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ABSTRACT

Context. Diffusive shock acceleration in the solar corona can accelerate solar energetic particles to very high energies. Acceleration
efficiency is increased by entrapment through self-generated waves, which is highly dependent on the amount of accelerated particles.
This, in turn, is determined by the efficiency of particle injection into the acceleration process.
Aims. We present an analysis of the injection efficiency at coronal shocks of varying obliquity. We assessed injection through reflection
and downstream scattering, including the effect of a cross-shock potential. Both quasi-thermal and suprathermal seed populations were
analysed. We present results on the effect of cross-field diffusion downstream of the shock on the injection efficiency.
Methods. Using analytical methods, we present applicable injection speed thresholds that were compared with both semi-analytical
flux integration and Monte Carlo simulations, which do not resort to binary thresholds. Shock-normal angle θBn and shock-normal
velocity Vs were varied to assess the injection efficiency with respect to these parameters.
Results. We present evidence of a significant bias of thermal seed particle injection at small shock-normal angles. We show that
downstream isotropisation methods affect the θBn-dependence of this result. We show a non-negligible effect caused by the cross-
shock potential, and that the effect of downstream cross-field diffusion is highly dependent on boundary definitions.
Conclusions. Our results show that for Monte Carlo simulations of coronal shock acceleration a full distribution function assessment
with downstream isotropisation through scatterings is necessary to realistically model particle injection. Based on our results, seed
particle injection at quasi-parallel coronal shocks can result in significant acceleration efficiency, especially when combined with
varying field-line geometry.

Key words. acceleration of particles – shock waves – Sun: coronal mass ejections (CMEs)

1. Introduction

The majority of energetic particles in the near-Earth space
environment are generated by energetic processes at the Sun
(Reames 1999). Coronal or interplanetary shocks driven by coro-
nal mass ejections (CMEs) play a major role in accelerating seed
particles to high energies through a process of repeated shock
encounters. This process of diffusive shock acceleration (DSA)
was initially described by Axford et al. (1977), Krymskii (1977),
Blandford & Ostriker (1978), and Bell (1978). Repeated shock
encounters are assumed to occur due to trapping by upstream
Alfvénic turbulence generated by the accelerated particles them-
selves (Lee 1983), and scattering of particles in the turbulent
downstream medium.

For ambient solar wind particles to take part in the DSA
process, they have to return to the upstream after encountering
the propagating coronal shock for the first time. This process
of injection is straightforward to understand assuming the seed
particles have kinetic energies well in excess of the mean up-
stream incident ram energy. However, quantitative understand-
ing of injection into DSA at low energies remains a challenge. A
comprehensive understanding of the injection efficiency is espe-
cially important when particle entrapment in DSA is attributed

� Appendices are available in electronic form at
http://www.aanda.org

to self-generated waves (see, e.g., Ng & Reames 1994; Vainio
2003; Lee 2005; Ng & Reames 2008; Vainio & Laitinen 2007,
2008). This is because self-generated wave intensity is scaled by
the absolute level of resonant particle intensity. Thus, from the
particle point of view, the theory is non-linear.

In this paper, we investigate seed particle injection using
a simplified shock model, suitable for implementation in self-
consistent Monte Carlo simulations of DSA (see, e.g., Battarbee
et al. 2011). We present injection probabilities for quasi-thermal
and non-thermal particle populations. We study only the injec-
tion of particles to the upstream after their first interaction with
the shock front, not the subsequent energising process through
consecutive crossings.

The bulk of the solar wind consists of thermal, cool particles.
Much research has been done to link shock acceleration with
non-thermal seed populations, which could be remnants from
previous energetic eruptions (see, e.g., Mason et al. 1999; Tylka
et al. 2001, 2005; Tylka & Lee 2006; Sandroos & Vainio 2007).
It is uncertain whether energetic remnant seed populations are
capable of supplying the required particle flux to generate ef-
ficient turbulent trapping in front of the shock, especially con-
sidering the high energies attained (van Nes et al. 1984). Given
the speeds at which coronal shocks propagate, only a small frac-
tion of thermal ions are likely to be injected into the acceleration
process.
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In this paper, we study the injection of thermal and
suprathermal particles into the shock acceleration process. The
quasi-thermal and non-thermal populations are described using
κ-distributions. We used a simplified one-dimensional model
to analyse the reflection and transmission of incident particles
at the shock front. Comparisons of work presented by Kirk
& Heavens (1989) and Ostrowski (1991) suggest that the one-
dimensional adiabatic approximation is sufficient for our model.
Particle transmission uses the scatter-free approximation (see,
e.g., Decker 1988). However, we propagated the particles in the
downstream until they were isotropised through pitch-angle scat-
tering before applying analytical return-probability estimates.

The angle θBn between the shock normal and the upstream
magnetic field, with values θBn = 0◦ . . . 90◦, was varied to as-
sess the coupling of shock-normal angle θBn and particle injec-
tion probability. The electric cross-shock potential was assessed
along with its effect on injection and reflection of incident par-
ticles. It should be noted that our analysis considers only the
adiabatic approximation of shock-drift acceleration and does not
take into account the effects of shock surfing.

Modification of shock-velocity profiles due to particle ac-
celeration, as presented for instance in Ellison et al. (1996), is
not expected to play a major role in interplanetary shocks with
low Alfvénic Mach numbers (see, e.g., Terasawa et al. 2006).
Therefore we adopted the test-particle approximation.

At supercritical shocks (see, e.g., Bemporad & Mancuso
2011), specularly reflected ions, ion beams, and upstream waves
can interact and cause shock reformation (Leroy 1984; Burgess
1989; Scholer & Burgess 1992) and can also affect the energy
dissipation. Because specular reflection requires full-orbit simu-
lations, we did not consider the effect of shock reformation on
particle injection.

2. Particle injection

In previous studies of shock acceleration, particle injection has
been modelled through simplifications such as mono-energetic
(e.g., Li et al. 2012) or power-law (e.g., Sandroos & Vainio 2007;
Ng & Reames 2008) seed populations, or by using a thermostat
model (Malkov & Völk 1995, 1998). Neergaard Parker & Zank
(2012) employed a κ-distribution, using an ad-hoc minimum in-
jection energy. A classical approximation for minimum particle
injection speed is v > u1 (see, e.g., Lee 1983; le Roux & Webb
2009), where v is the particle speed and u1 is the plasma flow
speed along the upstream magnetic field line. We show that this
threshold speed is not always a good approximation.

Particle injection at oblique shocks has been simulated
through Monte Carlo methods for instance by Ostrowski (1991),
Baring et al. (1993), and Ellison et al. (1995). In the context of
DSA at coronal shocks, we limit our analysis to a single shock
encounter instead of propagating particles, for example, until
they reach a threshold energy (see, e.g., Baring et al. 1994).

Highly variable magnetic fields and their effect on particle
injection have been studied among others by Giacalone (2005)
and Giacalone & Jokipii (2006). At large shock-normal angles
(θBn � 85◦), such as at the quasi-perpendicular termination
shock, cross-field diffusion via field-line random walk across the
shock plays a major role, and the approximations presented here
may not be applicable.

