mg2 '] 0 . In contrast, in the presence of either zero or 

elevated (5 and 10 nilvl) [Mg2 ']o the ACh, NA and Phe-evoked amylase secretion and 

total protein output were markedly attenuated when compared to normal (1.1 mM) 

Mg2 o. The inhibitory effect of zero [Mg 2 o was much more pronounced when 

compared to 10 mM [Mg2 o . A perturbation of [Mg 2 ']o  had little or no effect on the 

Electrical Field Stimulation (EFS) -evoked amylase responses in the parotid gland. 

Isoprenaline-evoked amylase secretion revealed a different pattern of secretion in the 

presence of [Mg 2 o  perturbation. In Fura-2 loaded salivary acinar cells a perturbation of 

[Nfg2 ] o  had no significant effect on basal [Ca 2 ]1 in the parotid gland but elevated (5 and 

10 mM) [Mj2 ']0  attenuated [Ca 2+]j in acinar cells taken from submandibular gland. In 

acinar cells from both glands ACh (10' M), evoked a marked increase in [Ca 2~]j above 

basal level in [Mg2 ] o . The response comprises of an initial rise (peak response) 

followed by a plateau phase (plateau response) before declining back and stabilising a 

little above control level. In the presence of either zero or elevated (5 and 10 mM) 

[Mg2 ] o  the ACh evoked increases (both peak and plateau phases) in [Ca 2']i was 

significantly (P<0.05) attenuated compared to normal (1.1 mM) [Mg 2 ']o . In a nominally 

free Ca2  medium containiiig 1mM Ethyl Glycol Tetracetic Acid (EGTA), ACh evoked 

only the initial Ca21  peak, which was sensitive to Mg 2  perturbation. Reperfiusion of 



acinar cells with normal Ca 2  medium resulted in marked increases in [Ca24 ], which 

was also sensitive to perturbation of [Mg 24]0. These results indicate that Mg2  is 

regulating cellular Ca2  homeostasis. In Magfhra 2-loaded parotid acinar cells an 

increasing perturbation of [Mg 2 ]o resulted in a gradual increase in intracellular free 

Mg2  concentrations ([Mg2 ]). Stimulation of the cells with ACh resulted in a 

significant (P<0.01) decrease in [Mg 2 ']1. Treatment of Magftira-2 loaded parotid acinar 

cells with either zero extracellular sodium ([Na]o) (substituting it with N-Methyl-D-

Glucamine (NIt'vIIDG)), dinitrophenol (DNP) bumetanide, amiloride, quinidine or 

lidocaine resulted in significant (Pc0.01) increases in [Mg 2 ];. In the presence of these 

inhibitors ACh still stimulated a reduction in {Mg 2 ]. Taken together, these studies on 

animal model have demonstrated marked interactions between Ca 2  and Mg2  signalling 

during the stimulus-secretion coupling process in the salivary glands. 

The study also employs male and female human subjects to investigate the rate of 

salivary secretion and the quality of saliva during normal healthy and such 

pathophysiolgical conditions such as ageing, diabetes and surgical procedures. The 

results have demonstrated that either the ageing process or type I and type H diabetes 

are associated with significant (P<0.01) decreases in salivary secretion. However, both 

ageing and type I (but not type II diabetes) are associated with increased levels of 

protein in the saliva. Both ageing and diabetes are associated with significant (P<0.05) 

increases in Ca2  levels and significant decreases in Mg 2  and Zn2  levels in saliva 

compared to age-matched controls. Ageing and diabetes are also associated with 

reduced levels of K in the saliva. Mthough type II diabetic patients presented the same 

type of salivary changes these were less intense when compared to type I diabetic. 

Surgical procedures had little or no effect on the various salivary parameters measured 

except for small increase in resting salivary output and protein concentration. These 

results indicate that both ageing and diabetes can affect markedly the frmnction of the 

salivary glands leading to decreased secretion in saliva and to a variation in its 

composition. 
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CHAPTER ONE 

GENERAL INTRODUCTION 



1.1 Saliva definition properties, composition and functions 

1.1.1 What is saliva? 

Saliva may be generally defined as the fluid produced and secreted into the mouth by 

salivary glands (Jenkins, 1978). However, salivary glands are heterogeneous organs 

which produce different types of salivas with various composition and functions. Once 

in the mouth, the different types of salivas mix with each other and the mixture is 

contaminated with foreign elements, which are present in the oral cavity. These include: 

crevicular fluid slowly leaking from gingival crevice, oral microflora consisting of more 

than 500 bacterial species, fungi, viruses, and food debris among others (Whittaker et 

at, 1996). Salivary glands have seasons and circadian rhythms of secretion for the 

overall flow and this is an important process for each of the components secreted by the 

gland (Shamion, 1966; Dawes, 1974). Unlike the plasma whose constituents are kept. 

within a very tight compositional range, saliva composition is gender related. Moreover, 

it varies with gland stimulation nature, degree and thus with secretion flow (Baxter, 

1933; Dawes, 1969; Dawes, 1984), and it has been shown to be highly variable among 

individuals and even in the same individual under different conditions (Dawes, 1987). 

This diversity precludes the existence of a plain definition of saliva and has brought 

over the years the need for the establishment of a nomenclature system. More recently, a 

set of guidelines for saliva nomenclature and collection has been established by several 

authors (Pellerin & Pellat, 1986; Atkinson et at, 1993) 

1.1.1.1 Whole saliva 

Whole saliva is the fluid obtained from the mouth by expectoration. It contains the 

secretory products from all the salivary glands but also desquamated cells from oral 

epithelia, crevicular fluid, oral microflora specimens and food and drink residues 

following their ingestion (Edgar, 1992; Atkinson et aT, 1993). Draining, spitting, 

suction or swabbing methods can collect it. For assessment of overall salivary gland 

dysfunction whole saliva is superior and clinically more relevant (Navazesh, 1993; 

Navazesh et aT, 1992). 
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1.1.1.2 Mixed saliva 

Mixed saliva refers to whole saliva which has been submitted to post collecting 

centrifhgation in order to clear all contaminating elements (Pellerin & Pellat, 1986). The 

transformation of whole saliva into mixed saliva and has nowadays become an essential 

procedure for salivary analytical purposes and these terms tend to be used without 

distinction. 

1.1.1.3 Pure Saliva 

Pure saliva refers to saliva, which is collected directly from a salivary gland duct orifice, 

e.g. parotid saliva. When speaking about submandibular saliva objective confirmation 

should be made (e.g.. Sialography) that sublingual glands do not secrete fluid in the 

same duct. When collecting saliva from minor salivary glands the location of these 

should be indicated (e.g. labial, palatine) because there are differences in the secretions 

(Atkinson et at, 1993) 

1.1.1.4 Unstimulated and stimulated saliva 

Unstimulated saliva refers to saliva secreted in the absence of exogenous stimulation of 

any nature. It corresponds to the basal secretion of the gland. On the other hand, 

stimulated saliva refers to saliva secreted in response to either mechanical, 

pharmacological or gustatory stimulation (Atkinson et aL, 1993) 

1.1.1.5 Serous and mucous saliva 

At the cellular level saliva production can be either serous or mucous in nature. Serous 

saliva is watery and rich in electrolytes and proteins of various natures. Mucous saliva is 

more viscid and rich in mucins, which are heavy 0-glycosilated proteins forming a jelly 

like blanket coat known as mucus covering on all mucosa surfaces of the body ( Tabak 

et aL, 1982; Tabak, 1995). Although this distinction between serous and mucous saliva 

is not usually made in salivary classifications, it is our belief that it should be so because 
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there are striking differences at the compositional and functional levels between these 

two types of saliva. 

1.1.2 Composition and properties of saliva 

1.1.2.1 Saliva composition 

Saliva is composed of 99.4 to 99.5% of water, 0.32 % of organic compounds and 0.18% 

of inorganic matter (Pellerin & Pellat, 1986). 

1.1.2.1.1 Organic composition of saliva 

In spite of a very small concentration (2-3 g.l') when compared to plasma, proteins 

account for the major organic constitution of saliva. The salivary protein family is very 

heterogeneous and its components play a major role in diversified salivary functions. 

1.1.2.1.1.1 Proline Rich Proteins 

In spite of being previously reported to exist in small amounts in tissues like pancreas or 

respiratory tract, Proline-rich proteins (PRP) constitute a particular family of salivary 

proteins, which are produced by serous acinar cells of major salivary glands (Ito et aL, 

1983; Warner and Azen, 1984; Ito et aL, 1984). They are characterised by a proline 

content varying from 25-40% and are rich in glutamate and glycine all of these amino 

acids accounting for 75-80% of all residues (Bennick, 1982). Although very 

heterogeneous in nature PRP's can be grouped in three major types: acid, basic and 

glycosylated constituting 30, 23 and 17% respectively, of all salivary proteins (Kaufman 

& Keller, 1979). 

Acid PRPs exist in four types namely: PRP1, PRP2, PRP3 and PRP4. Type 3 is 

obtained from cleavage of type one and types 2 and 4 are quite similar. Each one of 

them contains 11 residues of glutamic acid and two phosphoserine residues (Lazzary, 

1983). The biological function of these proteins is fully linked to the structural features 

described, which give these proteins a remarkable affinity for calcium binding (Bennick 

et aL, 1981). Thus, these proteins are involved in calcium transport in saliva, 

5 



sialolitiasis prevention, inhibition of hydroxyapatite and dental calculus formation 

(Moreno et aL, 1979), maintenance of supersaturating of calcium and phosphate in 

saliva, buffering and remineralization of dental tissues (Fox, 1989). 

The intrinsic affmity for hydroxyapatite is also responsible for a high attraction towards 

dental enamel or teeth surface to which they adhere strongly (Moreno et aL, 1982) 

taking part in the acquired dental pellicle (Bennick et aL, 1983). The acquired dental 

pellicle (ACDP) is a salivary derived proteinaceous film, which forms physiologically 

and spontaneously at the enamel surfaces after tooth brushing (Sonju & Rolla, 1973; 

Lan*iii et aL, 1996). This protein film has been demonstrated to be important for the 

integrity of tooth enamel by exhibiting lubricating properties, penn-selectivity (which 

delays acid diffusion) (Zahradnick et aL, 1976) and by providing a medium through 

which fluoride, calcium and phosphate are delivered during remineralization 

(Zahradnick et a!, 1977). In addition, the proteins constituting this pellicle act as natural 

ligands for many surface receptors in oral bacteria (Whittaker et aL,1996 ) and thus play 

a major role in premature steps of dental plaque formation and oral flora modulation, 

Acid PRP's participate in every one of these processes (Gibbons & Hay, 1988; Yao et 

aL, 1999). 

Basic PRPs exist in four types, PRB 1, 2, 3 and 4. They differ from acidic PRP by a 

higher proline content. The scientific information on characterisation, structure and 

functions of this group is diminished compared to acidic proteins. However, it seems 

that functional properties share some homology with acidic PRP (Yao et aL, 1999). 

Glycosylated PRPs have the same protein structure as basic PRP. Glycosyl residues 

mainly fucose, maimose and sialic acid account for 40% of the whole molecule. 

Glycosylated PRPs have lubricating properties (Hatton et aL, 1985) and bind some oral 

microorganisms thus playing a major role in modulation of oral microflora (Levine et 

aL, 1987). 

1.1.2.1.1.2 Statherin 

Statherin is a 43-residue tyrosine rich protein from serous origin, containing 10 residues 

of glutamic acid and 2 phosphoserines. For sometime, it was erroneously thought to be 

PRP 2. However, it has been demonstrated that Statherin belongs to a unique super 

family of proteins (Schlesinger & Hay, 1977; Jensen et aL, 1991). It has a major role in 
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inhibiting spontaneous precipitation of calcium and phosphate from saliva and 

secondary growth of calcium phosphate salts on tooth surface, helping to maintain a 

stable environment for the teeth (Hay, 1973; Hay & Gron, 1976; Raj ci al., 1992). 

1.1.2.1.1.3 Histatins 

Histatins are a group of salivary histidine-rich proteins of serous origin that were 

originally purified by numerous authors (Balekjian. & LOngton, 1973; Peters & Azen; 

1977; Mckay ci at, 1984 a, b; Oppenheim et aL, 1986). Initially called Histidine rich 

proteins (1-IRP), they have been renamed by Oppenheim as Histatins from which at least 

seven types have been isolated. They constitute a independent unique family which 

shares some common features with the PRPs (Oppenheim ci at, 1988). These proteins 

undergo proteolytic cleavage after secretion mainly by salivary kallikrein, giving rise to 

smaller members of the family (Men, 1973). Functionally, these proteins adhere 

strongly to hydroxyapatite, participate in ACDP, inhibit crystal growth and dental 

calculus formation (Hay, 1975), enhance glycolitic activity of salivary microorganisms 

(Holbrook & Molan, 1975) and have antimicrobial and anti fungal activity (McKay et 

at, 1984 a, b; Pollock ci aL, 1984). Anti fungal properties seem to be the most 

important ones. Development of synthetic delivery systems for these peptides and their 

use as therapeutic agents could be a relevant issue in future (Tsai ci at, 2000). 

1.1.2.1.1.4 Cystatins 

Cystatins are small protease inhibitors whose presence in saliva has been known for 

over nearly two decades (Shomers ci at, 1982 a, b; Hiltke ci at, 1999). Hitherto, three 

members of this family have been identified in human saliva. They include Cystatin-S 

(Isemura ci at, 1984), Cystatin-SN (Isemura ci at, 1986) and Cystatin-AS (Isemura ci 

al., 1987), all of acidic nature with exception of Cystatin-SN. These proteins share the 

ability of competitively and reversibly inhibiting cysteine proteases of microorganisms 

and viruses. They are very important in preventing tissue penetration and infection by 

microorganisms (Barret ci aL, 1986; Bobek & Levine, 1992). They can adsorb on to 

hydroxyapatite (Shomers ci al., 1982 a, b) and thus, participate in ACDP, and inhibition 

of transformation of dicalcium phosphate dihydrate (Isemura ci aL, 1984) in more 
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precipitable forms of calcium phosphate. The later is very important for prevention of 

dental calculus formation. Some recent studies have reported an increase of salivary 

cystatin production and secretion in peridontitis patients (Henskens et at, 1996). 

1.1.2.1.1.5 Amylase 

a-Amylase is the most prevalent digestive enzyme present in saliva. It occurs in parotid 

saliva at concentration of 60-120 mg .100 m1' and submandibular saliva of 

approximately 25 mg .100 mr' (Edgar, 1992). Human salivary amylase hydrolyses ct-I-

4 glycoside bonds in starch (Pellerin & Pellat, 1986), yelding maltose, maltotriose, a-

limit dextrins and glucose as final products. In spite of playing the same role as 

pancreatic amylase and having similar composition and immunological activity (Liang 

et at, 1999), these enzymes have different isoelectric points, molecular weights and 

catalytic properties (Liang et aL, i 999). Salivary amylase exists in two families: family 

A is glycosylated with average molecular weight of 62000 Da while family B is non-

glycosylated with 56000 Da. At least six izoenzymes have been identified (Liang et al., 

1999). Although participating in the initial digestion of starch (Tseng et at, 1999), the 

importance of salivary amylase in digestion has been shown to be secondary compared 

to pancreatic, as people who lack it jul to show any digestive perturbations. However, 

salivary amylase has several important intra-oral functions such as affimity for 

hydroxyapatite, participation in ACDP and modulation of intra-oral microflora 

(Scannapieco a at, 1995; Gong et at, 2000). The catalytic activity of salivary amylase 

also plays an important role in degradation of sticky starch rich foods which are retained 

in dental surfaces and theft transformation in slow glucose releasing devices which may 

play quite a role in dental decay pathogenesis (Tseng eta!, 1999). 

1.1.2.1.1.6 Salivary Peroxidases 

Human whole saliva has been shown to contain different groups of peroxidases with 

acidic and basic isoelectric points (Morisson & Allen, 1963). Salivary peroxidases 

catalyses the oxidation of tiocyanates (SCN-) present in saliva into the acid/base pair 

hypotiocyanite ( OSCN-) and hypotiocyanous (HQSCN) ions. Hydrogen peroxide acts 

as a co-factor in this reaction. OSCN/HSCN act as broad spectrum anti bacterial agents 
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(Iwamoto & Matsumura, 1966; Tenovuo & Kurkijarvi, 1981). Salivary peroxidases 

have been detected adsorbed to bacteria, enamel surfaces and participates in ACDP 

(Tenovuo & Kurkijarvi, 1981; Cole etaL, 1981). 

1.1.2.1.1.7 Lactoferrin 

Lactoferrin is a red iron binding protein with anti-bacterial activity, synthesized. by 

acinar epithelial cells and neutrophils. It binds ferric ions (Fe 3), thus depriving 

microorganisms of this essential nutrient. Lactoferrin was first isolated in milk (Lazzari, 

1983) but its presence in salivary gland secretions was soon demonstrated (Masson et 

aL, 1966). In spite of resembling human transferin in its iron binding mechanisms 

(Bluard-Deconinck et aL, 1974), lactoferrin maintains iron affinity at lower pH, which 

may be responsible for keeping its anti-microbial properties even under dental plaque 

acid producing conditions. In its iron free state, lactoferrin also has agglutination and 

bactericidal effects, which require binding to cell surface (Fine et aL, 2002). 

1.1.2.1.1.8 Lyzozyme 

Lysozyme, also known as muramidase is an enzyme, which hydrolyses the 0- 1, 4 

glycosydic bonds N acetyl-muramic acid and N-acetylglucosamine in peptidoglucan 

structure of cell wall of micro-organisms leading to cell lysis in sensitive species. 

Lysozyme is constituted by a monomer chain of 131 amino acids with a molecular 

weight of 14 KDa and its presence in saliva has been known for several decades (Petit 

& Jolles, 1966; Osserman et al, 1974). Its anti-bacterial importance is thought to be 

reduced as many bacterial species which have adapted to oral cavity conditions can 

resist the actions of the enzyme at concentrations many times greater than those 

occurring in saliva (Gibbons et a!, 1966). However, lysozyme could play an important 

role in oral flora modulation through its interactions and binding to bacterial surfaces. 

(Lazzari, 1983). 
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1.1.2.1.1.9 Carbonic anhydrase 

Saliva also contains an isoenzyme of carbonic anhydrase, which is numbered VI. It 

plays a major role in regulation of salivary pH as bicarbonate is the major buffering 

system in saliva. However, salivary carbonic anhydrase seems to protect teeth from 

caries via mechanisms other than direct regulation of pH and buffering capacity. 

Recently, crbonic anhydrase VI has been identified in ACDP at enamel surface 

suggesting that it may accelerate the removal of acid by function locally in the pellicle 

layer in dental surfaces (Leinonen et aL, 1999). 

1.1.2.1.1.10 Mucins 

Salivary mucins are high molecular weight glycoproteins composed of a degenerate 

protein backbone (apomucin) enriched in hydroxyaininoacids (threonine andlor serine) 

and proline. In addition, hundreds of carbohydrate side chains (oligosaccharides) are 

linked with 0-glycosyl bonds to many but not necessarily all of the hydroxiaminoacids. 

Salivary mucins are synthesised by the mucus acinar cells of the paired submandibular 

and sublingual glands, as well as minor salivary glands, which are, distributed through 

palatal and bucal mucosa. Serous acinar cells, such as those found in human parotid 

gland do not contribute to production of salivary mucins (Tabak, 1995). 

Human saliva contains two types of salivary mucins. Human type 1 salivary mucin 

(MGI) is composed of multiple covalently bound subunits and has very elevated 

molecular weight (Loomis et al, 1987). Human type 2 salivary mucin (MG2) is 

composed of a single chain being smaller and lighter than MW (Prakobphol et al, 

1982). Mucins play a role in lubrication, tissue coating, digestion, food bolus formation, 

swallowing, and microbial interactions with bacteria, fungi and viruses (Cohen & 

Levine, 1989; Levine, 1993). MG1, which is heavier tends to sediment and exerts its 

functions though tissue coating, MG2 acts as a fluid phase agglutinin (Liu etal., 1998). 

Mucin oligomer formation is apparently required for these molecules to exert its 

lubrication and viscoelastic properties. These molecules may form homotypic 

complexes or end to end oligomers with themselves via interchain disulphide bonds 

(Strous & Dekker, 1992). Mucins that coat various tissue surfaces can also form 

heterotypic complexes with other salivary molecules like, arnylase, PRP, statherin, 
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histatins, IgA, Lysozyme and cystatins. These complexes are mediated primarily by 

non-covalent ionic forces and function to concentrate antimicrobial molecules at several 

tissue interfaces, as a repository for precursors of ACDP, a mechanism against 

proteolysis and a physiologic delivery system (Biesbrock et aL, 1991; Iontcheva et aL, 

1997). 

1.1.2.1.1.11 lmmunoglobuljns. 

Besides innate anti-microbial systems, saliva also contains immunoglobulins as 

effectors of acquired immunity against potential pathogenic species. The major Salivary 

immunoglobulin (Ig) is secretory IgA (S-IgA), which occurs at ranging concentrations 

in whole saliva approximately of 100-300 jig . mr' in the adult. (Russel et aL, 1999). It 

is produced in salivary glands by mucosal plasma cells which secrete polymeric IgA, 

and is taken up and transported by a receptor, secretory component expressed on 

basolateral surface of glandular epithelial cells and released into the saliva as S-IgA 

(Mesteki et aL, 1991). S-IgA is the main product of the common mucosal immune 

system (CMIS) exceeding all other isotypes together (for a complete review of the 

CMIS refer to Ogra et aL, 1998). Human IgA occurs in two subclasses IgAl & IgA2 

(Mesteky & Russel 1986); and both occur in saliva usually with predominance IgAl 

(60%). IgAI is unique in having an elongated rich proline and 0-glycosylated hinge 

regionthat is susceptible to cleavage by bacterial proteases (Killian & Russel, 1998). 

Humans and primates have high levels (2-3 mg . mF5 of circulating monomeric IgA 

(90% IgA1) contrasting to most mammals which have a dimeric circulating form of IgA 

in concentrations lower than lmg.mt' (Russel et aL, 1999). Past studies have revealed 

important functions for salivary IgA including: inhibition of microbial adherence by 

blocking adhesins (Hajishengallis et aL, 1992), neutralization of toxins or viruses and 

virulence factors (Smith et aL, 1985), protection against mucosal pathogens such as 

Streptococcus pyogenes, Vibrio cholerae and influenza Virus (Russel et aL, 1998). 

In addition, the oral cavity receives Igs derived from the circulation by transudation 

through the gingival crevice including 1gM, IgG, and Ig A roughly to their proportion in 

blood plasma (< 15 jig . mf') which are minimal but can be elevated in gingivitis or 

peridontitis (Russel et aL, 1999). 
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1.1.2.1.1.12 Growth Factors 

During the past four decades a large number of growth factors have been progressively 

identified in salivary secretions in a wide range of animal species. The list of 

biologically active peptides includes: epidermal growth fictor (EGF) (Cohen, 1962; 

Gresik 1994), nerve growth factor (NUF) (Barka, 1980; Gresik 1994), transforming 

growth factor alpha (TGFz) (Humphreys-Beyer et at, 1994), insulin (Murakami et at, 

1982; Kerr et at, 1995), insulin-like growth factors I and II (IGF-I & IGF-II)(Ryan et 

at, 1992), transforming growth factor beta (TGFf3) (Jaskoll et at, 1994) and fibroblast 

growth factor (Hiramatsu et at, 1994). The origin of these molecules has been quite 

controversial. Initially, thought to derive from plasma serum or crevicular fluid (Fekete 

et at, 1993), there are now overwhelming evidences that at least some of these 

molecules (TGFc, EGF, NOF, Insulin) are synthesised by ductal cells in salivary glands 

(Purushotam et al, 1995). A detailed description on structure and function for all of 

these factors is clearly beyond the scope of this work (see review Zelles et at, 1995). 

However, in a general way these molecules are thought to play a critical role in wound 

healing, the control of gastric acid secretion, cytoprotection and maintenance of oral and 

GI tract integrity (McKay etal., 1992; Oxford et al., 1998; Pedersen et al., 2002). Oral 

mucosa healing rate is known to occur faster than skin (Zelles et aL, 1995). This may 

have to do with a strong presence of these molecules in saliva as submandibular gland 

produces more EGF and NGF than any other organ in the body (Rall et aL, 1985). 

1.1.2.1.1.13 Other proteins 

The proteins presented above constitute the main bulk of proteinaceous organic 

secretion in saliva. However saliva contains other proteins, some of them have received 

less attention by investigators in past years while others are just now being discovered. 
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1.1.2.1.2 InorEanic composition of saliva 

Inorganic species concentration is about 2 g . E', the range values in table reflect 

individual and stimulation status variations (Pellerin & Pellat, 1986). 

IONS 

______________ 

SALIVARY 
CONCENTRATION (mM) 

Range/mean  

PLASMA 
CONCENTRATION (mM) 

[Ca21 0.50-2.80/ 1.75 2.40-2.60 
[P043] 1.94-22.61/ 5.50 0.96-1.30 

[VJ 0.00052 - 0.015/0.015  
[Na] 2.50-10.00/ 6.25 145.00 
[IC] 17.00-40.00/28.50 4.60 
[CE] 25.00-33.00/ 29.00 104.00 

[FIC03] 1.00-30.00/ 3.00 23.00 
Ng"I 0.10-0.501 0.30. 0.74-0.92 

[I] 0.01-0.02/ 0.01 0.55-1.18 
[NO3] 0.02-3.7/ 0.1  

pH 5.00-8.00 7.14 
[CNO] 1.50  

Sodium, potassium and chloride are the most important ions in maintenance of the ionic 

strength of saliva (Tylstrup & Fejerskov, 1994). Ionic strength of saliva may play a role 

in avoiding enamel dissolution but it is a small one compared to pH variations. 

However, supersaturation of saliva in Ca 2  and P043  towards enamel tissue is critical 

for permanent remineralization of this dental tissue 

Saliva is hypotonic in nature when compared to plasma due to the heavy resorption of 

sodium during salivary secretion. This fact is important in facilitating taste perception. 

1.1.3 Salivary Functions 

1.1.3.1 Mucosal protection 

Saliva plays a major role in mucosal protection (Tabak, 1995). This functional aspect is 

directly linked to its lubrication and tissue repair properties. The lubrication of oral soft 

and hard surfaces by mucins and glycoproteins is critical to maintenance of its integrity 

during mastication, speech and other mechanical stresses exerted during oral functions 
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(Tenovuo, 1998). The tissue healing properties of saliva lie on the presence of growth 

and other immune factors, which have been discussed in this work. 

1.1.3.2 Microbial Control 

Salivary antibodies are mainly of the IgA class, whose principal action is to aggregate 

specific microorganisms and prevent theft adhesion and colonisation of hard and soft 

tissues. Bacterial lysis due to complement activation may occur in the gingival crevice 

as a result of the effects of other Immunoglobulins (e.g. IgO, 1gM) in the crevicular 

fluid, which may also opsonise bacteria to assist removal by phagocyte cells. Microbial 

modulation of oral flora (especially at the bacteria level) may also occur through 

adhesive interactions between salivary macromolecules and microbial surface receptors 

known as adhesins. Mucous coat, and ACDP will therefore determine the resident 

cominensal flora of soft and hard tissues respectively; while soluble proteinaceous 

salivary content play an important role in aggregation, swallowing and elimination of 

other micro-organisms present in saliva (Whittaker et cii., 1996; Tenovuo, 1998). 

The action of sialoperoxidase, lactoferrin, lysozyme and histatins help to modulate the 

oral flora in a non-specific manner. Although saliva contains a very large microbial 

population (indicating that these systems are incapable of controlling many of the 

normal residents of the mouth), they may be of importance in preventing colonisation 

by transient pathogens (KOnonen, 2000). 

1.1.3.3 Remineralization of teeth 

Saliva is supersaturated in calcium and phosphate ions in respect to dental enamel. This 

is responsible for preventing teeth from naturally dissolving in saliva and to promote the 

growth of hydroxyapatite crystals during the remineralization phase of the caries 

process (Lagerlof, 1998; Dowd, 1999). 
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1.1.3.4 Neutralisation and buffering 

The acid nature of some food intake and fmal metabolic products of some oral bacteria 

may have deleterious effects on oral tissues. Natural pH of saliva is always elevated 

when compared to the pH at which dental hard tissues start to dissolve, namely critical 

pH (5.5 for hydroxyapatite, 4.5 for fluorapatite). To achieve this tight regulation of pH 

saliva relies on some buffering systems. The principal constituent responsible for these 

properties (especially in stimulated saliva) is the bicarbonate and carbonic anhydrase 

system. Besides bicarbonate, phosphates and proteins present in salN'a also contribute to 

buffering, especially in unstimulated saliva where the concentration of bicarbonate is 

very diminished when compared to the post-stimulation state (Lagerlof, 198; Dowd, 

1999). 

1.1.3.5 Alimentation 

Saliva plays a fundamental role in nutrition of individuals. The lubrication properties of 

saliva are very important for speech, mastication, formation of food bolus, swallowing 

and translocation across oesophagus (Pedersen et al., 2002). Organic glycoprotein 

material of saliva is responsible for these lubricating properties (Tabak, 1995). 

Mother effect of the water content of saliva is the dilution of substances introduced into 

the mouth and their subsequent removal by swallowing or spitting. Dissolving solid 

food stufTh is also fundamental for taste perception (Ten Cate, 1998). 

1.1.3.6 Digestion 

Saliva participates in the initial phase of digestion of fat and complex carbohydrates. 

Digestion of fat starts in saliva with a lipase produced by Ebner's glands of the tongue. 

This lipase degrades triglicerides with short-chained fatty acids, its importance is small 

since it is not the only existing pre duodenal lipase (Gastric lipase). Salivary amylase 

initiates carbohydrate digestion especially starches, yelding maltose, maltotriose and a-

limit-dextrins as fmal products. This enzyme is rapidly inactivated as food enters 

stomach because of acid and proteolytic degradation of the enzyme, and thus it has a 

limited action when compared to pancreatic amylase (Dowd, 1999). 
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1.2 Anatomy of the Salivary glands 

Saliva is produced by salivary glands. In mammals, salivary glands occur as three major 

pairs, parotid, submandibular and sub-lingual which are located outside the oral cavity, 

capsulated and with extended duct systems to discharge their secretions and are 

responsible for 95% of saliva production. The remaining saliva is produced and secreted 

by minor salivary glands. Several hundreds of these glands are distributed throughout 

the oral mucosa and they include labial, lingual, palatal bucal, glossopalatine and 

retromolar (Ten Cate, 1998). - 

1.2.1 Parotid gland 

Parotid glands are the most volumous of major salivary glands. In human, it is a 

pyramidal triangular shaped, paired gland weighting averagely 25 grams. It is divided in 

two main lobes by a fibrous plane, which gives way to the passage of facial nerve, 

external jugular and parotid communicating veins. The surface is lobulated and the 

colour is grey-yellowish. Parotids are located in a space limited anteriorly by the 

posterior edge of the ascending ramus of the mandible and the temporo-mandibular 

joint, posteriorly by the mastoid process and anterior edge of sterno-cleido mastoid 

muscle, superiorly by external audition conduct and inferiorly by a line extending from 

the inferior mandibular edge to the anterior portion of sterno-cleido mastoid muscle 

(Figure. 1.1). 

Branches of the external carotid provide arterial irrigation and posterior auricular 

arteries, venous branches of external jugular and parotid communicating veins drive 

blood supply. Innervation is provided through auriculo-temporal, superficial cervical 

plexus and sympathetic nerves. Saliva produced inside the gland is collected in a main 

excretory duct, 4 cm long and 3 mm wide and it is named the Stensen's duct. Stensen's 

duct originates in gland depth and exits through its anterior portion, runs across facial 

region and opens in the oral cavity in the inner cheek at first upper molar level 

(Rouviere & Delmas, 1990; McMinn et aL, 1990). 
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Figure: 1.1- Anatomy Of Major Salivary Glands (Taken from Avery, 1992) 

1.2.2 Sub-mandibular &and 

Sub-mandibular, weighting 7 grams, is a small almond shaped, rose coloured paired 

gland. It is located in a space sited inthe upper side hyoid region related anteriorly with 

the sub-mandibular fossa in the internal face of mandibular body (Figure 1.1). An 

anterior process emerges from the gland's deeper portion runs over the milo hyoid 

muscle ending at the posterior side of the sub-lingual gland. Branches of facial and sub-

mentonian arteries, which originate the venous drainage through the facial vein, provide 

irrigation. Innervation comes from the lingual nerve. Saliva produced internally in the 

gland is driven into the oral cavity by Wharton's duct which opens in the floor of the 

mouth near the lingual frenum ( Rouviere etal., 1990; Mc Minn et aL, 1990). 
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1.2.3 Sub-lingual gland 

Sub-lingual is a small pair gland-weighing 3 grams, which locates in the floor of the 

mouth behind the mandibular body underneath alveolar mucosa, near the lingual frenum 

(Figure Li). Arterial irrigation is assured by branches from the sub-lingual arteries 

which originate deep lingual and ranin veins responsible for venous blood flow. Sub-

lingual, which is a branch from the lingual nerve provides innervation. Main secretory 

duct is called Rivinus or bartholin goes side by side with Warthon's duct and opens 

externally to it at mouth floor level. Short accessory ducts (Waither ducts) are also 

present (Rouviere et al., 1990; McMinn et aL, 1990). 

1.2.4 Minor salivary glands 

The minor salivary glands are important components of the oral cavity. They exist as 

individual glands located in sub-mucosa between muscle fibers and consist of groups 

- 

a .. 

Figure 1.2 Location and Type of Minor Salivary Glands (Taken from Avery, 1992) 

of secretory end pieces made up of mucous acinar cells and serous or seromucous 

demilune cells. The ductal systems comprise intercalated ducts, intra-lobular ducts and 

excretory ducts opening directly though the mucosa (Hand et aL, 1999). 

These glands are located throughout the oral cavity (Figure 1.2) and are named after 

their location. The glands of cheeks and lips are termed the bucal and labial glands. The 

glands of both posterior soft and hard palate are called palatine. Glossopalatine refers to 
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the glands located in tonsil folds. Lingual glands are located in several regions of the 

tongue (Avery, 1992). 

1.3 Salivary Gland Structure 

The salivary glands are organised like grapes on a vine (Figure 1.3). The grapes 

represent secretory end pieces known as acini and the stalks represent the ductal system 

which modifies and conducts primary saliva produced in the acini (Ten Cate, 1998). 

Duct 

• Excretory Duct 

Striatea Duct 
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nd Piece 

Figure 1.3- Internal Organisation of Salivary Glands (Taken from Ten Cate, 1998) 

19 



1.3.1 Acini 

The functional unit of the salivary gland tissue is the alveolus or acinus. An acinus is a 

cluster of pyramid-shaped cells, either mucous, serous or a combination of both, that 

secrete into a terminal collecting duct. Both the major and minor glands are composed 

of many acini, through the larger glands contain more acini or units arranged in lobules 

and lobes. The outer edge or base of the cells rests on a basement membrane between 

the cells and connective tissue. Within this donnective tissue are the nerves and blood 

vessels necessary to the various aspects of cellular activity. This connective sheet 

separates every acinus, lobules and lobes. The apex of the cells faces the hollow centre 

(lumen) of the acinus. Acinar cells are responsible for the major salivary protein and 

fluid volume output (Brand & Isselhard, 1998). 

Regardless of their differences in volume and type of saliva secreted, salivary glands are 

composed of the same acinar cell types either serous or mucous or a combination of 

both called serous demilunes (Figure 1.4). Some glands consist of pure or nearly pure 

serous acini (parotid), whereas others are pure mucous (sublingual) or a mixed 

combination of serous and mudous cells (sub-mandibular) (Brand & Isselhard,1998). 

Mixed alveolus 

Serous 
demilune 

Intercellular 
canaliculus 

Serous alveolus 

Se ro us 
	 Mucous alveolus 

cell 
Mucous 
cell 

Intercalated 
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Figure 1.4- Structure of Acini (Taken from Avery, 1992) 
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1.3.1.1 Serous acini 

Serous acini are composed of serous cells (Figure 

1.5). These are pyramid-shaped cells with all features 

of secretory cells: well-developed rough endoplasm 

reticula and Golgi and secretory granules where 

proteins are packed, the nucleus is round and close to 

Param 

	

	the base of the cell. Serous secretion is a thinner 

watery secretion, rich in electrolyte and low 
NudelJ5 

glycosylated proteins as enzymes. Serous cells are 
Jlcftria 

the main source of amylase, PRP, Histatins among 

other (Avery, 1992; Junqueira & Carneiro, 1990). 

Figure 1.5- Serous Acinar Cell (Taken from 

Avery, 1992) 

• 	 Rough eMopIa5m1 
reticulum 

1.3.1.2 Mucous acini 

Mucous acini are composed of mucous cells 

(Figure 1.6). These are classic secretory cells as 

serous ones in which the main proteinaceous 

products are the extremely heavy glycosylated 

proteins called mucins. Although mucous 

secretion is also composed of 99% of water and 

electrolytes, the presence of mucins is 

responsible for a much higher viscosity of this 

type of secretion. Mucous acini are more tubular 

and have larger lumen than serous ones. The 

nucleus of mucous cells is flattened and lies 

I-fl 
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itocbondda 
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against basal part of the cell pushed by enormous 

secretory granules filled with heavily packed mucins 

(Junqueira & Carneiro, 1990). 

Figure 1.6- Mucous cell (Taken from Avery, 1992) 
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1.3.1.3 Seromucous acini 

In glands that have both mucous and serous components, it is possible to see the 

separate types of acini, or see them together as mixed or serous mucous acini (Figure. 

1.4). In those structures the mucous cells are disposed in a tube-like fashion with a half-

moon cluster of serous cells at the end. These are known as serous demilunes. These 

hybrid acini produce both serous and mucous saliva (Ten Cate, 1998). 

1.3.2 Ductal system 

The ductal system of salivary glands is a varied network of ducts divided in three 

classes: intercalated, striated and terminal (Figure 1.7). Besides the function of 

conducting saliva produced in the acini into the oral cavity, ducts also actively 

jarticipate in its production and final modulation (Brand & Isselhard, 1998). 
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Figure 1.7- Duct System. ID- Intercalated Duct, SD-Striated Duct, ED-Excretory 

Duct (Taken from Jenkins, 1975). 
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1.1.2.1 Intercalated ducts 

Intercalated ducts are small intralobular ducts that directly drain the acini (Figure 1.7). 

Short, cubical cells line them with centrally placed nuclei. A high degree of structural 

pleornorphism has been described in these ducts with respect to arrangement, location, 

diameter, length and epithelial thickness. In major glands they are short while in some 

minor glarids they are longer and convoluted. Intercalated ducts draining from serous 

acini are more pronent when compared to mucous ones (Figure. 1.7): 

The thnction of these ducts is simply to carry the acinar secretions unchanged to the 

next set of ducts within the lobule (Denny et aL, 1997). 

1.3.2.2 Striated (secretory) ducts 

The intercalated duct passes into the striated ducts (Figure 1.8), which are named so 

because the bases of the cells within appear to be striped. The basal cell membrane has 

iriloldings in which mitochondria become trapped. These mitochondria can be stained 

giving a striped appearance in histological preparations. Striated ducts are always 

surronnded by a number of longitudinally oriented small blood vessels. 

The specialised structure 

of the striated ducts 

implies a particular 

function: They modify the 

secretions passing through 

them. When produced in 

the acini saliva is a 

isotonic fluid compared to 

plasma, as it passes the 

Figure 1.8- Striated ducts (Taken from Avery 1992). 

striated duct its cells convert it in to a marked hypotonic fluid. The massive infoldings 

of the basal plasma membrane along with the numerous mitochondria are thought to 

reflect the sodium-pumping capacity of the cell wall in this location. A concentration 

gradient is created which favours sodium resorption from the luminal fluid. Bicarbonate 

and potassium ions are actively secreted into the lumen for electric compensation. 
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Because under normal conditions of flow these cells do not absorb water, but instead 

these ionic changes result in formation of hypotonic solution (Valdez & Turner, 1991; 

Ten Cate, 1998). 

1.3.2.3 Terminal excretory ducts 

Terminal excretory ducts lead salivary fluid to the oral cavity (Figure.1.7). The 

histology of these ducts varies from pseudo stratified with tall columnar cells to real 

stratified epithelia as the duct• merges with oral mucosa at ductal orifice. Their 

participation in saliva production has been controversial as some authors describe them 

as mere conduits while others defend their capacity in turning saliva even more 

hypotonic (Denny et al., 1997). 

1.3.2.4 Myoepithelial cells 

Figure 1.9- Myoepithelial Cell (Taken from Ten Cate, 1998) 

Myoepithelial cells are found close to the terminal secretory end piece associated with 

basal portions of acini or intercalated ducts (Figure 1.9). The ultrastructural features of 

mioepilthelial cells are very similar to those of smooth muscle cells, with same types of 

microfilaments, desmosomal attachments and dark body. They have several ffinctions 

all related with its contraction abilities. Support for secretory cells, prevention of 

24 



cellular overdistension and widening of intercalated duct, aid rupture of mucous acinar 

cells and squeezing of the acinus aiding salivary output (Valdez & Turner, 1991; Ten 

Cate, 1998). 

1.4 Control of salivation 

Unlike endocrine cells, salivary exocrine cells are involved in two different but 

integrated cellular processes, the production of the secretory fluid (water and 

electrolytes) and the secretion of protein material by exocytosis. 

The regulation of both aspects of secretion in salivary glands is controlled through the 

autonomic nervous system. Sympathetic and parasympathetic branches provide 

innervation to the glands. Sympathetic supply in man originates inT1-T4 preganglionic 

fibres, which continue through effector post ganglion fibres, derived from superior 

sympathetic ganglion. Parasympathetic nerves innervate salivary glands through the 

seventh and ninth cranial nerves (De Bias, 1990). Nervous stimulation of the glands is 

initiated by a number of events such as sight, smell or thought of food, food in the 

mouth, chewing, contraction of myoepithelial cells, increased activity of acinar and 

ductal cells and an increased blood flow and vasodilatation in order to maintain 

secretion (Fergusson, 1988). In general parasympathetic stimulation predominates, and 

moreover, it is always present in some degree and leads to vasodilatation and 

production of watery saliva at high flow rates with low glycoprotein content. 

Sympathetic stimulation is present intermittently and it leads to vasoconstriction and 

much slower rate of highiy viscous glycoprotein-rich saliva (Schneyer et aL, 1972; 

Quissell et aL, 1992). 

1.4.1 Stimulus-secretion coupling 

The regulation of salivary function through the autonomic nervous system is achieved 

via a co-ordinated sequence of signal transduction and intracellular signalling events. 

These include, activation of salivary basolateral cell membrane receptors and associated 

signal transduction proteins by neurotransmitters released by nerves, generation of 

intracellular second messengers and activation of cell physiological response pathways 

(Ambudkar, 2000). This type of regulated secretion is usually called stimulus-secretion 
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coupling. Douglas and Rubin first employed this term in 1961, when they were studying 

the role of calcium in mediating secretion by chromaflin cells. 

Figure 1.10- A schematic diagram of Stimulus-Secretion Coupling events in 

salivary acinar cells (Taken from Edgar, 1992). 

ADREN 	 AUREN 	ACETVL 	SUBST P 
cHOUNE 

ACINARCEU. 

MEMBRANE RECEPTORS 

It is useftul to divide stimulus-secretion coupling in membrane receptors and regulatory 

proteins, intra-cellular messengers or second messengers (Figure 1.10) and effector for 

better understanding purposes (Hersey et aL, 1990). Receptors are membrane proteins 

that bind to the extracellular ligands, which behave like, first messengers (acethylcholine 

(ACh), noradrenaline (NA), Substance P (Sub P) etc.) and carry the signalling capacity. 

Intracellular messengers are "information molecules like ions (e.g. Ca 2), cyclic 

nucleotides (adenosine 3', 5' cyclic monophosphate (cAMP)) or phospholipid products 

(inositol 1,4,5 triphosphate (1P3) and diacyiglycerol (DAG)) which convey a message 

from the plasma membrane to the inside of the cell (Takuma, 1990; Berridge, 1993, 

Hancock, 1998). Effectors are then the systems activated directly or indirectly by 

intracellular messengers that bring about cellular response, examples include enzymes 

such as the protein kinases, phosphatases, ATPases and specific membrane ion channels 

among others (Hancock, 1998). In the case of protein secretion, regulatory proteins on 
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the zymogen granules are phosphorylated and the end result is the migration, docking 

and direct fusion of the zymogen granule with the luminal plasma membrane and 

subsequently exocytosis (Burgoyne, 1990). For fluid secretion, the end result is the net 

translocation of water, sodium, chloride and other osmotically active solutes into acinar 

and ductal lumen (Nauntofte, 1992). 

1.4.1.1 Membrane receptors and neurotransmitters in salivary glands 

Salivary glands cells have receptors for a number of neurotransmitters, which are 

located in the basolateral membrane of the cell and possess extracellular binding sites 

which are specific for their respective ligands (Figure 1.10) (Petersen, 1992) 

1.4.1.1.1 Muscarinic recentors 

Muscarinic receptors are present in a number of tissues and are known to be coupled to 

biochemical effector systems such as stimulation of phosphoinositides (P1) turn-over, 

inhibition of adenylate cyclase, activation of guanylate cyclase and activation of ion 

channels (Nathanson, 1987). ACh, which is the neurotransniitter released by 

parasympathetic postganglionic nerves of the cholinergic system is the physiological 

ligand for muscarinic receptors (Cook et al., 1994). 

In salivary glands muscarinic receptors are linked to membrane G proteins and are of 

major importance in fluid secretion regulation through activation of intracellular 

calcium signalling mechanisms (Putney & Bird, 1993; Petersen et aL, 1994). 

Muscarinic receptor subtypes (Ml, M3 or both) have been identified in rat sub-

mandibular and parotid glands, human sub-mandibular gland and porcine parotid and 

they have been shown to act via stimulation of intracellular Ca 2  and inhibition of 

cAMP (Quissel et aL, 1992; Culp et aL, 1996; Watson et aL, 1996). 

1.4.1.1.2 Alpha adrenergic receptors 

Aipha-adrenergic receptors are classified as cxl or a2 and have been subdivided flwther 

into other subtypes (Raymond et aL, 1990). Alpha-receptors were first identified in 

salivary glands by Batzri et aL, (1973). Alpha-I receptors are located post synaptically, 
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whereas a2 receptors are located both pre and post synaptically. Interaction of NA with 

al receptors leads to activation ofphospholipase C (PLC) and P1 metabolism and is one 

of the major pathways in fluid secretion in salivary glands ( Baum, 1987). Postsynaptic 

a2 receptors presence has been demonstrated in rat parotid and sub-mandibular glands 

but its functional significance remains unclear (Bylund et aL, 1982; Dellaye et aL, 

1985). Presynaptic a2 receptors are involved with neural control of NA and will not be 

discussed here since they are beyond the scope of this work. 

1.4.1.1.3 Beta adrenerejc receptors 

In rat salivary glands, evidence now exists stating that major beta-adrenergic receptors 

are of 131 type (Quissel et aL, 1992). (3 adrenergic receptor sub-types have been 

described and cloned as 131, (32 and (33. It is well established that activation of 0 
adrenergic receptors in salivary glands by either adrenaline or NA is the major stimulus 

for protein exocytosis. This process seems to be mediated mainly by an cAMP 

dependent process (Takuma, 1990). 

1.4.1.1.4 Substance P receptors 

Substance P is a member of a family of peptides termed tachykinins, whose biological 

actions comprehend induction of smooth muscle contraction and stimulation of salivary 

flow (Quissel et aL, 1992). Substance P receptors have been identified in rat parotid and 

submandibular glands and have been shown to have direct effects on amylase and 

mucin release from rat parotid slices and sub-mandibular cells, respectively. These 

effects were found to be independent of a and 0 adrenergic stimulation (Rudich & 

Butcher, 1976; Fleming et aL, 1984). Substance P receptors are coupled in a guanosine 

triphosphate (GTP) manner to the activation of phospholipase C (PLC) and intracellular 

calcium metabolism (Taylor et aL, 1986; Fleming et aL, 1987). In rat submandibular 

gland substance P receptors have been shown to be 0 protein coupled (Hershey & 

Kraus 1990). PLC and calcium metabolism are the major pathway of fluid secretion, 

however, the role of substance p  in sustained fluid secretion is poorly understood 

(Ambudkar, 2000). 
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1.4.1.1.5 Vasoactive Intestinal Peptide (VIP) receptors 

VIP is a neuropeptide released along with ACh from post-parasympathetic neurones 

and appears to potentiate ACh induced salivation (Lundberg et aL, 1980). VIP 

receptors have been identified in both rat parotid and submandibular gland (Dehaye ci 

aL, 1985; Turner and Bylund, 1987). These receptors were shown to be coupled to the 

activation of adenylate cyclase system, leading to an increased secretion of protein upon 

activation in parotid and submandibular (Inoue ci al., 1983; Turner and Camden, 1990). 

1.4.1.1.6 Purinergic receptors 

In 1971 Burnstock proposed that extracellular purines could bind to specific plasma 

membranes receptors. P1 receptors are responsive to adenosine and its analogues while 

P2  type receptors are sensitive to other nucleotides (Quissel et aL, 1992). 

Best known flinctional aspects of purinergic receptors come from its actions as cation 

channels in the non-adrenergic non cholinergic system (NANC) of smooth muscle cells 

(Burnstock et aL, 1978). However, it was observed in 1982 that ATP increased the 

permeability of the plasma membrane and induced a calcium dependent amylase 

secretion in a way that receptors of the non-adrenergic non-cholinergic system might be 

involved (Gallacher, 1982). These results have been confirmed and extended to rat 

parotid and submandibular acinar cells (Soltoff et aL, 1990; Hurley et aL, 1994; Métoui 

etal., 1994). 

Responses of purinergic receptors in rat parotid acinar cells were shown to be mediated 

by non-specific cation channels known as PZZ receptors (Slotoff ci aL, 1992). Opening 

of these channels increased the permeability of the plasma membrane to calcium and 

sodium, which increased the intracellular concentration of these cations leading to 

depolarisation of the plasma membrane and secretory events. The efflux of chloride and 

potassium were also observed (McMillan ci aL, 1993). 

Since ATP is released with other neurotransmitters during nerve stimulation, it could 

participate in the modulation of neurotransmitters. In the parotid gland, the effect of 

ATP is additive to cholinergic stimulation. 

Purinergic receptors could also play a major role in the ductal phase of pancreatic and 

salivary secretion since purinergic receptors coupled to calcium movements are present 
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on ductai cells from exocrine pancreas (Hug et aL, 1994). More recently, rat 

submandibular ducts have also been shown to possess two types of purinergic receptors, 

an ionotropic P2x4 receptor coupled to kallikrein secretion and a metabotropic receptor 

P2 ' 1  whose functions remain unknown (Amsallem et aL, 1996). 

1.4.1.2 Membrane regulatory proteins and signal transducers 

1.4.1.2.1 G-proteins 

In salivary glands, the major receptors that regulate fluid and protein secretion belong to 

the (i-protein-coupled receptor family (GPCR), which means that G proteins are the 

major elements coupling extracellular signals to intracellular effector of secretion 

(Ambudkar, 2000). G-proteins, (so called because they bind GTP), are a family of 

proteins located on cytoplasm surface of membranes, that physically transduce 

information from extracellular signals such as neurotransmitters into regulation of 

effector enzymes and ion chaumels (Neer, 1995). U-proteins exist as heterotrimers 

composed of three polypeptides: an a sub-unit that binds and hydrolyses GTP, a 3 and a 

y subunits that usually exist as a 0/y complex that does not dissociated unless denatured 

and therefore behaves as a functional monomer (Neer, 1995). 

Activation of U proteins (Figure 1.11) is based on the a sub-units possession of a 

guanine nucleotide-binding site, which in the resting state is occupied by GDP. The 

binding of an agonist to the receptor increases the affmity of the receptor to the 0-

protein complex. Receptor interaction changes the conformation of the U-protein, which 

decreases the affmity for GDP so that it comes off the active site. Because of the high 

GTP concentration in the cell GTP replaces GDP. Once the GTP is bound, the a 

subunit assumes its activated state and dissociates both from the receptor and the /y 

complex. The dissociated GTP-bound a-subunit of the U-protein is responsible for the 

activation of the effector enzyme (i.e. PLC or adenylate cyclase). The activated state 

lasts until GTP is hydrolysed to GDP by the intrinsic GTPase activity of the a-subunits. 

All isoforms of the a-subunits are GTPases although the intrinsic rate of GTP 

hydrolysis varies greatly from one type to another (Catty et aL, 1990; Linder et aL, 

1990). Once GTP is cleaved to GDP, the a and 3 subunits reassociate becoming 

inactive and returning to the receptor. 
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ATP cAMPII 

Figure 1.11- A schematic diagram showing the diferrent C proteins in salivary 

secretion (Taken from Mateos, 1996). 
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This system amplifies the 

signal because the 

lifetime of the GTP-

complex is much longer 

than that of the 

Ci neurotransmitter-receptor 

one. 

The 	fir st 	receptor- 

effector system for which 

a role of guanine 

nucleotides was 

rdcognised was the 

adenylate cyclase system 

(Rodbell, 1980; Smigel et 

aL, 1984; Putney, 1988). 

0 proteins regulating 

adenylate cyclase have 

been classified as 

stimulatory (Os) and 

inhibitory (Gi), based on 

ri the presence of distinct 

alpha subunits as and ai, 

which can also be 

distinguished on the basis of sensitivity to cholera and pertussis toxins. These toxins act 

by catalysing the ADP-ribosylation of as and cci respectively. G proteins, which 

regulate phosphoinositide hydrolysis have been referred collectively as Op (Yule, 

1994). Other 0 proteins have been described, including transducin, a 0 protein which 

mediates the coupling of photon excitation to the activation of a cyclic GMP 

phosphodiesterase; and also Go (o for other), purified from the brain, whose function is 

not yet filly understood (Neer, 1995; Putney, 1988). 
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1.4.1.2.2 Membrane transducers 

1.4.1.2.2.1 Adenylyl Cvclase (AC 

In mammals AC is a single membrane polypetide which role is the catalysation of 

cyclic AIvIP (cAMP) (an intracellular second messenger) from ATP. AC exists in 

several isoforms of which at least nine types have been reported and cloned, but they all 

share structural homology. In general, they contain two clusters of six transmembrane-

spanning highly hydrophobic domains that separate two catalytic domains on the 

cytoplasniic side of the membrane (Hancock, 1997). AC is activated indirectly upon 

receptor binding by a ligand. However, AC regulation differs from one isoform to 

another (Watson a aL, 1998). The enzymes exhibit type specific stimulatory and 

inhibitory regulation by G protein a and 3y subunits, Ca 2 , calmodulin, forskolin, P-site 

inhibitors and PCK (Iyengar, 1993; Premont et aL, 1996; .Xia & Storm, 1996). In 

salivary glands, several types of AC have been demonstrated and constitute (through 

cAMP generation) the main pathway for stimulated protein exocytosis (Baum,1987; 

Ambudkar, 2000). 

1.4.1.2.2.2 Phospholipase C (PLC) 

Phospholipase C (PLC) is a group of enzymes present in all mammalian tissues. Several 

isotypes have been presently cloned and are divided in four famillies: a, 3, S & y 

(Hanckock, 1997). Differrent mechanisms of PLC activation have been described 

depending upon the isoform (Spiegel et aL, 1996). PLC 3, is activated through 

interaction with regulatory G proteins. Phosphorylation seems to be crucial for the 

activation of other isoforms as PLC y whose activation depends on phosphorylation on 

tyrosine residues usually catalysed by tyrosine kinase receptors (Clapham, 1995). It has 

also been reported that Ca 2  may also been involved in PLC control. PLC S contains one 

motif which confers Ca 2  binding potential to this protein, and therefore PLC S may 

represent a Ca2 ' controlled form of the PLC familly (Hancock, 1997). 

The activation of PLC ultimately results in the hydrolysis of plasma membrane 

phospholipids, mainly phosphatidylinositol 4,5 biphosphate (Ptdlns (4,5)P2) which is 

32 



broken down into inositol 1 ,4,5-triphosphate (1P3) and diacyiglycerol (DAG) which act 

as second messengers in this pathway (Berridge, 1993). 

In salivary glands PLC is of chief importance in regulation of fluid secretion in acinar 

cells and Ionic composition modulation of salivary flow by ductal cells (Ambudkar, 

2000; Nautofté, 1992). 

1.4.1.3 Second messen2ers and intracellular effector systems 

1.4.1.3.1 DiacyllyceroI and Protein Kinase C 

Diacylglycerol (DAG) is one of the endogenous activators of protein kinase C (PKC). 

DAG is normally absent from cell membranes, but it is transiently produced from 

inositol phospholipids in response to extracellular signs (Yule & Williams, 1994). 

Receptors linked to the activation ofphospholipase C leads to the production of 1P3 and 

DAG. However, DAG can also be formed from the hydrolysis of other membrane 

phospholipids, such as phosphatidylcholine (PC). It should therefore be seen not as a 

single chemical but a family of related compounds. The structure of which is 

deternted by the acyl groups present in the original lipid that was hydrolysed by the 

phospholipase (Billah & Anthes, 1990). DAG is only transiently produced in 

membranes and can be further metabolised to other signalling compounds. Best-known 

route of DAG metabolism is its phosphorylation to phosphatidic acid (PA) by 

diacylglycerol kinase (DCJK). This chemical stimulates inositol 4,5-biphosphate 

formation, activates PLC, acts as a cell mitogen, can be re-incorporated in cell 

membranes as phosphatidylinositol phosphates and it is subsequently degraded to 

arachidonic acid. The regulation of DAG breakdown pathways remains an open 

question but it seems to depend on the acyl groups involved (Hanckock, 1997). 

DAG activates PKC by increasing its aWmity to calcium without any changes in 

intracellular Ca2  levels (Nishizuka, 1988), although an Ca2  independent activation 

mechanism has also been postulated by some authors (Quissel et aL, 1992). 

PKC was originally thought to be a single protein but in 1989 evidence suggested that it  

was in fact a thniily of close related proteins (Parker et aL, 1989). PCK can be activated 

by either Ca2 , proteolytic cleavage or phospholipids such as DAG, depending on the 

isoform of this enzyme (Hanckock, 1997). PCK has been shown to play a pivotal role 
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in intracellular Ca2  signalling by either enhancing or decreasing the activity of kinases 

that regulate PIP 2  formation and breakdown resulting in either 1P3 elevation or 

inhibition (Francis & Singh, 1990; Wolfe etal., 1996). 

In salivary glands PCK plays a role in protein exocytosis mediated by DAG, 1P3 and 

calcium-mobilising receptors (muscarinic, a I -adrenergic and substance P) which are 

totally independent from cAMP (Putney, 1986; Moller et aL, 1996). PCK has the 

ability to phosphorylate a wide range of intracellular proteins, however, the exact 

mechanisms underlying salivary PCK dependent exocytosis or its role in salivary 

secretion remain to be hilly elucidated (Ambudkar, 2000). 

1.4.1.3.2 Inositol triphosphate and calcium 

1.4.1.3.2.1 Importance of calcium in fluid secretion 

In 1963 Douglas and Poisner first demonstrated that calcium was involved in the 

regulation of fluid secretion in salivary glands.They showed that sustained salivary fluid 

released in the cat superhised salivary gland was only possible when calcium was 

present in the extracellular medium (Douglas & Poisner, 1963). Later, it was 

demonstrated that following stimulation with either al adrenergic or muscarinic 

agonists there was an increase in the rate of calcium uptake and efilux from salivary 

gland cells (Neilsen & Petersen, 1972). This fact led to the assumption that intracellular 

calcium homeostasis and cell membrane permeability to calcium was altered after 

agonist stimulation of salivary glands (Poggioli & Putney, 1982). It was suggested that 

calcium efflux was associated with immediate rise in fluid secretion while calcium 

uptake was involved in more prolonged salivation (Putney, 1986; Petersen & Gallacher, 

1988; Petersen et aL, 1994). 

Intracellular calcium was shown to be sequestered in an intracellular organelle (referred 

to as the internal calcium store), from which it was released following agonist 

stimulation (Aub et aL, 1982; Muallem et aL, 1988). Experiments with permeabilized 

cells demonstrated the presence of an ATP-dependent calcium uptake mechanism and a 

calcium store in the endoplasmic reticulum (ER) of exocrine gland cells (Berridge & 

Irvine, 1984; Muallem 1989). The fmding that IP3 released calcium from the internal 

stores (Streb et aL, 1983) provided the link between calcium mobilisation and inositol 
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phospholipid turn-over following agonist stimulation previously demonstrated by 

Mitchel in 1975. During the past 20 years, the development of intracellular fluorescent 

probes for measuring intracellular calcium and other ions (Tsien et at, 1982), has 

increased our knowledge on the sequential events of calcium signalling in salivary and 
other exocrine cell types. 

Changes in intracellular calcium ([Ca 2 ]1) upon agonist stimulation in salivary cells are 

of biphasic nature characterised by an rapid and transient initial rise in [Ca 211 which 

decreases to a lower more prolonged plateau phase (Heliman et at, 1987; Baum & 

Ambudkar, 1988; Mertz et at, 1990). It also has been demonstrated that the initial 

elevation of [Ca2']i was independent of extracellular calcium concentration ([Ca 21]0) 

and this corresponded to calcium being liberated from the internal stores of 

endoplasmic reticulum (ER) (Merrit & Rink, 1987; Takemura & Putney, 1989). The 

plateau phase (secondary increase) was totally dependent on the presence of 

extracellular calcium and corresponded to calcium entering the cytosol from the 

extracellular side (Ambudkar et at, 1992). 

These fmdings have clearly set the links between [Ca 2 ]1 variations and salivary output. 

Moreover, workers have confirmed the critical importance of this ion on the secretory 

process as the most important second messenger involved in fluid and electrolyte 

secretion. In thct, the rise in intracellular calcium due to calcium exit from intracellular 

stores is the triggering factor in fluid secretion. Moreover, sustained stimulated and 

prolonged salivary output is totally dependent on cytosolic calcium elevation caused by 

its influx from the extracellular side of the acinar cells (Petersen, 1992; Cook et at, 
1994). 

1.4.1.3.2.2 Regulation of calcium in salivary 2land cells 

Cytosolic resting Ca 21  in salivary gland cells (SGC) is around 100 nM compared to a 

[Ca21]o  between 1.2 and 2.0 mM which forces the SGC to work against a heavy 

concentration gradient in order to maintain such low [Ca 2 .Regulation of [Ca21]1 in 

salivary gland cells is typical of others non-excitable cell types and depends on the co-

ordinated action of several calcium channels and pumps localised in the different 

cellular membranes ( Baum et at, 1993). 
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The ER lumen is where most of intracellular calcium is stored, constituting an important 

intracellular pool from where it can be mobilised upon cell stimulation. Free calcium 

concentration inside ER lumen has been shown to vary between 70 MM and 300 jiM 

depending on the authors and the methods of measurement (Montero et aL, 1995; Van 

de Putt & Elliott, 1997; Mogami et aL, 1998). Some authors have also found that there 

is an considerable Ca 2  buffering in the ER by proteins such as calreticulin, and that 

total calcium concentration inside the ER lumen is thus within the mM range ( 

Clapham, 1995; Camacho & Lechleiter, 1995). Independently of what the exact 

concentration may be, it is certain that a strong concentration gradient exists between 

ER lumen and the cell cytosol. 

When the cell is stimulated by agonists (Muscarinic or cii adrenergic), 1P 3  level rises 

and it diffuses through the cytosol at speeds of— 230 jsm.s 1  and occupies 1P3 receptors 

(IP3R) located on the ER membrane for minutes before being degraded (Clapham, 1995; 

Sanderson, 1996). IP3R is in fact a calcium channel which has been extensively 

characterised in the past years and it allows calcium to be rapidly mobilised from the 

ER lumen into the cytosol (Mikoshiba, 1993). IP3R exists in three isoforms IP3R1, 

1P3R2 and 1P3R3 (Marshal & Taylor, 1993) and all of them have been identified in the 

salivary glands (Lee et aL, 1 997a). Upon IP3R activation by 1P3 [Ca211 rise in the 

cytosol and activate a number of C2tdependent  ion channels, which drive fluid 

secretion into salivary acinar lumen (see saliva formation). 

Regulation of the IP3R has been a subject of intense study in the past years, but still 

remains to be fully elucidated. It has been well established that Ca 2  stimulates 1P3 

mediated C2 release at lower concentrations and inhibits it at concentrations > 300 

nM. The regulatory properties of [Ca 21]1 are totally dependent on 1P 3  levels, as this 

increases the receptor becomes more sensitive to lower [Ca 2li ensuring an open state of 

the channel when [Ca2 1]1 is low. In contrast, elevated (Ca 2+]i has a feed-back mechanism 

which diminishes Ca2  exit from the ER (Berridge & Irvine, 1989; Beprozi'anny et aL, 

1991; Berridge 1993, 1997). 

It has also been suggested that Ca 2  concentration inside the ER could itself regulate the 

open state of IP3R. In permeabilised human salivary cell lines, depletion of the ER Ca 2  

stores induces the IP3R to be in the lower state of activity (Tanimura & Turner, 1996). 

Inside the ER lumen, several proteins with calcium binding properties (e.g. calmodulin, 

calreticulin or glycoproteins) also help to buffer and control calcium concentration. A 
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third mechanism of IP3R control has been suggested as these proteins could be seen as 

putative direct IP3R modulators (Clapham, 1995; Berridge, 1997). 

Refill of the ER Ca2  is dependent on the activity of an Ca 2  -ATPase pump present in 

the ER membrane designed as SERCA for sarco-endoplasmic reticulum calcium pump, 

from which three isoforms are known to exist: SERCA2a, SERCA2b and SERCA3 (Wu 

et aL, 1995). From these SERCA2b and SERCA3 have been shown to be present in 

salivary gland cells (Lee et aL, 1997b; Meehan ci aL, 1997). 

The exact mechanisms regulating SERCA pump are not fully understood (Ambudkar, 

2000). However, the studies reported to date clearly demonstrate that the SERCA pump 

can efficiently pump Ca2  into the ER within the range of [Ca 211 induced in the ER and 

cytosol following stimulation of the cells (Baum & Ambudkar, 1988; Muallem, 1989; 

Mogami et aL, 1998). The Kd for SERCA has been reported as 30 nM reaching Vmax 

at about 100 riM of [Ca2 ]1 which means that this pump is active even at resting 

cytosolic [Ca2 ]1 (Mertz ci' aL, 1990b). On the other hand, recent experiments with intact 

pancreatic cells have demonstrated that upon depletion of internal stores SERCA 

activity is increased (Mogami ci' aL, 1998). So it appears from these results that SERCA 

activity is both regulated by an increase in [C2]1 in the cytosol as well as by its 

decrease inside the RE lumen (Berridge, 1997). 

Elevation of [Ca2 ]1 also activates a Ca 2  pump located in the basolateral membrane of 

salivary gland acinar cells which promotes the effiux of cytosolic calcium into the 

extracellular medium in a ATP-dependent fashion (Ambudkar & Baum, 1988; 

Ambudkar et aL, 1989). This pump usually referred to as plasma membrane calcium 

ATPase (PMCA) and has been proven to be the most effective Ca 2  efflux pathway in 

parotid acinar cells (Baum & Ambudkar, 1988). Several authors have demonstrated that 

PMCA efficacy is directly proportional to [Ca 211. Kd for this channel have been proved 

to be somewhat between 100-200 riM and saturation point for [Ca 2411 of over 500-700 

nM, proving that this pump efficacy is maximal in stimulated cells.(Ambudkar & Baum, 

1988; Camello ci' aL, 1995). PMCA activity has also been shown to be controlled and 

enhanced by direct interaction with calmodulin (Which could enable its activity at low 

[Ca2 ]1), and to be sensitive to changes in membrane potential and intracellular pH 

(Ambudkar ci aL, 1989; Ambudkar & Baum, 1988). 

In conclusion it seems for some authors that PMCA has a more significant role in 

regulating [Ca211 in activated cells (i.e. when [Ca 2 ]1 is higher), while the SERCA due 
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to its more elevated affmity for Ca 2t is more effective at lower [Ca 2 ] (Ambudkar, 

2000). 

1.4.1.3.2.3 Capacitative Ca 2  entry (CCE) 

In the middle eighties Putney verified that Ca 2  influx into cells was increased several 

fold upon stimulation with an agonist and that the influx was inactivated when the 

stimulus was removed. He called this effect "the capacitative Ca 2  entry" (CCE) or Ca2  

influx (Putney, 1 986b). Today, it is widely accepted that CCE is the critical driving 

force for sustained salivary fluid output as it provides the necessary elevated [Ca 2 ] 

upon stimulation with muscarinic or al adrenergic agonists (Melvin et aL, 1991; 

Petersen et aL, 1994). However, in spite of the heavy efforts of research in this field in 

the past years, the molecular mechanisms involved in CCE regulation remain to be 

elucidated (Parekh & Penner, 1997; Lockwich et aL, 2000). 

One of the earlier findings in CCE regulation came about as a result of the use of a drug 

called thapsigargin, a SERCA pump inhibitor. Once SERCA is inhibited and 

intracellular calcium stores are depleted, this then turns the stimulus to trigger CCE. 

These interesting observations indicate that Ca 2  entry was via a store operated channel 

(SOC) (Takemura et aL, 1989; Putney & Bird, 1993a). The first model of Soc was 

proposed by Putney (Putney, 1986b) and he predicted that this channel had some how a 

spanning domain into the ER to which it was physically linked. Ca 2  would therefore 

enter the ER lumen directly from the extracellular space and be exited in to the cytosol 

via the IP3R channel (Putney, I 986b). Further studies by other authors using 2+  as 

Ca2  surrogate have contradicted Putney's model and proved that after activation of 

CCE, Ca2  was passing from the extracellular side directly into the cell cytosol before 

accumulation in the ER lumen (Mertz et aL, 1990b). 

In the past few years several factors have been proposed as possible regulators of the 

soc in non-excitable cells (Parek & Penner, 1997). 1) Nitric Oxide Synthase (NOS) 

has been proposed as regulator of SOC in submandibular gland (Xu et aL, 1997). 2) 

Reports on the activity of a protein kinase that may act as a soc regulator on rat parotid 

cell have also been considered (Ambudkar, 1996; 1997). 3) Different levels of Ca 2  

permeability in SOC have been noted suggesting the existence of several levels of CCE 
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activation that seem to be regulated by phosphorylation events. 4) some authors have 

even postulated the existence of different Soc in the same cell. 

To date, none of these studies have been conclusive and presently, two models have 

been proposed for the gating of the SOC, although no data exist to support either 

conclusively (Ambudkar, 2000). 

In the first model (Figure. 1.12) (named 

conformational coupling hypothesis, (CCFI)), a 

physical coupling between a Ca channel protein in 

the plasma membrane and another factor in the ER 

membrane has been postulated to occur upon cellular 

activation to control Ca 2  into the cytosol. More 

recently; Berridge has 

Figure 1.12- A shematic model for conformational 

coupling hypothesis (Taken from Ambudkar, 2004)) 

suggested that this coupling is mediated via an 

IP3R in the ER, probably 1P3R3 (Berridge,1996; 

1997). However, some studies have been 

published which are contradictory with this model 

(KEan et al. 1996). 

Figure 1.13- A shematic model for Calcium 

Influx Factor hypothesis (Taken from Ambudkar, 2000) 

Another hypothesis proposes the release of a metabolite, (a Calcium Influx Factor 

(CIF)) from the ER which would be involved in the activation of SOC (Figure 1.13). 

Activation could be produced by CIF directly or this could be in the cytosol and 

posteriorly activated by an activation factor released from the ER (Randriamampita & 

Tsien, 1993; 1995;). 

Mother important issue in understanding C2 signalling is the spaceo-temporal aspect 

of [Ca24]1 variations. Sub-maximal concentration of agonists have been shown to 

induced oscillatory [Ca2 ], changes and wave propagation whose role in cell physiology 

is still under very active research (Berridge, 1997). 
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In general the models proposed to explain this phenomenon suggest that [Ca 21]1 

oscillations are generated as a result of the regulation of either [C211 release or [Ca2 ]o 

influx (Ambudkar, 2000). Oscillations caused by intracellular C2 release could be 

originated in cells with only one type of IP 3R and intracellular calcium store which 

would be regulated by the biphasic effect of calcium on the activity of IP3R. Other 

authors have proposed the involvement of two different types of [Ca211  'stores, the 

classic one sensitive to 1P 3  and another one with lower sensitive to 1P 3  or even regulated 

by a ryanodyne receptor (RyR). In a third model, several authors have found that in 

some cell types [Ca 2 ']1 oscillations depend on the presence of extracellular Ca 2t leading 

to the assumption that they are generated by the repeated activation and inactivation of 

Ca2  influx (Foskett & Wong, 1994; Liu et aL, 1998a). 

Both oscillatory as well as wave propagation of [Ca 2+]i has been described to occur in 

salivary gland cells, however, the exact role of these phenomena in cellular physiology 

remains to be fully elucidated (Gray, 1988; Foeskett & Wong, 1994; Lee et aL, 1997ab; 

Tojyo et a!, 1997). 

1.4.1.3.3 Cyclic-3'5' adenosjne monophosphate and protein kinase A 

Cyclic-3'5' adenosine monophosphate (cAMP), is produced at the plasma membrane of 

cells by the enzyme complex known as adenylyl cyclase and it is released into the 

cytosol. From there, cyclic AMP can diffuse and act on the next part of the signalling 

process (Hancock, 1997). In salivary glands, the activation of -adernergic receptors 

give Se to cAMP cytosolic levels and represent the most powerfull pathway for 

stimulated protein exocytosis (Baum, 1987). The cellular roles of cAMP are mediated 

exclusively via activation of cAMP activated protein kinase (PKA) a cytosolic 

widespead protein found in eukaryotes (Hancock, 1997). In the inactive state, i.e. in the 

absence of cAMP, PKA is found as a tetramer of two catalytic subunits (C) and two 

regulatory subunits (R). On activation cAMP binds to the (R) subunits causing the 

complex to dissociate. The regulatory subunits remain a dimer with the release of the 

two catalytic units with kinase activity and which are responsible for phosphorylation 

events and thus cellular responses. PKA is known to occur in two types I and II based 

on structural differences in the regulatory subunits (Hancock, 1997). In rat parotid 

salivary gland cells PICA activity seems to be 80% of type I and 20 % of type II 
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(Quissel, Deisher & Barzen, 1989, Hinkle & Soot, 1992). The main role of PICA in 

salivary secretion appears to be its interactions with protein granules vesicle membrane 

associated proteins (VMAP) which are responsible for the triggering of stimulated 

exocytosis (Takuma & Ichida, 1993; Fujita et aL, 1996). However, cAMP and PKA 

have been shown to be also involved in cell differentiation. Gene expression can be 

controlled through the phosphorylation and activation of transcription thctors such as 

CREB, which binds to cAMP-response element (CRE) regions of the DNA (Hanckok, 

1997). In rat salivary glands, cAlvlIP has been shown to enhance some salivary protein 

gene expression (Thou et aL, 1997). 

1.4.2 Saliva formation 

Saliva formation is purely under nervou& control. Unlike other exocrine glands, in 

salivary glands fluid (water and ions) secretion and protein exocytosis pathways are 

regulated by totally separate signal transduction mechanisms (Ambudkar, 2000). 