3. Shock geometry

Shocks launched from the solar corona travel outwards in the
heliosphere, where the background magnetic field is described

as the Parker spiral. A propagating shock can intersect mag-
netic field lines with a multitude of shock-normal angles θBn,
especially during expansion within the complex coronal field.
The specifics of shock expansion in the coronal magnetic field
have been detailed for instance by Sandroos & Vainio (2006),
Sandroos & Vainio (2009), and Pomoell et al. (2011). In this
paper, we fixed the shock-normal propagation velocity Vs (mea-
sured in the inertial frame) and the solar wind parameters. We
varied the angle θBn between the propagation direction of the
shock and the mean magnetic field to assess injection efficiency
at different points of a curved shock front.

We considered different shock-normal angles θBn as dis-
tinct test cases, ranging from θBn = 0◦ to θBn = 60◦. This
means that our results only apply to quasi-parallel and oblique
portions of coronal or interplanetary shocks, but not to quasi-
perpendicular shocks. We also neglected changes to the up-
stream shock-normal angle caused for example by upstream
wave growth (see, e.g., Scholer 1993) or field-line meandering,
and limited our cases to constant values of θBn. However, our re-
sults for each shock-normal angle can be applied as short inter-
vals of locally constant θBn, as part of an evolving, propagating
shock front.

We examined plasma flows at the shock in the de
Hoffmann-Teller frame, where the mean magnetic field and
mean plasma flow direction are parallel to each other in both
the upstream and the downstream of the shock. Using the
Rankine-Hugoniot equations, we solved the gas and magnetic
compression ratios rg and rB at the shock front.

In our notation, de Hoffmann-Teller frame upstream quan-
tities are sub-scripted with a 1 and downstream quantities with
a 2. Positive pitch-angle cosines μ indicate propagation towards
the upstream, whereas negative values indicate propagation to-
wards the downstream. Quantities given in the upstream plasma
frame are bare, and in the downstream plasma frame primed.
The downstream plasma frame quantities are of most use when
assessing return probabilities, and only upstream plasma frame
quantities are initially given. The solar wind flows radially out-
ward with velocity usw along the radial magnetic field. The
plasma flow velocity u1 is given parallel to the magnetic field,
with u1 = Vs sec θBn − usw.

Our radial solar wind model, introduced in Battarbee et al.
(2010), satisfies required continuities of mass flux and magnetic
flux. Our choice of heliocentric distance r = 3.17 R� results in a
high Alfvén speed vA. Upstream parameters include the plasma
density ρ = 3.48 × 105 cm−3, background magnetic field flux
density B1 ≈ 0.19 G, temperature T ≈ 2.0 × 106 K, sound speed
cs ≈ 2.34 × 107 cm s−1, Alfvén speed vA ≈ 6.97 × 107 cm s−1,
the plasma beta β1 = 2γ−1

p c2
s v
−2
A = 0.135, solar wind speed

usw ≈ 9.98 × 106 cm s−1, and the wave group speed V =
usw + vA ≈ 7.97 × 107 cm s−1. Here γp = 5/3 is the ratio of spe-
cific heats. For calculations and simulations, we used two dif-
ferent shock-normal velocities of Vs = 1500 km s−1 and Vs =
2000 km s−1 with shock-normal angles ranging from θBn = 0◦ to
θBn = 60◦.

In Table 1, we present values for the upstream flow speed u1,
the Alfvénic Mach number MA, the gas compression ratio rg,
the magnetic compression ratio rB, and the downstream shock-
normal angle θBn,2 for the cases studied in this paper. The shock
compression ratio was solved parametrically as presented in
Vainio & Schlickeiser (1999), with the case θBn = 0 solved for
upstream angle 0.03◦, to make certain that the shock is a fast-
mode shock.
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Table 1. Shock-normal velocity, angle, and shock parameters solved
with Rankine-Hugoniot equations.

Vs = 1500 km s−1

θBn u1 MA rg rB θBn,2

0 1400 2.00 3.68 1.01 5.8
2.5 1400 2.00 3.43 1.26 37.5
5 1410 2.01 3.22 1.44 46.1
7.5 1413 2.02 3.06 1.56 50.4
10 1420 2.04 2.93 1.65 53.2
12.5 1436 2.06 2.83 1.71 55.3
15 1450 2.08 2.74 1.77 56.9
20 1496 2.14 2.59 1.85 59.5
25 1555 2.22 2.48 1.91 61.7
30 1630 2.33 2.40 1.95 63.7
45 2020 2.89 2.24 2.03 69.7
60 2900 4.14 2.17 2.09 76.1

Vs = 2000 km s−1

θBn u1 MA rg rB θBn,2

0 1900 2.72 3.83 1.00 1.2
2.5 1900 2.72 3.81 1.04 16.5
5 1910 2.73 3.76 1.15 29.9
7.5 1920 2.74 3.69 1.29 39.6
10 1930 2.76 3.62 1.43 46.5
12.5 1949 2.79 3.53 1.56 51.4
15 1970 2.82 3.45 1.69 55.0
20 2028 2.90 3.30 1.89 60.2
25 2107 3.01 3.17 2.05 63.7
30 2210 3.16 3.07 2.17 66.5
45 2730 3.90 2.84 2.41 72.9
60 3900 5.58 2.71 2.54 78.6

Notes. Speeds Vs and u1 are given in units km s−1 and angles are given in
degrees. Note that the parallel-shock case is computed for θBn = 0.03◦.

3.1. Cross-shock potential

The solar wind consists of ions and electrons in suitable quan-
tities to achieve macroscopic plasma neutrality. An ion-to-
electron imbalance at kinetic scales forms an electrostatic field
across the shock profile, resulting in the cross-shock potential.
As presented for instance in Hull et al. (2000), this cross-shock
potential can be approximated by various methods. Although we
focused on coronal shocks, we used the estimates found from ob-
serving the bow shock of the Earth, where the potential jump is
set to

ΔΦ = φ
1
2

mp

(
u2

1,n − u2
2,n

)
, (1)

which is proportional to the change of the normal component of
proton ram energy. Here φ = 0.12 is an observational parameter
(Hull et al. 2000) and mp is the proton mass.

Although the significance of this electric potential has been
investigated previously (see, e.g., Gedalin 1996; Zank et al.
2001; Zuo et al. 2013), its effect on particle acceleration effi-
ciency is still largely ignored. Unless otherwise stated, the cross-
shock potential is always accounted for in our calculations.