1.4.2.1 Fluid secretion 

According to the model accounting for the formation of saliva proposed by Thaysen et 

aL in 1954 and later verified, secretion of saliva occurs in two main stages (Martinez et 

aL, 1966; Young & Shogel, 1966). The secretory end pieces of the salivary glands (the 

so-called acini) secrete a fluid (primary saliva), which is isotonic and resembles plasma 

in ionic composition. This fluid is then modified in a second stage, within the duct 

system by selective resorption of salt. Because the ducts have a low permeability to 

water, the frnal product that is secreted into the oral cavity is hypotonic with a salt 

concentration below that of primary secretion(Nauntofte, 1992). 

It is well known that the secretion of saliva includes active transport of solutes and is 

not dependent on pressure filtration (Cook et aL, 1994). Lately much effort has been put 

into characterising the different cellular signalling and regulatory mechanisms, which 

are activated upon stimulation of the salivary glands by secretagogues. Detailed 

information of the multiple mechanisms involved in the formation of primary saliva 

from the acinar cells have emerged primarily from animal studies conducted on major 

salivary glands of rat, mouse, rabbit and cat (Cook et aL, 1994; Nauntofte, 1992; 
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Petersen, 1992). Indeed, the physiology of the duct system and in particular the 

myoepithelial cells is not as well understood (Ambudkar, 2000). 

1.4.2.1.1 Secretion of primary saliva 

The rate of salivary secretion to the oral cavity is a consequence of the rate of formation 

of the primary saliva by the acinar cells. The fluid is produced from the interstitial fluid 

that contains small molecules and resembles plasma ionic concentration. The acinar 

plasma membrane is permeable to lipid-soluble substances but is less permeable to 

water and much less to small ions. In addition, the tight junctions that separate the 

luminal fluid from the interstitial fluid are leaky to cations and allow for its transport 

from the interstitium to the lumen leading into the duct system (Turner, 1 993a). Thus, 

specific membrane.transport mechanisms (ion channels, co transporters, exchange 

systems and pumps) mediate electrolyte and fluid secretion on receptor activation. The 

general principle behind the formation of primary saliva is that acinar cells lose K 4  to 

the interstitium (blood side) and Cl -  to the lumen. To preserve electroneutrality, Cl -  then 

drives Na from the interstitium to the lumen probably via a paracellular pathway 

through tight junctions. Transepithelial water movements follow for osmotic reasons 

(Turner, 1993b). 

On secretagogue-incluced stimulation of the acini, the rapid and almost simultaneous 

increase in [Ca']1 throughout the acinar cell allows for simultaneous opening of }( and 

Cl, Ca2+  dependent channels on the basolateral and lummal membranes, respectively 

(Petersen, 1992; Dissing et at!., 1993). This results in virtually unchanged membrane 

potential of approximately —60 mV (Nauntofte & Dissing, 1988; Roberts et aL, 1978). 

The outcomes are a net loss of K+ (Nautofte & Dissing, 1988) and Cl -  (Melvin et al., 

1989; Ishikawa & Cook, 1993), and water (Nautofle & Poulsen, 1986; King & Agre, 

1996) from the acini and subsequently cell shrinkage where the minimum volume is 

attained within a few seconds (Nakahari et aL, 1990). The major part of the 

secretagogue-induced K loss from the acinar cell occurs through Ca 2  sensitive high 

conductance channels located on the basolateral membrane (Liu a aL, 1998; Hayashi et 

aL, 1996). The Cl -  loss presumably occurs through Ca 2  -sensitive channels on the 

luminal membrane (Melvin et aL, 1992; Arreola et aL,1996 ab). 
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Concomitant with the Cl -  loss, a loss of HCOf also takes place (Lee & Turner, 1991) 

in such a way that ratios between internal and external Cl -  and HCOf remain unchanged 

(Nauntofle, 1992). Following the decrease in acinar Cf and HCOf concentrations, the 

carbonic anhydrase catalyses a conversion of CO2 and H20 into HCOf and H resulting 

in a transient acidification (Nauntofte & Dissing, 1989). The loss of anions to the lumen 

is supposed to cause a lumen negative potential difference with respect to the 

interstitium. 

Figure 1.14- A shematic model for primary saliva formation (Taken from 

Nauntofte, 1992) 

This now drives cations (mainly, Na) from the paracellular spaces to the luminal 

compartment through the cation-selective tight junctions to preserve extracellular 

electroneutrality (Turner, 1993 ab). Due to net loss of K from the acinar cells to the 

paracellular spaces during this initial part of the secretory process, the W concentrations 

build up to the usual plasma levels (Poulsen, 1978). This might be the reason for a 

considerable part of the primary fluid at the onset of secretion not only being rich in Na' 

and Cl-  but also in iC (Young & Martin, 1971). Furthermore, it was suggested that the 

presence of a luminal K channel might contribute to the secretion K 1  to the primary 

fluid under the sustained secretion phase (Cook et aL, 1994). 

After the initial secretory response induced by receptor activation, a markedly elevated 

intracellular Na 1  concentration is observed (Dissing & Nauntofte, 1990; Wong & 

Foskett 1991). This is mainly due to a Na gain by activation of the NafH exchanger 
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which is responsible for the majority of the net Na gain (Dissing & Nauntofte, 1990; 

Murakami et aL, 1990; 1991), and for the extrusion of Ft generated from the 

metabolism and HCOj production (Maganel & Turner, 1990; 1991). The whole process 

is required in maintaining a nearly constant intracellular pH (pH1). The residual Na 

gain is mediated by Na coupled trai1sport of CF and C by the NatK  and CF 

cotransporter that also accounts for 20-30% of the total C uptake during secretion 

(Dissing & Nauntofle, 1990; Murakami et aL, 1990; 1991; Petersen, 1992). 

The net uptake of ions into the cell causes uptake of water and the start of cell swelling 

toward the prestimulatory acinar cell volume. The elevated Na concentration in turn 

stimulates the activity of the electrogenic Na/K pump (Dissing & Nauntofte, 1990) 

and thus the 02 consumption is markedly increased (Nauntofle & Poulsen, 1986). 

Extrusion of the Na by the Nat'C pump re-establishes the steep inwardly directed 

Na gradient and a large part of the acinar C concentration (Nauntofte, 1992). 

Following the initial K and Cl' losses, there is also a net Cl' reuptake promoted by the 

Nat/20-IC co-transport system driven by the overall favourable inward-directed 

gradient for this electroneutral transport mechanism (Dissing & Nauntofte, 1990; 

Poulsen & Nauntofle, 1990). This is imposed by the cellular decrease in the 

concentrations of Cl -  and Kt In spite of the acinar acidification caused by the loss of 

HCOj and an enhanced metabolic activity, pH1 is able to recover to prestimulatory 

levels by the Ft extrusion mediated by the Na/Et exchanger. The progressive cell 

ailcalinization increases the intracellular HCOf,  which again helps the cellular Cl -  to rise 

via the CF/HCO3 exchanger (Melvih & Tamer, 1992). Accordingly, the CF/HCOf 

exchange mechanism operating in parallel with the Na t/C pump and the Na 472CF1C 

mechanism constitute essential mechanisms in maintaining a high intracellular CF 

concentration both in stimulated and unstiulated Cl -  reuptake. When the stimulus is 

removed and the [Ca 21]1 decreases, the electrolyte concentrations, cell volumes and 

pumps activities are brought back to prestimulatory levels. The acinar cells are able to 

secrete substantial amounts of primary saliva as long as sustained cell stimulation is 

present (Nauntofte, 1992). 
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1.4.2.1.2 Fluid modification in the ducts 

The modification of the plasma-like isotonic primary fluid (Figure. 1. 15) starts from the 

beginning of the striated duct system. During passage through the duct system the ionic 

composition of primary saliva and synthesis and secretion of number of substances like 

kallikrein and growth factors is known to occur (Zelles, et aL, 1995). 

The autonomic nervous innervation of the duct system provides control for the 

electrolyte transport systems. Like the acinar cells, these cell also have been shown to 

respond to muscarinic and al-adrenergic stimulation by increasing [Ca 2 ']1 but in 

contrast, these cells seem to lack the capability of responding to substance P (Valdez & 

Turner, 1991; Dinudon et aL, 1993). 
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Figure 1.15- A schematic model for primary fluid modification in the striated ducts 

(Taken from Nauntofte, 1992) 

In contrast to the acinar epithelium, the intercellular tight junctions in the duct system 

possess a very low permeability to ions. As the primary fluid passes through the duct 

system, it is modified with respect to the ionic composition by reabsorption of Na *  and 

Cl. At the same time the ductal cells secrete K and HCOY intb saliva. Because the 

ducts have a low permeability to water, the reabsorption of ions occurs without water 

making the final product secreted into the oral cavity hypotonic compared to the 

primary fluid. At low salivary secretion rates, some water reabsorption might occur 

through a transcellular or paracellular way driven by the steep transepithelial osmotic 
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gradient (Cook et aL, 1994). It seems that both the intralobular striated ducts and the 

excretory ducts absorb Naand Cl -  and secrete K and HCO , although the striated 

ducts apparently are the major contributors to this process as they posses a larger 

luminal surfhce. The amount of the secreted IC does not match the amount of Na 

reabsorpted because of the concomitant reabsorption of Cl -  to preserve electroneutrality. 

As secretion rates increase, reabsorption of Na and Cl -  falls down making saliva less 

hypotorjic. Accordingly, saliva secreted into the oral cavity is strongly dependent on 

flow rate (Thaysen et aL, 1954). 

The primary driving force for an absorption by the salivary ducts comes from the energy 

consuming NaVK4  pumps, located on the basolateral membrane of the duct cells. These 

phenomena maintain the inwardly directed Na 4  and outwardly directed Kt  gradients, by 

ductal extrusion of NC to the interstitium and uptake of C (Bundgard et all, 1977). 

The luminal membrane is postulated to contain at least two transport mechanisms for 

NC; a NC channel and a Na'JI-t exchange mechanism, both being sensitive to the 

diuretic amiloride. These mechanisms are responsible for the ductal net uptake of Na' 

which in turn activates the electrogenic NatfK pump that extrudes 3NC in exchange 

for 2K 4  taken up by the cells across the basolateral membrane. It has been suggested 

that stimulatory action of the adrenal hormone aldosterone on NC reabsorption and C 
secretion is mediated by increasing the luminal an channel conductance and the activity 

of the luminal NC/H4 exchanger (Gruber et aL, 1973). In contrast, VIP has been shown 

to inhibit NC reabsorption in the ducts (Dennis & Young, 1978). 

The activation of the NC1H4  exchanger is not only important for the ductal Na 4  gain, 

but also for the pH1 regulation by extrusion of H 4  generated by cell metabolism and 

carbonic anhydrase activity. In parallel, the HCOf produced drives a ductal Cl' 

reabsorption and luminal secretion of HCO3 into saliva via a luminal membrane Cl' 

/HCOf exchange mechanism. Additional reabsorption of Cl -  is thought to exist via 

luminal Cl' channels. The net cellular gain of Cl -  is proposed to be balanced by 

corresponding release of Cl -  to the interstitium via opening of basolateral Cl -  channels. 

K 4  is transported from the interstitium to the cytosol by the NC/C pump and is thought 

to enter the lumen through a K 4/H exchange mechanism. This exchanger is suggested 

to extrude C into the saliva under the concomitant uptake of H 4  to the cytoplasm. The 

uptake of H4  then provides the substrate for the NC/Ft exchanger mediating NC 

reabsorption. Finally, the basolateral membrane is suggested to contain C channels and 

a NC/Ft exchange mechanism (Dinudon et aL, 1993; Turner, 1993 a, b). 
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1.4.2.2 Protein secretion 

As in many other secretory cell types the protein secretion in salivary acinar cells is 

operated through the exocytosis phenomenon (Burgoyne, 1990). Exocytosis was a term 

first employed by Palade in 1959, after the observation that zymogen granules of 

secretory cells migrate toward the apical membrane of the secretory cell, bud and fuse 

with plasma membrane and empty their contents in luminal spaces (Geada, 1998). 

In both resting and stimulated acinar cells, nearly all newly synthetized protein (More 

than 80-90%) follows the secretory pathway (Zastrow & Castle 1987). These proteins 

enter the endoplasmic reticulum (ER) during translation; most are transported to the 

Golgi complex where post-translational modifications are largely completed, and then 

routed into forming granules, where they are condensed for storage at concentrations 

that exceed 300mg. ml' (Aryan et at, 1984). 

Two main pathways for exocytosis have been described in salivary acinar cells, an 

unstimulated and other one, which happens only upon cell stimulation (Castle, 1998). 

1.4.2.2.1 Unstimulated secretion 

In salivary acinar cells 85% of the newly synthesised proteins are stored in granules, 

which undergo maturation and must receive an intracellular signal in order to migrate 

and fuse with apical membrane in the exocytotic process. However, the remainder 

(15%) is released from the cell without storage (Castle & Castle, 1998). In unstimulated 

cells that have been pulse-labelled with radioactive amino acids and then subjected to 

chase incubation for extended periods of time, the discharge of newly synthesised 

proteins can be seen to begin around 40 miii post pulse and peaks between 60 and 90 

mm (Aryan & Castle, 1987). The information obtained by the kinetic analysis of 

secretion has been interpreted as indicating that there are at least three pathways of 

unstimulated secretion in parotid acinar cells (Aryan & Castle, 1987; Zastrow et at, 

1989). One pathway corresponds to the classic constitutive pathway originating in trans 

Golgi-network and present in other secretory cell types. Pathway 2 is a vesicular 

constitutive like pathway thought to arise from maturing secretion granules and carry 

low dense proteins as cargo. The third pathway is the unstimulated exocytosis of mature 

granules. The presence of non- stimulated pathways in salivary glands, has to do with 
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its own non-stopping secretory nature, providing a route for continuous supply of 

functional salivary organic products into the oral cavity. However, the significance of 

this multi-pathway of non-stimulated secretion is presently unknown, although some 

authors (See Castle & Castle, 1998 for a review) have drawn some speculation in this 

issue. 

1.4.2.2.2 Stimulated secretion 

In salivary gland acinar cells, most of the intracellular transport process is devoted to 

the production of secretory granules, which are the carriers for the major regulated 

pathway- stimulated granule exocytosis (Castle & Castle, 1998). Among the various 

types of regulated secretory cells the salivary acinar cells are impressive in theft ability 

to mount a massive exoctotic release of proteins in response to neural stimulation. 

Maximal stimulation by 13 adrenergic agonist like isoproterenol causes the release of 70-

80% of the store secretion in an hour (Castle et aL, 1972). 

As in other cell types that rapidly release a large fraction of store products upon 

stimulation, exocytosis is a compound process in which fusion of granules to the cell 

surface is also accompanied by the successive fusion of granules to other granules (Von 

Zastrow & Castle, 1987; Burgoyne, 1990). 

The regulation of stimulated exocytotic process in salivary acinar cells is not fully 

elucidated (Ambudkar, 2000). 13 adrenergic stimulation and the consequent production 

of cAMP, are presently recognised as the signal most strongly linked to the secretion of 

salivary proteins that are stored in membrane bound secretory granules (Baum, 1987). 

The events leading to formation of cAMP and PKA have been fully characterised. 

However, little is known about the events controlling the migration docking and fusion 

of the granules, in the exocytotic process (Quissel et al., 1992). In the past two decades 

research in this field has tried to establish a link between PKA activity and the 

exocytotic process. It has been suggested that vesicle associated membrane proteins 

(VAMP) could constitute a substrate for PICA-dependent phosphorylation events 

(Fujista-Yoshigaki et tiL, 1996). 

Recent fmdings by Fujista-Yoshigaki et aL, (1996) have identified a vesicle associated 

membrane protein (VAMP2) which is located at the secretory membrane granule in 

parotid acinar cells and is involved in cAMP induced amylase secretion (Fujista- 
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Yoshigaki et aL, 1996). These authors suggest that the t-SNARE-binding region of 

VAMP2 is masked by some protein X and activation of PICA caused the dissociation of 

X from VAMP2. PICA would exert this effect indirectly through phosphorylation of 

some other cytosolic proteins, which remain to be identified (Fujita-Yoshigaki et aL, 

1999). 

1.4.3 Control of salivary flow and composition 

Salivary flow is under autonomic nervous control. 

1.4.3.1 Resting now 

Under resting conditions and when heavy salivary stimulation factors such as 

mastication are absent, there is a slow flow of saliva, which keeps oral tissues hydrated 

and lubricated. This unstimulated flow of saliva varies considerably during the day and 

is influenced by different factors. 

1.4.3.1.1 Circadian variation 

Each salivary gland has a daily pattern of unstimulated secretion, which is apparently 

independent of eating and sleeping behaviour. Unstimulated flow peaks at 5 am and 

attains the minimum flow at noon. 

1.4.3.1.2 Hydration 

Loss of body water and dehydration has been reported to cause a decrease and even 

stopping of salivary flow. This effect dries the mouth and participates in thirst 

mechanism of water drinking (Brunstrom, 2002). 

1.4.3.1.3 Stress 

Stress and fear situations are known to decrease salivary output. This was believed to be 

a secondary process to sympathetic stimulation present in flight or flee response 
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situations. However, more recently some authors have reported this effect to be under 

direct inhibitory effects from salivary hypothalamic nuclei. 

1.4.3.2 Psychic Flow 

In some animal species such as the dog, sight of food has proven to constitute a 

powerful stimulus for salivation. This is due to psychic stimulation of salivary glands on 

the anticipation of food and masticator stimulation. Although this mechanism is 

seeming experienced in man, objective increase in salivation caused by psychic flow 

has füiled to be proven to occur. Although this mechanism is apparently experienced in 

man, objective increase in salivation caused by. psychic stimuli has not been proven. It 

seems that momentaneous increased awareness of saliva present in mouth is most likely 

to occur (Jenkins, 1978). 

1.4.3.3 Stimulated flow 

1.4.3.3.1 Mastication gustatory and olfactory stimuli 

Chewing savourless elements such as wax or gum elicit a three-fold increase in 

I] 



AWflCIPA11ON 
FEAR 	 OF FEEDING 

PfWfl 

VMP7NG  
CENTRE 
AEDUM 	 - 

SALP/ARY NUCLEI 

SUPERIOR 	 INFERIOW 
m!GEMWAL 
NUCLEI 

• Nc OF 

I SOLIZOIRUS 

NJ 
PERI000NI1UM I 

MUSCLES 

TSUOUNGU7AL 

	 lx 
viilix 

MAS11CAJJON 

 F SUBMANDIB TASTE 

 J 	PARO11O 

Figure 1.16- A schematic model showing the nervous control pathways of salivary 

secretion (Taken from Edgar, 1992) 

salivary flow (Figure 1.16). This is reflex mechanism mediated through receptors, 

which are present in mastication muscles, periodontal ligament or mucosa via salivary 

nuclei and increase in parasympathetic secretomotor discharge. 

Taste stimuli have been proved to be the most powerfUl stimulator for salivary flow, 

increasing flow by up to ten fold. Sour stimuli are the most effective followed by sweet, 

salt and bitter. 
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Most foods also elicit olfactory stimuli and direct responses to smell have been 

demonstrated. 

decreased salivary output is known to exist after vomiting suggesting the existence of 

connections between vomiting and salivary centres in medulla and cortex, respectively. 

1.4.4 Factors affecting composition of saliva 

1.4.4.1 Flow rate 

Variations in flow rate strongly affect saliva composition (Figure 1.17). As the flow rate 

increases upon stimulation of the glands salivary proteins, sodium, chloride, bicarbonate 

and calcium concentrations rise oppositely to those of phosphates and magnesium. With 

the increase in salivary flow, the time for ductal modifications to occur is diminished 

explaining these variations, and why final salivary composition tends to resemble that of 

acinar saliva. 
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Figure 1.17- Salivary composition and flow rate (Taken from Jenkins, 1978) 
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1.4.4.2 Differential 2land contribution 
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Figure 1.18- Differential gland contribution (Taken from Jenkins, 1978) 

1.4.4.3 Circadian Rhythm 
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Figure 1.19- Circadian Rythm of Secretion (Taken from Jenkins, 1978) 

Salivary constituents, like flow, displays a circadian rhythm of secretion (Figure. 1.19). 

This factor influences the composition of saliva throughout the day. 
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1.4.4.4 Nature and duration of stimulus 

For flow to be held constant, the composition of saliva may vary with the duration of 

the stimulus. Secretion elicited with either salt, sour, sweet or bitter stimuli shows no 

variation in electrolyte composition. However, salt stimulus has been reported to elicit 

an increase in protein secretion (Jenkins, 1978). 

1.5 Pathological aspects of salivary gland function 

Salivary dysfunction is defined as any alteration in the quantity and/or quality of 

salivary output (Navazesh, 1992). Dysfunction can include either an increase or 

decrease in salivary output and composition. Salivary dysf'unctions with increased 

salivary output are rare and commonly secondary to either central or peripheral 

neurologic disorders rather than primary gland disturbance. On the other hand, there are 

numerous causes of salivary dysfunction with decreased salivary output. Xerostomia is 

defined as the subjective complaint of a dry mouth This symptom may or may not be 

associated with measurable alterations in salivary function (Narhi, 1 994).Where an 

objective diminution of salivary output is verified the tenn hyposialia is preferred 

although hyposialia and Xerostomia are usually used as synonyms in literature. 

Patients with hyposialia have a an seriously impaired life quality presenting severe 

handicapping symptoms (Herrera et aL, 1988, Atkinson & Wu, 1994). Dry mouth 

usually does not become a clinical problem until the stimulated and resting flow rates 

fall respectively, below 0.1 and 0.7 ml.miif' (Ben-Aryeh et aL, 1981; Navazesh et aL, 

1992; Sreenby, 1996). Patients usually complaint of a painful burning sensation in the 

mouth, difficulty swallowing dry food such as crackers, impairment of taste, increase in 

caries, painful ulcers of the mouth and increased fluid consumption (Atkinson & Fox, 

1993). Hyposialy can produce changes in all of tissues in the mouth. It can cause 

fissures of the tongue, bucal membranes and lips, particularly in the corners of the 

mouth (Tabak, 1995) . It predisposes patients to dental caries which may be rampant 

and difficult to handle (Hay, 1995). Patients with dentures have difficulty in the use of 

their appliances because they frequently suffer from traumatic lesions in the oral cavity. 

In addition, patients have difficulty with mastication, deglutition and speech because of 
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a lack of lubrication results in sticking of the tongue and food bolus to the oral mucosa 

or denture surtice (Tabak, 1995). These patients have been reported to have impaired 

tasting and smelling functions (Dysgueusia and Dysosmia), low masticator performance 

(Dusek, 1996) and inadequate nutritional intake (Ernst, 1993). Patients with dry mouth 

are predisposed to mucosal infections, including fungal infections that may be 

symptomatic and difficult to treat, probably related to the lack of the protective salivary 

barrier (Loesche, 1995). 

1.5.1 Causes of Hiposialia 

There are multiple causes of diminished salivary function, some of them result of 

primary defects of the gland and others are secondary to other lictors (see table 1). 

Discussion of all aetiology of salivary dysfunction is clearly beyond the scope of this 

work, therefore only a brief overview of the major causes of salivary dysfunction will 

be given here. 

Condition Examples 

Medications Anticholinergics, tricyclic antidepressants, sedatives, 

tranquilizers, antihistamines, antihypertensives, 

cytotoxic agents, anti-Parkinsonian drugs, anti- 

seizure drugs, skeletal muscle relaxants 

Oral diseases Acute and chronic parotitis, sialolith, mucocele, 

partial/complete salivary obstruction 

Systemic diseases Mumps, Sjogren's syndrome, diabetes, HJV/AIDS, 

scleroderma, sarcoidosis, lupus, Alzheimer's disease, 

dehydration, graft versus host disease 

Head and neck Salivary gland malignant tumours, oral cancer, 

radiotherapy pharyngeal cancer 

Table I. Causes of salivary gland hypofunction (Taken from Ship, 2002) 
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1.5.1.1 Head and Neck Radiotherapy 

A common treatment modality for oral and pharyngeal cancers is radiotherapy, and a 

clear relationship has been established between radiation and salivary dysfUnction. 

There is a dose response relationship between radiation and salivary flow rates (Valdez 

et aL, 1993). Doses of radiation between 2100 to 4000 cOy have been known to cause 

severe damage to salivary glands, and since for most head and neck cancers radiation 

doses are greater than 4500 cGy, this is a common sequel of this kind of treatment 

(Parsons, 1994). 

The serous acini of salivary glands are the most radiosensitive followed by mucous and 

ductal cells, and although the exact mechanism of cell damage is still not completely 

understood, the sequence of cell death is easily observed (Nagler et all, 1997). In 

patients receiving high doses of radiation for 5 days a week, the stimulated salivary flow 

response drops 57% after the fist week, and 76% after 6 weeks and 95% after three 

years (Nagler et all, 1997). 

1.5.1.2 Medication -induced salivary 2land dysfunction 

Drug-induced salivary dysfunction is very important to recognise because it is 

correctable. Over 400 drugs can affect salivary flow, classes of drugs which are 

frequently involved (See table I) include anorexic drugs, antidepressants, antipsycotics, 

sedatives hypnotic, antihistamines, antiparkinsonism drugs, antihypertensive agents, 

diuretics, opiates, muscle relaxants, imunosupressive agents and medication for 

hiperacidity of stomach (Atkinson & Fox, 1992). Elderly peolple are a major target 

population for these kind of situations as they are often affected by pathological states 

and use a proportionally more elevated number of drugs than other age groups 

(Mulligan & Sobel, 1994). It is, however, not uncommon that these patients who are on 

medication do not perceive changes in either the amount or quality of saliva even if the 

medication is known to impair salivary function (Billings et aL, 1996). Thus, the 

absence of subjective complaints of oral dryness does not indicate adequate saliva 

production. Accordingly, diagnosis of medication induced hyposalivation require 

measurements of salivary output, and should be routinely performed in medicated 

patients (Navazesh, 1994). 
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Medications can affect the production of salivation in number of ways. It might 

influence the neural regulation central or peripherally via interactions with the 

autonornic nervous systems on the salivary gland tissue. It is likely that most frequently 

medication induced reductions in salivation are associated with peripheral interactions 

at the receptor level in the gland tissue. Thus, drugs that inhibit receptor systems like the 

muscarinic, alpha-adrenergic and beta-adrenergic may result in hyposalivation and 

compositional changes of the saliva. Other medications may cause effects indirectly via 

affecting the salt and water balance of the body or the hormonal or metabolic status. 

Furthermore, medication induced inhibition of the transport mechanisms responsible for 

the secretion of electrolytes, water and proteins in salivary cells may also result in 

reduced saliva output and compositional changes (Smith, 1994). 

1.5.1.3 Systemic diseases affecting salivary gland function 

The number of systemic conditions which salivary glands are involved with is 

overwhelming (see table 1). Usually they fall into one of these categories Infectious, 

metabolic, autoimniune, hormonal or neurological. In infectious diseases such as acute 

parotiditis (Mumps) the inflammatory infiltrate in the gland is responsible for the 

symptoms which are acute (gland swelling and pain) and disappear spontaneously upon 

cure of the disease. In autoimmune diseases such as Sjorgen syndrome chronic 

progressive lymphocyte infiltrate impairs salivary gland function. In metabolic diseases 

salivary involvement may be directly related with the disease like chloride defective 

transport mechanism underlying cystic fibrosis. However, more often salivary 

dysfunction is secondary to an altered metabolic state such as dehydration, or impaired 

protein synthesis. In hormonal diseases, the electrolyte-altered state or dehydration is 

the major causes of salivary dysfunction. Neurological diseases are characterised for 

lack of neural function, which controls the gland. 
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1.5.1.3.1 Diabetes and salivary secretion 

Diabetes is probably the most frequent metabolic disease with salivary implications. In 

fact, salivary hypoflinction and xerostornia have long been recognized features of 

diabetes mellitus type I and II, particulary when there has been dehydration and 

inadequate glucose blood control (Chavez et al., 2002). Salivary impaired function has 

been demonstrated to occur more fiequently in diabetic patients with previous history of 

neuropathy (Moore et at, 2001). T cell lymphocitic infiltration in parotid gland 

parenchyma similar to the auto-imune inflamatory infiltrate present in the pancreas of 

type I diabetic patients has also been reported and accounted as a contribution factor in 

salivary alterations (Markopoulos et at, 1998). In addition, auto-imune anti-bodies 

present in diabetic serum were recently demonstrated to be present in saliva of diabetic 

patients (Todd et at, 2002). 

Qualitatively, saliva of type I and II diabetic patients has been described to have, 

increased protein and glucose concentrations (Twetman et at, 2002), diminished anti-

oxidant capacity (Belce et at, 2000) and EGF concentration (Oxford et at, 2000). 

These modification have been pointed responsible for the major incidence of oral 

infections such as caries (Twetman et at, 2002), candida, periodontitis and xerostomic 

consequences in the diabetic patient (Oxford et at, 2000). 

1.5.2 Salivary function and a!eing 

Salivary gland dysfunction and xerostomia are common problems among the adults and 

tend to increase with age (Osterberg et at, 1992). Actual estimation of xerostomia 

prevalence in elders over 65 years reaches 30% (Ship et at, 2002). The idea that the 

ageing process in itself could be responsible for diminished salivary output over 

individual lifespan was brought in by earlier histomorphometric studies confirming 

salivary glands parenchyma changes in older populations (Scott, 1987). Loss of over 1/3 

of acinar fluid producing cells replaced by adipose and fibrotic tissue and a proportional 

increase in ductal epithelial cells have been reported in parotid and submandibular 

glands in individuals of advanced age (Ariji et at, 1994). However, studies measuring 

salivary output in healthy individuals are controversial. Cross-sectional evaluations of 

salivary flow rates revealing lower flow rates among older healthy individuals have 
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been reported by some authors ( Navazesh, 1992; Cowman et at, 1994). On the other 

hand, more recent studies suggest salivary glands to be relatively age-stable (Ship et at, 

2002) with cross-sectional (Jones & Ship, 1995) and longitudinal (Ship et at, 1995) 

studies examining whole, parotid and submandibular flow rates in healthy subjects 

revealing no general diminution with age, which is contrast to what should be expected 

from histomorphometric studies (Scott, 1987). Is still not clear why a great number of 

functional studies demonstrate age stable output in the presence of reduced acinal cell 

volume across the human life-span. It has been hypothesized that young adults contain a 

substancial excess of fluid producing tissue, constituting a secretory reserve, which is 

lost and replaced by fat and connective tissue with aging. Thus, older people deplete 

their hypothesized secretory reserve (Fergusson, 1996; Ship et aL, 2002). It is theorized 

that adequate or young-adult levels of secretory function can still be achieved in the 

elderly as long as no further stress is placed on the system. Most older adults, however, 

are not free from disease and are likely to be at increased risk from many non-

physiological or exogenous conditions that could further reduced or compromise the 

glands purported limitçd reserve capacity. Thus, the aging process would not be directly 

resposible for the prevalence of xerostomia, but for the greater vulnerability of salivary 

glands to external insults instead. However, further research is needed to prove the 

existence of a secretory reserve hypothesis and clarii& the true influence of the aging 

process in salivary secretion which remains controversial. 

1.5.3 Burning mouth syndrome 

Burning Mouth Syndrome (BMS) is a condition of unknown aetiology, receiving wide-

spreading attention in Dental Scientific community because of its life quality 

impairement potential. It is characterized by stomatodynia (pain and burning sensation 

of the oral mucosa) and it is not associated with remarkable organic objective causes. 

Among other factors saliva is thought to play a major role in BMS symptoms as it 

possesses specific rheological properties which are known essential for maintaining a 

balanced situation in the oral cavity. Recent litereature presents evidence that patients 

with BMS seem to have changes in salivary flow and composition (Chimenos-Kustner 

& Marques-Soares, 2002). 
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1.6 Magnesium 

Magnesium is named after the Greek City, magnesia where large deposits of 

magnesium carbonate were found. Magnesium sulphate was isolated from Epson spring 

water in 1195 by Grew. Several forms of magnesium carbonate and oxide were isolated 

in the XVIII century by Valentine and Black respectively. In 1808, Sir Humphrey Davy 

became the first to isolate the impure metal form of magnesium. Pure form of 

magnesium was obtained in 1829 by Bussy (Mooren & Singh, 1997). Magnesium is the 

eighth element in order of abundance both terrestrially and cosmically (Emley, 1966). 

Magnesium is extremely electropositive and readily loses two electrons to yield the 

divalent cation Mg2 . Magnesium ions (Mg2 ) have an ionic radius approximately two 

thirds that of calcium and sodium ions and one half that of potassium ion (Williams, 

1993). It is the most charge dense of all biological cations. This density results in having 

the largest hydrated radius and the smallest atomic radius among biological cations 

(Roof & Maguire, 1994). The small magnesium atom accommodates 6 oxygen ligands 

to form a stable Mg (H20)6 2  hydrate. These water molecules exchange very slowly 

with bulk water with exchanges rates three orders of magnitude less than those for Ca 2 , 

K or Nat The hydrated form of Mg 2 , which is encountered by membrane transpoiters, 

has 300-350 times the volume of the unhydrated forms of either Ca 2 , K or Nat The 

slow rate of water removal of hydration is the major rate limiting factor controlling the 

ability of Mg2*  to react with membrane transport systems (Jung & Brierley, 1994). 

1.6.1 Biological Roles of Magnesium 

The importance of extra and intracellular magnesium has become gradually recognised 

during the last century. At the present moment, pathologies such as diabetes, 

hyposecretion, cardivascular diseases and dyslipidemias are all associated with an 

altered magnesium metabolism ( Sheehan, 1991; Altura& Altura, 1990; Geux et aL, 

1993). Magnesium has also been used as an adjuvant in the therapeutics of cardio. 

vascular and liver diseases among others (Sueta et aL, 1994; Weiss & Lasserre, 1994; 

Crippa & Giorgi-Pierfranceschi, 1997; Yago et aL, 2000). 

In the body, most of magnesium is found mainly in bone (52%), followed by skeletal 

muscle (46%) and extracellular fluid (2%) (Em, 1987). Senim levels of magnesium 
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account for less than 1% of total and is controlled by the gastro-intestinal tract and 

kidneys. Dietary intake is absorbed in jejunum and ileum in a proportion of 30-50% 

(Reinhart, 1988). Control of the absorption exists and depends on the amount and the 

type of diet (Gullestad cx aL, 1994; Durlach, 1988). Excretion of magnesium is 

controlled at kidney level through variable reabsorption in the loop of Henle. Here, 

different hormones have been shown to control the reabsorption process determining the 

amount of magnesium being excreted in urine, examples include: calcitonin, glucagon, 

parathyroid and anti diuretic hormone all of which seem to favour magnesium 

reabsorption (Quamme, 1989; Rouffignac et aL, 1993). 

Magnesium is essentially an intracellular ion, approximately 98% of non-skeletal 

magnesium being in the intracellular compartment. In fact, magnesium is the second 

most abundant intracellular divalent cation exceeded only by potassium (Reinhart, 

1988). Within cell, magnesium plays a vital role in the regulation of numerous 

biochemical and physiological processes. It is involved in the synthesis of DNA and 

RNA as well as maintenance of their conformation (Henrotte et aL, 1993). Possibly in 

relation to its capacity to form complexes with phospholipids, magnesium has been 

demonstrated to affect membrane fluidity and permeability (Storch & Schachter, 1985; 

Beavis & Garlid, 1987). Intracellular magnesium has been associated with processes as 

important as the secretion of hormones including insulin (Ishizuka et aL, 1994) and 

prolactin (Kasahara, 1993). Many of the actions of magnesium are due to its role as a 

co-factor of a wide range of enzymes. It is well know that magnesium activates virtually 

all the enzymes involved in the metabolism of phosphorylated compounds, as well as 

many enzymes in the glycolytic and tricarboxilic acid pathways (Heaton, 1990). 

Magnesium has also been shown to be implicated in the regulation of several membrane 

transport systems such as Na/}C ATPase, Ca 2  pumps, Na/Cr/1C , C/Ct, Na/1t and 

CI7HCO3' co transporters (Heaton, 1993; FlatmEn, 1993). 

Inside the cell 90-95%, of magnesium are bound to highly charged anionic ligands such 

as ATP, ADP, RNA, polyphosphates, proteins and citrate (See Birch, 1993 for review; 

Gunther, 1990; Flatman, 1991; Cohan, 1991; Wacker, 1993). Depending on the cell 

type, free and bound magnesium have been shown to be completely or partially 

exchangeable (Gunther, 1990). Intracellular distribution of magnesium varies 

accordingly to cell type (Griwold & Pace, 1956; Rosenthal et aL, 1956; George & 

Heaton, 1975; George & Polimeni, 1972; Clemente & Meldosi, 1975). In epithelial 

secretory cells such as pancreatic acinar cells magnesium seems to be distributed around 

61 



rough microsomes and inside zymogen granules (Clemente & Meldosi, 1975). This 

latter suggestion was supported by the fact that magnesium is released with enzymes in 

both saliva (Nielsen & Petersen, 1972) and pancreatic juice (Jansen et at, 1980). 

Cytosolic magnesium concentration of mammalian cells is regulated at a level way 

below that predicted by the Nerst's potential. Thus, magnesium is not passively 

distributed indicating that an active transport regulates the intracellular magnesium in 

order to maintain low levels in sublingual acini (Zhang & Melvin, 1995) and pancreatic 

cells (Lennard & Singh, 1992; Mooren et at 2001) among others. 

A sodium dependent efflux mechanism for magnesium has been demonstrated in 

numerous cell types (Vorman & Gunther, 1993; Mooren & Singh, 1997) including sub-

lingual acini (Zangh & Melvin, 1995). This system has been shown to be quite 

heterogeneous depending on cell type (See Yago et at, 2000 for a review). 