4. Seed particle populations

The bulk of the ambient solar wind consists of protons and elec-
trons. Although most particles encountered by a coronal shock
have left the surface of the Sun in a thermalised state (as depicted

Fig. 1. Particle distribution functions fth(v), fnth(v) and a Maxwellian
distribution at T ≈ 2.0 × 106 K.

by a Maxwellian velocity distribution), the ambient plasma con-
tains an additional suprathermal halo. As the corona exists in a
collisionless state, this halo remains unthermalised during ex-
pansion to interplanetary scales. We describe particle distribu-
tions using a κ-distribution (Vasyliunas 1968), where κ is a
model parameter defining the strength of the suprathermal tail.
The representative speed parameter

w0 =

√
2TkB

κ − 1.5
κmp

(2)

is based on the ion temperature T , where kB is the Boltzmann
constant. The particle distribution function is

f (v) =
n(r)Γ(κ + 1)

w3
0π

3/2κ3/2Γ(κ − 1/2)

⎡⎢⎢⎢⎢⎣1 + v2
κw2

0

⎤⎥⎥⎥⎥⎦−κ−1

, (3)

where Γ(x) denotes the gamma function. We compared the injec-
tion efficiency for a distribution with a strong suprathermal tail
(κ = 2) and for a near-Maxwellian distribution (κ = 15). These
populations along with a Maxwellian distribution are shown in
Fig. 1.

4.1. Equation of motion

The equation of motion for a system of particles undergoing
elastic pitch-angle scattering in the frame of flowing plasma can
be simplified, considering motion within a flux tube extending
from the shock (x1 = 0) to the far upstream (x1 → ∞). The
plasma speed u1 is assumed constant and aligned with the con-
stant upstream magnetic field. In a steady state, the particle dis-
tribution function obeys

(μv − u1)
∂ f
∂x1
=
∂

∂μ
Dμμ
∂ f
∂μ
, (4)

where x1 is the distance measured along the field lines in the
shock frame. f is taken to be a function of mixed coordinates in
the frame of the scattering centres (v, μ) and the shock (x1).

4.2. Flux conservation

When modelling the injection of strongly suprathermal particles
at a coronal shock, information of the approaching shock can
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propagate into the upstream and alter the incident particle pop-
ulation. To maintain the flux conservation, the incident particle
pitch-angle distribution should be adjusted. A full description of
the steps taken is included in Appendix A.

According to Liouville’s theorem, the shock-incident parti-
cle phase-space distribution f (x, p, t) is conserved along particle
orbits. Conservation of mass implies that the shock-normal inte-
grated particle flux

F = cos θBn

∫
(μv − u) f (x, p, t) d3 p

is conserved.

4.3. Downstream population isotropy

Particles transmitted to the downstream region of the shock scat-
ter off turbulence and isotropise. A portion of the isotropised
particles, if energetic enough, can return to the shock and be in-
jected into the upstream. Jones & Ellison (1991) gave the return
probability for an isotropised particle as

Pret =

⎧⎪⎪⎨⎪⎪⎩
(
v′−u2
v′+u2

)2
, v′ > u2

0, v′ ≤ u2.
(5)

This probability is the ratio of particle fluxes towards and away
from the shock at a plane in the downstream, assuming isotropic
particle distributions and a downstream of infinite extent. We
applied this equation to the guiding centre motion of a particle
along the magnetic field and, thus, the speed u2 in Eq. (5) is
measured in the de Hoffmann-Teller frame.

The method for estimating the downstream scattering of par-
ticles can have a significant effect on the injection probability.
Assessing downstream isotropisation methods and their connec-
tion to injection efficiency are the primary focus of this paper.
One method is deducing the temperature of the transmitted pop-
ulation and choosing injection energies based on the downstream
gas temperature (see, e.g., Malkov & Völk 1995; Zank et al.
2007). Another is to assume that particles retain their plasma
frame speed and achieve isotropy through elastic small- or large-
angle scattering in the plasma frame (Jones & Ellison 1991).
This can be either Monte Carlo-simulated or assumed to take
place instantaneously. In Sect. 7, we present Monte Carlo simu-
lations in which we varied the simulation parameters to find the
difference between assuming instant isotropy and letting parti-
cles scatter until they have travelled a pre-chosen distance. For
simplicity, we employed an isotropic small-angle scattering pro-
cess with pitch-angle diffusion coefficient

Dμμ =
v

2λ‖
(1 − μ2), (6)

where λ‖ is the mean free path of particles undergoing scattering.
The field-parallel diffusion coefficient is κ‖ = v′λ‖/3.

4.4. Cross-field diffusion

Owing to the presumably strong scattering in the downstream,
particles are no longer locked to a single magnetic field line (see,
e.g., Jones et al. 1993; Baring et al. 1995). A strongly turbulent
downstream field could be described by field-line random walk,
which presents challenges related to a field line potentially in-
tersecting the shock multiple times. A simplification suitable for
DSA simulations is to describe the downstream cross-field prop-
agation of a particle as perpendicular diffusion across the mean

magnetic field. We describe downstream cross-field diffusion
with a pitch-angle-dependent perpendicular diffusion coefficient

κ⊥(μ′) = a⊥κ‖(1 − μ′2), (7)

where a⊥ is a cross-field diffusion strength parameter and the
term (1−μ′2) scales motion according to the Larmor radius r′L =
mv′⊥/(qB′).

5. Analytical injection thresholds

In this section, we present analytical solutions of particle-speed
thresholds, which allow either reflection at a shock front or
injection following transmission to the downstream. We trans-
mitted particles across the infinitesimally thin shock using the
adiabatic guiding centre approximation and scatter-free approxi-
mation, similar to Decker (1988). However, we extended the for-
mulation to include the cross-shock electric potential ΔΦ, solv-
ing the particle downstream plasma frame speed v′ using only
shock- and upstream-flow parameters.

5.1. Particle reflection by the shock structure

The equations for adiabatic scatter-free particle transmission can
be used to assess changes in particle motion because it is trans-
mitted across the shock front. A particle is reflected at the shock
front if the decrease of its parallel kinetic energy generated by
magnetic compression and the cross-shock potential exceeds its
initial upstream parallel kinetic energy. Assuming the conserva-
tion of magnetic moment and energy in the shock-crossing of a
particle, the downstream (shock frame) parallel velocity can be
derived as

μ2v2 = −
√

(μv − u1)2 − 2
mMΔB − 2

m qΔΦ. (8)

For a reflected particle, the term under the root sign is negative.
Here ΔB = B2 − B1, q is the charge and m is the mass of the
particle andM ≡ (m(1 − μ2

1)v21)/(2B1). Thus, using the magnetic
compression ratio rB = B2/B1, any particle for which

u2
1 − 2μvu1 + v

2 − v2(1 − μ2)rB − 2 q
mΔΦ ≤ 0 (9)

holds true is reflected at the shock. As the particle travels across
the shock front, the parallel kinetic energy reaches zero and
the electrostatic potential and the magnetic gradient cause the
particle to be deflected in such a way that it is returned to the
upstream. The details of reflection-threshold velocities are ex-
amined in more detail in Appendix B, and speed thresholds for
reflection, described in Eqs. (B.3) and (B.4), are shown in Fig. 2.

5.2. Particle transmission across the shock

Assuming particle injection after transmission occurs through
isotropisation (see Sect. 4.3 and Eq. (5)), the primary parameter
that defines the injection probability for a transmitted particle is
the downstream plasma frame speed v′.

We find the particle downstream perpendicular velocity as

v′⊥ = v
′
√

1 − μ′2 = v
√

1 − μ2
√

rB (10)

and the particle downstream plasma frame parallel velocity as

v′‖ = v
′μ′ = u2−

√
u2

1 − 2μvu1 + v2 − v2(1 − μ2)rB − 2 q
mΔΦ. (11)
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Fig. 2. Reflection threshold speeds for Vs = 1500 km s−1: within the
shaded area, protons may be reflected at the shock. Threshold #1 (v >
vR1, v > u1/rB) is defined with Eq. (B.3) and threshold #2 (v > vR2,
v < u1/rB) with Eq. (B.4).

These can be used to solve the downstream plasma frame particle
speed v′ and pitch-angle μ′. The equations for v′ and μ′ can be
further analysed to study whether a particle transmitted to the
downstream can return to the upstream. We discuss and derive
analytical expressions for the threshold velocities for this return
in Appendix B. Speed thresholds for injection through reflection
or downstream scatterings are shown in Fig. 3 for a shock of
velocity Vs = 1500 kms−1.

6. Numerical flux analysis

Although analytical methods can give information on threshold
velocities for seed particle injection, they cannot be used directly
to estimate the injection efficiency. To do this, we need to eval-
uate the proportion of the incoming particle flux, with a given
upstream distribution function, that is returned to the upstream
after its first encounter with the shock, that is, injected. We used
a semi-analytical method, where the incident flux is found by
integrating the flux-weighted upstream seed particle distribution
as∫

dFx1=0

d3v
d3v. (12)

The distributions used in our model are described in Eqs. (A.3)
and (A.6). The reflected flux is found by integrating over all cells
where the requirements for reflection are fulfilled. The transmit-
ted portion of the distribution function is conserved according to
Liouville’s theorem, with new downstream values v′ and μ′ given
by Eqs. (10) and (11). The downstream flux is then found by in-
tegrating over the whole downstream distribution. We integrated
the distribution with v‖,1 and v‖,2 spanning up to 10u1 and v⊥,1
and v⊥,2 spanning up to 5u1. Conservation of the shock-normal
component of particle flux is confirmed.

In Figs. 4 and 5, we present visualisations of quasi-thermal
and non-thermal particle populations at two different shock-
normal velocities and a selection of shock-normal angles.
In the figures, velocities are measured in the frame of the
shock. The shown quantity is the two-dimensional flux den-
sity dF /(dv‖ dv⊥), with contour boundaries at one-magnitude
intervals.

The transmitted portion of the incident flux is shown as blue
filled contours. The threshold curve of reflection at the shock is

Fig. 3. Injection threshold speeds for Vs = 1500 km s−1: the classical
threshold u1 (solid curve) versus our reflection threshold (dashed) and
the threshold for injection after downstream scatterings (dotted, v >
vTμ− ). Protons within the shaded areas have nonzero injection probabil-
ity; the different shading represents the injection possibility through re-
flection, downstream scatterings, or both. The classical threshold over-
estimates the lowest injection speeds, especially at small shock-normal
angles.

shown as a black and green dashed line and the reflected flux is
shown as red filled contours moving away from the shock in the
upstream direction. The transmitted flux, modified by the shock
passage as given by Eqs. (10) and (11), is shown as red con-
tours at one-magnitude intervals. The downstream velocities of
the transmitted particle flux can then be assessed for its injection
probability according to Eq. (5). The black dashed semicircle de-
picts the speed u2 in the downstream medium, representing the
lowest particle speed for a possible injection. A guideline repre-
senting the speed at which the statistical return probability for an
isotropic population in an infinite downstream is 25% (v′ = 3u2)
is shown as a black dotted semicircle.

7. Monte Carlo simulations

In this section, we describe Monte Carlo simulations that al-
low us to investigate the effect of downstream isotropisation and
cross-field diffusion on the injection efficiency. A large number
of particles were picked from the κ-distribution based on the flux
conservation calculations presented in Sect. 4 and Appendix A.
The upstream velocity and pitch-angle were randomised using
Eqs. (3), (A.11) and (A.14). Owing to simulation run time con-
straints, the amount of simulated quasi-thermal particles was
scaled down because the injection probability decreased with in-
creasing shock-normal angle θBn.

As discussed in Sect. 4.3, scatter-free transmission across the
shock results in the downstream population being anisotropic.
To study the effect of anisotropy in the downstream, we present
four sets of simulations. In the first set, particles are assumed
to achieve instant isotropy without scattering or propagation. In
sets two through four, particles isotropise through propagation
and scattering in the downstream. In set two, downstream cross-
field diffusion is suppressed. In sets three and four it is active,
with a⊥ = 0.1. In set three, downstream cross-field diffusion
can scatter the particle up to the vicinity of the shock, but not
across it. In set four, the boundary condition at the shock allows
particles with μ2 > 0 to propagate across the shock front to the
upstream.
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Fig. 4. Visualised transfer of quasi-thermal (left, κ = 15) and non-thermal (right, κ = 2) particle flux densities dF /(dv‖ dv⊥) across a shock of
velocity Vs = 1500 km s−1 with four different shock-normal angles. Blue contours depict the incident transmitting flux, red contours depict the
reflected flux, and red solid contours the downstream transmitted flux at one magnitude intensity intervals. The black semicircles depict downstream
speed thresholds for statistical return probabilities of 0% (dashed) and 25% (dotted), and the black-green dashed curve represents the reflection
threshold.

Fig. 5. Visualised transfer of quasi-thermal (left, κ = 15) and non-thermal (right, κ = 2) particle flux densities dF /(dv‖ dv⊥) across a shock of
velocity Vs = 2000 km s−1 with four different shock-normal angles. Blue contours depict the incident transmitting flux, red contours depict the
reflected flux, and red solid contours the transmitted downstream flux at one magnitude intensity intervals. The black semicircles depict downstream
speed thresholds for statistical return probabilities of 0% (dashed) and 25% (dotted), and the black-green dashed curve represents the reflection
threshold.

For simplicity, all our Monte Carlo simulations assumed a
downstream of infinite extent. We propagated and scattered par-
ticles in the downstream within a region xn,2 ∈ (−B, 0) where B
is a boundary (parallel to the shock front) at which particles are
considered to have isotropised (see also Ellison et al. 1996).

For set one (no downstream scattering), we set B = 0. For
sets two through four, we used the diffusion equation ux∂xn =
∂xκx∂xn to define the downstream return boundary at three times
the diffusion distance κx/ux from the shock. The shock-normal
diffusion coefficient κx = 〈(Δx)2〉/(2Δt) can be split into field-
parallel and field-perpendicular components with

κx = κ‖ cos2 θBn,2 + 〈κ⊥(μ′)〉 sin2 θBn,2.

The average downstream cross-field diffusion coefficient 〈κ⊥〉
can be solved as

〈κ⊥〉 = 1
2

∫ +1

−1
κ⊥(μ′) dμ′ =

2
3

a⊥κ‖.

Because the true pitch-angle distribution in the downstream is
unknown, a cautious choice is instead to use the highest value.
Using κ⊥|max = a⊥κ‖ and κ‖ = v′λ‖/3, we found the position of
the downstream return boundary to be

B = λ‖
(
cos2 θBn,2 + a⊥ sin2 θBn,2

) v′

u2 cos θBn,2
· (13)

We defined the downstream cross-field diffusion strengths as
a⊥ = 0 (set two) and a⊥ = 0.1 (sets three and four).