Over the past few years research has provided evidence that the control of intracellular 

magnesium horneostasis is altered by a number of receptors, especially those that 

promote calcium mobilisation. Also, magnesium has been shown to play an important 

physiologial role in secretagogue-evoked secretory responses in some epithelial 

secretory cells such as acinar pancreatic cells and gastric parietal cells (Yago et at, 

2000; Mooren et at, 2001). In the pancreas, the classical secretagogues such as ACh 

and CCK-8 can elicit marked and drastic changes in [Mg 2 ]1 which seem to be closely 

related to the Ca2  signalling process (Lennard & Singh, 1992; Yago et at, 2000; 

Mooren et at, 2001 ). In rat and mouse pancreatic segments, raising [Mg2o in the  

perfusate to 10 mlvi resulted in a marked inhibition of ACh, CCK-8 and EFS-induced 

protein, trypsinogen and amylase secretion as compared to responses obtained in 

(normal 1.1 mM and 0 mM) [Mg2 ]o (Juma et at, 1996; Yago et at, 2000). The 

inhibitory effects of high [Mg 21 ]0 on the secretory activity of the exocrine pancreas have 

been proven to be mediated through a disruption of the Ca 2  signalling events, possibly 

by Mg2  acting at different stages of Ca 2  mobilisation process such as efflux from 

internal stores and capacitative Ca 2  entry (Mooren et at, 1997, 2001; Lennard & 

Singh, 1992; Geada, 1998). These facts implicate magnesium to be under tight 

regulation, but also to exert important regulatory functions in the stimulus-secretion 

coupling events in pancreatic acinar cells. 

Salivary glands are secretory organs of epithelial origin. The presence of Mg- dependent 

transport systems have been demonstrated in the rat sublingual acinar cells, similarly, 

Mg2  efflux has been shown to be under the influence of muscarinic receptor 
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stimulation (Zhang & Melvin 1994; 1995). However, the cellular mechanisms of Mg 

homeostasis and its possible physiological role in the salivary secretory process remains 

to be elucidated. Thus, this study was designed to focus on the role of perturbation of 

[Mg24]o  on salivary gland secretion. 

1.7 Scope of this work 

1.7.1 Objectives 

The main objective of this work was to gain an understanding of some of the 

physiological aspects of salivary gland ftinction and regulation, both at basic and 

clinical levels. The initial objective was to investigate the effect of a perturbation of 

[Mg24] o  on basal and secretagogue-evoked salivary protein and amylase secretion and 

moreover to characterise Mg 2  transport system in parotid acinar cells. Very little is 

known about the possible roles of the magnesium ion in the stimulus secretion-coupling 

mechanisms responsible for primary acinar salivary production, this study was 

originally focused on a major part of the research undertaking the following 

investigations: 

Specific aims-section A: 

a) To examine the effects of perturbation of [Mg 21]o  on secretagogue-evoked protein 

secretion and [Ca24]1 in the rat sub-mandibular gland. 

b) To examine the effects of perturbation of [Mg 24]o on secretagogue-evoked amylase 

secretion and [Ca24]1 in the rat parotid gland in order to gain insight into the 

relationship between Mg 24  and C2 signalling in the stimulus-secretion coupling 

process in parotid acinar cells. 

c) To study the effects of secretagogues and transport inhibitors on [Mg 24]1 variations 

and on membrane transport in magnesium unloaded cells at the physiological level. 
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Specific aims-section B 

The second part of the study employed human subjects to investigate the influence of 

age, gender, oral surgical recovery and diabetes (types I and II) on salivary flow rates 

and its compostion. The study measured salivary resting and stimulated flows, and 

levels of C, Na', Mg2 , Ca2t Zn2+  and Cl-  in the saliva. The rationale was to improve 

our knowledge about normal and pathophysiological composition of saliva since this is 

believed to be crucial and also of major importance for a better clinical practice in oral 

medicine. 
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CHAPTER 2 

M4TERIALS AND METROPS 
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2.1 Materials 

All chemicals were purchased from Sigma (Spain), except collagenase, which was 

obtained from Worthington Biochemical Corporation, (New Jersey, USA), Fura-2 and 

Magflira 2 were obtained from Molecular Bioprobes Europe (The Netherlands). 

2.2 Animal experimental procedures 

All animal experiments were performed on either isolated parotid or submandibular 

glands taken from adult (250-3 50 g) male and female CD strain Wistar rats. The Ethics 

Committees of University of Central Lancashire in Preston, England, ISCS-Sul in 

Portugal and University of Extremadura in Spain approved all procedures. Animals 

were humanely and swiftly killed by blow to the head followed by cervical dislocation. 

An incision was made in the upper part of the neck. The parotid and submandibular 

glands were quickly removed and placed into a modified Krebs-Henseleit (KH) solution 

comprising of(mM): - NaCl, 103; KCI, 4.76; CaC12, 2.56; MgC12, (either 0, 1.1, 5 or 

10); NaHCO 3 , 25.0; NaH2PO4, 1.15; fl-glucose, 1.8; Sodium Pyruvate, 4.9; Sodium 

Fumarate, 2.7 and Sodium Glutamate, 4.9. The solution was kept at pH 7.4 while being 

continuously gassed with a mixture of 95% 02: 5% CO2 and maintained at 37°C. In this 

study a concentration of 1.1 mM Mg2  was used as the normal [Mg 2 ] o  since this is the 

physiological total plasma Mg 2  (Yago et aL, 2000) and moreover, other authors had 

previously used the same concentration to investigate the effects of changes of [Mg 2 o  

on nerve-mediated and secretagogue-evoked secretory responses in the exocrine 

pancreas (Francis et aL, 1990; Lennard & Singh, 1992; Wisdom et all, 1996; Mooren et 

aL 2001). In addition, both zero [Mg2 o  and an elevated (5 and 10 mlvi) {Mg 2 ] o  were 

used for comparison in order to investigate the effects of [Mg 24]o. During the 

perturbation of [Mg 2 ] o , an equivalent concentration (mlvi) of NaCI was either removed 

or added to the modified KH solution to maintain a constant osmolarity. 
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2.3 Measurement of amylase output from parotid gland se2ments 

during perturbation of extracellular FMg 2 h 

The parotid glands were cut into small segments (10-25 mg) and a total weight of about 

175-250 mg was placed in a Perspex flow chamber (Vol. = 1 ml) and superfl.ised with 

oxygenated KR solution at 37°C at a flow rate of 1.8 ml miii'. The effluent from the 

chamber passed directly to an on-line automated fluorimetric assay for the continuous 

measurement of amylase output. This method is a modification of the original technique 

described previously by Rinderknecht and Marbach (1970) and subsequently by 

Michalek and Templeton (1987). It depends essentially on the liberation of dialyzable 

fluorogenic products from the enzymatic breakdown of a modified starch (amylopectin 

anthranilate) used as substrate by amylase (see Appendix I for preparation of 

amylopectin anthranilate and preparation of substrate). Figure 2.1 shows a diagram of 

the set-up used in the present study. The effluent from the chamber was mixed with an 

air segmented substrate solution and subsequently passed through two glass mixing 

coils (27 and 14 turns respectively) submerged in a thermostatically heated water bath 

(37C). The mixture was dialysed through a cuphrane membrane (Technicon part No. 

933.0225.01) embedded in a 12 "dry operated dialyzer (Bran-Luebbe, Germany) with a 

recipient stream buffer (NaCl, 0.05 M and Triton-X-100, 0.1% v/v, at pH 7.0; see also 

Appendix 1 for recipient preparation). The air segmented recipient stream which 

contains the released fluorochrome was then pumped via a debubbler through a 37°C 

thermostated removable 750 j.xl quartz flowcell cuvette placed in a Perkin Elmer LS 50 

B fluorimeter. The fluorescence was monitored with excitation and emission 

wavelengths of 343 nin and 414 rim, respectively. Excitation and emission slits were set 

at 5 nit Continuous cz-amylase output fluorescence intensity data were collected 

directly into a computer and processed via a Winlab Software. 
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95% 02:5% CO2 

Figure 2.1- Diagram of the set up for on-line amylase measurements (Adapted 

a-amylase (Sigma type 11-A) was used as a standard to calibrate the assay at both 

beginning and end of each experiment. One unit of amylase is defined as the amount of 

from Michatek & Templeton, 1987). 

amylase, which can liberate 1.0 g of maltose from starch in 3 minutes at pH 6.9 and 

20°C. To test for linearity of the system several concentrations (0.1 - 60) units. ml'. a-

amylase were tested (see Figure 2.2). Standards of 30 Units . ml' a-amylase were 

chosen for routine use throughout the experiments. 

After each experiment the tissue was removed from the chamber, blotted dry and 

weighed. Conversion of fluorescence intensity was performed in order to express the 

results as Units of arnylase. mi 1  . (100mg of tissue)'. 
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For the study of nerve-mediated secretion, a special Perspex tissue chamber containing 

silver wire electrodes for electrical field stimulation (EFS) was employed. The 

parameters of EFS were: amplitude, 50 V; frequency, 5, 10 or 20 Hz; pulse duration, 1 

ms. 

Basal amylase output was obtained after allowing tissue to stabilize for 40 minutes. 

During secretagogue stimulations, either acetylcholine (ACh), noradrenaline (NA), 

Isoprenaline (ISO) or phenylephrine (PHE)) was added directly to the superthsing 

chamber in known concentrations. Either EFS or secretagogue stimulation was always 

applied for a duration of 10 minutes. Furthermore, in those experiments involving the 

effects of the absence of extracellular calcium, Ethylene-Glycol-Tetracetic Acid 

(EGTA) (1 mM) was added thus making the solution nominally calcium free. Figure 

2.2 shows a typical time course chart recording of amylase secretion from one 

experiment. 
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Figure 2.2 Time course of typical on-line experiment for the measurement of amylase 

output for superfitsed parotid segments. I in the ordinate axis means fluorescence 

intensity. (a) addition of amylase standard (30 U. mF') to the perthsing chamber for 10 

mm, (b) addition of the tissue segments to the chamber (see arrow). After allowing 

tissue to stabilize for 40 minutes and basal amylase was maintained at a constant steady 

state level (c) the tissue was stimulated with either a secretagogue or EFS (10 Hz, 50 V, 

I ms) (see arrow) at (d) for 10 mm. At the end of the stimulation period (e) the tissue 

was superftised in normal KH solution for another 30 - 40 min until amylase output 

decreased to a low level (0. At this point the tissue was removed from the chamber and 

weighed. 
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2.4 Measurement of total protein output from submandibular yland 

segments during perturbation of IMg2 Io 

The isolated submandibular glands were cut into small segments (10-20 mg) and the cut 

tissues were suspended in 20 ml oxygenated KR solution. The tissue segments were 

rinsed 34 times with KH solution (20 ml each) to remove any protein due to cutting of 

the tissues. Submandibular segments approximately (200 mg) were incubated for 30 

min with either KR solution alone (control) or KR solution containing either 10 3  M 

ACh, 1 -5  M NA or 10 5  M PHE, during perturbation (0 mM, 1.1 mI'i4, 5 mM, 10 mM) 

of [Mg2 o  in a shaking water bath it 37°C. Following incubation the tissues were 

removed, blotted dry and weighted. Total protein concentration in the effluent was 

measured using an established colorimetric method (Lowry et aL, 1951) with bovine 

serum albumin as a standard. Protein output was expressed as p.g . mr'.(bOO mg of 

tissue)'. 

2.5 Preparation of isolated acinar cells suspension from parotid and 

submandibular glands for measurements of either FCa 2 1j or 

using both cell suspension and single cell techniques. 

Adult male Sprague-Dawley rats weighing between 200 and 300 g were used 

throughout this study. Glands were obtained and treated as explained in the 

experimental procedure. Isolated acinar cells suspension from either parotid or the 

submandibular glands were obtained by a modification of an established method by 

(Baum et aL, 1990): 

Glands from one animal were placed on a plastic Petri dish with 1 ml incubation 

medium comprising in [mM]-NaC1, 137; KCI, 5,4; MgCl2, 1.1; CaC12, 1.28; Na21 -1PO4, 

0.33; KR2PO4, 0.44; Glucose, 5.6; Hepes, 33; pH 7.4; 0,1% w/v bovine serum albumin. 

Any remaining extraneous tissue was quickly removed and the glandular tissue was 

chopped with iris scissors (300 times) until a soft homogenate consistency was 

obtained. Minced tissue was then transferred to 50-ml propylene tube filled with 10-mi 

dispersion medium consisting of incubation medium to which 37 U.ml 4  of collagenase 

and 0.1 mg.mF' of soya bean trypsin inhibitor was .added. Tissue suspension was then 

gassed with 95% 02 + 5% CO2 for 10 seconds capped and incubated in a shaking water 
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bath at 120 cycles.min' for 80 mm. At 20 min intervals cell suspension was gassed for 

10 seconds and pipetted through a plastic 10 ml pipette up and down for 10 times to aid 

dispersion. After 80 mm, the resulting acinar cell suspension was centrifUged at 100 g 

for I min and resuspended in incubation medium. This procedure was repeated three 

times to wash off the collagenase. The cell suspension was then pipetted through a 1 ml 

plastic pipette and filtered through a double layered muslin gauze, centrifUged and 

resuspended in 10 ml of incubation medium containing 0.1 mg.mr' soy bean trypsin 

inhibitor, maintained at 37°C and gassed every 20 min before being used in the 

experiment. 

Cell suspensions from either the parotid or submandibular glands were loaded with 

either 2 iM of Fura-2 acetylmethoxy ester (AM) or Magfiira-2 (AM) for [Ca 21]1 and 

[Mg2 ]1 measurements respectively in the presence of 0.025 % pluronic acid for 40 mm 

at room temperature (20°C). After the loading procedure, cells were centrifuged, and 

resuspended in an incubating medium (comprising in (mM) - NaCl, 137; KCI, 5,4; 

MgCl2, 1.1; CaCl 2, 1.28; Na2HPO4, 0,33; KH2PO4, 0.44; Glucose, 5.6; Hepes, 33; pH 

7,4; 0,1% w/v bovine serum albumin) for 30 min at 37°C for &omplete desterification of 

the probe. Centrifuigation and resuspension in incubation medium were performed 

before each experiment. In experiments where extracellular Mg 2  was perturbed, the 

cells were centrifUged and then resuspended in incubation medium containing the 

appropriate concentration of MgCl 2 . Gassing was performed every 20 mm. Cell 

viability was assessed using the blue trypan test and batches of cells with less than 95% 

viability were discarded. 

2.6 Measurement of [Ca2+11 in fura-2 loaded submandibular acinar cell 

suspension using spectrofluorimetry 

Measurement of [Ca 21]1 was performed in Fura 2-AM loaded cells by a method 

described below. A volume of 2 ml of submandibular cell suspension, was added to an 

Hellma quartz cuvette in a LS 50 B (Perkin Elmer, Beaconsfield, Bucks, England) 

spectrofluorimeter; and stirred slowly at 37°C. Cell suspension was excited by a 

fluorescent xenon source at wavelength of 340 nm and 380 nm and fluorescence 

emission was read at 510 nm. Slits were set at 5 nm. After a initial period of 50 seconds, 

the basal [Ca2']i fluorescence intensity was read and stabilised. Thereafter, ACh (10 
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M) was added directly to the cell suspension. At the end of each experiment and for 

calibration purposes, a maximum and minimum of fluorescence (Rmax & Rinin) was 

obtained by adding 5 jiM digitonin and 10 mM EUTA to the cuvette, respectively. 

Fluorescence intensity was converted in [Ca 211 expressed in nM by established methods 

(Grienkiewicz etaL, 1985). Kd for Ca2  was 224 and calibration calculations were 

performed through a Winlab software by Perkin Elmer, Beaconsfield, Bucks, England. 

These experiments were performed in different [Mg 2 o (0 mlvi, 1.1 mlvi, 5 mM and 10 

mlvi). Peak. [Ca2 ]1 values were chosen from raw data collection points as the highest 

value obtained. Plateau values were calculated with software from raw data as mean 

values between 100 sec and 200 sec after peak value. 

2.7 Measurement of FCa 2ij and [Mg.211 in Fura-2 and Magfura-2 

(respectively) loaded single parotid acinar cells, using 

microspectrofluorimetry. 

A small volume (250 RI)  of parotid cell suspension in different [Mg 24]o solutions was 

placed on a thin glass cover slip attached to a Perspex perfusion chamber. Thin glass 

cover slips were imbedded and coated with Polly-lysine and let to thy in open air, to 

promote cell attachment. Perfusion (approximately I ml . min) at room temperature 

(22° C) was started after a 2-min period to allow spontaneous attachment of the cells to 

the glass cover slip. The chamber was placed on the stage of an 

73 



Perilis ion 
Solutions 

Cells 

Aspiration 

11111k111111 
4IIIIIIlllIIIlIIIlII 
liIIIIIIIIIIIIlIIIIp 

Figure 5.1- A schematic diagram of the microspectrofluorescence set up (Taken 

from Mateos, 1998). 

inverted fluorescence-equipped microscope (Nikon Diaphot 300), equipped with a Fluor 

X40 fluorescence objective. Cells were excited at 340 rim and 380 run (for both Fura —2 

and Magfura - 2) by a computer filter wheel, and the emission fluorescence was 

detected at 510 nM. The emitted images were captured by a cooled digital CCD camera 

(C-6790, Hamamatsu Photonics) and recorded using dedicated software (Argus-His Ca, 

Hamamatsu Photonics). Once a basal level of either [Ca2h]j  or [Mg2 ]i was obtained 

cells were superflised with 10 4  M ACh in the incubation medium. Traces were 

expressed as 340/380 ratio fluorescence variations instead of calibrated traces, as this is 

now a generally accepted procedure (Pariente et a!, 2003). 
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During the measurement of [Ca2 '], Fura-2 AM loaded acinar cells were stimulated 

with ACh (10 M) in zero, normal and elevated [Mg 2 0. In some experiments 

extracellular calcium ([Ca2l]o)  was removed from the superflising medium which 

contained 1 mlvt EGTA. Cells were stimulated with 10 5  M ACh in zero, normal and 

elevated [Mg21]o  to monitor its effects on C2 liberation from intracellular stores. In 

these experiments following recovery to resting basal [Ca 2 '11 levels, cells were then 

perfused with a medium containing 1.8 mM [Ca 210  as this is known to trigger 

capacitative calcium entry (CCE). These experiments were repeated in different [Mg 21]0 

to study its effects on CCE. Final [C2 1] value was expressed as 340/380 fluorescence 

ratio (Pariente a aL, 2003). 

During the measurement of [Mg? +Ii, Magfiira-2 (AM) loaded acinar cells were perfused 

with different [Mg2 o media to obtain cytosolic Mg2 . In other experiments, cells were 

stimulated with ACh (10 M) in different [Mg2 ']o and in the presence and absence of 

extracellular Nat In some experiments, extracellular Na was removed and instead 

NMDG was added. The rationale was to characterise the mechanism of Mg 2  efilux. In 

another series of experiments, known concentrations of a number of transport inhibitors 

such as dinitrophenol, bumetanide, lidocaine, amiloride and quinidine were also 

employed in the absence and presence of 10 5  M ACt'. Final [N4 g2l  i value was 

expressed as 340/380 fluorescence ratio (Pariente a aL, 2003). 

2.8 Measurement of human salivary secretion and its quality in normal 

and pathophysioloejcal conditions 

2.8.1 Subiect selection 

Fifteen human male and female subjects were selected for each group. Subjects were 

selected as volunteers and each signed a consent form. This procedure received ethical 

clearance and approval by local Ethic Committees at ICSS Portugal and at University of 

Central Lancashire in Preston. Age and gender were important criteria in order to 

investigate and establish an age and gender dependent relationship of salivary 

composition profile within the healthy groups. For pathophysiological studies either 

diabetic or oral surgery recovery patients were selected. Saliva was collected at either 
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the Military Hospital, the Portuguese Diabetes Association, and a private dental clinic in 

Lisbon owned by the PhD student 

2.8.2 Saliva collection 

Saliva collection was undertaken between 7 and 8 am, and subjects were instructed to 

being in a fasting state. For the study of the effects of surgery on salivary gland 

function, saliva collections were performed between 7 and 8 am on the day of the 

surgery and exactly 48 hours after the surgery. All surgical procedures were performed 

in the morning. 

Both resting and stimulated whole saliva were collected by established methods 

(Navazesh, 1992). Unstimulated saliva was collected by spitting method. Subjects were 

instructed to swallow the saliva present in the mouth and a chronometer was started. At 

one-minute intervals, subjects were instructed to salivate into previously weighed 50-ml 

falcon tubes during 10 minutes. Stimulated saliva was collected by stimulation with 

citric acid method. Subjects were instructed to swallow the saliva present in the mouth 

and a chronometer was started. Four drops (0.17 g) of citric acid (0.1 M) were applied 

to tongue dorsum and subjects were instructed to roll the tongue in order to spread the 

citric acid. At one-minute intervals saliva was collected by spitting into previously 

weighed propylene 50-mi falcon tubes and more four drops of citric acid were applied. 

This procedure was repeated during 10 minutes. Immediately after collection, the 

salivas were weighed and stored at - 80°C until used for analysis procedures. 

Rates of resting and stimulated secretions were expressed in g. min' 

2.8.3 Ion analysis 

Saliva collected was analysed for the concentrations of Cl, K, Na, Ca 2t Mg2  and 

Zn2t Saliva samples were defrosted at room temperature and then centrifbged at 6000 

rpm for 10 minutes before beeing used in order to remove extrinsic contamination 

elements such as oral epithelia cells, microrganisms, and food debris among others. 

Concentration of Cl' was determined with the use of a Chloride Titrator (Jenway 

England), and the results are expressed as mMol. l. 
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For the determination of the other ions, saliva was diluted at either 1/100 or 1/1000 and 

either iC, Na 1 , C2, Mg2  or Zn2  concentration was obtained in a Shimadzu AA 670 

Atomic Absorbance Spectrophotometer, (Japan). Results were expressed as mg . r'. In 

order to minimise ionic contamination of salivary samples, propylene tubes of saliva 

collection were previously decontaminated by immersion in 60% w/v nitric acid during 

a two-week period before collection. 

2.8.4 Total protein analysis 

Saliva samples were defrosted at room temperature and the centrifuged at 6000 rpm 

during 10 min before use. Total protein concentration expressed as mgi' was 

determined using established colorimetric methods (Lowry et cxl., 1951) with the use of 

an Helios spectrophotometer by reading samples at 720 nm. Bovine serum albumin was 

used for calibration purposes. 

2.9 Statistical analysis of all data 

Data are presented either as original chart recordings or as Mean ± Standard Error of the 

Mean (S.E.M). Control and test values were compared using plired or unpaired 

Student's t-test and ANOVA or MULTLANOVA plus post Hoc test as appropriate 

(SPSS for Windows version 10.0). Values of P<0.05 were taken as significant while 

values ofP<0.01 were taken as highly significant. 
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CHAPTER 3 

EFFECT OF EXTRACELLULAR 

MAGNESIUM ON SECRETAGOGUE- 

EVOKED SECRETORY RESPONSES IN THE 

ISOLATED RAT SUBMANDIBULAR GLAND 



3.1 Introduction: 

Saliva is secreted mainly by three pairs of salivary glands and it performs a fundamental 

role in oral cavity homeostasis (Herrera et a!, 1988). Salivary secretion is controlled 

entirely by the autonomic nervous system (Ambudkar, 2000). The autonomic 

neurotransmitters, ACh and NA act via different stimulus-secretion coupling pathways 

involving cellular calcium (Ca2 ) and adenosine 3; 5 cyclic monophosphate (cAMP) to 

elicit secretion (Baum, 1987). Recently, the divalent cation magnesium (Mg 2 ) has been 

implicated in the exocytotic process of other exocrine gland such as the pancreas (Yago 

et al,2000). M624  is believed to exert its effect on secretagogue evoked secretory 

response via cellular Ca2  mobilisation (Francis et aL, 1990; Petersen, 1992). Since, the 

submandibular gland can secrete digestive proteins just like the exocrine pancreas, it 

was decided to investigate the effect of perturbation of extracellular [Mg 210  on ACh, 

PHE and NA evoked secretory responses on the rat submandibular gland. The rationale 

was to develop therapeutics strategies in the resolution of several diseased states usually 

associated with salivary gland function. 

3.2 Materials and Methods 

As described in Chapter 2. 

3.3 Results 

3.3.1 Measurements of totalprotein output 

Figure 3.1 shows a family of histograms of basal protein output in zero, normal (1.1 

mM) and elevated (5 mM and 10 mM) [Mg2io. The results show that both zero and 

elevated [Mg2 o  can inhibit basal protein output compared to normal [Mg 2io. 

Figure 3.2 shows the effect of 10 5M ACh on total protein out from submandibular 

segments during perturbation of [4g2]o  The control values during [Mg2 IIo are also 

shown in Figure 3.2 for comparison. The results show that ACh can elicit significant 

(P<0.05) increases in total protein output from submandibular segments compared to 

the respective controls. Maximal protein output occurred in the presence of normal (1.1 

mM) [Mg2 ']o In both zero and elevated [Mg 2io the secretory effect of ACh was 

significantly (P<0.05) reduced. 
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Figure 3.3 shows the effect of 10 5  M PHE on total protein output from isolated 

submandibular segments, incubated for 30 min at 37°C during perturbation of jMg 2i0. 

Like ACh, PFIE can also elicit marked increases in total protein output. Both zero and 

elevated (5 mlvi and 10 mlvi) [Mg21]o  can significantly (P<0.05) attenuate the PIlE - 

evoked total protein output compared to 1.1 MM [Mg2 ]o. 

Since both ACh (muscarinic receptor agonist) and PHE (ctl-adrenergic agonist) can 

stimulate total protein output from submandibular segments, it was decided to 

investigate the effect of sympathetic autonomic neurotransmitter, NA on protein output 

during perturbation of {Mg2 1]o. NA is known to exert its secretory effects via both 

cyclic AMP metabolism and Ca2  mobilisation. Figure 3.4 shows the effect of 10 5  M 

NA on protein output. The results show that NA can elicit maximal secretory effect at 

1.1 mM [Mg 4 ] o . Both zero and elevated [Mg 21]o attenuated the secretory responses to 

NA. 

3.3.2 Measurements of [Ca2ijdurin2 perturbation of [M?10 

Since a perturbation of [Mg21]o can have marked effects on secretagogue-evoked total 

protein output, it was relevant to understand the cellular mechanism of action of Mg 2t 

In the exocrine pancreas Mg 2  acts by regulating Ca2  mobilisation (Mooren el aL, 

2001; Yago et aL, 2000). Like the pancreas it is possible that Mg 2  may act in a similar 

manner in the salivary glands. Thus, it was decided to measure [Ca 24]i during 

perturbation of [Mg2 ']0 

Figure 3.5 shows original traces of [CW +]i in submandibular Fura 2-loaded acinar cell 

suspension in 0 mM, 1.1 mM, 5 mM and 10 mM [Mg2 o in basal condition and 

following stimulation with io' M ACh. The results show that supramaximal doses of 

the muscarinic agonist can elicit a marked transient increase in [Ca 211 within 5 - 10 

seconds of addition of the secretagogue (peak response). This is followed by either a 

gradual decrease or elevation in [Ca 21]1 (plateau phase) depending on the [Mg21]o.  The 

basal [Ca2 ]1, the initial peak phase (5 - 10 see) and plateau phase (150-200 sec) after 

ACh addition following [Mg21]o perturbation were measured and analysed and the data 

are plotted as a family of histograms in Figure 3.6. The results show that both zero and 

elevated [Mg2 1]o can markedly attenuate [Ca21]1  mobilised by ACh. 

80 



E 

Crh- 

0.16) 

S 
0 

ID] 

1.1 	5 	 10 	mM(Me410 

Figure 3.1 - Histograms showing basal total protein output from isolated 
submandibular segments in (a) zero, (b) 1.1 mM , (c) 5 mM and (d) 10 mM [Mg jo.  
Each point is mean ± SEM (n= 30-40) taken from 20 glands and 10 rats). Note that both 

low and high [Mg24]o significantly (p< 0.05) attenuated the basal protein ouput 
compared to normal (1.1 m?vl) [Mg 2 o. 
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Figure 3.2- Histograms showing total protein output from submandibular gland 
segments in control conditions (light columns) and during stimulation with 10 5  M ACh 
(dark columns) following perturbation of [Mg 24 o  (a) 0 mM, (b) 1.1 mM, (c) 5mM and 
(d) 10 mM. Each point is mean ± SEM (n8-12 taken from 8 glands and four rats). Note 
that both low and high [Mg]o significantly (p< 0.05) attenuated the secretory effect of 
ACh compared to normal (1.1 mM) [Mg2 o. 

82 	- 



•;• 	300 
C, 

- 200 

E 

CL 

IDO 

IL 

I.- 	50 

a 

  

 

d) 
c) 

350 

Li 	 5 	 10 	mM EMg2 I0 

Figure 3.3- Histograms showing total protein output from submandibular gland 
segments in control conditions (light columns) and during stimulation with 10 5  M PHE 

(dark columns) following perturbation of [Mg 2 ]o (a) 0 mM, (b) 1.1 mM, (c) 5mM and 
(d) 10 mM. Each point is mean ± SEM (n8-12 taken from 8 glands and four rats). Note 
that both low and high [Mg 2 ]o significantly(p< 0.05) attenuated the secretory effect of 
PFIE compared to the response obtained in 1.1 mM [Mg 2110 
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Figure 3.4- Histograms showing total protein output from submandibular gland 
segments in control conditions (light columns) and during stimulation with 10 M NA 
(dark columns) following perturbation of [T4g2 ] o  (a) 0 mM, (b) 1.1 mM, (c) 5mM and 
(d) 10 mM. Each point is mean ± SEM (n8-12 taken from S glands and four rats). Note 
that both low and high [Mg2 o  significantly (p< 0.05) attenuated the secretory effect of 
NA compared to the response obtained in 1.1 mM [Mg 2']o. 
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Figure 3.5-. Time course of [Ca 2+Jj in nM concentration in Fura-2 loaded submandibular 
cell suspension in a?  0 mM, b) 1.1 mM, c) 5 mM and d) 10 mM [Mg2io following 
stimulation with 10 M ACh. Traces are typical of 6-20 such experiments taken from 
10 animals. These results have been used to calculate the data shown in Figure 3.6. 
Vertical calibration is [Ca 21] , horizontal calibration is time (seconds). The anows 
indicate the time of ACh addition to the cell cuvette. Peak [Ca 2ji values were chosen 
from raw data collection points as the highest value obtained. •  Plateau values were 
calculated with software from raw data as mean values between 100 sec and 200 sec 
after peak value. 
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Figure 3.6- Histograms showing the mean (± SEM) (a) basal, ACh-evoked (b) peak and 
(c) plateau phases of the Ca 2  transient during perturbation of [Mg2 o. The control 
responses are shown for comparison. Each point mean ± SEM (n between 6 and 20 
taken from 10 animals). Peak [Ca21]1 values were chosen from raw data collection 
points as the highest value obtained. Plateau values were calculated with software from 
raw data as mean values between 100 sec and 200 sec after peak value. Note that high 
[Mg2 o significantly (p< 0.05) attenuated the a) basal [C2]1 compared to the response 

2+ 
obtained in 1.1 mM [Mg 2+ ]o. In both b) the peak and c) plateau phase of the [Ca ]' 
mobilisation both low and high [Mg 2 ]o significantly (P C  0.05? attenuated the [Ca 21] 
mobilisation compared to the response obtained in 1.1 mM [Mg ]o 
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3.4 Discussion 

The present study has demonstrated that the abundant divalent cation Mg 2  plays an 

important physiological role in the control of both basal and secretagogue-evoked total 

protein output from isolated submandibular gland segments. Either ACh, NA orPHE 

elicited marked increases in protein output in normal [Mg 24]0 . The secretory effect of 

PHE was more pronounced compared to the responses obtained with either ACh or NA. 

However, perturbation of extracellular [Mg4] o  employing either low or high 

concentrations of the divalent cation resulted in significant decreases (P<0.05) in both 

basal and secretagogue-evoked protein output. These results indicate that both hypo and 

hypermagnesemia are associated with decreased basal and secretagogue-evoked protein 

secretion. These results are in agreement with the finding of previous studies in which a 

modification in [Mg2 4]o  also resulted in decreased secretory responses in both the 

parotid and the exocrine pancreas (Francis et a!, 1990; Yago et al., 1999; Singh et a!, 

1995; Yago eta!, 2000) 

The question, which now arises, is: how does Mg24  act to reduce the secretory effect of 

either ACh, PHE or NA. It is now well known that C2 4  plays a major role in the 

stimulus-secretion coupling process. Thus, it was relevant to measure [Ca 2 4]1 both at 

rest and during secretagogue stimulation The results have also shown that the 

muscarmnic agonist ACh, elicited marked increases in [Ca 21]1 (both the initial peak and 

plateau phases) in submandibular acinar cells in normal [Mg 21]o. However, in low and 

elevated [Mg2 ']o  the ACh-induced cellular calcium mobilisation, both peak and plateau 

phases were significantly (P < 0.05) reduced compared to control values. It is 

noteworthy that in a previous study, it was shown that a modification of [Mg 21]o  had no 

significant effect on basal [Ca21]j  in parotid acinar cells (Yago ci at, 2002). 

Surprisingly, in this study, zero [Mg 2 ]o  had no effects on basal [Ca 2 ']1 compared to 1.1 

mM [Mg24]o . In contrast, both 5 mM and 10 mM attenuated basal [Ca 21] significantly 

(P<0.01) compared to 1.1 and zero [Mg 24]o. Taken together, these results suggest that 

Mg2 ' plays a major role in the control of Ca24  mobilisation both the release from 

intracellular stores and its entry into the cell since both the peak and plateau phases of 

the calcium transients correspond to release from intracellular stores and calcium influx 

from the extracellular medium, respectively (Metz ci at, 1990a,b). 
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The mechanism of action of Mg 2  in inhibiting secretagogue-evoked secretory 

responses in the submandibular gland is still unclear. However, it is possible that Mg 2  

is required for the activation of important Ca 2  regulatory enzymes. In the absence of 

[Mg2 ]o and possibly a decrease in [Mg2 ], the Ca2  -dependent enzymes that modulate 

C2 mobilisation are inactivated and thus, C2 transport is attenuated. In contrast, in 

elevated [Mg2 ]o the divalent cation acts like an antagonist to inhibit Ca 2  mobilisation. 

It has been described previously that Mg2  is a natUral antagonist for cellular Ca 2  

(Mooren et a!, 2001) and moreover, previous studies have demonstrated that elevated 

can attenuate the release of C2 from intracellular stores and its influx into the 

cell (Mooren et at, 2001; Yago et at, 2000). 

In conclusion, the results of this study have demonstrated that the abundant divalent 

cation M82  can regulate basal and secretagogue-evoked submandibular salivary protein 

secretion possibly by controlling C2 mobilisation. 
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CHAPTER 4 

NERVE-MEDIATED AND SECRETAGOGUE- 

EVOKED AMYLASE SECRETION AND 

CALCIUM AND MAGNESIUM 

MOBILISATION IN THE RAT PAROTII) 

GLAND 
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4.1 Introduction 

Saliva, the secretory product of salivary glands, has been known to perform a 

fundamental role in oral cavity homeostasis (Herrera et at, 1988). This fluid has many 

functional properties including food preparation for swallowing, digestion, lubrication 

and protection of the teeth and mucous membranes (Edgar, 1992). Pathophysiologic 

conditions which result in decreased salivary flow produce a "dry mouth condition" 

which is associated with a number of oral complications such as high caries index.and 

increased incidence of flingal infections (Atkinson & Fox, 1993). 

Salivary gland function is controlled mainly by the autonomic nervous system where 

sympathetic and parasympathetic nerves trigger a sequence of cellular signal 

transduction events resulting in intracellular cascades to generate such second 

messengers as calcium (Ca 21) and adenosine 3,5 cyclic monophosphate (cyclic AMP) 

which in turn activate ion transport pathways, water and protein secretion (Putney, 

1988; Baum, 1987; Petersen, 1992; Baum & Ambudkar, 1988; Petersen & Gallacher, 

.1988; Baum, 1993). However, the precise cellular mechanisms by which the second 

messengers regulate salivary gland function are still not fully understood (Ambudkar, 

2000). Thus, knowledge in this field can help to develop therapeutic strategies for 

resolution of some of the diseased states usually associated with salivary gland 

dysfunction. 

On the other hand, magnesium (Mg2 ) whose biological importance has become 

gradually recognised over th& last century (Yago et aL, 2000), is the second most 

abundant intra-cellular divalent cation, exceeded only by potassium (Reinhardt, 1988). 

Mg2  has been shown to be involved in numerous biological processes, including 

regulation of enzyme and hormone secretion and several membrane ion transport 

systems (e.g. ion channels, membrane ATPases, NaIK/Cr, NaVW, K/Cf) in 

epithelial secretory cells (Birch, 1993; Ambudkar, 2000). However, in the salivary 

glands very little is known about the possible regulatory effects of magnesium on both 

basal and secretagogue-evoked secretory responses. Thus, this study was designed 

specifically to investigate the effect of perturbation of extracellular Mg 2  ([Mg24]0) on 

secretagogue-evoked amylase secretion in the parotid gland. 

Moreover, [Mg]o has been known to play a regulatory role in stimulus-secretion- 

coupling events in epithelial secretory acinar cells, especially where calcium mobilising 
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agents are concerned (Mooren & Singh, 1997; Mooren eta!, 2001; Yago et al., 2000). 

In fact, preliminary results of this work in rat submandibular glands (see chapter 3 of 

this study) have suggested that [Mg 2 o may exert a controlling role in secretory 

mechanisms specially in those which are dependent upon [Ca2h]j  mobilisation (Mata et 

al., 2001). Since Ca2  is the main second messenger involved in salivary fluid secretion, 

it seemed logical (as a preliminary approach) to study the effects of perturbation of 

extracellular magnesium ([Mg 2 ']o) variations on ACh-evoked [Ca211 mobilisation. In 

addition the interactions between Mg 2  and Ca2 , this study also measured [Mg2ji  and 

characterised the mechanisms of its transport during the stimulus-secretion coupling 

process. 