In the downstream, the field-parallel particle motion is

δx‖ = (v′μ′ − u2) δt.

The diffusive step across the mean field is solved using the
stochastic differential equation method, as described in Gardiner
(1985). Thus, the particle is propagated with

δx⊥ = Rn

√
2κ⊥(μ′)δt = Rn

√
(1 − μ′2)(2/3)a⊥λ‖v′ δt,
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where Rn is a normal distributed random number with unit
variance and zero mean. We additionally constrained the field-
perpendicular motion to δx⊥ ≤ v′⊥δt, which implies that we
cut off the tail of the normal distribution of Rn at Rn =√

(3v′δt′)/(2a⊥λ‖). Combining δx‖ and δx⊥, the motion normal
to the shock front is

δxn = δx‖ cos θBn,2 + δx⊥ sin θBn,2.

Particles encountering the boundary xn = −B because of the
field-parallel motion were considered isotropic, and the return
probability Pret from Eq. (5) was applied. The particle was
then sent back towards the shock from the distance of xn = −B
with a randomised flux-weighted shock-bound pitch-angle. In
sets 2 . . .4, particles propagated and experienced small-angle
scattering in the downstream and are possibly again convected
to xn = −B. Each time this occurred, Eq. (5) was applied, which
resulted in the cumulative return probability Pc =

∏
Pret,i.

Downstream propagation continued until the particle either re-
turned to the shock or the cumulative return probability dropped
below 10−6, at which point the particle was considered to be not
injected. If the particle returned to the shock, the successful par-
ticle was injected with the assigned probability Pc.

Because the rejection of uninjected particles may result in
significantly reduced statistics for the injected flux, we used the
minimum-variance unbiased estimator (see, e.g., Lehmann &
Casella 1998) to improve the statistical accuracy of the injection
probability. The method is described in Appendix C.

For downstream cross-field diffusion, we had to specify the
terminating conditions for the trajectories that tried to cross
boundaries at xn = −B or xn = 0. We note that for cross-field
diffusion across the downstream return boundary, there should
be an equivalent, symmetric cross-field-diffusion flux backwards
if the particle density is constant. We maintained this symmetry
by cancelling out all steps δx⊥ that would result in a particle
crossing the downstream return boundary.

We assumed that the perpendicular mean free path in the up-
stream region is zero, which means that no particles can prop-
agate into the upstream by perpendicular diffusion. Thus, we
needed to specify a terminating condition for the trajectories that
tried to enter the upstream region via cross-field diffusion. We
modelled two different boundary conditions at the shock front.
In set three, we prevented particle propagation into the upstream
through cross-field diffusion by reflecting all perpendicular steps
δx⊥ at the shock front. In set four, we modified the boundary
condition to allow cross-field jumps where the particle parallel
motion is towards the upstream (i.e. where μ2 > 0) to inject
the particle. The method of set four is intended to model the
way in which cross-field diffusion brings the particle close to
the shock, after which it is free to propagate along the field into
the upstream.

8. Results and discussion

8.1. Velocity thresholds and shock obliquity

In Fig. 2, we show the analytical threshold velocity for reflec-
tion as a function of shock obliquity for a shock with Vs =
1500 km s−1. As can be seen, reflection is only possible for parti-
cles with initial speeds higher than ∼930 km s−1, with the thresh-
old increasing with shock-normal angle. For Vs = 2000 km s−1,
we found a similar behaviour, with the threshold starting at
∼1260 km s−1. Thus, through reflection, our fast shocks are ca-
pable of injecting only suprathermal particles.

The threshold for transmitted particle return to the upstream
is not so straightforward, because for some shocks, particles of
all velocities can be returned to upstream. In Fig. 3, we show
that injection for transmitted particles of negligible upstream
plasma frame speed (v = 0) is possible with shock-normal angles
θBn ≤ 6◦ when Vs = 1500 km s−1. For Vs = 2000 km s−1 the re-
quirement is θBn ≤ 14◦. Because the bulk of the seed particles is
thermal and thus relatively slow, these analytical results suggest
a significant effect relating the efficiency of shock acceleration
with the shock-normal angle θBn. For comparison, in addition to
the lowest injection speed of transmitted particles, Fig. 3 shows
the classical injection speed threshold u1 and speed thresholds
for reflection. The classical model of v > u1 overestimates the
lowest injection speeds by several hundred km s−1.

The semi-analytical flux transmission visualisations pre-
sented in Figs. 4 and 5 confirm that an increasing shock-normal
angle θBn results in a decreasing injection probability for the core
thermal population. In the parallel case (θBn = 0◦), the core is
found to be close to the 25% injection probability threshold. For
Vs = 1500 km s−1, the threshold of no injection for a shock-
normal angle of θBn = 5◦ approaches the thermal core, and a
shock-normal angle of θBn = 15◦ results in the highest three
magnitudes of flux density falling within the zone of no return.
For Vs = 2000 km s−1, a similar effect is seen at slightly larger
shock-normal angles. At θBn = 15◦, the thermal core is inter-
sected by the threshold of no return, and θBn = 30◦ sees the
highest six flux density magnitudes within the zone of no return.

Our main results are shown in Fig. 6, where we compare
the results of Monte Carlo simulations with semi-analytical re-
sults. We calculated injected fluxes for particles both reflected
at the shock and injected through downstream scatterings. For
the semi-analytical flux analysis, this was achieved by integrat-
ing the selected κ-distribution over the whole velocity space,
accounting for reflection or return probability. The classical
threshold result was found by integrating the population for all
particles that fulfil v > u1. When reflection dominates, this com-
parison is quite close to our results, but it should be noted that
injection of all particles with v > u1 is unrealistic, with the differ-
ence compensated for because our model is able to also reflect
particles of upstream speeds v < u1. For Monte Carlo simula-
tions, the representative weight of all injected (reflected or re-
turned) particle packages was compared with the total weight of
all tested particles.

We found that Monte Carlo simulations without downstream
propagation yield injection probabilities in line with semi-
analytical results. As the shock-normal angle θBn increases, a
threshold effect begins to prevent the abundant, slow-core par-
ticle population from being injected. For Vs = 1500 km s−1,
an injection efficiency decrease of two orders of magnitude is
seen as the shock-normal angle θBn increases from 0 to 7.5◦.
For Vs = 2000 km s−1, a similar decrease is observed as θBn in-
creases from 0 to 15◦. We note that this effect is greater than
the one reported by Ellison et al. (1995), spanning several or-
ders of magnitude. However, our work does not retain a constant
gas compression ratio, but keeps Vs constant, thus allowing the
compression ratio to decrease as obliquity increases.

For the non-thermal distribution (κ = 2), the reflected parti-
cle flux becomes higher than the flux of transmitted and subse-
quently injected particles when θBn ≥ 13◦ (Vs = 1500 km s−1)
or when θBn ≥ 21◦ (Vs = 2000 km s−1). For the quasi-thermal
distribution (κ = 15), the reflected particle flux is negligible and
the injection probability continues to decrease as θBn increases.
Injection of a quasi-thermal distribution is found to be negligible
at θBn ≥ 25◦.
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Fig. 6. Particle fluxes at the shock: curves represent numerical integration results, data points are results of Monte Carlo simulations. Vs =
1500 km s−1 (left) and Vs = 2000 km s−1 (right). Simulations without downstream propagation of particles are designated with B = 0, whereas
simulations where particles isotropise through downstream scatterings are designated with B > 0. The flux differences for the reflected particles
in the Monte Carlo simulations (�,+) are due to statistical uncertainties. For comparison, we show the integrated flux of all particles that are faster
than the classical injection threshold v > u1 as a dash-dotted line. For κ = 15, reflected particle fluxes and the classical comparison are too low to
be visible.

We also studied the case of shock-normal velocity Vs =
1000 km s−1, which did not show a strong correlation between
injection efficiency and shock-normal angle. With such a low
shock-normal velocity, we found the injection of the thermal
core to be improbable, regardless of the shock-normal angle θBn.
This is mostly due to the small gas compression ratio for such a
low Mach number shock.

8.2. Isotropisation in the downstream

In Fig. 6, we show how downstream isotropisation methods af-
fect our Monte Carlo simulations. We show that at small (large)
shock-normal angles, the assumption of instant downstream
isotropy results in a higher (lower) injection probability than the
one actually needed to allow the population to achieve isotropy
through downstream scattering. This occurs because with veloc-
ities v′ > u2, the average parallel velocity in the downstream
plasma frame v′‖ for transmitted particles is negative (positive)
at small (large) shock-normal angles. Additionally, the thermal
population exclusion is seen to be activated at smaller shock-
normal angles if isotropisation takes place through simulated
scatterings. For example, at Vs = 1500 km s−1 and θBn = 10◦,
accounting for downstream scattering decreases the returning
flux of transmitted particles by well over three orders of mag-
nitude. At Vs = 2000 km s−1 and θBn = 10◦, the decrease is
approximately two orders of magnitude. At parallel (θBn = 0◦)
shocks, the returning flux was found to decrease by 33% (Vs =
1500 km s−1) or by 35% (Vs = 2000 km s−1) compared with the
values found by assuming instant downstream isotropy.

Thus, it is evident that the effects of transmitted population
anisotropy cannot be ignored when gauging the injection effi-
ciency at a propagating coronal shock.

8.3. Cross-field diffusion

In Fig. 7, we show comparisons between the simulation
sets 2 . . .4, which shows that accounting for the downstream
cross-field diffusion affects the injection efficiency. At very low

Fig. 7. Effect of downstream cross-field diffusion strength a⊥ = 0.1 on
the injection efficiency for Vs = 1500 km s−1, κ = 2, and different shock-
normal angles. Curves (from numerical integration results) and results
from simulations without cross-field diffusion (squares) are the same as
in Fig. 6. Results for the two types of downstream cross-field diffusion
(sets three and four) are shown as triangles and diamonds.

values of θBn, the cross-field diffusion in the downstream, act-
ing as if it were boosting the isotropisation speed, increases the
injection efficiency, but by a small margin. As the downstream
shock-normal angle θBn,2 increases, downstream cross-field dif-
fusion begins to play a larger role, and the choice of bound-
ary conditions at the shock becomes very important. Allowing
downstream cross-field diffusion to take place, but preventing
jumps of particles with μ2 > 0 to the upstream, acts like rapid
isotropisation, and the injection efficiency approaches the B = 0
case. However, allowing downstream cross-field diffusion to in-
ject particles with μ2 > 0 increases the injection by a factor of
up to ∼50%. At large shock-normal angles reflection remains the
dominant injection mechanism.
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Fig. 8. Ratios of total injected particle fluxes with active (FCSP) or inactive (FnoCSP) cross-shock potential. We show results for semi-analytical
integration (curves) and Monte Carlo simulations (symbols). Presented shock-normal velocities are Vs = 1500 km s−1 (left) and Vs = 2000 km s−1

(right). Simulations without downstream propagation of particles are designated with B = 0, whereas simulations where particles isotropise
through downstream scatterings are designated with B > 0. The flux differences for reflected particles in the Monte Carlo simulations (�,+) are
due to statistical uncertainties. For κ = 15, reflected particle fluxes are too low to be visible.

8.4. Cross-shock potential effect on injection

In the presence of a cross-shock electric potential, particles are
more likely to be reflected from the shock, and transmitted parti-
cles experience a decrease in parallel velocity. Thus, the expec-
tation is for transmitted particles to be less likely to experience
injection. Injected particles do, however, receive an additional
speed boost when returning to the upstream. Injection efficiency
ratios with active or inactive cross-shock potential are presented
in Fig. 8. Results are shown only when the flux in question is
not lower than 10−6 of the incoming flux. Reflection at small
shock-normal angles in the absence of a cross-shock potential is
very unlikely, which results in the large statistical uncertainty in
Monte Carlo simulations.

Both the semi-analytical approach and Monte Carlo sim-
ulations confirm the increase in reflection probability and de-
crease in transmitted particle injection probability. As θBn in-
creases, and injection of reflected particles is possible only for
the non-thermal tail of the κ = 2 population, the effect of the
cross-shock potential on the injection diminishes. Interestingly,
accounting for downstream scattering causes the diminishing of
thermal particle injection to occur at significantly smaller shock-
normal angles than if assuming instant downstream isotropy.
This is because the average parallel velocity in the downstream
plasma frame v′‖ for transmitted particles (with velocities v′ > u2)
changes direction.

As the shock-normal angle θBn increases, the magnetic re-
flection probability of particles increases, and the relative magni-
tude of the effect caused by the cross-shock potential decreases.
For Vs = 1500 km s−1, the increase of reflected particles at
θBn = 5◦ is approximately 65%. For Vs = 2000 km s−1, the in-
crease of reflected particles at θBn = 5◦ is approximately 270%.
Both cases see the increase drop to approximately 30% when θBn
approaches 25◦.

As mentioned in Sect. 8.1, reflection overtakes downstream
scattering as a source of injected particles when θBn ≥ 14◦
(Vs = 1500 km s−1), or when θBn ≥ 21◦ (Vs = 2000 km s−1).
Subsequently, at small (large) shock-normal angles, the net in-
jection effect of a cross-shock potential is negative (positive).

9. Conclusions

We have presented analytical and numerical results that indi-
cate that quasi-parallel coronal shocks are capable of injecting
a significant portion of the cold core of thermal particle when
the shock-normal velocity Vs is sufficiently high. Requiring in-
jected particles to fulfil the classical injection threshold u1 =
Vs sec θBn − usw is unlikely to accurately describe particle
injection.

With the assistance of Monte Carlo simulations, we showed
the θBn-dependence of the injection efficiency to be highly
sensitive to a proper assessment of transmitted particle flux
anisotropy. Using an assumption of instant downstream isotropy
can overestimate the injection probability by a factor of 3 to
3000. Allowing for downstream cross-field diffusion to take
place can either increase or decrease the injection efficiency of
particles, depending on chosen boundary conditions. However,
cross-field diffusion in the downstream has a negligible effect
at small shock-normal angles, where thermal particles can be
injected. At large shock-normal angles, reflection remains the
dominant injection method. Note, however, that our model as-
sumed that cross-field diffusion is limited to the downstream re-
gion, indicating that this transport process can only bring the
particle back to the shock, but not across it. If cross-field diffu-
sion in the upstream region were added, its role in the injection
process would most probably increase.