4.2 Materials .and Methods 

As described in chapter 2. 

4.3 Statistical analysis 

As described in chapter 2. 

4.4 Results 

4.4.1 Amylase measurements 

Figure. 4.1 shows the mean (+- SEM) basal amylase output from superfused parotid 

segments during perturbation of ([Mg 24]o). The results show that both low (0 mM) and 

elevated (S & 10 mlvi) [Mg 2 ]o significantly (P<0.01) inhibited basal amylase output 

compared to normal (1.1 mM) [Mg 21]o Figure 4.2 A shows the original charts recording 

of amylase output in rat parotid gland segments when stimulated three consecutive 

times using electrical field stimulation (EFS) at 5, 10 and 20 Hz (SOY, ims) to activate 

intrinsic secretomotor nerves in normal (1.1 mM) [Mg 2 ]o The mean (+- SEM) amylase 

output above basal level for repeated (3 times) stimulations at 5 Hz, 10 Hz and 20 Hz is 

shown in Figure 4.2 B. The results show that amylase output from superfI.ised parotid 

segments is frequency dependent during the first stimulation, with maximal effect 

occurring at 20 Hz although the value was not significantly different from the values 

obtained at 10 Hz. Subsequent stimulations at 5 Hz increased amylase output gradually 

compared to the first stimulation. In contrast, at 10 Hz and 20 Hz, subsequent 
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stimulations caused gradual decreases in amylase outputs compared to initial 

stimulation at each frequency. 

BASAL 

7 

C, 

u,5 
t0 

- - 

4- C4 
OE 

. C_, 0 
0 0 
(U 
•; __3 
Et 

0 
4- 

C 

1 

 

aOmM 	•1,lrnM 	M5mM 	910mM 

[Mg 2 ] 0  

Figure 4.1. Histograms showing basal amylase secretion from isolated parotid gland 

segments in (a) 0 mM, (b) 1.1 mM, (c) 5 mM and (d) 10 mM [Mg 2 ]0. Each point is 

mean ± SEM, n=60-99. P<0.O1 for a, c and d compared to b. Basal amylase output was 

obtained after allowing tissue to stabilize for 40 minutes. 
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Figure 4.2 (A). Original chart recording showing the effect of repeated electrical field 

stimulation (EFS) at 10 Hz (amplitude of 50 V and I msec pulse width) on amylase output from 

superfiised rat parotid segments in normal [Ca 210  and [Mg2 o. Traces are typical of 8 — 10 such 

experiments. (B). Histograms showing the mean (± SEM) amylase output above basal level for 

repeated EFS at 5Hz, 10 Hz and 20 Hz, n 8-10 and taken from 5-6 animals. (C). Histograms 

showing mean (± SEM) amylase output following combination of all the data for repeated EFS 

at each frequeney.(n= 8-10), taken from Figure 4.2.B. Note that there is no significant difference 

in ainylase output at the different frequencies when the repeated stimulation data are combined. 
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Figure 4.3 (A)- Original charts recordings of amylase output from isolated superfbsed 

parotid segments following single stimulations at 10 Hz EFS in 0 mM (a), 1.1 mM (b), 

5 mM (c), and 10 mM (d) [Mg 2 Jo. Traces are representative of 8-15 experiments taken 

from 10 rats. (B) Histograms showing mean (+- SEM) amylase output abovebasal level 

for 10 Hz EFS during perturbation of [Mg 2 c, , n = 8 —15. Note that there are no 

significant differences in amylase output following perturbation of [Mg 21 ]o  at 10 Hz 

EFS. 
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Figure 4.4 (A). Original chart recordings showing the effect of 1 0 4M NA on amylase 

secretion from superfused isolated parotid gland segments in (a) 0 mM, (b) 1.1 mM, (c) 

5 Mm and (d) 10 mM [Mg 2i.,, Traces are typical of 8-12 such experiments for each 

concentration of [Mg24 ]o taken from 7 - 8 animals. Vertical and horizontal bars show 

the concentration of amylase output (Units. mi' 4 . ( 100 mg of tissue)' 4 ) and time (in mm) 

respectively. (B) Histograms showing the mean (± SEM) amylase output above basal 

level for 10 5M NA stimulation in (a) 0 mM, (b) 1.1 mM, (c) 5 mM and (d) 10 mM 

[M92 0, (n=8-12). P<0.05 for a,c and d compared to b. Note that both low and high (5 

and 10 mlvi) [Mg2 o attenuated the NA-evoked amylase output. 
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Figure 4.5 (A). Original chart recordings showing the effect of I 0 5M PFIE on amylase 

secretion from superfizsed isolated rat parotid gland segments in (a) 0 mM, (b) 1.1 mM 

and (c) 10 mM [Mg2 ']0. Traces are typical of 8-10 such experiments taken from 6-8 

different rats. Vertical and horizontal bars show the concentration of amylase output 

(Units . mE'. (100 mg of tissue') and time (in mm), respectively. (B) Histograms 

showing the mean a SEM) amylase output above basal level following 10 5M PHE 

stimulation in (a) 0 mM, (b) 1.1 mM and (c) 10 mM [Mg 2 ']0, (n=8-10). PC0.05 for a and 

d compared to b. However, there is no difference between b and c. 
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Figure 4.6- (A) Original charts recordings showing the effect of 10 5  M isoprenaline 

(ISO) on amylase output from isolated superfbsed rat parotid gland segments during 

perturbation of [Mg 2 ]o  (a) 0 mM, (b) 1.1 mM, (c) 5 mM and (d) 10 mM. Traces are 

typical of 8 - 10 experiments taken from the same number of animals. (B) Histograms 

displaying the mean (+- SEM) amylase output above basal level following ISO (10 M) 

stimulation in different [Mg2 1] 0  (n= 8 - 10). Note that increasing [Mg 2 ] o  resulted in 

increasing isoprenaline-evoked amylase output. 
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Figure 4.7 (A). 	Original chart recordings showing the effect of 10 5M ACh on 

amylase secretion from isolated superfused rat parotid gland segments in (a) 0 mM, (b) 

1.1 mM, (c) 5 mM and (d) 10 mM [Mg2 ]0. Traces are typical of 8-15 such experiments 

taken from the same number of animals. Vertical and horizontal bars show the 

concentration of amylase output (Units mF'. (100 mg of tissue') and time (in mm) 

respectively. (B) Histograms showing the mean (± SEM) amylase output above basal 

level during stimulation with 10 5M ACh in (a) 0 mM, (b) 1.1 nilvl, (c) S mM and (d) 10 

mM [Mg2']0, (n=8-15). P<0.01 for a and d compared to b. Note that b is not 

significantly different from c. 
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Figure 4.2 C shows the mean (+- SEM) amylase output for each frequency during 

repeated stimulations. These results indicate that when the data are combined for 

repeated stimulations, there was no significant difference in amylase output for each 

frequency. This is in contrast to the results obtained in initial stimulations for each 

frequency (see Figure 4.2 B). 

Figure 4.3 shows the effect of 10 Hz, (50 V, 1 ms) EFS on amylase output during 

perturbation of [Mg 21]o  Original chart recordings of the responses are shown in Figure. 

4.3 A and the mean (± SEM) amylase output above basal level is shown in Figure. 4.3 

B. The results show that a perturbation of [Mg 2 o had no significant effect on FF5-

evoked amylase output at 10 Hz. 

The effect of [Mg 2 0 on NA (10 M)-induced amylase secretion is shown in Figure. 

4.4. Original chart recordings of the responses are shown in Figure. 4.4A and the mean 

(± SEM) amylase output above basal is shown in Figure. 4.4B. The results show that a 

perturbation of [Mg 2 ]o  has profound effect on NA-induced amylase output. Both zero 

and elevated [Mg2 o  significantly (P>0.01) inhibited the NA-evoked amylase secretion 

compared to normal [Mg 24]0  . Figure. 4.5 shows the effects of [Mg 24]0 on PILE (10 5M)-

induced amylase secretion. Original chart recordings of the responses and the mean (± 

SEM) amylase output above basal levels are shown in Figure. 4.5 A and B, respectively. 

Like NA, both low and elevated [Mg 2 o  significantly (P<0.05) inhibited PHE-evoked 

amylase output compared to normal [Mg24]o In contrast, 5 mM [Mg2 ]0  had no effect 

on the PILE-induced secretory response compared to the response obtained in the 

presence of 1.1 mM [Mg2 ']0 . 

Figure. 4.6 shows the effect of isoprenaline 10 5M (ISO) on amylase output during 

perturbation of [Mg2 ]o . Original chart recordings of the responses are shown in Figure. 

4.6A and the mean (± SEMI) amylase output above basal level is shown in Figure. 4613. 

The results show that a perturbation of [Mg 2 ]o resulted in gradual increase in the 

isoprenaline-evoked amylase output with the lowest value at 0 mM and the highest at 10 

mM which were significantly different from one another. Moreover, the results also 

showed that in the absence of [M8 210  isoprenaline evoked a reduced response 

compared to the responses obtained in the presence of [Mg 2 ]0 

Figure. 4.7 shows the effect of 10 5M (ACh) on amylase output during perturbation of 

[Mg24]o. Original chart recordings of the responses are shown in Figure. 43A and the 

mean (± SEMI) amylase output above basal level is shown in Figure. 4.7B. The results 

show that both low (0 mlvi) and elevated (10 mM) [Mg 2 ]0 can significantly (P<0.05) 
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inhibit the ACh-evoked amylase output from superflised parotid segments compared to 

normal [Mg2 o  The inhibition at zero [Mg 2 o  was more pronounced compared to 

elevated [g2E]o 

In this series of experiments, the results have shown that a modification of [M4 24]0  

from 1.1 mM to 5 mM elicited qualitatively similar effect on the secretory response to 

either ACh, NA or PHE, all at a supra-maximal concentration of 10 5M. In contrast, 

either zero or 10 mM [Mg 2 0 significantly (p<0.05) inhibited the secretory effects of 

either ACh, NA or PHE at the same concentration. On the other hand, isoprenaline 
2+ evoked the maximal secretory effect at 10 mM [Mg ] o  and the least at 0 mM [Mg 2-4-  

]o. 

These differences in the results may be due to the fact that ACh, PIlE andNA utilise 

cellular Ca2  to mediate amylase output whereas ISO utilises cyclicAMP to mediate 

amylase output. The effect of EFS on amylase output during perturbation of [Mg 24]o  

were similar to results obtained with ACh. PHE or NA but so small that no significant 

differences were found betsveen the different [Mg 2 ]o. 

4.4.1.1 Effects of different doses of secreta2opues on amylase secretion 

Experiments described above show the effect of supra-maximal dose of each 

secretagogue on amylase output during perturbation of [Mg 24-] o . In another series of 

experiments, it was decided to ascertain whether [Mg] o  could also modify the effect of 

a lower concentration of the secretagogues. 

Figure. 4.8 shows the mean (± SEM) amylase output above basal level for stimulation 

of superfiised rat parotid segments with ACh at 10 4, 10 7  and 10 M during perturbation 

of[Mg2 o. The response to 10 5  M ACh is also shown for comparison. The results show 

that the effects of perturbation of [Mg 2 o  obtained with a supra-maximal dose of the 

secretagogue repeat themselves with even lower concentrations of ACh. Similar results 

are obtained when rat parotid gland segments were stimulated with a lower dose (1 0 

M) of either NA or PHE following perturbation of [Me]0  (Figure 4.9). Again, the 

results show that both low (0 mM) and elevated (5 mlvi) [Mg 2 o can significantly 

(P<0.05) inhibit the secretory effects of the two salivary adrenergic secretagogues. 
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Figure 4.9- Histograms showing mean (+- SEM) amylase output from isolated 

superflxsed rat parotid gland segments following stimulation with either 10 M NA or 

1 O M PEW during perturbation (0, 1.1 and 5 niMi) of [Mg 2 a n= 6-8 different 

experiments taken from the same number of animals. Note that both zero and elevated 

[Mg2 ]o attenuated the secretagogue-evoked amylase output compared to the response 

obtained in 1.1 mM [Mg24]o. 

102 



4.4.1.2 Effect of perturbation of [Mq? +I o  on basal and ACh-evoked 

amylase release in normal and zero FCa 2io 

At this point in the study it seemed that the effects of [Mg 2 ]o on secretagogue-evoked 

responses were more evident in the signalling mechanisms where intracellular calcium 

was involved as a second messenger. In fact, the experiments in which isoprenaline 

(known to act exclusively through cAMP) was used as secretagogue, it was shown that 

[Mg2 o failed to exert the inhibitory effects observed compared with other 

secretagogues (e. g. ACh, NA and PHE) which evoked their secretory effects via 

intracellular Ca2t Therefore, it seemed logical to investigate the effects of [Mg 2 ]o on 

calcium-dependent amylase secretion at different levels of the intracellular calcium 

pathway, especially since there are two sources (extracellular and intracellular stores) of 

Ca2  to mediate enzyme secretion (Takemura & Putney, 1989; Ambudkar et al., 1992). 

Rat parotid segments were perfused with a media containing normal (2.56 mM) [Ca2 ]0 

(Figure 4.10 A (a)). When basal amylase secretion was stabilised, extracellular calcium 

was totally removed from perfusing medium and 1 mM EGTA was added (Figure 4.10 

A (b)), parotid segments were then stimulated with 10 5  M ACh (Figure 4.10 A (c)). 

After peak recovery, parotid segments were again perfused with an extracellular 

medium containing (normal) 2.56 mM of [Ca2 ], in the absence of the secretagogue, 

(Figure 4.10 A (d)). These experiments were repeated in the presence of different 

[Mg2 o  namely: 0, 1.1, 5 and 10 mlvi. Figure 4.10 A (a — d) shows some original traces 

of the experimental protocol during perturbation of {1v1g 2 ']o Figure 4.10 B shows the 

mean (+- SEM) amylase secretion for basal in 2.56 mlvi [Ca2 ], and for basal in 0 

[Ca24] + 1mM EGTk Figure 4.10 C shows the ACh (10 M) —evoked mean (+- SEM) 

amylase above basal peak, in the absence of [Ca 2 ]o and re-introducing normal (2.56 

mM) [Ca21]0 in 0, 1.1, 5 & 10 mlvi [Mg2 ']o  The results show that: (a) elevated [Mg 24]o 

can significantly (Pc0.05) attenuate basal (in the presence and absence of [Ca 210), 

ACh-evoked amylase output in the absence of [Ca210  and the secretory response 

elicited by re-introducing normal (2.56 mlvi) [Ca2 ']o. (b) The results show that in the 

absence of extracellular [Ca 210, both basal and ACh-evoked amylase secretion from 

superfised parotid gland segments were significantly (Pc 0.01) decreased at all levels of 

[Mg2 o  compared to the responses obtained in normal [Ca21]o  suggesting that 
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Figure 4.10 (A) Original charts recordings showing time course of amylase secretion 

from isolated superthsed parotid gland segments in (a) normal (2.56 mM) [Ca 2lo, (b) a 

nominally free [Ca2 ]o containing 1 mM EGTA in the absence (c) presence of 10 5  M 

ACh in zero [Ca2io + 1 mM EGTA and (d) following reperthsion with normal (2.56 

mM) [Ca210  alone during perturbation of [Mg 2 ]o. Traces are typical of 8 - 10 such 

experiments. (B) Histograms showing mean (+- SEM) basal amylase output in normal 

(2.56 mM) and in a nominally free [Ca 2 ]o containing 1 mM EGTA during perturbation 

of [Mg2 ]o. n= 8 - 10; (C) Histograms showing mean (+- SEM) amylase output above 

basal level from supethised parotid gland segments either during ACh (10 M) 

application in a nominally free [Ca210 KB containing 1 mM EGTA and following 

reperfbsion with normal (2.56 mM) [Ca 2 ]0 during perturbation of [Mg 2 o. (n= 8 - 10). 

In Figure 4.10 B, P<0.01 for c and d compared to a and b which are not significantly 

different from one another. Similarly, P<0.01 for f, g and h compared to e. In Figure 

4.10 C, PC0.01 for b, c and d compared to a. Similarly, P<0.01 fort; g and h compared 

toe. 
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4.4.2 Secretagogue_evoked [Ca 2 J1 in single rat parotid acinar cells 

The results obtained with the experiments described above suggest that the effects of 

perturbation of [Mg 2 ]o on the secretagogue-evoked amylase secretion seem to be 

exerted mainly in the processes that are dependent upon calcium mobilisation. 

Therefore, the next logical step in this study was to observe in detail the effects of 

perturbation of [Mg 2 ]o on basal and secretagogue-evoked cellular calcium homeostasis. 

This study employs the technique of microspectrofluorimetry to measure [Ca 2+]i in Fura 

2 -loaded single parotid acinar cells. Moreover, a concentration of 1.8 extracellular Ca 2  

([Ca2lo) was used in single cells study as normal [Ca2 ]o  compared to 2.56 mM in the 

amylase secretion measurements using parotid gland tissue, since several studies have 

employed this concentration to study the role of Ca 2  in the stimulus-secretion coupling 

process (Pariente et al., 2003). Figure 4.11 shows basal [Ca 211 in 1.8 mM [C210 and in 

a nominally free [Ca2 ]o Hepes solution containing 1 mM EGTA during perturbation of 

[Mg2 ]o. All the results for [Ca2jj are expressed in ratio units as this is now an accepted 

procedure (Pariente et al., 2003). The results show that elevated [Mg 2 o  can attenuate 

basal [Ca2jj in parotid acinar cells either in normal or in a nominallj free [Ca 21]o 

physiological salt solution containing 1 mM EGTK In zero [Mg2 ]o, [Ca2ji remains 

more or less the same in normal [Ca 210 compared to much reduced responses (P<0.05) 

in 5 and 10 mM [Mg2 ]o . In contrast, in a nominally free [Ca 2lo, ft4g2 Jo in a range of 

1.1 - 10 mM was markedly (Pc0.0 1) decreased compared to the value obtained in zero 

[Mg2 o. In addition, the results presented in Figure 4.11 show that in a nominally free 

[Ca210, [Ca2411 was significantly (P<0. 05) reduced in the range of 1.1, 5 and 10 mM 

[Mg21]o  compared to the data obtained in the presence of [Ca 210. Taken together, the 

results indicate that [Ca 210 is required to maintain a high basal level. 

Figures 4.12 and 4.13 show original time courses traces of basal and ACh (10 M) 

evoked Ca2  transient in normal (1.8 mivE) (Figure 4.12) and in a nominally free (Figure 

4.13) [Ca210 during perturbation of [Mg 2 ]o, respectively. In normal [C2']o, ACh 

evoked a marked transient increase in [Ca 2jj  comprising an initial rise (peak) followed 

by a gradual decrease which subsequently levels off to a plateau phase (plateau) above 

basal level. In the absence of [Ca 2 ]o, ACh evoked transient rise (peak) and subsequent 

decrease (plateau) reaching basal level. This plateau response was much smaller 

compared to the responses obtained in normal [Ca 210 (compare Figure 4.12 with Figure 

4.13). In fact, the plateau phase was more or less basal value in the nominally free 
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[Ca24]o suggesting that normal [Ca210 is required to maintain the plateau phase of the 

Ca2  transient. In summary, both zero and elevated [Mg 2 o  attenuated these effects of 

ACh. .These original traces were analysed and the mean (+- SEM) changes in peak and 

plateau [Ca2 ]1 are depicted in subsequent Figures. Figure 4.14 shows the mean (+-

SEM) peak and plateau increases in [Ca 2jj following stimulation of Fura 2-loaded 

parotid acinar cells with io M ACh in different concentrations (0 mM, 1.1 mM, 5 mM 

and 10 mlvi) of [Mg2 o. The cells were all perfUsed with a physiological salt solution 

containing 1.8 mM [Ca24]o. The results show that both zero and elevated [Mg 2 ]o  can 

significantly (Pc 0.05) attenuate the ACh- evoked increases in both the peak and the 

plateau of the Ca2  transient. The effect of elevated (5 mM and 10 mM) was much more 

pronounced compared to zero [Mg 2 ]o. Figure 4.15 shows the mean (+- SEM) increases 

in [C211  during ACh (10 M) stimulation during perfusion of single parotid acinar 

cells in a nominally free Ca 2  Hepes solution containing 1 mM EGTA and during 

perturbation of [Mg 2 o . The results show that only elevated (5 mM and 10 mM) 

[Mg2 o can significantly (PC0.05) attenuate the ACh —evoked increase in the initial 

peak phase of the Ca2  transient. In the presence of zero [Mg 2io the initial peak phase 

of the Ca2  transient evoked by ACh was slightly larger compared to the responses 

obtained in 1.1 mM [Mg2 ]o. Moreover, the results also show that in the absence of 

[Ca24]o, the ACh-evoked plateau phase of the Ca 2  transient was almost completely 

abolished suggesting that extracellular Ca 2  is required to maintain the plateau phase. 

Like the experiments on amylase secretion, these results indicate that elevated [Mg 2 ]o  

is antagonising the mobilisation of both basal and secretagogue-evoked cellular Ca 2  

mobilisation (Ca2  release from intracellular stores and Ca 2  influx into the cell). 
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Figure 4.12- Original charts recordings showing the effect of perturbation of [Mg 2 ]o  

(j 0 mM, () 1.1 mM, (ç) 5 mM and (çfl 10 mM on ACh (10' M)-evoked changes in 

[Ca2 ]1 in Fura 2-loaded single parotid acinar cells during perfixsion with a physiological 

salt solution containing 1.8 mM [Ca210 . Traces are typical of 15 — 20 cells, taken from 

6 - 8 different animals. 
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Figure 4.13- Original charts recordings showing the effect of perturbation of [Mg 21]o 

( 0 mMl, (k) 1.1 mM, (ç)  5 mM and (4) 10 mM on ACh (10 M)-evoked changes in 

[Ca2+]i in Fura 2-loaded single parotid acinar cells during perfusion with a physiological 

salt solution containing 0 mM [Ca21 ]0 and 1 mM EGTA. Traces are typical of 15 - 20 

cells taken from 6 —8 different animals. 
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salt solution containing 1.8 mM [Ca 210. n= 15 - 20 cells taken from 8 - 10 animals. 

Note that measurements were made 10 —15 seconds (peak) and 2 - 3 minutes (plateau) 

after ACII application. P<0.01 for a, c and d compared to b. Similarly, P<0.01 for e, g 

and h compared to £ 
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Figure 4.15- Mean (+-SEM) changes in the peak and plateau phases in the Ca 24  

transient above basal level in Fura 2 loaded single parotid acinar cells evoked by 10 M 

ACh following perturbation of [Mg 21]0 . The cells were perfused with a physiological 

salt solution containing 0 mM [Ca210 and 1 mM EGTA. n= 15 —20 cells taken from 8 - 

10 animals. -Note that were made 10 —15 seconds (peak) and 2 - 3 

minutes (plateau) after ACh application. The results clearly show that in the absence of 

[Ca210, the ACh-evoked plateau phase of the Ca 2  transient was almost completely 

abolished. P<0.05 for b, c and d compared to a. 
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4.4.2.1. Effect of perturbation of IMg 210 on capacitative calcium entry 
iCCE). 

Stimulation of parotid acinar cells with ACh in the absence of [Ca24]o  elicited a small, 

but rapid transient rise in [Ca?jj peak which rapidly returned to basal values. This type 

of signal is described as calcium exclusively exiting from intracellular stores. After peak 

recovery if cells are again perfused with a medium containing normal [Ca 24]o a plateau 

shaped rebound in [Ca 2 ] is observed described as capacitative calciuth entry (CCE), 

coresponding to calcium entering the cell from the extracellular side (Putney, 1988). 

CCE has been reported as the driving force for prolonged fluid secretion in salivary 

glands (Ambudkar, 2000). Therefore, an investigation was undertaken to determine the 

effects of a perturbation [M g24]o  (0, 1.1, 5 and 10 mlvi) on CCE. 

Figure 4.16 shows original time cOurse chart recordings of the protocol to measure CCE 

following perturbation of [Mg24]o . Cells were superftised with a nominally free [Ca 24]o 

Hepes solution containing 1 mM EUTA for 200 - 300 seconds. Thereafter, the cells 

were stimulated with io M ACh in a nominally free [Ca24]o  medium containing 

EGTA. Following the peak and plateau phases, both ACh and the nominally free [Ca 24 ]0 

medium containing 1 mM EUTA were replaced with normal Hepes solution containing 

1.8 mM [(2+]o  The results for the ACh-evoked increases in the peak and the plateau 

phases of the Ca2*  transient in zero and during perturbation of [Mg 24]o are shown in 

Figure 4.15. Figure 4.17 shows the time (see arrows) it takes for CCE to be activated 

following perfusion of Fura 2 loaded acinar cells with 1.8 mM [Ca24]o  Hepes solution in 

different (0 mlvi, 1.1 mM, 5 mM and 10 mM) [Mg21]o. The results show that in a 

physiological dose (e. g. 1.1 mM) of [Mg 24]0, CCE is extremely (P<0,0 1) rapid 

compared to delayed observations in zero and elevated [Mg24]o.  These effects were also 

associated with more or less similar time course in amylase secretion (see Figure 4.10 

A). Figure 4.18 shows the maximal increases in [Ca 2']j following the re-introduction of 

1.8 mM Ca2  Hepes to Fura 2-loaded acinar cells at 100 sec, 200 sec and 300 sec 

following activation of CCE in different [Mg 24]o . The results showed that in zero 

[Mg2 4] o  there was a larger and sustained elevation in [C24]1  after CCE activation. The 

effects of 1.1, 5 and 10 mM [Mg24]o  on [Ca24]1 were much smaller (P<0.01) compared 

to the responses obtained in zero [Mg 24]o. At least at these time points the results with 

elevated (5 mM and 10 mM) [Mg24]o were much less pronounced (P<0.01) compared to 
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normal (1.1 mlvi) [Mg24]o. Taken together, these results indicate that [Mg 2 ]o is 

regulating Ca2  entry into parotid acinar cells and the level of Ca 2  influx is also 

dependent upon the concentration of [Mg 2 ]o. Low [Mg2 o seems to facilitate Ca 2  

influx whereas elevated [Mg2 o  has the opposite effect. 

114 



a). 
12 	- 

- 0 JCa'J 0  + 1 mM ECTA 	 IS mM ICa2lo 

0,8 
 

- 	tACh 10 M 

0 	
b) 	

500 	 WOOs 

1 	- 	OjCa"Jo+ImMEGTA II 1.8mMFCa2l0  • 

0,8 	- 	 I 
Co 

[ N 
0 	 500 	 WOOs 

o 	0,8 -0lC2 2lo+IWMEGTA - 	l.8mMIC8210 	 - 

0,6 

0,4 	 - 

0,2 
ACb1OM 

0 

0 
d) 	

500 	 10005 

[Ca'lo +1 mM ECTA 	 1.8 mM [Ca210 
o 	0,8 	- 
00 

0 	 500 	 1000s 

Time (Sec) 

Figure 4.16- Time course of changes in [Ca 211 during perfusion of Fun 2-loaded 

parotid acinar cells with 0 [Ca210 + 1 mM EGTA in absence and presence of I o M 

ACh and following re-introduction of 1.8 mM [Ca 210 physiological salt solution in a) 0 

mM, b) 1.1 mM, c)5thM and d) 10mM[Mg] o. Traces aretypical oflO — 12 such 

cells taken from 5 —8 rats. Traces have been used to analyse for data present in Figures 

4.15, 4.17 and 4.18. 
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Figure 4.17- The mean (+- SEM) time (in seconds) taken for CCE to be activated in 

zero mM, 1.1 mM, 5 mM and 10 mM [Mg21]o following perfusion of Fura 2-loaded 

parotid acinar cells with 1.8 mM [Ca 2 ]o physiological salt solution. n = 10 - 12 cells 

taken from 5 - S animals. P<0.01 for b compared to a, c and d. Similarly, P<0.01 for d 

compared to a and c which are not significantly different from one another. 
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Figure 4.18- Mean (+- SEM) of the sustained elevation in [Ca2jj  in Fura 2 loaded 

parotid acinar cells following activation of CCE with normal (1.8 mM [Ca 210) 

physiological salt solution during different (zero mlvi, 1.1 mM, 5 mM and 10 mM) 

[Mg2 o n= 8 - 12 experiments taken from 5 —10 animals. Note that elevated [Mg 2 o  is 

significantly (P<0 .01) attenuating [Ca 2+]i at three different time points compared to zero 

[Mg21]o during reintroduction of normal [Ca210.  (a, b, c and d; e, f g and h and i, j, k 

and 1 represent the [Ca 2+]i signal in zero mM, 1.1 mM, 5 mM and 10 mM [Mg2 0 

respectively at 100, 200 and 300 seconds following CCE activation). 
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4.4.3 Secretagogue-evoked changes in FM211 in Magfura 2 loaded 

parotid acinar cells 

Since perturbation of [Mg2 ]o seems to have profound effect on both basal and 

secretagogue-evoked amytase secretion and [Ca 2 ], then it was pertinent to measure 
[Mg2 ']1 during different [M8 210  either alone or following perfusion of Magfiira 2 

loaded single parotid acinar cells with ACh. Figure 4.19 A shows original time course 

chart recordings of [Mg 24]1 during basal condition and following perfbsion of parotid 

acinar cells with io 5  M ACh in (a) zero, (b) 1.1, (c) S and (d) 10 mM [Mg 24] o . The 

results show that ACh can elicit a marked time-dependent decrease in [Mg 24]1 reaching 

a plateau level after 10 minutes of ACh application. Figure 4.19 B shows mean (+-

SEM) basal (prior to ACh application) and ACh-evoked steady state decrease (10 mm 

after ACh application) in [Mg 24]1 in zero mM, 1.1 mM, 5 mM and 10mM [Mg24]c . The 

results show that basal [Mg4]1 increase significantly (Pc0.05) with elevated [Mg24]0. 

Moreover, the ACh-evoked decrease in [Mg 24] was significantly (P<0.05) different 

from the respective control. 

In another time course series of experiments the same Magfhra 2-loaded acinar cells 

were perfbsed with different concentrations (0 mM, 1.1 nIM, 5 mM and 10 mM) of 

[Mg24]o for 15 minutes each with increased concentration followed by stimulation with 

ACh (10 M) in the continuous presence of 10 mM [Mg24]o  An original chart recording 

of the time-course changes in [Mg 2 ]1 is shown in Figure 4.20 A. The results show that 

[Mg24]1 increases gradually following the application of different [Mg 24]o . Perfusion of 

the cell with 10 5  M ACh resulted in a rapid decrease in [Mg 24]1 reaching a plateau 

within 2 - 3 minutes of ACh application and remained at the same level even during the 

removal of ACh. The mean (+- SEM) data for [Mg24]1 in different [Mg2 ]o in the 

absence and presence of ACh are shown in Figure 4.20 B. The results show that 

perfusion of parotid acinar cells with different concentrations of [Mg 24]o resulted in a 

gradual and significant (P<0.01) increases in basal [Mg 24]1 compared to the 

concentration obtained in 0 mM [Mg24]o . In the presence of 10 mM [M9 24]o, ACh 

caused a marked and significantly (P<0.05) decrease in [Mg2io suggesting that the 
2+ Açh-induced decrease in [Mg ] may be an energy-dependent process as Mg 2+  has to 

move against its gradient. 
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4.19 (A)- Original charts recordings showing the effects of io M ACh on [Mg24]1 in 

different [Mg24]o in Magfiira 2-loaded parotid acinar cells. Traces are typical of 8 — 30 

single cells taken from 7 — 15 different animals. (B)- Histograms showing the mean (+-

SEM) basal [Mg24] in different  {Mg24] o  prior to ACh and the steady-state (see 

downward arrows in Figure 4.18 (A)) [Mg 2ji in the presence of 1 o M ACh. n = 8 — 30 

experiments taken from 7 — 15 different animals. Note that ACh evoked significant 

(Pc0.05) decreases in [Mg 2ji compared to basal for each concentration of [Mg 24]o. 
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Figure 4.20- (A) Time course changes in [Mg2']i during perthsion of Magthra-2 loaded 

parotid acinar cells with different concentrations (a) 0 mIvI, (b) 1.1 mM, (c) 5 mM and 

(d) 10 mM [Mg]o and subsequently, with (e) 10 5  M ACh. Trace is typical of S - 10 

such cells taken from 5 - 8 animals. (B) Histograms showing mean (+- SEM) [Mg 2 ] 

during perfi.ision of MagfIira-2 loaded acinar cells with different [M g2 0 and in the 

presence of 10 5  M ACh in 10 mM [Mg2 o. n = 8 - 10 such cells taken from 5 - 8 

animals. P<0.05 for e compared to d and a compared to d. 
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4.4.3.1 Effect of transport inhibitors on basal and ACh-evoked [Mg 21; 

Since ACh can elicit a marked decrease in [Mg 2 ]1 then it is pertinent to understand the 

mechanism of the ACh-induced Mg 2  transport. In this series of experiments a number 

of transports inhibitors were used to determine the mechanisms of ACh-evoked 

transport. Figure 4.21 shows the mean (+- SEM) changes in [Mg 24]j in Magfi.ira 2 

loaded parotid acinar cells in 1.1 mM [Mg24] o  either alone (basal) during perfusion with 
either 10 3  M lidocaine, 10 3  M amiloride, NItvIDG, 10 3  M quinidine, 10 M 

dinitrophenol or 10 3 , M bumetanide or during perfbsion with 10 4  M ACh in the 

continuous presence of each inhibitor. The results show that perfusion of Magfbra 2 

loaded acinar cells with either 10 3  M lidocaine, 10 3  M amiloride, NIvIDG, 10 3  M 
quinidine, 104  M dinitrophenol or 10 3  M bumetanide resulted in a marked and 

significant (Pc0.05) elevation in [Mg 24]1 compared to the response (basal) obtained in 

the absence of these transport inhibitors. The effects of bumetanide and dinitrophenol 

were however, much more pronounced compared to either lidocaine, amiloride or 

NMDG. These results indicate that cytosolic [Mg 2 ]1 is somewhat Na dependent and 

associated with Na4JH and Na/Mg2  antiport systems and Na/Clit co-transporter 

and that these processes are dependent upon ATP. Figure 4.21 A shows samples of 

original chart recordings of the effects of either 10 3  M lidocaine, 10 3  M bumetanide 

and 104  M dinitrophenol on [Mg24]1 in absence and presence of 10 5  M ACh. The basal 

response prior to the application of each transport inhibitor is also shown for 

comparison. 

Figure 4.22 A shows the effect of 10 -5  M ACh on [Mg2 ]1 in the presence and absence of 

the various membrane transport inhibitors. The control response in the presence of 1 1 

mM [Mg24]o is also shown for comparisorL The results show that in presence of 1.1 

[frIg2 ]o ACh can elicit a small but significant (P<0.05) decrease in [M g24] 1 . This 

decrease in [Mg24]1 was only partially blocked by either 10 3  M lidocaine or 10 3  M 

amiloride but not abolished completely. In contrast, either NMDG (a substitute for 

[Na4]0), 103 M quinidine, 10 M dinitrophenol or 10-3  M bumetanide had no effect on 

the decrease in [M8 24]1 elicited by ACh. Figure 4.22 B shows the difference in the ACh-

evoked decrease (or changes) in [Mg 24]1 in control and in the presence of the various 

blockers. The results show that the ACh-evoked decrease in [Mg 24]1 was much larger 
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(P<0.01) in the presence of bumetanide. Taken together, the results reveal that the 

decreases in [Mg2 ]1 elicited by ACh were insensitive to either bumetanide, DNP, 

quinidine or NMDG and only partially by either amiloride or lidocaine. Moreover, 

results also suggest that ACh-evoked decrease (or M8 2  efflux) is not dependent upon 

either Na or associated with either the Na: Kt:  Cl-  co-transporter, or ATP. It is most 

likely to be associated with the Na channel since it is inhibited by lidocaine, a local 

anaesthetic. In addition, the rise in [Mg 2ji following treatment of the different transport 

inhibitors and sodium removal suggest that these substances are either inhibiting Mg 2  

influx into intracellular stores or inhibiting its efflux from the cytoplasm to the 

extracellular medium. 
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Figure 4.21 (A)- Original charts recordings showing the effect of either (a) 10,3 M 

lidocaine, (b) 10 M bumetanide or, (c) 104 M dinitrophenol on [Mg2+ji in Magfiira 2-

loaded parotid acinar cells in the absence and presence of 10 5  M ACh. Traces are 

typical of 8 —12 experiments from 5 — 6 tats. (B) Histograms showing mean (+- SEM) 

basal [Mg2  in 1.1 mM [Mg2 ] o  and the increases in [Mg21] in the presence of either 

iO .M lidocaine (LIDO), amiloride (AMIL), NMDG, quinidine (QUIN), bumetanide 

(BIRs4ET) or 104  dinitrophenol (DNP). n = 8 —12 experiments taken from 5 — 6 rats. 

P<0.01 for b, c, d, e, fand g compared to a. - 

0 
Co 

Ti.. 

123 



A) 

E 
i5 

- {V) 

0 16 

Efli BASAL 
ACh 10-5 M 

C') 	Co  

— 	T- 	Z 	 — 
— 	0 	 z I- z 	j Q 	 5 0 -J 	cC 	 CS 

CD 

.2 a' —m 
o .o 

Co 

V 
C 

o 
4- 
.2 

wit 
'Cl- 

C, 
C 

LU 	~ 

cC 	— 	— 	z 	•- 

Z 0. H 
0 Q 	 5 z W 
c 	-J < 	 a 

w 

Figure 4.22 (A)- Histograms showing mean (+- SEM) changes in [Mg 2j,following 

perfusion of Magfiira-2 acinar cells with either 1.1 mM [Mg2 ] o  physiological salt 

solution alone or with physiological salt solution containing either of 10 3  M lidocaine 

(LIDO), 10 3  M amiloride (AMIL), NTvIIDG, 10 3  M cuinidine (QUIN), 10 3  M 

burnetanide (BUMET) and io M dinitrophenol (DNP) in the absence and presence of 

ACh 10 5  M. N = 8 — 12 experiments taken from 5 — .6 rats. (B) Histograms showing 

mean (+- SEM) of the ACh-evoked decreases in {Mg 2 ']1, either alone or in the presence 

of each inhibitor, n= 8 — 12. 
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4.5 Discussion 

The results of this study have shown that activation of intrinsic secretomotor nerves in 

the parotid gland can elicit frequency dependent increases in amylase output. EFS is a 

useflul physiological tool to elicit the release of endogenous neurotransmitters from 

exocrine glands (Davison et at, 1980; Wisdom et at, 1996) which in turn stimulated 

enzyme secretion. Repeated stimulations of the same tissue caused a gradual increase in 

amylase secretion at 5 Hz. However, at 10 Hz and 20 Hz, there was a gradual decrease 

in amylase output. When the data for repeated stimulation either at 5 Hz, 10 Hz or 20 

Hz were combined, there were no significant changes in amylase output for either. This 

interesting observation indicates that caution has to be taken when data are collected 

and considered during repeated stimulations at a particular frequency. The results also 

suggest that it would be better to stimulate the tissue once in order to obtain both a 

constant and maximal result. 

The present results have also shown that stimulation of superthsed parotid segments 

with either ACh, NA, PIlE or ISO can result in marked increases in amylase secretion. 

A perturbation of extracellular Mg 2  [Mg2 o can have a profound effect on both basal 

and on secretagogue-evoked amylase secretion in the isolated rat parotid gland 

segments. Both zero and elevated [Mg 2 ] o  can significantly inhibit both the basal as well 

as the secretory effects of either ACh, NA or PHE compared to the responses obtained 

in normal [Mg2 ]o . However, the effect of perturbation of [Mg 2 o on FF5-evoked 

secretory responses was much less pronounced compared to the responses obtained with 

either ACh, NA or PHE. The responses obtained with ISO show a completely different 

pattern with amylase output, these increased proportionally as [Mg 2 ]o is perturbed with 

increasing concentration. Since either ACIi, NA or PHE utilise cellular Ca 2  as a 

mediator these results indicate that that EFS and ISO may utilise different intracellular 

mediators (e.g cAMP) to elicit enzyme secretion. The inhibition in respect to either 

ACh, NA and PFIE was more marked in zero {Mg 2 o  compared to 5 and 10 mM [Mg2]o. 

However, when supra-maximal concentration (e.g. 1 o-  M) of secretagogue was used, 5 

mM [Mg2 o  had no significant inhibitory effect on amylase secretion compared to 

normal [Mg2 ]o . In contrast, at a lower concentration (e.g, io and 104  M) of the three 

salivary secretagogues, 5 mM and 10 mM [Mg24 ]0 attenuated the secretory responses, 

but again the effect was less pronounced compared to zero [M g2 o . The results obtained 
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in this study employing isolated parotid gland segments are somewhat similar to the 

data obtained with the pancreas in response to either ACh or cholecystokinin-

octapeptide during perturbation of [Mg 2 o  (Francis et al., 1990; Wisdom et al., 1996). 

The question we now need to answer is: how does a modification in extracellular 

[Mg2 o  lead to an inhibition of secretory effects of the classical salivary secretagogues 

such as ACh, NA and PHE but not so with ISOP and only to a small extent with EFS? 

In order to answer this question, it is important to understand the cellular mechanism of 

the stimulus-secretion coupling process and the physiological role of Mg 2  during 

cellular regulation. 

The parotid gland is innervated with autonomic nerves. Stimulation of the autonomic 

nervous system results in the release of the two main endogenous neurotransmitters 

acetylcholine (ACh) and noradrenaline (NA). These in turn stimulate their respective 

receptors (cholinergic muscarithc for ACh and beta and alpha adrenergic for NA) on 

parotid acinar plasma membrane to elicit enzyme (digestive amylase) and fluid 

secretion (Petersen & Gallacher, 1987; Baum, 1993; Ambudkar, 2000). ACh and a-

adrenergic agents (e.g. NA and PIlE) act via cellular Ca 2  to elicit enzyme secretion 

whereas beta adrenergic activator lead to the elevation in endogenous cyclic AMP 

(Baum, 1987; Putney, 1986; Putney Jr; 1986t;  Putney Jr & Bird, 1993) which in turn 

mediates enzyme secretion. The present results have shown that a modification of 

[Mg2 ]o had a completely different effect on isoprenaline-evoked amylase output and 

there is only a small change in the response to EFS. These observations suggest that a 

perturbation of [Mg2 o seem to have a different effect on the regulation of the stimulus-

secretion coupling pathway involving cyclic AMP. 

On the other hand, a perturbation of [Mg 2 o  had profound effects on Ca 2  mobilising 

secretagogues (e.g. ACh and PHE). Therefore, it was pertinent to investigate the 

relationship between the perturbation of [Mg 2 o and the Ca2  signalling during the 

stimulus-secretion coupling process. 

The results of this study have shown that basal [Ca 211 is dependent upon [Ca 2 ]o. In a 

nominally free [Ca2lo and in the presence of 1 mM EGTA, basal [Ca 210 was 

significantly decreased compared to the values obtained in the presence of 1.8 mM 

[Ca21]o. Perturbation of [Mg 2 o  had different effects on basal cellular calcium 

depending on the concentration of [Mg 2 0 . In zero [Mg2 o, basal [Ca2 ]1 remained more 

or less the same in both normal and in a normally free [Ca 210. Elevated (5 and 10 mM) 

126 



seem to suppress basal [Ca 210 in both normal and in a nominally free [Ca 2 io  compared 

to values obtained in zero and 1.1 mM [M g2 o . 

Perthsion of Fura-2 loaded parotid acinar cells with a supra-maximal dose of 

ACh in normal extracellular [Ca 21]o and [Mg21]o  resulted in a large transient increase in 

[Ca2+]i reaching a maximum within 10-15 seconds (peak phase) followed by a decline 

in the Ca2  signal reaching a steady-state plateau above basal level after about 2-3 

minutes (plateau phase) of ACh application. When parotid acinar cells were perfused 

with ACh in the presence of either zero, 5 mM or 10 mM [Mg2 ]o  there was a 

significant decrease in both the transient peak and the plateau phase of the Ca 2  signal 

compared to the responses obtained in 1.1 mM [Mg 2 o. The inhibitory effect of 

elevated (5 mM and 10 mlvi) [Mg 2 o  on the ACh-evoked [Ca 2 ]1 was much more 

pronounced compared to the decreases obtained in zero [Mg 2 o. In contrast, in a 

nominally free [Ca 2 ']o, ACh stimulation resulted in a significantly smaller Ca 2  signal 

(only the initial transient peak) compared to result obtained with ACh in normal [Ca 2lo. 
Thereafter, the Ca 2  signal returned to the basal level suggesting that [Ca 21]o is required 

to maintain the plateau phase of the Ca 2  signal. Again, elevated (5 mM and 10 mlvi) 

[Mg2 o  significantly attenuated the ACh-evoked increases in the transient peak phase of 

the Ca2  signal compared to the responses obtained in normal (1. 1mM) [Mg 2 o. In 

contrast, in zero [Mg 2 ']o  the ACh-evoked transient peak phase of the Ca2*  signal was 

much larger compared to the responses obtained in 1.1 mM [Mg 2 o. Taken together, 

these results suggest that [Mg 2 o  (both zero and elevated) are regulating secretagogue-

evoked cellular Ca2  mobilisation in parotid acinar cells. - 

It is now well established that the Ca2  which is required for the stimulus-secretion 

coupling process comes mainly from two sources, one from the internal stores (e.g. 

endoplasmic reticulum) and the other from the extracellular medium (Petersen & 

Gallacher, 1987; Baum, 1993; Ambudkar, 2000). Since elevated [Mg 2 0  can attenuate 

both the transient peak and the plateau phase of the Ca 2  signals evoked by ACh, then it 

is tempting to suggest that Mg2  is exerting its inhibitory effect on Ca 2  by blocking its 

influx (capacitative calcium entry) into the cell and its release from the internal stores 

(e.g. endoplasmic reticulum). 

In order to test this interesting hypothesis, parotid acinar cells were firstly perfUsed with 

a nominally free [Ca 210 in presence of 1 mlvi ROTA and subsequently stimulated with 

ACh. The cholinergic agonist evoked a small transient peak compared to a much larger 

increase in normal [Ca210. Moreover, in the absence of [Ca 2 ]o, the plateau phase seen 
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normally in the presence of [Ca 2 ]o returned quickly to basal level. Elevated (5 mM and 

10 mM) [Mg2 o  significantly attenuated the initial transient peak suggesting that it is 

regulating Ca2  release from the stores. 

In contrast, elevated [Mg 21]o  had no significant effect on the plateau phase of the Ca 2  

signal compared to the response obtained in 1.1 mM [Mg 2 o  in the presence of ACh. 

This may be due to the fact no Ca 2  is entering the cell due to its absence in the 

extracellular medium. Surprisingly, in zero [Mg 21]o  the ACh-evoked initial peak phase 

of the C2 signal (see Figure 4.14) was much larger than the response (see Figure 4.15) - 

obtained in normal (1.1 mM) Mg 2t Taken together, these observations suggest that 

extracellular Mg2  is behaving like an antagonist for the mobilisation of cellular C2. 

Furthermore, when Mg 2  is absent from the extracellular medium, more Ca 2  seem to be 

released from internal stores. Previous studies have suggested that Mg 2  is a natural 

antagonist for Ca2  (Yago ci al., 2000; Mooren ci al., 2001). 

The results so far have clearly indicated that Mg 2  can regulate Ca2  release from the 

internal stores and moreover, the divalent cation may also control Ca 2  influx into the 

cell during the capacitative calcium entry process. The experiments presented in Figures 

4.15-4.17 were done to test this interesting hypothesis. The results have demonstrated 

that normal (1.1 mM) [Mg 2 o  can rapidly activate the CCE compared to the delayed 

activation times in zero, 5 mM and 10 mM [Mg2 ]o. In addition, the data have also 

shown that maximal elevation in [Ca2+Ij in parotid acinar cells occur in zero {Mg 2 0  

compared to significantly less Ca 2  entry in the presence of elevated [Mg 2 ]o, especially 

in the presence of 5 mM and 10 mM [Mg2 '] o  The results of this study are in total 

agreement with the data obtained in both the pancreas and parotid gland in which 

elevated [M8 210 inhibited both Ca2  release from intracellular stores and Ca 2  influx 

from extracellular medium (Francis eta!, 1990; Yago eta!, 2000; Wisdom ét a!, 1996; 

Yago eta!, 1999; 2002). 

Since Mg2  can regulate both the release of Ca 2  from internal stores and the CCE, then 

it is vitally important to understand the mechahism of action of the divalent cation in 

exerting its effect on secretagogue-evoked secretory responses. Mg 2  is an important 

abundant divalent cation which is required in cellular regulation (Reinhardt, 1988). It is 

also a major co-factor in the activation of a number of enzymes (Birch, 1993). Elevated 

Mg2  is known to act like a natural antagonist for such ions as Ca 2 , IC and Na (Yago 

ci aL, 2000; Birch, 1993). In contrast, reduced [Mg 2 ]0  may have reverse effects on the 

activities of several enzymes. In this study, it has been clearly demonstrated that 
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elevated [Mg2 0  is exerting its inhibitory effect on ACh, (and possibly NA and PilE)-

evoked amylase secretion by blocking Ca 2  mobilisation (Yago et at, 2000; Francis ci 

at, 1990; Wisdom ci aL, 1996). These three secretagogues are known to mobilise 

cellular Ca2  (Putney, 1988; Baum, 1987; Petersen, 1992; Baum & Ambudkar, 1988; 

Petersen & Gallacher, 1988; Baum, 1993; Ambudkar, 2000); which in turn mediates 

parotid amylase secretion. 

In contrast, the effect of low [Mg 2 ] 0  on both basal and secretagogue-evoked parotid 

amylase secretion is less understood. In the exocrine pancreas low [Mg 2 0  enhanced 

the secretory effects (both amylase output and Ca 2  mobilisation) of either ACh or 

-  CCK-8 (Francis ci at, 1990; Wisdom ci at, 1996) whereas in the parotid gland low 

[Mg2 0  inhibited the secretory responses to either ACh, NA and PilE. 

Moreover, this study has also demonstrated that low Mg 2  can inhibit ACh-evoked Ca 

mobilisation (both the peak and the plateau phases) but not the basal Ca 2  transport in 

either normal or in a nominally free extracellular calcium physiological salt solution. 

These results are in agreement with other studies (Yago ci a! 1999; 2001). In contrast, in 

a nominally free Ca 2  medium, ACh-evoked a much longer Ca 2  transient in low 

[Mg2 ]o compared to the responses obtained in normal [ls4g 2 1]o In addition, CCE was 

much slower in its activation but the steady-state elevation in [Ca 2 ]1 was much larger 

compared to the responses obtained with normal [Mg 2 o. Taken together, these results 

suggest that low [Mg2 ]o may not be acting like a C2 4  channel antagonist compared to 

elevated [Mg2 ]0 but it may exert its effects directly in the activities of M g2tdependent 

enzymes which are associated with Ca 2  transport. Another possible explanation is that 

extracellular Mg2 , but not intracellular Mg21,  is apparently required to inhibit cellular 

Ca2  mobilisation. 

Mg2  is associated with the metabolism of inositol trisphosphate (1P3) (Petersen, 1992; 

Ambudkar, 2000; Yago ci at, 2000; Wisdom ci at, 1996). In the absence of [Mg 21]0, it 

is tempting to suggest that an inhibition of the Mg2tdependent  enzyme may lead to 

reduce levels of 1P3 resulting in decreased cytoplasm Ca 2  concentration during 

secretagogue application. In relation to Ca 2  release from intracellular stores and the 

CCE, the absence of [M92]  would facilitate Ca2  release from the stores and influx 

into the cell especially since Mg24  is acting like a natural antagonist during the 

mobilisation of [Ca2i. 
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Mg2  transport: 

Since a perturbation of [M9 2 o  resulted in an inhibition of cellular Ca 2' homeostasis and 

subsequently amylase release, it was pertinent to understand the transport mechanism of 

this important divalent cation during both basal and stimulated conditions. The results 

of this study have shown that perfusion of single Magfiira-2 loaded parotid acinar cells 

with physiologic salt solution contaning different concentrations of [Mg 24]o resulted in a 

gradual increase in [Mg 2 ]1. Moreover, stimulation of acinar cell with ACh in different 

[Meio  resulted in a gradual decrease in [Mg 2ji reaching a plateau phase within 5 - 8 

minutes. These findings suggest that ACh can mobilise cellular Mg 2t The decrease in 

the Mg2  signal may be due to the fact that Mg 2  is either leaving the cell or it is 

entering intracellular stores. If it is exiting the cell, then it has to move against a 

gradient since the secretagogue-evoked decrease was obtained in elevated (5 mM and 

10 mM) [Mg24]o  suggesting that this movement is dependent upon energy. These 

results of ACh are in agreement with the data obtained in previous studies employing 

the pancreatic acinar cells ( Wisdom eta!, 1996; Yago eta!, 2000; Mooren eta!, 2001; 

Mateos, 1998) and submandibular acinar cells (Zangh & Melvin, 1992; 1994). 

It has been demonstrated, at least in pancreatic acinar cells, that the secretagogue-

evoked decreases in Mg2  signal were due to Mg24  leaving the cell and that the efflux of 

Mg2  was dependent upon extracellular Na (Yago et a!, 2002; Wisdom et a!, 1996; 

Mateos, 1998). These studies were done employing the techniques of atomic absorbance 

spectroscopy and Magfiira 2 tetrapotassium salt to measure Mg 2  release (Yago et aL, 

2000). However, in the parotid acinar cells no previous study has attempted to 

characterise either basal or secretagogue-evoked Mg 2  transport. The results of this 

study have also shown that either lidocaine (a Na' channel blocker), amiloride (an 

inhibitor of Na/W exchanger), NMDG (a substitute for [Na4]o), quinidine (an inhibitor 

of the Na4 )Mg2  antiport), dinitrophenol (an inhibitor of ATP) and bumetanide (an 

inhibitor of the Na':K:Cl' co-transporter) can all increase cytosolic Mg 2" concentration 

with the same order of potency, with lidocaine eliciting the least increase and 

bumetanide the maximal increase. In the presence of any of these inhibitors, ACh 

evoked a decrease in [Mg 24]1. The magnitude of the ACh-evoked decrease in [Mg 24] 
was much bigger in the presence of bumetanide and much more smaller in the presence 

of either lidocaine or amiloride. The decrease in [Mp? +]i in response to ACh may be due 

to the fact that Mg2' is leaving the cell (efflux) or it is sequestered in the stores. In 

pancreatic acinar cells it was demonstrated that Mg 2  was leaving the cell during ACh 
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stimulation. Since parotid acinar cells are similar to pancreatic acinar cells, it is 

tempting to suggest that ACh is indeed stimulating Mg 2  efflux. If this is the case, the 

results have shown that this "ACh-induced Mg 2  efflux" is insensitive to either Na 

removal (substituting it for NIvIDG) or to either quinidine, dinitrophenol or bumetanide 

but only partial sensitive to lidocaine and amiloride. Taken together, the results suggest 

that the "ACh-evoked Mg2  efflux" may partially be associated with the sodium channel 

activity since lidocaine the local anaesthetic which is known to inhibit the Na channel 

activity can decrease the response to ACh. In addition, the "ACh-evoked Mg 2  efflux" 

may also be associated with the NaVr antiport. Further experiments are required to 

characterise precisely how Mg 2  is being mobilised following ACh stimulation. 

On the other hand, the transport inhibitors themselves and sodium substitution (with 

-NMDG) can result in significant elevation in [Mg 2 1 compared to the basal value. 

These transport inhibitors may exert effects in increasmg cellular Mg 2+  via a different 

number of mechamsms. They may act by either facilitating Mg 2+  release from 

intracellular stores, preventing its efflux from the cytosol or enhancing its influx from 

the extracellular medium. Since [Mg2 '] 1  rises in the presence of NIMDG, it is tempting 

to suggest that cytosolic Mg2  elevation is sensitive to extracellular Nat The same is 

true for bumetanide. In the presence of the loop diuretic, there was a marked elevation 

in [Mg21]1. Bumetanide is known to inhibit the Na:KtCY co-transport. The results with 

DNP indicate that the rise in [Mg 2 1 may be dependent on an energy process since DNP 

is known to inhibit ATP production. Another possible explanation for the effect of DNP 

is that basal Mg2  efflux is dependent upon ATP and once inhibited with DNP, this 

resulted in an elevation of [Mg 2 1] 1 . Similarly, it can be argued that Mg 2  uptake into 

internal stores is ATP-dependent and this process could then be inhibited by DNP, 

resulting in a rise in [Mg2 . Furthermore, quinidine can also elevate [Mg 2 1 and this 

substance is known to inhibit the NaVMg 2  antiport. Like NMDG, quinidine would 

inhibit Na influx into the cell hereby facilitating cellular Mg 2  elevation. 

In conclusion the results have shown that: 

1. Either ACh, NA, PHE, ISO and EFS can evoke marked increases in amylase 

secretion in isolated rat parotid segments. 

2. Elevated and zero [Mg 2 o can attenuate ACh, NA or PIlE (but not EFS or ISO) 

evoked amylase secretion. 

3.. ACh can elicit marked increases in [Ca 211 and this response is dependent upon 
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4. An elevation in [Mg2 } can lead to an increase in [Mg2 , which in turns regulates 

cellular Ca2  mobilisation. 

5. The ACh-evoked decrease in [Meli is insensitive to a number of transport 

inhibitors and to extracellular Na removal but only partial sensitive to amiloride 

and quinidine. 

6. Drugs which can inhibit Na 4  transport and Al? production can result in a marked 

elevation in {Mg2 . 

7. Substitution of extracellular Ne with NMDG can lead to an elevation in [Mg 21]. 

Taken together, these observations indicate that Mg 2  transport (influx or efflux) is a 

complex process, which requires further attention. 
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CHAPTER 5 

EFFECTS OF GENDER; AGE AND 

PATHOLOGICAL CONDITIONS ON HUMAN 

SAL WARY GLA]N1) FUNCTION 
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5.1 Introduction 

The understanding of salivary function in promoting a healthy oral condition has 

become a topic of major importance for the nowadays-oral clinicians. In order to 

understand the role of each salivary component in the oral cavity homeostasis, it is 

crucial to perceive how its changes or absence may be linked with pathological 

conditions (Mandel, 1993). In fact, several systemic diseases such as cystic fibrosis, 

11W infection or autoimune diseases among others have been reported to produce 

marked and identifiable salivary changes (Fox, 1993). In addition, oral pathological 

conditions like candidiasis (Hicks et a!, 1998), dental caries (Kholer & Bjarnasson, 

1992), peridontitis (Kaufman & Lamster, 2000), oral cancer, chemotherapy and 

radiotherapy-induced mucositis were reported to induce palpable salivary alterations 

(Dumbrigue et a!, 2000). An excellent plasma/saliva correlation has now been 

established for a wide number of steroid hormones including cortisol, aldosterone, 

estradiol, and progesterone (Forcella et aL, 2003) suggesting a great number of different 

possible salivary analytical procedures for the study of stress, aldosteronism, ovulation 

or pregnancy. Similarly to other body fluids (i.e., serum, urine and sweat), saliva has 

been proposed for the monitoring of a great number of systemic levels of therapeutic or 

abuse drugs from digoxin and caffeine to ethanol, cocaine, marijuana or opioids 

(Drobitch & Svensson, 1992). Thus, saliva offers an excellent alternative to serum as a 

biological fluid that can be analysed for diagnostic purposes. This is of great biomedical 

importance since individuals with modest training can collect whole saliva in a non-

invasive manner, including patients. This may facilitate the development of screening 

tests that can be performed by individuals at home. Analysis of saliva can offer a cost-

effective approach for screening of large populations, and may represent an alternative 

for patients when their blood is difficult to obtain or when compliance is a problem 

(Kaufman & Lamster, 2002). 

However, knowledge integration between saliva and oral pathology is far from being 

complete. The study of salivary function has been overwhelmingly difficult by the 

enormous naturally occurring variability of this fluid when compared to others (like the 

plasma) in which the composition's regularity has permitted to undoubtedly separate 

physiological from pathological. Therefore, it is of critical importance to establish 

which salivation patterns and concentration ranges of each salivary component are to be 
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considered as normal in order for the clinician to diagnose altered salivary phenotypes 

pSsibly linked to pathological systemic or oral conditions. 

This study was designed specifically to study some physiological and 

pathophysiological conditions, which can affect human salivary gland secretion and its 

composition. This study investigates the possible effects of ageing, diabetes (types I and 

II) and surgical recovery on salivary fluid secretion and composition compared to 

healthy age-matched controls. 

5.2 Methods 

As described in chapter 2. 

5.3 Statistical analysis of data 

In this study a multi anova test was employed to test analyse mean differences and 

interactions between factors. SPSS 10.0 was used as a statististical package and only 

P<0.05 were considered as significant values. 

5.4 Results 

5.4.1 Effects of age and gender on salivary secretion in healthy subjects 

Figures 5.1 and 5.2 show the effect of age on salivary gland secretion rates in male 

(Figure 5.1 A) and female (Figure 5.2 A) during resting and stimulated conditions and 

the differences (secretory capacity) in the two parameters for male (Figure 5.1 B) and 

female (Figure 5.2 B) subjects. The results show that in both male and female subjects, 

basal and stimulated salivary secretion rates decreased significantly (P<0 .05) with age. 

This was more pronounced in male subjects when comparing 24-34 year old males with 

45-75 years of age. In female subjects the decrease in salivation was more or less the 

same for age groups 35-44, 45.54, 55-64 and 65-75 compared to 20-34 years of age. 

When the various basal, stimulated or salivary secretion rates were tested by multianova 

analysis for gender related differences, there were no significant results suggesting that 
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gender on its own is not a variability factor. However, in the multianova testing, the 

interactions between gender and age proved to be significant (P<0.05) for the various 

resting, stimulated and salivary secretion rates suggesting that male and female salivary 

secretion is not affected by age in a similar way. 

Figures 5.3 A and 5.4 A show the effect of age on total protein output in the saliva for 

male and female, respectively in resting and stimulated conditions. The difference 

(secretory capacity) between these two physiological parameters for male and female 

subjects are shown in Figure 5.3 B and 5.4 B, respectively. The results show that protein 

output decreases with stimulation for both genders. Resting protein output increased 

with age for both male and female subjects whereas stimulated protein output remained 

more or less the same for male and female subjects with age. In relation to protein 

secretion, the amounts decreased significantly (Pc0. 01) with age for both male and 

female when comparing 20-34 years of age with either 55-64 or 65-75 years. 

Multianova testing for differences for the variable gender as for interactions between the 

variables gender and age failed to show statistical significance for the variables resting 

stimulated and protein secretion. These results suggest that there are no gender-related 

differences in these variables and that male and female protein secretion are affected by 

age in the same way. Taken together, the results indicate that the decrease in salivary 

secretion rates with age is associated with a concomitant increased concentration of 

basal salivary proteins but decreased protein secretion capacity. 

Figures 5.5 and 5.6 show the effect of age on iesting and stimulated Ca 2  concentration 

and their differences in saliva for male (Figures 5.5 A and B) and female (Figures 5.6 A 

and B) subjects. The results show that for male subjects basal, stimulated and secretory 

Ca2  levels increase with age, but the differences between resting and stimulated values 

were significant (P<0.05) only between age groups of 20-34 years and 65-75 years. 

With female subjects, basal Ca 2  remains more or less the same whereas stimulated and 

secretory C2 increased with age differences being significant (P<0.01) for age groups 

55-64 and 65-75 years compared to 20-34 years of age. Multianova testing showed 

gender to be a significant factor for variable basal Ca 2  concentration suggesting that 

female have lower values for this variable. For various stimulated and secretory Ca 2t 

there were no significant gender related differences. Multianova testing for interactions 

between variable gender and basal stimulated or secretory C2 concentrations failed to 

show any significant statistical values indicating that both genders are affected in the 

same way by the age-factor induced changes. 
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Figures 5.7 and 5.8 show the concentrations of Mg 2  in saliva in basal and stimulated 

conditions for male (Figure 5.7 A and B) and female (Figure 5.8 A and B) subjects. The 

results show that Mg2  levels in both basal and stimulated conditions significantly 

(P<0.05) increased with age for male subjects. For female subjects, basal and stimulated 

Mg2  increased significantly (P<0.05) only for age groups of 55-64 years and 65-75 

years when compared to 44-54 years of age and there were no other significant 

differences between any age groups. At all aged groups, stimulation induced marked 

decreases in Mg2  concentrations with a maximal decrease at ages 55-64. With regards 

to female subjects, the same is true compared to male subjects. There were large 

decreases in stimulated Mg 2  levels except for 65-75 years of age. Multianova testing 

for gender related differences and gender age interactions proved to be significant 

(Pc0.05) only for resting and stimulated saliva indicating that generally, female have 

lower M92  concentration than male subjects and are affected differently by the ageing 

process. There were no significant gender related or gender versus age interactions 

differences in secretory Mg 2  indicating that for this ion the secretory capacity of the 

salivary glands are affected in the same way. 

The levels of Zn2  in basal and stimulated saliva for male and female subjects are shown 

in Figures 5.9 and 5.10, respectively. The results show that the concentrations of Zn 21  in 

resting and stimulated conditions decreased significantly (P<0.01) beyond 35 years of 

age when compared to subjects of 20-34 years of age. Stimulated Zn 2  output was more 

or less the same for each age group except for 65-75 years of age where there was only 

a small decrease suggesting a diminished secretory capacity for advanced aged 

individuals. Multianova analysis for gender related differences was significant (P<0.01) 

for the variables basal and stimulated secretion indicating that female have less Zn 2  in 

saliva than male subjects. There were no gender-related differences for the variable 

secretory Zn2t There was no significant gender and age interactions in any of the 

variables suggesting that gender does not influence the age-induced changes for this ion. 

Figures 5.11 and 5.12 show the levels of basal and stimulated Cl -  concentrations in the 

saliva of male and female subjects, respectively. The results show that in male subjects 

resting Cl -  levels increase with age, whereas stimulated Cl -  concentrations remain more 

or less the same. When analysing the differences between basal and stimulated CF 

(Figure 5.11 B), the results reveal marked decreases in Cl -  output in male subjects of 55-

64 and 65-75 years of age when compared to subjects of 20-54 years of age. In female 

subjects, both basal and stimulated Cl -  levels in saliva remain more or less the same for 
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each age group but basal CF output was always higher compared to stimulated CF level. 

When comparing the differences between stimulated and basal CF levels for each age 

group, older female subjects (e.g. 55-64 and 65-75 years of age) show a greater decrease 

in stimulated saliva cr output compared to female subjects of 20-34 years of age. 

Multianova testing for the effect of the variable gender proved to be significant 

(P<0.01) only for basal CF. When testing for gender and age interactions the multi-

Anova testing was significant for basal, stimulated and secretory CF indicating that 

male and female subjects are affected by age in different ways. 

Figures 5.13 A and 5.14 A show the basal and stimulated levels of Na in male (see 

Figure 5.13) and female (see Figure 5.14) subjects. The differences in male and female 

subjects Na outputs are shown in Figure 5.13 B and 5.14 B, respectively. The results 

show that young male subjects (20-34 and 3 5-44 years of age) have an increased Na 

secretory capacity compared to aged male subjects (45-54, 54-65 and 65-75 years of 

age). With respect to female subjects, the young females secrete more NC in saliva 

compared to reduced NC secretion at 45-54, 55-64 and 65-75 years of age. Multianova 

testing for the effects of the variable gender and interactions between the variables 

gender and age were considered significant (P<0 .05) only for basal and stimulated NC 

concentration suggesting that male and female subjects have different basal and 

stimulated Na salivary concentration are affected by age in different ways. There were 

no statistical significant differences for gender and gender versus age interactions when 

Na secretory output was considered indicating that where NC secretory capacity was 

considered there were no differences between male or female subjects and that both 

were influenced by age in similar ways. 

The levels of C in basal and stimulated saliva for male and female subjects are shown 

in Figures 5.15 A and Figure 5.16 A, respectively. The results show that as male and 

female subjects aged, they secreted more or less the same basal salivary C but 

stimulated C concentration tended to decrease and was significantly (P<0.05) lower in 

54-65 and 65-75 year old male and female subjects when compared to 20-34 and 35 44 

years of age. Figures 5.15 B and 5.16 B show the differences between stimulated and 

basal C levels in saliva, for male and female subjects, respectively. The results reveal 

that both male and female subjects secrete significantly (P<0.05) less stimulated C in 

saliva as they aged (45-75 years of age) compared to young subjects (20-44 years of 

age). The decrease was much more pronounced in female subjects at age groups 55-64 

and 65-75 years of age compared to 20-54 years of age. Multianova testing for 
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Figure 5.1 A)- Histograms showing the mean (+- SEM) for resting and stimulated 

salivary flow whole saliva in different age groups for male subjects. B) Histograms 

showing the mean (+- SEM) for salivary secretory capacity (stimulated minus resting 

salivary flow) in different age groups for male subjects. Note that ageing is associated 

with a decrease in stimulated salivary output. In this and up to Figure 5.16, n=15 for 

each age group. 
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Figure 5.2 A)- Histograms showing the mean (-1-- SEM) for resting and stimulated 

salivary flow in whole saliva of different age groups for female subjects. B) Histograms 

showing the mean (+- SEM) for salivary secretory capacity (stimulated minus resting 

salivary flow) in different age groups for female subjects. Note that ageing is associated 

with a decrease in stimulated salivary output; n=1 5 for each age group. 

140 



A) 	 Male ___ 
IE1 RESTING 

'7 

0, 

C 

4.. 
0 
I- 

0 

PUB 

20-34 	35-44 	45-54 	55-64 	65-75 

Age (years) 

B) 	
Male 

0£ 	 __ 

CL 

E -2.0 

	 I I 
•4 
Co 

-2 	
20-34 35-44 45-54 55-64 65-75 

Age (years) 

Figure 5.3 A)- Histograms showing the mean (+- SEM) for resting and stimulated total 

protein concentrations in whoJe saliva of different age groups for male subjets. B) 

Histograms showing the mean (+- SEM) for total protein salivary secretory capacity 

(stimulated minus resting salivary protein concentration) in different age groups for 

male subjects. Note that protein output for resting protein output is increased with age. 

(n=1 5). 
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Figure 5.4 A)- Histograms showing the mean (+- SEM) for resting and stimulated total 

protein concentrations in whole saliva of different age groups for female subjects. B) 

Histograms showing the mean (+- SEM) for total protein salivary secretory capacity 

(stimulated minus resting salivary protein concentration) in different age groups for 

female subjects. Note the increase in protein output with age. (n1 5). 
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Figure 5.5 A) Histograms showing the mean (4-- SEM) for resting and stimulated total 

calcium concentrations in whole saliva of different age groups for male subjects. B) 

Histograms showing the mean (+- SEM) for total salivary calcium secretory capacity 

(stimulated minus resting salivary calcium concentration) in different age groups for 

male subjects. (n=15). 
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Figure 5.6 A)- Histograms showing the mean (+- SEMI) for resting and stimulated 

whole saliva total calcium concentrations in different age groups for female subjects. B) 

Histograms showing the mean (+- SEM) for total salivary calcium secretory capacity 

(stimulated minus resting salivary calcium concentrations) in different age groups for 

female subjects. (n15). 
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Figure 5.7 A)- Histograms showing the mean (+- SEM) for resting and stimulated total 

magnesium concentrations in whole saliva of different age groups for male subjects. B) 

Histograms showing the mean (+- SEM) for total salivary magnesium secretory 

capacity (stimulated minus resting salivary magnesium concentration) in different age 

groups for male subjects. (n=15). 
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Figure 5.9 A)- Histograms showing the mean (+- SEM) for resting and stimulated total 

zinc concentrations in whole saliva of different age groups for male subjects. B) 

Histograms showing the mean (+- SEM) for total salivary zinc secretory capacity 

(stimulated minus resting salivary zinc concentration) in different age groups for male 

subjects. (n15). 
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Figure 5.10 A)- Histograms showing the mean (+- SEM) for resting and stimulated total 

zinc concentrations in whole saliva of different age groups for female subjects. B) 

Histograms showing the mean (+- SEM) for total salivary zinc secretory capacity 

(stimulated minus resting salivary zinc concentration) in different age groups for female 

subjects. (n=15). 
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Figure 5.11 A)- Histograms showing the mean (+- SEM) for resting and stimulated total 

chloride concentrations in whole saliva of different age groups for male subjects. B) 

Histogram showing the mean (+- SEM) for total sa!ivary chloride secretory capacity 

(stimulated minus resting salivary chloride concentration) in different age groups for 

male subjects. (n15). 
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Figure 5.12 A)- Histograms showing the mean (+- SEM) for resting and stimulated total 

chloride concentrations in whole saliva of different age groups for female subjects. B) 

Histograms showing the mean (+- SEM) for total salivary chloride secretory capacity 

(stimulated minus resting salivary chloride concentration) in different age groups for 

female subjects. (n=15). 
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Figure 5.13 A)- Histograms showing the mean (4-- SEM) for resting and stimulated total 

sodium concentrations in whole saliva of different age groups for male subjects. B) 

Histograms showing the mean (+- SEM) for total salivary sodium secretory capacity 

(stimulated minus resting salivary sodium concentration) in different age groups for 

male subjects. (ir'15). 
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Figure 5.14 A)- Histograms showing the mean (+- SEM) for resting and stimulated total 

sodium concentrations in whole saliva of different age groups for female subjects. B) 

Histograms showing the mean (+- SEM) for total salivary sodium secretory capacity 

(stimulated minus resting salivary sodium concentration) in different age groups for 

female subjects. (n=15). 
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FigureS. 15 A)- Histograms showing the mean (+- SEM) for resting and stimulated total 

potassium concentrations in whole saliva of different age groups for male subjects. B) 

Histograms showing the mean (+- SEM) for total salivary potassium secretory capacity 

(stimulated minus resting salivary potassium concentration) in different age groups for 

male subjects. (n15). 
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Figure 5.16 A)- Histograms showing the mean (+- SEM) for resting and stimulated total 

potassium concentrations in whole saliva of different age groups for female subjects. B) 

Histograms showing the mean (+- SEM) for total salivary potassium secretory capacity 

(stimulated minus resting salivary potassium concentration) in different age groups for 

female subjects. (n=15). 
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differences between different genders and interaction between gender and age failed to 

demonstrate any statistical differences for the variables basal, stimulated and secretory 

IC suggesting that there are no gender-related differences and that male and female 

subjects are affected in the same way by the age factor. 

Taken together, the results show marked changes in the ions in saliva at each age group 

with the increase of some ions and decrease of the others. 

5.4.2 Effects of types I and II diabetes mellitus on human salivary 

secretion 

In this series of experiments, an investigation was made of the effects of type I and type 

II diabetes on human salivary secretion, and the quantity and quality of saliva compared 

to the respective age-matched controls for each group. For both type I and type II 

diabetic subjects an equivalent number of age-matched controls (e.g. range of years 20-

30 years for type I) and (range of age 40-55 years for type II) subjects were employed. 