The DSA at coronal shocks is strongly dependent on the
strength of self-generated turbulence, and thus, the amount of
seed particles taking part in the acceleration process. The results
presented in this paper suggest that fast quasi-parallel coronal
shocks are capable of efficiently injecting the thermal core of the
solar wind. A short, finite interval of parallel shock propagation
could be efficient in boosting a significant portion of the thermal
particle population to suprathermal energies, resulting in an in-
jection hot-spot, after which they could be efficiently accelerated
by either a quasi-parallel or an oblique shock front.

Additionally, we showed that a cross-shock potential has a
significant effect in increasing the probability of reflection for
incident particles and in decreasing the injection probability of
thermal particles. For suprathermal particle populations, and by
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extension, oblique shocks, the cross-shock potential was shown
to be of little significance.
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Appendix A: Flux weighting

A.1. Upstream conservation of flux

The flux of particles through a given cross-sectional area of the
flux tube towards the shock is given as

F ≡ dN
dA dt

= −
∫

d3v1μ1v1 f =
∫

d3v (u1 − μv) f (x1, v, μ),

(A.1)

which satisfies the steady state requirement of

∂F
∂x1
= 0.

It is noteworthy that although the mean direction of particles is in
the negative x-axis direction, we defined the total net flux across
the shock as being positive. We considered the shock to be an
absorbing boundary, that is, the distributions and fluxes represent
particles that have yet to encounter the shock. The particle flux,
which is constant regardless of position x1, is easily evaluated
far from the shock, where only the scattering process affects the
angular distribution of the particles. The distribution is assumed
to be isotropic in the local plasma frame. Thus, sufficiently far
upstream, the flux is given by the form

F =
∫

d3v (u1 − μv) f∞(v) = u1n∞, (A.2)

where n∞ is the particle density and f∞ the particle distribution
at infinity.

At velocities v < u1, all particles travel towards the shock,
and thus, information of the shock at x1 = 0 cannot propagate
into the upstream. The distribution remains isotropic in the local
plasma frame, and the differential flux impacting the shock is
simply

dFx1=0

d3v
= (u1 − μv) f∞(v). (A.3)

Considering particles with speeds v > u1, the picture be-
comes more complicated. Information of the shock can propa-
gate against the flow of plasma, because μv − u1 can be positive.
This means that the angular distribution of particles that have not
yet interacted with the shock becomes anisotropic, as the distri-
bution f (x1 = 0, v, μ) = 0 for μv > u1, due to the absorbing
boundary at the shock. However, at a distance of x1 = 2λ, for in-
stance, we can still assume isotropy and take f (2λ, v, μ) ≈ f∞(v),
so that

dFx1=2λ

d3v
≈ (u1 − μv) f∞(v) (A.4)

is valid for all velocities including v > u1. In this flux, particles
with μv > u1 cause a negative contribution to the net flux, be-
cause they propagate outwards across the flux tube cross-section
surface at x1 = 2λ.

For the purpose of constructing a semi-analytical model
of particle injection at high particle speeds, we simplified the
anisotropies of the particle distribution at the shock. We assigned
the modified differential flux of particles with v > u1 at the shock
as

dF̂x1=0

d3v
=

{
(u1 − μv) f̂ (v), μv < u1

0, μv > u1,
(A.5)

where f̂ (v) is a scaled distribution function yielding the correct
total net flux, that is, f̂ (v) = f∞(v) for v < u1, but for v > u1,∫ u1/v

−1
dμ (u1 − μv) f̂ (v) =

∫ +1

−1
dμ (u1 − μv) f∞(v)

⇒ f̂ (v) =
4vu1

(v + u1)2
f∞(v).

Thus, for the particles that have not yet interacted with the shock,
we find

dF̂x1=0

d3v
=

⎧⎪⎪⎨⎪⎪⎩
4vu1(u1−μv)

(v+u1)2 f∞(v), μv < u1

0 μv > u1,
(A.6)

valid for particles of speed v > u1. This accounts for the absorb-
ing boundary at the shock whilst maintaining the conservation
of total flux at a given particle speed v.

For Monte Carlo simulations, the same consideration of flux
conservation must be made. The flux, that is, the total amount of
particles encountered by the shock within time dt, is formulated
as

dN
dA dt dv

= 2πv2
∫ +1

−1

dFx1=∞
d3v

dμ. (A.7)

For particles of speeds v < u1, the whole population is advected
towards the shock, meaning that no information of the approach-
ing shock can reach the particle distribution before impact. Thus,
for these particles, the differential flux, extended to encompass
all pitch-angles, can be written as

dN
dA dt dv dμ

∣∣∣∣∣
v<u1

= 2πv2 f∞(v)(u1 − μv). (A.8)

Thus, the probability of a particle with speed v exhibiting pitch-
angle μ when impacting the shock is given as

P(μ|v)|v<u1
=

u1 − μv
2u1

,−1 ≤ μ ≤ +1. (A.9)

This can be integrated to find the cumulative distribution func-
tion for a value of μ as∫ μ

−1
P(μ′|v)∣∣∣

v<u1
dμ′ =

1 + μ
2
+
v

4u1
(1 − μ2). (A.10)

From this, the Monte Carlo randomisation formula for μ can be
solved as

μ|v<u1
= u1
v
−

√
( u1
v
− 1)2 + 4 u1

v
S, (A.11)

where μ receives values from the range −1 < μ ≤ +1 and S is a
uniformly distributed random number in the range [0,1).

For particles with speeds v > u1, information of the propa-
gating shock can extend into the upstream, affecting the incident
particle pitch-angle distribution. Thus, we initialised the particle
distribution in the upstream of the shock at a distance of x1 = 2λ,
and allowed particles to convect towards the shock. This resulted
in a realistic pitch-angle distribution at x1 = 0+, without having
to resort to flux modification (Eq. (A.6)).

This pre-propagation is limited to the region x1 ∈ [0, 2λ]
with particles initialised isotropically at values μ < u1/v. As
the total population is advected towards the shock, all particles
that escape to x1 > 2λ will eventually return to the initialisation
boundary of x1 = 2λ, isotropised in the fluid frame. Thus, parti-
cles escaping to the upstream can be simply re-initialised at that
position.
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The distribution of pitch-angles μ for a given speed v, lim-
iting the valid pitch-angle range to values −1 ≤ μ ≤ u1

v and
normalising the total probability to 1, is

Ppre(μ|v)∣∣∣
v>u1
=

2v (u1 − μv)
(v + u1)2

, −1 ≤ μ ≤ u1
v
· (A.12)

This will result in the shock-incident flux

dN
dA dt dv dμ

∣∣∣∣∣
v>u1

= 2πv2 f∞(v)
4vu1(u1 − μv)

(v + u1)2
, μv < u1. (A.13)

Using Eq. (A.12), the Monte Carlo randomisation formula for μ
can be solved (similar to Eq. (A.10)) as

μ|v>u1
= −

(
−u1

v
+ (1 +

u1

v
)
√S

)
, (A.14)

where μ receives values from the range −1 < μ ≤ u1
v

.