Figure 5.17 A shows basal and stimulated flow rates in age-matched healthy controls 

and diabetic patients. The results show that basal and stimulated secretory rates saliva 

were significantly (P<0.05) decreased for type I and type II diabetic patients when 

compared to age-matched controls. However, the magnitude of the pathologic decrease 

in basal and stimulated saliva was less pronounced in type II diabetes compared to type 

I diabetes for both basal and stimulated saliva. The differences (secretory capacity) 

between stimulated and basal salivary secretory rates are shown in Figure 5.17 B. The 

results revealed significant (P<0.05) decreases in salivary output for both type I and 

Type II diabetics compared to their respective controls with a more pronounced 

decrease in type I diabetes. 

Figure 5.18 A shows the amount of protein in the saliva of control and diabetic patients 

following basal and stimulated secretion. The results show that diabetic patients have 

significantly (P>0.05) more proteins in basal saliva compared to stimulated saliva. In 

addition, diabetic patients have significantly (P<0.05) more proteins in their basal and 

stimulated salivas compared to the respective healthy age-matched controls. The 

differences between stimulated and basal protein in saliva for the four groups are shown 

in Figure 5.18 B. The results reveal significant (P<0.05) decreases in stimulated protein 

output in type I and type II diabetes. Type I diabetes showed a significant (P<0.01) 
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decrease in protein output compared to age-matched controls while there were no 

differences between type II diabetes and their respective controls for protein output. 

Figure 5.19 A shows the levels of Ca 2  in basal and stimulated saliva in the respective 

age-matched controls and type I and type II diabetic patients. The results revealed that 

the levels of Ca2  increase significantly (P<0.05) in both basal and stimulated saliva for 

type I and type II diabetic patients. In relation to the differences between basal and 

stimulated saliva, type I diabetics produce significantly (P<0.05) more Ca 2  in saliva 

compared to the control. With regards to type II diabetics, both control and diabetic 

secrete the same amount of Ca 2  in saliva (Figure 5.19 B). 

Figure 5.20 shows the level of Mg 2  in basal and stimulated saliva for age-matched 

controls and diabetic patients. The results show that basal and stimulated Mg 2  

concentration are significantly (P<0.05) elevated in type I and type II diabetic patients 

compared to respective healthy age-matched controls. However, when considering the 

Mg2  output, both type I and type II diabetics secrete significantly (P<0.01) less Mg 24  in 

saliva (Figure 5.20 B). Taken together, the results show a reciprocal relationship 

between the outputs of C2 and Mg 2t There was an increase in Ca 2  and a decrease in 

Mg2  outputs in the saliva of diabetic patients. 

The levels of Zn2  in saliva during basal and stimulated conditions for healthy age-

matched controls and diabetic patients are shown in Figure 5.21 A. The results show 

that diabetics secrete less Zn 2  in saliva during basal and stimulated conditions. The 

inhibitory effect of diabetes was much more pronounced for the type I diabetic 

compared to type II. The differences between stimulated and basal Zn 2  levels in saliva 

for control and diabetic patients are shown in Figure 5.21 B. Again the results confirm 

that diabetics secrete less Zn 2  in saliva. 

Figure 5.22 shows the levels of K in basal and stimulated saliva for age-matched 

healthy controls and diabetic patients. The results show that diabetics secrete more 

(P<0.05) C in basal and stimulated saliva than their age-matched controls. In addition, 

the results show that diabetics secrete more C in basal saliva compared to stimulated 

conditions. When comparing the differences between stimulated and basal C 

concentrations in saliva for control and diabetic patients (see Figure 5.22 B), the results 

revealed a significant (P<0.05) decrease in C output in the saliva of diabetic patients 

compared to their respective age-matched controls. 

Figure 5.23 shows the levels of Na in basal and stimulated saliva for age-matched 

controls and diabetic patients. The results show that for type 1 diabetics and their 
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Figure 5.17 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary flow in type I and type II diabetic patients and their respective age-matched 

controls (AMC). B)- Histograms showing the mean (+- SEM) of the salivary secretory 

capacity (stimulated minus resting salivary flow) in type I and type II diabetic patients 

and their respective age-matched controls. In Figures 5.17 to 5.24 n=15 in each control 

and diabetic group. 
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Figure 5.18 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary protein secretion in type I and type II diabetic patients and their respective age-

matched controls (AMC). B)- Histograms showing the mean (+- SEM) of the salivary 

protein secretory capacity (stimulated minus resting salivary protein) in type I and type 

II diabetic patients and their respective age-matched controls. (n=15). 
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Figure 5.19 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary calcium concentrations in whole saliva of type I and type II diabetic patients 

and their respective age-matched controls (AMC). B)- Histograms showing the mean 

(+- SEM) of the salivary calcium concentrations (stimulated minus resting salivary 

calcium) in type I and type II diabetic patients and their respective age-matched 

controls. (n=15). 
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Figure 5.20 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary magnesium concentrations in whole saliva of type I and type H diabetic patients 

and their respective age-matched controls (AMC). B)- Histograms showing the mean 

(+- SEM) of the salivary magnesium concentration (stimulated minus resting salivary 

magnesium) in type I and type II diabetic patients and their respective age-matched 

controls. (n15). 
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Figure 5.21 A)-Histograms showing the mean (+- SEM) of resting and stimulated zinc 

concentrations in whole saliva in type I and type II diabetic patients and their respective 

age-matched controls (AMC). B)- Histograms showing the mean (+- SEM) of the 

salivary zinc concentrations (stimulated minus resting salivary zinc) in type I and type II 

diabetic patients and their respective age-matched controls. (n=15). 

161 



cn RESTING 
a Sli MULATED 

TYPE U 

-J (n -J Co 

w I- W 
Z o 0 
o o a 

B)_ 

0) 
E 

+ 

w 

- 
a, 
S 

-200 

2 -300 
E 

-400 

-500 
0 

-600' 	- - - - 
Ui W LU 

a 
w 
a 

o CO 

W W Z o 
o 

0 
0 

0 

0 a 

Figure 5.22 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary potassium concentrations of whole saliva in type I and type II diabetic patients 

and their respective age-matched controls (AMC). B)- Histograms showing the mean 

(+- SEM) of the salivary potassium concentrations (stimulated minus resting salivary 

potassium) in type I and type II diabetic patients and their respective age-matched 

controls. (n15). 
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Figure 5.23 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary sodium concentrations of whole saliva in type I and type II diabetic patients 

and their respective age-matched controls (AMC). B)- Histograms showing the mean 

(+- SEM) of the salivary concentrations capacity (stimulated minus resting salivary 

sodium) in type I and type II diabetic patients and their respective age-matched controls. 
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Figure 5.24 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary chloride concentrations of whole saliva in type I and type II diabetic patients 

and their respective age-matched controls (AMC). B)- Histograms showing the mean 

(+. SEM) of the salivary chloride concentrations (stimulated minus resting salivary 

chloride) in type I and type II diabetic patients and their respective age-matched 

controls. (n=15). 

164 



respective healthy controls, there was more Na in stimulated saliva compared to basal 

saliva. However, there were no significant differences for either basal, stimulated or 

- their differences in Na salivary concentrations for type 1 diabetics when compared to 

their age-matched controls. With respeöt to Type 2 diabetics, they produce more or less 

the same amount of Na in basal and stimulated saliva, similarly to their respective 

control. 

Figure 5.24 shows the levels of CF in basal and stimulated saliva for the respective 

healthy age-matched controls and diabetic patients. The results show that stimulated 

saliva contains less Cl' than basal saliva. For type I diabetics salivary Cl -  was 

significantly (P<O. 05) elevated in basal, stimulated (see Figure 5. 24 A) and secretory 

(see Figure 5.24 B) salivary concentrations compared to their healthy age-matched 

controls. For type II diabetics there were no significant differences for any of the 

salivary parameters tested when compared to their age-matched controls. 

5.4.3 Effects of oral surgery on salivary gland secretion 

In these series of experiments, an investigation was made of the effects of removal of a 

wisdom tooth (oral surgery procedure) on salivary gland secretion before and after the 

operation employing patients 20-24 years. Figure 5.25 A shows the salivary resting and 

stimulated flow rates before and after the surgical procedure. 

The results show that basal salivary flow is slightly, but significantly (P<0.05) increased 

after the surgical procedure. There were no statistical differences in stimulated salivary 

flow either before or after surgery. The differences between stimulated and basal 

salivary flow (figure 5.25 B) show no statistical differences in the secretory capacity of 

the gland before and after surgery. 

Figure 5.26 A shows the concentration of protein in saliva in resting and stimulated 

conditions before and after the surgery. There were no significant differences between 

basal salivary protein concentration despite these being slightly elevated after the 

surgery compared to the values obtained before the surgical procedure. However, there 

was a significant (P<0.05) increase in stimulated salivary protein concentration after the 

surgery. The difference in protein output (stimulated protein concentration minus basal 

protein concentration) is shown in Figure 5.26 B. The difference in the protein output 

was marginally significantly (P=0,07) elevated after the surgery compared to before. 
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Figure 525 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary flow rates in oral surgery patients comparing the results obtained before and 

after the surgical procedure. B)- Histograms showing the mean (+- SEM) of the salivary 

secretory rates (stimulated minus resting salivary flow) in oral surgery patients 

comparing the results obtained before and after the surgical procedures. In Figure 5.25 

to Figure 5.29, n= 8 for each group. 
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Figure 5.26 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary protein outputs in oral surgery patients comparing the results obtained before 

and after the surgical procedure. B)- Histograms showing the mean (+- SEM) of the 

salivary protein outputs (stimulated minus resting salivary protein secretion) in oral 

surgery patients comparing the results obtained before and after the surgical procedures. 
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Figure 527 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary calcium concentration in whole saliva of oral surgery patients comparing the 

results obtained before and after the surgical procedure. B)- Histograms showing the 

mean (+. SEM) of resting and stimulated salivary magnesium concentration in whole 

saliva of oral surgery patients comparing the results obtained before and after the 

surgical procedure. The differences between stimulated and resting secretory capacity 

graphs are not shown since there were no differences in the results obtained before and 

after the surgical procedures. (n8). 
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Figure 5.28 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary potassium concentrations in whole saliva of oral surgery patients comparing the 

results obtained before and after the surgical procedure. B)- Histograms showing the 

mean (+- SEM) of resting and stimulated salivary sodium concentrations in whole 

saliva oral surgery patients comparing the results obtained before and after the surgical 

procedure. Differences between stimulated and resting values of secretory capacity 

graphs are not shown since there were no differences in the results obtained before and 

after the surgical procedures. (n=8). 
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Figure 5.29 A)-Histograms showing the mean (+- SEM) of resting and stimulated 

salivary zinc concentrations in whole saliva of oral surgery patients comparing the 

results obtained before and after the surgical procedure. B)- Histograms showing the 

mean (+- SEM) of resting and stimulated salivary chloride concentrations in whole 

saliva of oral surgery patients comparing the results obtained before and after the 

surgical procedure. Differences between stimulated and resting secretory capacity 

graphs are not shown since there were no differences in the results obtained before and 

after the surgical procedures. (n8). 
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Figure 5.27 shows the level of Ca 2t  (Figure 5.27 A) and Mg2  (Figure 5.27 B) in saliva 

for basal and stimulated conditions before and after the surgery. The results show no 

change in either Ca 2  or Mg2t  levels either before or after the surgery comparing basal 

values before and after the surgical procedures. Figure 5.28 shows the levels of Kt 

(Figure 5.28 A) and Na' (Figure 5.28 B) in basal and stimulated salivation either before 

or after surgery. With regards to Kt,  the results show no change in Kt  in either basal or 

stimulated condition before surgery. However, after the surgery Kt level decreased in 

stimulated condition compared to basal after surgery and to stimulated before surgery in 

a significant (P<0.05) way suggesting that after the surgery there is less stimulated Kt 

The stimulation of salivary secretion elicited a significant (P<0.05) increase in Na' 

concentration. Nevertheless, the results also show that there were no significant 

differences for basal and stimulated Ne before and after the surgery. Figure 5.29 shows 

the level of Zn2t  (Figure 5.29 A) and Cl -  (Figure 5.29 B) in saliva for both basal and 

stimulated salivation either before or after the surgery. The results indicate that there 

was a small increase in Zn2  level in stimulated conditions after surgery compared to the 

values obtained before surgery. However, despite this tendency for greater Zn 24  

secretion in saliva after the surgery, these results shown no significance when tested for 

mean differences. Resting and stimulated salivary Cl -  concentration was found to be 

slightly decreased after the surgical procedure. However, the differences found were not 

statistically significant when tested for mean differences. 

Taken together, the results suggest that surgery increases basal salivary secretion and 

protein concentration in saliva while for the ionic composition, there were hardly any 

significant changes. 
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5.5 Discussion 

5.5.1 Effects of gender and age on salivary gland function 

The results of this study have demonstrated the existence of profound age and gender 

related effects on salivary gland function. Basal and stimulated salivary flow decreased 

significantly with age for both male and female subjects. Moreover, the difference 

between stimulated and basal salivary flow, which measures the secretory capacity of 

the gland, was also significantly decreased in advanced age groups compared to 

younger individuals of both gender. It is now, widely accepted that salivary gland 

dysfunction and xerostomia are common problems among older individuals and tend to 

increase with age (Osterberg et at, 1992; Ship et at, 2002). It is known that 

histomorphometric parenchyma changes as loss of acinar cells and replacement by 

adipose and connective tissue occur generally in the salivary gland ageing process (Ariji 

et at, 1994). This loss of functional tissue is postulated to deplete a secretory reserve 

present in young adults turning older people salivary glands more vulnerable to external 

insults (Fergusson, 1996). However, it is theorised by some authors that adequate or 

young-adult levels of secretory function can still be achieved in the elderly as long as no 

further stress is placed on the salivary system (Ship et al. 2002). Thus, the ageing 

process would not be responsible for the prevalence of xerostomia, but for the greater 

vulnerability of salivary glands to external insults (which are more common in 

advanced age groups) instead (Ship et at, 2002). However, this study employed healthy 

subjects with no complaints of xerostomia. This was confirmed by the present results 

since even in advanced age groups with decreased salivary function no signs of 

objective hyposalivation were found. Nevertheless, the results obtained in this study 

suggest that even healthy subjects experience an age-dependent decrease in salivary 

gland function. These findings are not in conflict with the secretory reserve depletion 

theory since this study has not excluded or even quantified the presence of external 

gland insults in the patients observed. Therefore, further studies would be of help in 

trying to associate the presence of a diminished salivary function in the elderly with the 

age process or the external gland insults. 

No gender related differences were found for basal, stimulated or differences between 

stimulated and resting secretions (secretory capacity) in this study. However, 

interactions between the factor age and gender have proved to be significant indicating 
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that male and female subjects are not affected by age in a similar way. In fact, female 

subjects were found to have a smaller age-dependent decrease in salivary flow 

parameters when compared to male subjects. The age dependent decrease in female was 

attenuated from the moment females reached the age of 45 until 70 years of age. From 

these results it can only be speculated that this could reflect post-menopausal-induced 

changes, which would be interesting to analyse in further studies. 

Concerning salivary protein production, the results of this study have shown that resting 

protein concentration increased with age, whereas stimulated protein concentration 

remain more or less the same. Consequently, salivary secretory protein capacity was 

found to diminished with age. Resting protein output is mediated mainly by a 

constitutive protein secretion pathway, which probably shows some stability over life 

span (Castle, 1992) (see general discussion for details). Therefore, the increase in 

resting protein concentration with ageing can be due to the age-dependent decrease in 

resting salivary fluid output that was verified to occur in this study. These results also 

suggest that resting saliva in older subjects has an increased viscosity and diminished 

hydrating properties. 

On the other hand, stimulated salivary protein concentration showed some stability over 

measured age span. Since stimulated salivary flow was found to decrease with the 

ageing process, it can therefore be assumed that the quantity of stimulated protein must 

also decrease with age otherwise its concentration would not show any stability. There 

were no gender-related differences and neither significant gender and age interactions 

where salivary protein production was concerned, showing that male and female have 

the same amount and pattern of salivary production and are similarly affected by the 

ageing process. 

The concentration of the salivary Ca 2  was shown to increase in an age-dependent 

manner for the parameters basal, stimulated and secretory capacity. Thus, older 

individuals of both genders have more Ca 2  in the saliva and demonstrate an increased 

secretory capacity for this ion. These results may be partially linked to the facts that 

fluid secretion diminishes with ageing and that most of the salivary Ca2  is bound to 

salivary proteins and these also become more concentrated with the ageing process 

(Osterberg et aL, 1992). The functional significance of this fact may be an increased 

tendency for dental calculus formation in older individuals since salivary Ca 2  

concentration has been found to be a major factor in this process (Pellerin & Pellat, 

1986). The results of this study also demonstrated that female subjects have 
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significantly less salivary Ca2  compared to male subjects. However, there were no 

significant interactions between the variables gender and age for this ion suggesting that 

both male and female be affected by age in the same way. 

In this study, basal and stimulated salivary Mg2  concentration increased in advanced 

age groups for both genders. This increase in Mg 2  concentration is probably due to age 

dependent fluid decrease since Mg 2  secretory capacity also diminished with the ageing 

process for male and female subjects. It is interesting to note that while secretory 

capacity for Ca2  increased with the ageing process, it diminished for the Mg 2  ion 

suggesting an inverted and antagonistic behaviour for these two divalent cations. The 

results also have suggested that similarly to Ca 2t female subjects have generally less 

basal and stimulated salivary Mg 2  compared to male subjects. 

Basal, stimulated and secretory capacity of salivary Zn 2  levels were diminished in 

advanced age groups for both male and female subjects when compared to younger 

subjects. However, for this ion, the age-associated changes appeared very early 

comparing to the other ions. In fact, the biggest differences in basal and stimulated 

salivary Zn2  were found between age groups of 20-34 and 35-44 years. This was most 

unusual and no explanation was found for this fact. However, the secretory capacity was 

more diminished in the 65-75 age groups for both male and female, suggesting a age-

dependent salivary gland loss of function for this ion. Salivary Zn 2  plays an important 

role in dental calculus (Jin & Hak-Kong, 2002) formation and thus, aged patient could 

be more susceptible to this condition. Gender-related differences suggested that female 

had generally less basal and stimulated salivary Zn 2t There were no genders and age 

interactions indicating that both gender are affected in the same way by the ageing 

process. Salivary Zn 2  concentration has been positively correlated with defence against 

dental calculus formation and therefore, these results may suggest that older individuals 

are more prone to salivary calculus formation than younger ones. For male subjects 

basal salivary Cl -  concentration was shown to increase with age while stimulated 

salivary Cl concentration remained more or less the same for every age group. Female 

subjects showed no age-related differences in basal or stimulated salivary Cr. 

Basal, stimulated and secretory salivary Na are significantly reduced in advanced male 

and female age groups compared to younger subjects. These results suggest an age-

dependent decrease in salivary Na function. Altered taste perception (Dysgueusia) has 

been shown to be more prevalent in older individuals and may be associated with age- 
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dependent salivary modifications since Na has been described as a participating ion in 

taste perception (Spielman, 1990; Sato; 2002). 

There were no age-related differences in basal salivary K for either male or female 

subjects. However, stimulated and secretory salivary IC shown an age-dependent 

decrease for both male and female subjects indicating a decrease in salivary fl.inction for 

this ion. Salivary IC functions are not very well known, so no functional conclusions 

can be drawn over the age-dependent salivary alterations for this ion. There were no 

gender-related differences or any interactions between gender and age variables 

suggesting that both male and female subjects may be affected in the same way. 

5.5.2 Effects of types I and II diabetes mellitus on human salivary 

secretion 

In this study basal, stimulated and secretory fluid capacity (differences between 

stimulated and resting values) of diabetic individuals was found to be decreased for type 

I and II diabetic patients when compared to their healthy age-matched controls. These 

results indicate the presence of diabetes-induced impairment of salivary gland function. 

Similar findings have been previously described in the literature and may be associated 

with diabetes-induced neuropathy changes in the salivary gland parenchyma and 

presence of auto-immune lymphocytic gland infiltrate similar to the one occurring in the 

pancreas of these patients (Markopoulos & Belazi, 1998). These findings have been 

reported to be more frequent in uncompensated diabetic patients (Ship et cii., 2002). 

However, in this study, patients were selected from the Portuguese Association of 

Diabetic Patients and were screened to be well controlled for the disease. Therefore, 

diminished salivary function is not exclusive of poorly controlled disease but is also 

present in well-controlled patients. On the other hand, no quantitative comparisons had 

been made up to date between the two types of the disease. The results of the study 

demonstrated that type II diabetes also have a diminished salivary fluid output which 

was however, found to be less intense when compared to type I diabetes. The 

diminished salivary fluid output in these patients is believed to be responsible for a 

major incidence of oral infections like caries, candidal or peridontitis (Twetman et aL, 

2002). Basal and stimulated salivary protein concentrations were found to be increased 

in type I and type II diabetic patients when compared to their respective age-matched 
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controls. Again this increase was more marked in type I diabetic patients when 

compared to type II. Salivary protein secretory cá$city was found to be decreased in 

Type I diabetes but not in Type H. These results may indicate that in Type II diabetes 

the increase in basal and stimulated protein concentration are probably only due to the 

reduced salivary fluid secretion. Despite the fact that increased protein concentration in 

diabetic patients saliva has been described before by other authors (Twetman ci al., 

2002), there are also reports of diminished antioxidant capacity and salivary peroxidase 

activity, suggesting that while some proteins may experience an enhanced output others 

may be diminished (Belce et al., 2000). Therefore, it would be interesting to study 

qualitative alterations of salivary proteins associated with diabetes in order to gain a 

better understanding of its possible oral implications. 

With respect to the Ca24  ion, basal and stimulated salivary concentrations of this ion 

were found to be increased compared to age-matched controls for Type I and Type II 

diabetic subjects. However, the Ca 24  secretory capacity of the gland was enhanced only 

for type I diabetic patients while no statistical differences were found for the Ca 2  

secretory capacity for the type II diabetics. Once again, these results suggest that in type 

I diabetes there is an increased Ca 24  resting stimulated and secretory enhanced capacity 

while in type II diabetes there is probably only an increase in basal and stimulated Ca 2  

concentration resulting from the diminished fluid output and increased protein 

concentration. Nevertheless, both types I and II diabetic patients have more Ca 2  in their 

resting and stimulated salivas and may consequently are more prone to dental calculus 

formation and peridontitis. 

Resting and stimulated salivary Mg 2  concentration were found to be elevated for type I 

and type II diabetic patients when compared to their age-matched controls. This 

increase in salivary Mg24  concentration is probably due to the verified diminished 

salivary fluid output in these patients. When the secretory capacity for Mg 24  was 

evaluated, it was found to be decreased in both type I and II diabetic patients when 

compared to their age-matched controls. Hypomagnesemia has been found to be quite a 

common feature among type I and type II diabetic subjects (Tosiello, 1996), and it is 

caused mainly by ionic hyperglycosuric-induced renal depletion. On the other hand, 

Mg24  depletion or hypomagnesemia has been held at least in part to be responsible for 

such complications as neuropathy and microangipathy in type I diabetes (Leeuw, 2001). 

In previous studies (see chapters 3 and 4) it was demonstrated that hypomagnesemia 

attenuated the secretagogue-evoked and nerve-mediated secretory responses in the rat 
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submandibular and parotid gland (Mata et al., 2001; Yago et aL, 2002). These effects 

were mediated at the cellular Ca 24  mobilisation level. In rat parotid acinar cells zero 

levels of extracellular Mg 2  led to decreased levels of intracellular Mg 2  which were 

found to be responsible for enhanced 1P3 induced Ca 24  exit from intracellular stores and 

enhanced but delayed capacitative calcium cytosolic entry from the extracellular side. It 

was suggested from those studies that probably hypomagnesemia led to a diminished 

intracellular Mg2  concentration which impaired the correct function of Mg2tdependent 

enzymes regulating salivary secretion (Math et aL, 2001; Yago et aL, 2002). In fact, 

both basal ACh and PHE-evoked secretory responses were found to be significantly 

decreased in the absence of extracellular Mg 2t In this study it was found the diabetic 

patients to have diminished salivary output, diminished salivary proteins secretory 

capacity, enhanced resting and stimulated salivary Ca 2 secretion, increased Ca2  

secretory capacity and decreased Mg 2  secretory capacity. It is noteworthy that this 

reciprocal relationship between the Ca 2  and Mg24  outputs, and the fluid and protein 

secretion modifications observed in the diabetic patients are strikingly similar to the 

effects of hypomagnesemia on rat salivary function found in our previous studies (Mata 

a al., 2001; Yago et aL, 2002). Therefore, it would be extremely interesting to 

investigate the presence of hypomagnesemia in future studies of human diabetes-

induced salivary changes. 

Type I and type II diabetic patients have less resting, stimulated and secretory capacity 

for salivary Zn2t These effects were found to be more severe in type I diabetic patients 

compared to type II. Salivary Zn 2  plays a maj or role in preventing dental calculus 

formation (Jin & Hak-Kong, 2002). Thus, diabetic patients could be more prone to 

dental calculus formation. 

For type I diabetic patients resting, stimulated and secretory salivary CY were 

significantly elevated compared to age-matched controls. For type II diabetes there were 

no significant differences for any of the parameters tested compared to their age-

matched controls. No changes were found in resting stimulated or secretory salivary 

Na4  in type I and type II diabetic patients when compared to their age-matched controls. 

Resting and stimulated salivary K 4  concentrations were found to be increased in type I 

and type II diabetic patients when compared to their age-matched controls. The 

elevation was more severe in type I diabetes compared to type H. However, salivary K 

secretory capacity was decreased in type I and type II diabetic patients when compared 

to their age-matched controls. Again, the diminishment in this parameter was more 
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sustained in type I diabetes compared to type II. Resting and stimulated elevation in 

diabetic saliva is probably secondary to diabetes-induced decrease in salivary fluid 

output. 

5.5.3 Effects of oral sunery on salivary 2land secretion 

In this series of experiments an investigation was made on the effects of an oral surgical 

procedure (wisdom tooth removal) on the human salivary function. Basal salivary flow 

rate was found to be significantly elevated after the surgical procedure. This could be an 

effect of the healing process itself or be provoked by an increased oral movement 

caused by post-operative discomfort and leading to a permanent degree of stimulation. 

No significant changes were found for stimulated and secretory fluid capacity of saliva 

for collections undertaken before and after the surgical procedure. 

Resting salivary protein concentration was slightly, but not significantly elevated after 

the surgical procedure. Stimulated salivary protein concentration and salivary protein 

secretory capacities were also elevated after the surgical procedure. Increased salivary 

protein concentration after the surgical procedure can originate from two sources. It can 

correspond to surgical wound plasma protein contamination, or it may derive from 

enhanced salivary gland secretion. Further studies including qualitative analysis of 

salivary proteins, would be of interest to clarify this issue. Except for stimulated 

salivary iC, which was found to be decreased after the surgical procedure, there were no 

significant changes in any of the other ions measured. 

Taken together, the results of this study indicate that: 

1) There are marked age-dependent changes in salivary output and also age induced 

organic and inorganic salivary composition changes 

2) Diabetes is pathological condition associated with profound quantitative and 

qualitative salivary changes which are more pronounced in type I diabetes when 

compared to type II diabetes. Moreover, the results suggested that these diabetes 

associated salivary changes could somehow be associated to hypomagnesemia. 

3) Except for basal salivary output, there were no significant changes in salivary 

function in oral surgery recovery of the healthy young subjects employed in this part 

of the study. 
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CHAPTER 6 

GENERAL DISCUSSION 
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6.1 Animal physiology 

The results of this study have clearly demonstrated that a perturbation of [Mg 2 o has 

profound effects on salivary gland function. In this study, it has been found that g 210 

plays a significant role in the stimulus-secretion coupling process leading to exocytosis 

and fluid secretion in rat salivary glands acinar cells. In chapter 3 of this thesis it was 

observed that when [M92 o was altered employing either elevated or low 

concentrations of the divalent cation this resulted in a significant decrease in both basal 

and ACh, PHE and NA-evoked total protein output in the rat submandibular gland 

segments. These decreases in protein output were associated with concurrent reductions 

in secretagogue-evoked cytosolic C2 levels indicating a close relationship between 

Ca2  mobilisation and protein output. 

In chapter 4 of this study, the effects of perturbation of [Mg 2 o on nerve-mediated (with 

EFS) and secretagogue-evoked (ACIi, PFIE, NA and ISO) amylase secretion in rat 

parotid gland segments were investigated. Again, the results have demonstrated that a 

perturbation of {Mg 2 ]o (both zero and elevated) resulted in significant reductions in 

basal as well as ACh, PHE and NA-evoked amylase output. This inhibitory effect of 

[Mg2 ]o was also seen during stimulation of parotid segments with different 

concentrations (10 M and 10 M for PHE and NA and iO 4  M, 10 7  M, 10 M and 10 

M for ACh) of secretagogues. Although the effects of a perturbation of [Mg 2 ]o on EFS-

evoked amylase secretion in rat parotid gland segments led to the same inhibitory 

pattern found with previous secretagogues, [M g2 o  perturbation-induced changes were 

much less pronounced and not significantly different from the amylase secretion 

obtained with normal (1.1 mM) [lvlg 2 ']o On the other hand, ISO-evoked amylase 

secretion elicited a different pattern during perturbation of [Mg 21]o. ISO-evoked 

amylase secretion increased gradually with increasing concentrations (0 mM, 1.1 mM, 5 

mM and 10 mlvi) of [Mg2 o. Taken together, the results suggest that Mg 2  is exerting a 

regulatory effect on secretagogue-evoked protein output in submandibular gland and 

amylase secretion from the parotid glands. Moreover, the results also indicate that this 

effect was more evident when secretion was provoked with secretagogues known to act 

via cellular Ca2  mobilisation. In chapter 3 it was shown that in submandibular acinar 

cell suspensions loaded with Fura-2 AM for the measurement of [Ca 24], a perturbation 

of [Mg2 ']o led to profound changes in ACh-evoked cellular Ca 2 'mobilisation. Zero and 
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elevated [Mg2 ] o  inhibit Ca2  mobilisation, both the initial peak and plateau phases in 

submandibular acinar cell suspensions. The results on Ca 2  mobilisation, shown in 

chapter 3 repeated themselves in chapter 4 during perturbation of [Mg 2 ]0 using single 

cell microspectrofluorimetric techniques to measure [Ca 211. Once again, zero and 

elevated [Mg2 '] o  produced diminished peak and plateau phases of the Ca 21  transient 

when compared to the results obtained with normal [Mg 2 0. 

In order to understand better the role of [Mg 2 ] o  in the C2tdependent  secretion process 

in rat parotid gland, several experiments were conducted to characterise the interactions 

between Ca2  and Mg2  signalling. In some experiments amylase secretion was 

continuously monitored in rat parotid segments. Tissues were initially perfused with a 

physiological salt solution containing normal [Ca 2lo and [Mg2 ]o (2.56 mM and 1.1 

mM, respectively). At some point the Ca 2  was removed from the perfusing medium 

and 1.1 mM EGTA, was added. Gland segments were then stimulated with 10 5  MACh 

and after the elicited peak recovery, segments were again perfused with physiological 

salt solution containing normal [Ca 2 ]o and [Mg2 o . These procedures were repeated in 

0 mM, 5 mM and 10 mM {Mg2 ]o. In another series of experiments the same procedure 

was repeated in Fura 2-loaded rat parotid acinar cell suspensions while monitoring 

[Ca2 ]o using described microspectrofluorimetric techniques to measure [Ca211.  These 

procedures helped to understand the effects of a perturbation of [Mg 2 ']o in the different 

components of the Ca 2  signal (Ca2  exiting from intracellular stores and capacitative 

calcium entry (CCE) from the extracellular side). The results of these studies have 

demonstrated that extracellular calcium is required to maintain sustained and prolonged 

basal and ACh-evoked parotid amylase secretion, which is in agreement with previous 

findings by other authors (Douglas & Poisner, 1963; Putney Jr, 1986a,b). In addition, 

the results indicate further that extracellular Mg2t  is apparently regulating cellular Ca 21  

mobilisation, both its release from intracellular stores and capacitative Ca 2  entry from 

the extracellular medium during ACh-stimulation. In elevated (5 mM and 10 mM) 

[Mg21]o, ACh-evoked Ca2  release from intracellular stores was found to be diminished. 

Moreover, CCE activation was delayed and Ca 2  influx from the extracellular side was 

found to be significantly attenuated when [Mg 24]0  was elevated. These results strongly 

suggest that elevated [Mg4]0 is acting like a direct antagonist on cellular Ca 2  

mobilisation sites, which is in perfect agreement with previous results described by 

others in pancreatic acinar cells (Geada, 1998). Take together, the results indicate that in 

elevated (5 mM and 10 mM) [Mg24]o,  the antagonising effects of [Mg 21]o are 
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responsible for a diminished stimulated Ca 2  exit from intracellular stores, less Ca 2  

influx from the extracellular medium and delayed CCE which led to the decreased 

secretagogiie-evoked protein and amylase output observed in submandibular and parotid 

glands segments. 

The results obtained with the experiments employing zero [Mg 21]o are somewhat more 

difficult to explain. In both submandibular and parotid gland segments either ACh; PHE 

or NA-evoked total protein and amylase outputs were markedly reduced when [Mg 2 ]o 

was removed from the superfbsing medium. Similarly, in Fura-2-loaded submandibular 

and parotid cells, the ACh-evoked calcium transient was diminished in both peak and 

plateau phases in the experiments that employed zero [Mg 2 o  but kept the [C2io 
within normal ranges. In contrast, in a nominally free C2 medium, ACh-evoked a 

much longer C2 transient in low [Mg 2 ']o  compared to the responses obtained in either 

normal or elevated [Mg2 ]o. In addition, CCE was much slower in activation, but the 

steady state elevation in [Ca 2+]i was much larger compared to the responses obtained 

with either normal or elevated [Mg] o. Similarly, in rat parotid segment studies where 

[Ca2 ]o was removed and 1 mM EGTA was added to the superfusing medium, the ACh-

evoked amylase peak was found to be elevated in low [Mg 2 ] o  when compared to the 

results obtained with normal or elevated [Mg 2 o. In these experiments, reperibsion of 

parotid segments with a physiological salt solution containing normal [Ca 2 ]o and zero 

[4g2 ]o elicited a CCE-dependent rebound in amylase secretion which was found to be 

more elevated and sustained in zero [Mg]o when compared to either normal or 

elevated [Mg24]o  

Therefore, it seems that the effect of extracellular M9 2  on Ca2  release from 

intracellular stores can be considered as pure antagonism since maximal release is found 

in zero [Mg2 o  but less Ca2  comes out of the stores as [Mg 2 ]o rises. The effects of 

[Mg2 o  on CCE are more complex. The mechanisms of regulation of CCE in acinar 

salivary gland cells are still poorly understood and several theories have been proposed 

(see Ambudkar, 2000 or general introduction for review). From the present results it 

seems that extracellular Mg 2  is antagonising Ca 24  entry in the cytoplasm from the 

extracellular side since CCE is inversely proportional to changes in [M?] o. However, 

it is also true that [Mg 24]o strongly influences the Ca 2  channel opening velocity. In low 

(zero mM) and elevated (5 mM and 10 mlvi) [Mg2 ]o, CCE triggering is significantly 

delayed when compared to normal (1.1 mM) [Mg 2 ']o. Some authors have proposed that 

CCE triggering is dependent upon Ca 2  channel phosphorylation events (Sakai & 
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Ambudkar, 1996; 1997). It is known that phosphorylation events are strongly dependent 

on Mg2 , and therefore, it seems logical that the Ca 2  channel responsible for the CCE 

requires an optimal [Mg24]o in order to open quickly. 

However, the question which now arises is: why do secretagogues evok diminished 

amylase or protein secretion in parotid and submandibular glands when [Mg24]o  is low 

but [C24]o  is normal? One possible explanation is that in normal (1.1 mM) [Mg 2io 

secretagogue-evoked elevation in protein and amylase secretion is driven by Ca 2  

exiting intracellular stores and also by a very rapidly activated CCE. In contrast, in low 

(0 mlvi) [Mg2 ]o a delayed CCE could be responsible for a diminished initial protein and 

amylase secretion peak originating only in Ca 2  exiting from intracellular stores. 

Another possible hypothesis is that {Mg 24]o  is not only acting like a Ca2  channel 

antagonist, but it may exert its effects directly on the activities of Mg 2 -dependent 

enzymes which are associated with Ca 2  transport, diacylglicerol and protein kinase C 

activity or exocytotic vesicles transport, budding and fusing with cell membrane 

regulation events (Yago et aL, 2000). 

In order to understand better the interactions between Mg 2  and Ca2  in the stimulus-

secretion coupling events controlling salivary gland function, a series of experiments 

have been performed using Magfizra 2-loaded rat parotid acinar cells where intracellular 

Mg2  ([Mg24]1) was measured employing a microspectrofluorimetric technique. 

The results have shown that perfusion of single Magfbra-2 loaded parotid acinar cells 

with a physiological salt solution containing increasing concentrations of [Mg 24]o 

resulted in a gradually elevation in [Mg 24]1. Thus, it is plausible to assume that these 

variations in [M824]1 may be responsible for most of the effects observed in 

intracellular Ca2  mobilisation, which is known to be modulated by a number of Mg 2t 

dependent enzymes. Cytosolic Mg 2  concentration of mammalian cells is regulated at a 

level well below that predicted by the Nerstian potential (Geada, 1998). Thus, Mg 2  is 

not passively distributed, indicating that an active transport regulates the [Mg 24]1 in 

sublingual acini (Zhang & Melvin, 1992), squid axons (Flatman, 1991), human red 

blood cells (Ferray & Garay, 1986) and pancreatic acinar cells (Lennard & Singh, 

1992). 

The results of this study have also demonstrated that a number of transport inhibitors 

can markedly elevate [Mg 24] in Magfiira2-loaded parotid acinar cells. Firstly, it was 

shown that [Mg2+jj homeostasis in resting parotid acinar cells is probably due to an 

energy-dependent process, since the presence of DNP (an ATP inhibitor) leads to an 

183 



increase in [Mg2 ]i. Second, in rat parotid acinar cells resting [Mg 2  seems to be 

associated with Na transporters and highly dependent on extracellular Nat In fact, the 

presence of either lidocaine (a Na channel blocker), aniiloride (an inhibitor of Na/H 

exchanger), NMDG (a substitute for [Nab), quinidine (an inhibitor of the NafMg 2  

antiport), and bumetanide (an inhibitor of the Na:KtCY co-transporter) in the 

extracellular medium led to a significant increase in [Nle'] i  in Magfhra 2-loaded single 

parotid acinar cells. These transport inhibitors may exert their effects in increasing 

cellular Mg2  via a different number of mechanisms. They may act by either facilitating 

Mg2  release from intracellular stores, thus preventing its efflux from the cytosol or 

enhancing its influx from the extracellular medium. However, studies performed by 

other workers using sublingual acinar cells, have demonstrated that when [Mg 2 o 

concentration is deliberately increased by loading cells with Mg 2 , a Mg2  efflux 

originates in which this ion leaves the cell through a N atMg2  antiport system (Zhang 

& Melvin,1994). In addition, several studies have demonstrated the existence of a 

membrane NatMg2  antiport system which is believed to play a major role in the 

regulation of cytosolic Mg2  (Flatman, 1991). Like these previous studies, it is tempting 

to suggest that in parotid acinar cells, a membrane Na 4  dependent system for the 

regulation of cytosolic Mg 24  exist on which these transport inhibitors are probably 

acting by preventing cellular M92  efflux. However, more studies are needed in order to 

confirm this interesting hypothesis. 

The results of the studies undertaken and presented in chapter 4 also shown that ACh 

can mobilise cellular Mg2t In fact, when stimulated with ACh, acinar cells experienced 

a slow but detectable decrease in [Mg 2 1, which reached a stable plateau phase after 5 - 

8 minutes. The results have shown that the [Mg 2Ji decrease is insensitive to either Na 

removal (substituting it for NIMIDG) or to either quinidine, dinitrophenol or bumetanide 

but only partial sensitive to lidocaine and amiloride. The results also suggest that the 

decrease in [Mg2 1]1 may partially be associated with the sodium channel activity since 

lidocaine, the local anaesthetic that is known to inhibit the Na channel activity, can 

decrease the response to ACh. In addition, the [Me']i decrease may also be associated 

with the NC/It antiport, since the ACh-evoked response was also partially sensitive to 

amiloride. The decrease in [Mg2 ]1 in response to ACh may be due to the fact that Mg 2  

is leaving the cell (efflux) or it is sequestered in the stores. In pancreatic acinar cells, it 

was shown that secretagogue-evoked decrease in [Mg 2 1, corresponded to either Mg 2  

leaving the cell (Yago eta!, 2000), or Mg2  entering intracellular stores (Mooren, 2001). 
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Nevertheless, there is a general agreement in the scientific community that, [Mg 2 1 is 

mobilised in a stimulus-secretion óoupling dependent manner and that the slower 

changes in [Mg2 ]1 occur in a way that is completely anti-parallel to the rapid Ca 2  

signalling in acinar cells (Lennard & Singh, 1992; Mooren, 2001). Similarly, in this 

study it was demonstrated that [Mg 2 ]1 responds with a slow decrease upon ACh 

stimulation and despite the fact that the present findings seem somehow to favour the 

"ACh-induced M82  cellular efflux" hypothesis, further experiments are required to 

characterise precisely how Mg 2  is being mobilised following secretagogue stimulation. 

6.2 Human physiology 

The results of the study involving the effects of ageing, diabetes and oral surgery 

recover on human salivary secretion are presented and discussed in chapter 5. Data 

show that the ageing process has profound effects on both the rate of salivary secretion 

and the quality of the saliva. This study employed healthy human subjects and despite 

the fact that generally no xerostomia was found in the elderly, advanced age groups 

experienced significant decreases in basal, stimulated and salivary secretory capacity 

(difference between stimulated and basal secretion) when compared to subjects from 

young aged groups. Except for salivary Ca 21  secretory capacity, for all other organic 

and inorganic salivary components (proteins, Mg 2 , Zn2 , Na2 , C and Cl) the 

measured secretory capacity was found to be diminished in an age-dependent manner. 

Although this study has not investigated the presence of all possible salivary gland 

external insults, it is clear from the current work that in the elderly, there is an increased 

vulnerability expressed by a decrease in salivary function with ageing. Experiments 

involving the use of animals to study the ageing process of the salivary glands have 

clearly demonstrated that as the animals get old (from S to 12, to 16, to 20 and 

subsequently to 24 months) there are time-dependent changes in the morphology of the 

salivary parotid gland. This in turn is associated with significant decreases in amylase 

secretion and a derangement in cellular Ca 2  homeostasis (Mahay et a!, 2002). If it is 

possible to extrapolate the findings of animal pathophysiological conditions to human, 

then it is clear that the ageing process is indeed affecting the secretory capacity of the 

salivary glands. Studies employing human parotid tissue have also shown the existence 

of profound age-associated histomorphological changes characterised by loss of 
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functional acini and substitution by connective and adipose tissue (Scoff, 1987). 

However, it seems that in the human, there is an excess of secretory tissue, which 

constitutes a secretory reserve and allows old people to maintain adequate of salivary 

secretion levels as long as no fu-ther stress is placed on the gland (Ship et al., 2002). In 

fact, in this study, older people shown decreased levels of salivary secretion rates when 

compared to younger age groups, however, no signs of xerostomia were found in the 

elderly suggesting that an adequate salivary function was maintained in these 

individuals. 

In this study, it was also demonstrated that both type I and type II diabetic patients 

experienced profound modifications in the salivary gland function when compared to 

their healthy (non-diabetic) age-matched controls. The results show that diabetic 

patients have an overall impairment of salivary gland function, which is in agreement 

with previous reports made by other authors (Ship et aL 2002). It is now well 

established that diabetics have increased susceptibility to oral infections and diminished 

response in the wound healing process (Twetman et aL 2002). 

A new approach undertaken in this study was to specifically compare the salivary 

profiles of type I and type II diabetic patients. It was shown that type II diabetic patients 

experience the same qualitative modifications in salivary function compared to type I 

diabetes, but these are quantitatively less severe. This is probably due to a later onset of 

the disease in these patients. Generally, diabetic patients have diminished salivary 

output, impaired salivary protein secretory capacity, enhanced resting and stimulated 

salivary Ca2  secretion, increased Ca 2  secretory capacity and decreased Mg 2  secretory 

capacity. In a recent study employing streptozotocin-induced type I diabetes in rats, it 

was demonstrated that diabetes was associated with marked morphological changes in 

the salivary parotid gland including hyperplasia, and abundant infiltration of lipid 

vacuoles (Patel el al., 2002). These morphological changes were associated with 

significant secretagogue-evoked dose-dependent increases in amylase secretion and 

cellular Ca2  mobilisation (Mahay el aL, 2002). Again, if it is possible to extrapolate 

these findings of animal to human then it is clear that diabetes is indeed impairing 

salivary gland function. In the human, diabetes has shown to produce 

histomorphological changes comparable to the ones occurring in the pancreas of 

diabetic patients (Markopoulos & Belazi, 1998). 

These findings are very interesting since they share striking similarities with the effects 

of hypomagnesemia in salivary gland function found in animal studies presented in 
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chapters 3 and 4 of this work. Hypomagnesemia is a frequent feature in diabetic patients 

and some authors have suggested that it could be partially responsible for the 

installation of neuropathy (Tosiello, 1996; Leeuw, 2002). It is also know that diabetic 

patients with neuropathy have more pronounced salivary modifications. Therefore, 

future studies should aim to investigate the existence of any positive relationship 

between hypomagnesemia, diabetes and salivary function impairment. If this 

association is proven to exist, oral prescription of Mg 2  supplements could be an easy 

way of decreasing oral infection susceptibility experienced by these patients in order to 

improve their oral condition. 

The effects of oral surgery recovery on salivary gland function were also investigated in 

this part of the study. Except for stimulated salivary IC, no other changes were 

perceptible in ionic salivary function for these patients. No functional significance could 

be inferred from this finding. Basal salivary secretion is elevated in these patients and 

could reflect a salivary gland response to bring an increased quantity of healing growth 

factors know to occur in saliva to the surgical wound in order to accelerate the healing 

process (Zelles et at, 1995; Pedersen et at 2002). However, this can also be only 

derived from the presence of mechanical stimulation caused by post-surgical 

discomfort. Further studies should try to bring new evidence to this issue. Salivary 

proteins are slightly elevated and it would be interesting to investigate this further 

especially if this corresponds to enhanced healing factors or derives from the presence 

of contaminating blood factor originated by the surgical wound. 

6.3 Conclusion 

The main conclusions from this study employing the rat model to study parotid gland 

secretion are outlined in the schematic models of Figures 6.1 and 6.2. The first model 

represents the relationship between secretagogue-evoked changes in the Ca 2  and Mg2  

signalling during the stimulus-secretion coupling process. Secretagogues activate their 

respective receptors on parotid acinar cells leading to the metabolism of PIP2 resulting 

in the formation of 1P3 and DG. 1P3 in turn stimulates the 1P3 receptor on the ER 

resulting in the release of Ca 2  from the ER. This release of Ca2  from the ER results in 

the activation of CCE allowing Ca 2  to enter the cell (probably both the cytoplasm and 

the ER). The elevated [Ca 24]1 activates calmodulin (CD) which in turn phosphorylates 
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regulatory proteins on the secretory granules. The granules now take in fluid and 

subsequently swell, thereby allowing them to migrate towards the luminal membrane 

where they dock and fi.ise. During this process, exocytosis occurs resulting in protein 

and enzyme secretion in to the lumen of salivary gland acini. In the schematic model of 

Figure 6.1 elevated [Mg2 o (and probably high [Mg 2 1) blocks the release of Ca2  from 

the ER and CCE leading to a reduction in cellular Ca2  and thus reduced protein and 

enzyme secretion. It is also proposed that Mg 2  may have effects on a number of 

enzymes in acinar cells. These include PLC, the kinases, PMCA, SERCA pump and 

others especially since Mg 2  is an important co-factor for the activation of enzymes 

(Birch, 1993). In low [Mg 24]o (and probably low [Mg 21]) the activities of most of the 

enzymes (eg PLC) are attenuated resulting in reduced cellular Ca 2  levels which in turn 

leads to a decrease in protein and amylase secretion. 

In Figure 6.2 A, it is proposed that either sodium removal (using NMDG instead) or a 

number of membrane transport inhibitors (eg bumetanide, DNP, amiloride, quinidine, 

and lidocaine) can elevate [Mg 24] via a number of mechanisms. They may act to either 

inhibit the Na:Mg2  exchange and the uptake of Mg 2  into internal stores and 

stimulated the uptake of Mg2  into the cytoplasm resulting in an elevation in [M9 24]. 

The precise mechanism of action of the effects of the various inhibitors still need to be 

elucidated. Figure 6.2 B is a model to explain the ACh-evoked decrease in [Mg 2 . In 

this model, it is proposed that ACh can stimulate a decrease in [Mg 24]i by either 

facilitating its efflux and/or its uptake into internal stores. These processes may also be 

related to cellular C2 homeostasis. However, fbrther experiments are required to 

determined precisely how ACh is acting to decrease [Mg 2  

In relation to human salivary secretion, the results have demonstrated clearly that both 

ageing and diabetes can have marked effects on both the output of saliva and the quality 

of the saliva when compared to their healthy age-matched controls. However, surgical 

procedures seem to have very little effect on salivary gland function. 
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Figure 6.1- Schematic model illustrating the relationship between Mg 2  and Ca2  
signalling during amylase secretion in parotid acinar cells in response to such agonists 
as ACh. Secretagogues evoked an increase in [Ca2F]  from the endoplasmic reticulum 
which in turn activates CCE leading to the stimulation of calmodulin (CD), Ca 2  - CD 
activates the phosphorylation of regulatory proteins on the salivary protein granules 
resulting in the influx of ions and water and subsequent swelling of the granules. The 
granules then migrate towards the luminal pole where they dock and fbse with the 
luminal membrane to bring about exocytosis and secretion. It is proposed that Mg 2  can 
regulate the metabolism of IN Ca 2t- ATPase pumps (SERCA and PMCA) in the 
endoplasmatic reticulum (ER) and plasmic membrane respectively, Ca 2  release from 
the ER, and Ca2  influx from the extracellular medium. High [Mg2 ]o, and subsequently 
high [Mg2 1] , seems to attenuate Ca2  release from the ER and its entry into the cell 
whereas low [Mg2 o and subsequently [N4g2jj has effects on enzymes which regulate 
cellular Ca2  homeostasis. PLC=phospholipase C; 1P 3=inositol trisphosphate; 
PIP2=phosphatidyl inositol biphosphate; DG=diacylglycerol; CCE=capacitative calcium 
entry; 1P3R=1P3  receptor; RyR=ryanodine receptor 
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Figure 6.2 
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Figure 6.2- Schematic model of the events in the regulation of Mg 2  homeostasis in 
parotid acinar cells. In figure 6.2 A it is proposed that either Na removal (substituting 
with NMDG) or such membrane transport inhibitor as bumetanide, dinitrophenol 
(DNP), amiloridé, quinidine and lidocaine either inhibit the Na:Mg 2  exchange (3) and 
the uptake of Mg2  into internal stores(2) and/or stimulate Mg 2  influx into the cell (1) 
resulting in an elevation in [g211 . In figure 6.2 B it is proposed that acetylcholine 
(ACh) stimulation leads to the activation of the transport processes which are 
responsible for Mg2  movement either (1) from the cytoplasm to the extracellular 
medium and for the uptake of cytoplasmic Mg 2  into internal stores(2). 
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SOLUTIONS EMPLOYED IN THE AMYLASE MEASUREMENTS 

1) Recipient solution 

Composition for 4 L 

MW (g. mor') Concentration C per 4 L 

Na Cl 58.44 0.05 M 11.68 

Trizma base 121.11 0.1 M 48.44 

Triton X-100 0.1 % v/v 4 ml from stock 

• A 4 L flask was taken and 3 L of distilled water was added 
• The above reagents (NaC1 and Trizma base) were added and each was dissolved 

before adding the other 
• Volume was brought to 3.9 L 
• The solution was pHed using lM HCl to pH 7.0 
• 4 mL Triton X-lOO was added GRADUALLY and stirred THOROUGHLY 
• Volume was brought to 2 L with distlled water 
• Solution was kept in the fridge 

2) Substrate (powder, amylopectin anthranilate). 

- 200 mL of distilled water was heated to 35°C and temperature was checked 
using a thermometer. 

- The following compounds were added: 
• Maize starch 	lOOg 
• NaC1 	 1.8g 
• Na2CO3 	2 g 
• Isatoic anhydride 2g 
• The solution was maintained at 37°C with continuous stirring for 4 hours 
• After the 4 hours-period, a 400 mL mixture absolute ethanol: methanol (1:1 v/v) 

was made 
• The solution was filtered through a Watman N°l filter using a side ann Buchner 

funnel and a vacuum pump 
• The remaining solid was resuspended in 200 inL of distilled water and filtered 

again, this process was repeated twice 
• The solid was resuspended in 200 niL mixture ethanol : methanol, filtered, and the 

process repeated one more time 
• The resultant white solid was dried over silica gel in a dessicator before use 

The resultant white solid was dried over silica gel in a dessicator before use 

The solid was stored in a dessicator under vacuum at 0-5° C. 
Under these conditions the solid remained viable without loss of activity for 3 months 



3) Substrate (colloidal solution) 

• 2.0 L recipient solution was placed into a 4L beaker and heated to 95°C (a 
thermometer was used to check temperature) 

• 10 g amylopectine anthranilate was weighed and dissolved in 100 mL of recipient 
solution (final concentration was 0,5% w/v) 

• When temj)erature (95°C) of the recipient was reached, the solution of amylopectin 
was added gradually 

• Solution was heated and stirred for another 5-10 minutes 
• Heating was switched off and solution was cooled at room temperature with 

continuous stirring 
• Substrate was finally filtered using nylon mesh before use 

The solution was stored at 0-4°C for 2 days while still retaining optimum sensitivity. 
When diluting substrate was necessary, recipient solution was used. 
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CHAPTER 3 
Figure 3.1 

[Mg2 o  Basal SEM 

0 213.69 6.7 

1.1 250.31 11.03 

5 164.21 7.35 

10 185.16 10.44 

Figure 3.2 

IM&10 Control SEM ACh 10M SEM 

0 165.65 11.07 203.78 10.53 

11 338.63 8.05 303.43 22.77 

179.01 6.59 205.00 9.78 

10 148.61 15.31 209.00 30.78 

Figure 3.3 

Imelo Control SEM NA 10M SEM 

0 236.56 13.72 320.89 11.57 

1.1 291.82 19.77 491.76 31.72 

124.32 18.43 216.75 9.14 

222.09 9.46 253.21 16.35 

Figure 3.4 

[Mg2410  Control SEM P1w 10-5  M SEM 

0 226.12 10.45 254.92 8.95 

1.1 277.96 11.98 319.93 12.91 

161.11 8.7 202.77 10.09 

152.72 9.2 213.19 15.49 



CHAPTER 4 

Figure 4.1 Basal Amylase Secretion 

mM [Mel0 
Mean 

Basal Amylase Output SEM 

0 3.36 0.19 

1.1 5.43 0.44 

5 3.51 0.16 

10 2.98 0.17 

Figure 43 EFS 10Hz 

mM [MgJ0 
Mean 

EFS 10Hz  
SEM 

0 20.78 4.28 

1.1 24.59 5.05 

5 21.49 3.69 

10 20.33 2.70 

Figure 4.4 NA 10 5  M 

mM 1Mel0 
Mean 

NA 105M 
SEM 

0 9.12 0.91 

1.1 20.60 2.02 

5 16.35 0.61 

10 10.21 1.65 

Figure 4.5 Phe io M 

mM [Mel0 
Mean 

Phe io M 
SEM 

0 9.85 0.85 

1.1 14.04 0.79 

5 12.80 3.96 

10 11.18 0.92 



Figure 4.6 Iso iW' M 

mM [M&10 
Mean 

W' M 
SEM 

0 10.21 1.94 

1.1 14.54 1.53 

5 16.27 1.72 

10 19.08 0.88 

Figure 4.7 ACh 10 5  M 

mMie10 
Mean 

ACh 10M  
SEM 

0 3.67 0.32 

1.1 7.11 0.72 

5 6.56 0.55 

10 4.25 0.42 

Figure 4.8 ACh 104 to 

0 
ACh 
10-8 M 1.610 ± 0.460 
10-7 M 2.130 ± 0.223 
10-6 M 3.376 ± 0.262 
10-5M 3.890 ± 0.370 

iW' M 

1.1 

2.120 ±0.180 
5.360 ±0.530 
5.928 ±0.612 
7.110±0.720 

5 

1.120 ±0.0880 
2.560 ±0.4840 
4.666 ±0.2400 
6.560 ±0.5500 

10 	mM lMg2lo 

0.8480±0.230 
2.6200 ±0.565 
3.1200 ±0.427 
4.2500 ±0.420 

Figure 4.9 NA & Phe 10' M 

[Mt]Q 0 mM SEM 1.1mM SEM 5mM SEM 
NA 	4.10 	±1050 12.490 ±2.310 3.060 ±0.670 
Phe 	3.59 	±1.050 5.560 ±1.510 2.650 ±0.710 

Figure 4.10 Amylase in Zero amd 2.56mM [Ca 24]0  

mM [Mg2 10  0 5KM 1.1 SEM S 5KM 10 SEM 
BASAL2,56 mM [Ca2+10 4.950 ±0:580 5.330 ±0.520 3.670 ±0.170 2.810 ±0.280 
BASAL 0mM (Ca2+10 3.680 ±0.420 2.520 ±0.250 2.200 ±0.190 1.810 ±0.240 
ACh 10-5 mM 4.510 ±1.260 2.640 ±0.480 2.290 ±0.330 2.230 ±0.510 
GRADIENT 2,56 mM fCa2+10 5.450 ±L090 1.980 ±0.200 1.800 ±0.080 1.000 ±0.340 



Figure 4.11 Basal ICa2411 

mM [MgIO 	0 	SEM 1.1 	SEM 5 	SEM 10 	SEM 
1.8 mM [Ca21 0.2590 ±0.00610 0.28940±0.00790 0.24510 ±0.00940 0.22190 ±0.01170 
0 mM 	[Ca2j j  0.2499±0.00578 0.20590±0.00250 0.19390 ±0.00935 0.19490± 0.00698 

Figure 4.14 Peak & Plateau [Ca'J i  in 1.8 mM [Ca2 o  

mM ps.Q10 0 	SEM 1.1 SEM 5 	SEM 10 	SEM 
peak 0.67460 ±0.01920 0.8000 ±0.06680 0.42430 ±0.02140 0.370640 ±0.01840 
plateau 0.44560 ±0.01500 0.5348 ±0.03800 0.38420 ±0.01580 0.369800 ±0.01780 

Figure 4.15 Peak & Plateau [Ca 21 in 0 mM fCa210 

mM Imelo 0 	SEM 	1.1 	SEM 5 	SEM 10 	SEM 
peak 0.562220 ±0.01630 0510590±0.01570 0.30971±0 0.01760 0.26970 ±0.01470 
plateau 0.027289±0.00763 0.023864 ±0.01370 0.02042±0.01380 0.020396±0.01060 

Figure 4.17 CCE activation times 

mM[M62 o  0 	SEM 1.1 SEM 	S SEM 10 SEM 
Time (See) 	225.0 ±6.0 	35.0 	±5.0 245.0 ±3.0 	171.0 ±5.0 

Figure 4.18 CCE Values 

Time 0 SEM 	1.1 SEM 	5 SEM 10 	SEM 	mM [Mg2 1 0  
100.0 0.450 ±0.0120 0.350 ±0.0098 0.290 ±0.01550 0.280 ±0.00931 
200.0 0.440 ±0.0150 0.310 ±0.0050 0.270 ±0.01100 0.280 ±0.01100 
300.0 0.450 ±0.0160 0.290 ±0.0060 0.260 ±0.01300 0.250 ±0.01220 

Figure 4.19 Basal lMgI 1  & ACII 10M-evoked [Mg'I1 decrease 

BASAL SEM ACh 10-5 M SEM 
0.0 0.26310 ±0.01160 0.24110 ±0.00470 
1.1 0.30380 ±0.01010 0.27740 ±0.00907 
5.0 0.42480 ±0.03170 0.40300 ±0.03110 
10.0 0.49540 ±0.01610 0.45340 ±0.01100 

Figure 4.20 Continuous increase in basal [Mg 3 1  & AC1I 10M-evoked [Mg'j j  decrease in 10mM 
Imelo 

BASAL SEM ACh 10-5M SEM 
0.0 0.26310 ±0.01160 0.24110 ±0.00470 
1.1 0.30380 ±0.01010 0.27740 ±0.00907 
5.0 0.42480 ±0.03170 0.40300 ±0.03110 
10.0 0.49540 ±0.01610 0.45340 ±0.01100 



Figure 4.21 Effect of transport inhibitors on basal [Mg 2 j 

Inhibitors Cytosolic Magnesium Ratio (Mean) SEM 
Basal 0.304 ±0.010 

Lidocaine 10 M 0.402 ±0.022 
Aniiloride io M 0.509 ±0.004 

NMDG 0.563 ±0.033 
Quinidine 10 3  M 0.662 ±0.015 

UM' 104  M 0.788 ±0.073 
Bumetanide 10 M 0.930 ±0.058 

Figure 4.22 Effect of transport inhibitors on basal and ACh 10 5 M [Mg 1  

A)  

Inhibitors Basal Cytosolic 
Magnesium 

Ratio (Mean) 

SEM Inhibitors plateau Cytosolic 
Magnesium 

 Ratio (Mean)  

SEM 

Basal alone 0.304 ±0.010 ACh lO  M alone 0.284000 ±0.0206 
Lidocaine 10 M 0.402 ±0.022 Lidocaine 10 M 0.404900 ±0.0296 
Amiloride 10 M 0.509 ±0.004 Amiloride 10 M 0.482416 ±0.0036 

NMDG 0.563 ±0.033 NMDG 0.461190 ±0.0291 
Quinidine 10 M 0.662 ±0.015 Quinidinc 10 M 0.600490 ±0.0133 

DNP io M 0.788 ±0.073 DNP 10' M 0.6967142 ±0.0584 
Bumetanide 10 M 1 	0.930 1±0.0581 Bumetanide 10 M 10.792525 ±0.0422 

B)  

Inhibitors Cytosolic Magnesium Decrease (Mean) SEM 
ACh 10 5  M alone 0.026 ±0.003 
Lidocaine 10 M 0.011 ±0.003 
Amiloride 10" M 0.022 ± 0.003 

NMDG 0.063 ±0.010 
Quinidine 10" M 0.063 ±0.008 

DNP 10' M 0.082 ±0.019 
Bumetanide 10" M 0.148 ±0.019 



ChapterS 

Figure 5.1 

A)  

AGE RESTING 	SEM 	STIMULATED SEM 
20-34 0.7927 0.108400 3.1368 0.294300 
3544 0.4610 0.061250 2.1142 0.218400 
45-54 0.3069 0.019420 1.4538 0.114500 
55-64 0.2969 0.040360 1.2678 0.129100 
65-75 0.2083 0.042560 1.0967 0.185000 

B)  

AGE 20-34 SEM 	35-44 SEM 45-54 SEM 55-64 	SEM 	65-75 	SEM 
2.08 0.21 	1.52 0.17 	1.14 0.10 	0.96 	0.12 	0.88 	0.15 

Figure 5.2 

A)  

AGE RESTING 
20-34 0.59700 
3544 0.34020 
45-54 0.40160 
55-54 0.20070 
65-75 0.22950 

B)  

SEM STIMULATED SEM 
0.0820 2.44270 0.17170 
0.05748 1.51180 0.16660 
0.0403 1.66310 0.12730 
0.02766 1.28060 0.23460 
0.02581 1.37490 0.11950 

AGE 20-34 SEM 35-44 SEM 45-54 SEM 55-64 SEM 65-75 SEM 
1.85 	0.12 	1.17 	0.15 1.26 	0.11 	0.87 	0.12 	1.07 	0.08 

Figure 5.3 

A)  
AGE RESTING SEM STIMULATED SEM 
20-34 1.34530 0.11350 0.98330 0.09630 
35-44 1.62190 0.18730 0.91100 0.11580 
45-54 1.66650 0.20310 0.91070 0.11560 
55-64 2.58660 0.54380 1.03940 0.10450 
65-75 2.76780 0.53710 1.28670 0.17280 

B)  

AGE 20-34 	SEM 35-44 SEM 45-54 SEM 55-64 	SEM 	65-75 	SEM 

-0.59 	0.18 -0.69 0.14 	-0.75 	0.13 -1.54 	0.48 	-1.48 	0.42 



Figure 5.4 

A)  

AGE RESTING SEM STIMULATED SEM 
20-34 1.47640 0.1218 0.99110 0.08140 
3544 1.66000 0.1403 0.87230 0.06000 
45-54 1.68000 0.2370 0.83940 0.09000 
55-54 2.21000 0.2813 0.93660 0.10240 
65-75 2.35000 0.1880 1.14960 0.10550 

B)  

AGE 20-34 	SEM 35-44 SEM 45-54 SEM 55-64 	SEM 	65-75 	SEM 
-0.50 	0.13 -0.79 0.11 	-0.81 	0.18 -1.28 	0.25 	-1.18 	0.22 

Figure 5.5 

A)  

AGE RESTING SEM STIMULATED SEM 
20-34 39.6722 3.1746 52.5056 6.5017 
3544 34.5842 2.4217 46.6947 5.1161 
45-54 33.35 2.1664 65.0591 3.763 
55-64 50.56 11.5313 70.52 7.8358 
65-75 52.5429 5.6283 90.0857 11.3943 

B)  

AGE 20-34 	SEM 35-44 SEM 45.54 SEM 55-64 	SEM 	65-75 	SEM 

13.83 	5.78 12.14 4.87 	31.70 	3.4 19.96 	13.02 	37.54 	14.26 

Figure 5.6 

A)  

AGE RESTING SEM STIMULATED SEM 
20-34 37.99000 2.9700 53.48000 4.64000 
35-44 28.90000 3.7500 48.68000 2.13000 
45-54 32.90000 3.7500 52.14000 2.17000 
55-54 38.30000 2.8600 75.22000 11.93000 
65-75 45.89000 6.0000 95.41000 7.88000 

B)  

AGE 20-34 	SEM 35-44 SEM 45-54 SEM 55-64 	SEM 	65-75 	SEM 
15.50 	3.94 19.78 3.36 	19.42 	2.57 36.92 	10.49 	49.51 	10.33 



Figure 5.7 

A)  

AGE RESTING SEM STIMULATED SEM 
20-34 4.52220 0.40120 3.31670 0.42830 
3544 5.32630 0.50180 3.12110 0.47750 
45-54 6.70450 0.87920 4.42730 0.62170 
55-64 8.68000 2.70910 5.09000 0.96050 
65-75 9.51430 2.62730 8.91430 2.01570 

B)  

AGE 20-34 	SEM 35-44 SEM 45-54 SEM 55-64 	SEM 	65-75 	SEM 

-1.25 	0.31 -2.20 0.61 	-2.27 	0.78 -3.59 	0.74 	-0.60 	0.47 

Figure 5.8 

A)  

AGE RESTING SEM STIMULATED SEM 
20-34 5.78600 0.5060 4.05000 0.35000 
3544 5.79000 0.5500 3.79000 0.48000 
45-54 4.31000 0.4700 2.65000 0.52000 
55-54 6.91000 0.8900 4.86000 0.82000 
65-75 5.81000 1.0800 5.74000 0.86000 

B)  

AGE 20-34 	SEM 35-44 SEM 45-54 SEM 55-64 	SEM 	65-75 	SEM 
-1.74 	0.48 -2.00 0.59 	-1.66 	0.65 -2.05 	0.71 	-0.07 	1.17 

Figure 5.9 

A)  

AGE RESTING SEM STIMULATED SEM 
20-34 7.27780 0.75750 8.01670 0.81430 
35-44 1.78950 0.14370 2.42110 0.21990 
45-54 0.91000 0.12640 1.55590 0.14990 
55-64 1.54000 0.38130 1.97900 0.56790 
65-75 0.98570 0.03401 1.00290 0.16930 

B)  

AGE 20:34 	SEM 35-44 SEM 45-54 SEM 55-64 	SEM 	65-75 	SEM 
0.73 	0.12 0.63 0.19 	0.69 	0.11 0.39 	0.29 	0.017 	0.14 



Figure 5.10 

A)  

AGE RESTING SEM STIMULATED SEM 
20-34 3.50000 0.6330 3.64000 0.70670 
3544 0.76000 0.2900 1.06670 0.21920 
45-54 0.49000 0.09999 1.09310 0.14850 
55-54 0.25000 0.0824 0.50910 0.09570 
65-75 0.52700 0.0328 0.69090 0.05300 

B)  
AGE 20-34 	SEM 35-44 SEM 45-54 SEM 55-64 	SEM 	65-75 	SEM 

0.13 	0.25 0.30 0.27 	0.60 	0.17 0.25 	0.072 	0.16 	0.04 

Figure 5.11 

A) 

AGE RESTING 
20-34 17.27780 
3544 17.82350 
45-54 22.40910 
55-64 28.66700 
65-75 29.14290 

B) 

SEM STIMULATED SEM 
1.13700 16.55560 0.89740 
0.91650 15.05260 0.81820 
1.37170 14.40900 0.70760 
5.97220 15.00000 1.37440 
4.89130 16.42860 1.70100 

AGE 20-34 SEM 35-44 SEM 45-54 SEM 55-64 SEM 65-75 SEM 
-7.22 	1.43 	-3.58 	1.24 -8.00 	1.30 -13.00 	5.51 	-12.71 	4.31 

Figure 5.12 

A)  
AGE RESTING SEM STIMULATED SEM 
20-34 18.36000 1.4030 15.13640 0.76250 
35-44 22.20000 1.5668 16.73330 0.76510 
45-54 19.16000 1.2901 15.22220 0.76480 
55-54 22.36000 1.1460 15.36360 1.06410 
65-75 19.54000 0.8780 12.72730 0.63380 

B)  
AGE 20-34 SEM 35-44 SEM 45-54 SEM 55-64 SEM 65-75 SEM 

-3.22 	1.20 	-5.47 	1.51 4.10 	1.37 -7.00 	1.16 	-6.81 	0.99 



Figure 5.13 

A)  

AGE RESTING SEM STIMULATED SEM 
20-34 195.5560 15.66940 350.9444 37.96110 
35-44 108.5789 13.27560 249.8947 44.81670 
45-54 157.8636 26.64850 154.5 17.80590 
55-64 221.0000 63.84870 190.0 30.28460 
65-75 182.8571 49.46740 145.4286 28.26900 

B)  

AGE 20-34 SEM 35-44 SEM 45-54 SEM 55-64 SEM 65-75 SEM 
155.38 46.32 141.31 46.93 2.09 	26.67 -31.00 	58.34 -37.42 	55.04 

Figure 5.14 

A)  
AGE RESTING SEM STIMULATED SEM 
20-34 182.68000 19.1100 208.18000 19.35000 
3544 154.86000 17.5700 196.46000 31.61000 
45-54 111.41000 12.5300 125.24000 12.60000 
55-54 119.27000 16.2400 119.63000 26.70000 
65-75 66.18000 15.2400 53.18000 10.24000 

B)  

AGE 20-34 SEM 35-44 SEM 45-54 SEM 55-64 SEM 65-75 SEM 
25.50 	23.86 41.66 34.12 3.03 	24.90 0.36 	32.73 -31.18 24.36 

Figure 5.15 

A)  

AGE RESTING SEM STIMULATED SEM 
20-34 794.50 84.52800 687.000 86.97220 
35-44 796.7895 66.83220 766.2032 60.34030 
45-54 673.4545 46.10820 481.6818 37.56670 
55-64 763.00 93.77400 441.300 42.96800 
65-75 688.1429 59.74530 451.5714 45.88120 

B)  
AGE 20-34 	SEM 35-44 SEM 45-54 SEM 55-64 	SEM 	65-75 	SEM 

-107.50 	68.51 -29.47 99.83 	-191.77 51.91 -321.70 	90.62 	-236.51 	42.13 

Figure 5.16 
A)  
AGE RESTING SEM STIMULATED SEM 
20-34 755.36000 45.7600 765.00000 51.75000 
35-44 722.60000 45.1700 762.73000 82.89000 
45-54 673.17000 46.2800 613.82000 38.90000 
55-54 695.09000 68.6600 435.18000 39.82000 
65-75 791.81000 48.4600 529.45000 30.93000 
B)  
AGE 20-34 	SEM 3544 SEM 45-54 SEM 55-64 	SEM 	65-75 	SEM 

5.09 	48.26 -53.20 46.96 -59.34 	41.10 -259.91 	70.39 	-262.36 	57.17 



Figure 5.17 
A) 

RESTING SEM STIMULATED SEM 
CONTROL 0.6897 0.06800 2.760 0.17150 
TYPE I 0.222 0.03250 1.230 0.15300 
CONTROL 0.3263 0.01710 1.5325 0.06390 
TYPE 11 0.252 0.02400 1.1791 0.10330 

Figure 5.18 

A) 
RESTIT4G SEM STIMULATED SEM 

CONTROL 1.4174 0.08380 0.9881 0.06063 
DIABETES 2.602 0.46170 1.3597 0.19250 
CONTROL 1.8425 0.10200 0.9501 0.04070 
DIABETES 2.3487 0.27840 1.4996 0.11770 

Figure 5.19 

A) 
RESTING SEM STIMULATED SEM 

CONTROL 38.745 2.14800 53.495 3.83000 
DIABETES 48.570 6.81000 75.540 7.41000 
CONTROL 37.1554 1.58640 63.730 2.30000 
DIABETES 77.660 4.85000 100.046 5.22000 

Figure 5.20 

A) 

RESTING SEM STIMULATED SEM 
CONTROL 5.2175 0.34280 3.720 0.27510 
DIABETES 13.228 2.97000 6.0143 0.97840 
CONTROL 6.124 0.38150 4.1876 0.29040 
DIABETES 9.5885 1.69000 4.715 0.61300 

Figure 5.21 

A) 
RESTING SEM STIMIULATED SEM 

CONTROL 5.250 0.55490 5.750 0.59800 
DIABETES 1.257 0.18180 1.2857 0.14100 
CONTROL 0.9382 0.06930 1.344 0.08900 
DIABETES 0.7538 0.11190 0.8769 0.17800 

Figure 5.22 

A) 
RESTING SEM STIMULATED SEM 

CONTROL 772.975 45.07000 729.900 48.11000 
DIABETES 1741.920 178.07000 1327.210 144.22340 
CONTROL 711.600 20.88600 577.420 21.06000 
DIABETES 1107.580 81.81000 762.500 40.21490 



STIMULATED SEM 
15.775 0.58560 
18.1429 0.81780 
15.090 0.33350 
16.880 0.82530 

Figure 5.23 

A) 
RESTU'G SEM STIMULATED SEM 

CONTROL 188.480 12.55000 287.430 29.15000 
DIABETES 148.710 21.85000 226.930 20.48000 
CONTROL 137.280 10.00000 160.370 12.31000 
DIABETES 131.350 27.04000 147.390 17.06000 

Figure 5.24 

A) 

RESTING SEM 
CONTROL 17.875 	0.91930 
DIABETES 25.780 	2.87000 
CONTROL 21.7356 0.75820 
DIABETES 23.700 	1.43000 

Figure 5.17 to 5.24 B) 