Appendix B: Analytical injection thresholds

B.1. Reflection threshold

In attempting to determine particle injection, we can solve cer-
tain seed particle speed thresholds. A particle is reflected (see
Eq. (9)), and thus, injected, if

2μvu1 − v2 + v2(1 − μ2)rB > u2
1 − 2 q

mΔΦ. (B.1)

The right-hand side (RHS) of the equation is constant. Through
roots of derivatives of the left-hand side (LHS), we can find LHS
maxima at μ = u1

rBv
, if v > u1

rB
, or μ = 1, if v ≤ u1

rB
. Thus, if v > u1

rB
,

the LHS maximum is given as

2
u2

1

rB
− v2 +

⎛⎜⎜⎜⎜⎝v2 − u2
1

r2
B

⎞⎟⎟⎟⎟⎠ rB = v
2(rB − 1) +

u2
1

rB
· (B.2)

This results in no possibility of reflection, if u1/rB < v < vR1,
where

vR1 =

√
u2

1

rB
− 2qΔΦ

(rB − 1)m
· (B.3)

If v ≤ u1
rB

, the LHS has a maximum value of 2vu1−v2. This results
in no possibility of reflection, if v < vR2, where

vR2 = u1 −
√

2 q
mΔΦ. (B.4)

The LHS minimum is found at μ = −1. With these shock and so-
lar wind parameters, there exists no valid speed v for which this
value of the LHS would be positive. Under these circumstances,
no seed particle speed v results in certain reflection, regardless
of pitch-angle μ.

B.2. Threshold for return from the downstream

To split the transmitted particle population into portions with ei-
ther possible or impossible injection, we examined Eqs. (10) and
(11) to find

v′2 = v′2⊥ + v
′2
‖ = v

2
(
1 − μ2

)
rB

+

[
u2 −

√
u2

1 − 2μvu1 + v2 − v2(1 − μ2)rB − 2 q
mΔΦ

]2

. (B.5)

We found the maxima of downstream speed v′ for a given v, be-
cause this can result in an injection velocity threshold. Maxima
for v′ can be found at μ = −1 and μ = +1 or by solving the roots
of the derivative of v′(μ). Assigning

D(μ) = u2
1 − 2μvu1 + v

2 − v2(1 − μ2)rB − 2 q
mΔΦ (B.6)

and finding the first derivative for v′2 gives

∂v′2

∂μ
=
∂

∂μ

[
u2 −

√D(μ)
]2 − 2μv2rB (B.7)

=
2(u1 − μvrB)vu2√D(μ)

− 2vu1. (B.8)

Solving the roots provides an extremum, if μ ∈ (−1,+1) and if

(u1 − μvrB)2u2
2 = u2

1D(μ) (B.9)

⇒ μ = u1

vrB
±√

u2
1

v2r2
B

− u2
1(r2

B − r2) + v2r2(rB − 1) + 2r2 q
mΔΦ

v2rB(r3
B − r2)

· (B.10)

If v < u1
rB

holds true, only the solution with the minus sign is of
interest. These, in addition to the possible extrema at μ = −1 and
μ = +1, result in several possible threshold velocities.

B.2.1. Extrema at μ = −1 and μ = +1

The possible downstream velocity extrema at μ = −1 and μ =
+1 can be solved by refining Eq. (B.5). Formulating this as the
threshold for no injection results in

v′2 =
[
u2 −

√
(u1 ∓ v)2 − 2 q

mΔΦ

]2

< u2
2, (B.11)

where the term inside the square root is positive for all trans-
mitted particles. Thus, a transmitted particle can return to the
upstream only if√

(u1 ∓ v)2 − 2 q
mΔΦ − u2 > u2 (B.12)

⇒ (u1 ∓ v)2 > 2 q
mΔΦ + 4u2

2. (B.13)

For particles with v > u1, injection is always possible. For parti-
cles with v < u1, we found the additional requirements of

v > vTμ− =
√

2 q
mΔΦ + 4u2

2 − u1(μ = −1) (B.14)

v < vTμ+ = u1 −
√

2 q
mΔΦ + 4u2

2 = −vTμ−(μ = +1). (B.15)

For our parameters, only vTμ− provides a valid condition for
injection.

B.2.2. Extrema at μ � ±1

Solving the thresholds speeds for the one or two extrema given
in Eq. (B.8) in an analytical fashion does not result in easily ap-
plicable equations. However, solving the velocity thresholds for
these extrema in a numerical fashion revealed valid extrema only
at shock-normal angles θBn ≤ 4◦. At these shock-normal angles,
the existing extrema at μ = ±1 already allow theoretical return
of particles regardless of their speed. Thus, these extrema do not
affect the found particle return speed thresholds. However, in a
more general case, they cannot be ignored.
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Appendix C: Statistical handling of uninjected
particles

In Sect. 7, we presented a method for estimating the capability
of a shock to inject particles using Monte Carlo simulations. In
our method, we propagated the particle in the downstream until
it was either injected into the upstream, or the cumulative proba-
bility of return at the downstream boundary fell below 10−6 and
it was removed from the simulation as an uninjected particle. For
some shock parameters, however, this method will result in very
low statistics for the injected particles. To improve the statistical
accuracy, we used the fact that successes and failures – injec-
tions and non-injections – are distributed according to a nega-
tive binomial distribution. When the numbers of successes, R,
and failures,K , are known, the probability for success P can be
evaluated using the minimum-variance unbiased estimator (see,
e.g., Lehmann & Casella 1998), which gives

P = R − 1
R +K − 1

· (C.1)

It should be noted, however, that the actual probability of injec-
tion for a particle is

Pinj = PPs, (C.2)

where Ps is the injection probability associated with the last en-
countered success.

To evaluate the unbiased estimator, we randomised particles
in groups. For each particle within the group, the newly ran-
domised values of v and μ were used to test the particle for re-
flection, as explained in Sect. 5.1. Reflected particles were con-
sidered successes and have Ps = 1. Non-reflected particles are
transmitted to the downstream, with v′ and μ′ calculated accord-
ing to Eqs. (10) and (11). They were then followed in the down-
stream, as described in Sect. 7, until they were either injected,
incrementingR, or considered uninjected, incrementingK . This
was continued until R = 5. The last particle of the group was
then injected with the probability Pinj.

As a precaution against excessively low success probabili-
ties, the group size was limited to (R + K) = 106. If this limit
was reached and at least two successes were encountered, the
values of Ri and Ki associated with the last encountered suc-
cess were used to calculate P. If the tests resulted in only 0 or 1
success, the group was considered to result in no injection.

With these methods, the injected weight of the Monte Carlo
particle was found to be Winj = WseedPinj, where Wseed is the
representative weight of upstream seed particles assigned to this
group, and was found based on the plasma density. The total
injected weight was then used to calculate the particle flux.
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