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Abstract 

A minor population of glioblastoma stem-like cells (GSCs) has been implicated in the relapse 

and resistance of glioblastoma to therapeutic treatments. Based on knowledge of the 

involvement of multiple microRNAs in GSC propagation, we designed a combinational approach 

to target the GSC population with multiple miRNA-based therapeutics. As carriers for the 

targeted delivery we took advantage of two aptamers that bind to, and inhibit, the receptor 

tyrosine kinases, Axl and PDGFRβ. We showed that the aptamer conjugates are transported 

through an in vitro blood-brain barrier (BBB) model. Furthermore, combining miR-137 and 

antimiR-10b synergizes with the receptor inhibitory function of aptamer carriers and prevents 

GSC expansion. Results highlighted the potential of combining multifunctional RNA-based 

therapeutics for selective targeting of GSCs and offer a proof of principle strategy to potentially 

fulfill the still unmet need for effective and safe treatment of glioma. 

 

 

 

Keywords: aptamer, cancer stem cells, glioblastoma, microRNA, targeted delivery 
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Introduction  

 

Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults, 

classified as grade IV (World Health Organization) [1]. Treatments for GBM patients consist of 

tumor resection, radiotherapy and chemotherapy [2]. However, despite advances in surgical and 

medical neuro-oncology, prognosis for GBM patients remains dismal, with a median survival of 

14–15 months [3]. Subtypes of GBM have been classified into neural, proneural, classical and 

mesenchymal showing typical protein-coding gene mutations as well as aberrantly expressed 

subsets of RNAs [4-6].  

A minor cell population, constituted of multipotent tumor-initiating stem-like cells (GSCs), has 

been recently implicated in GBM recurrence and resistance to conventional treatments [7-9]. 

Indeed, GSCs are endowed with several growth properties typical of neural stem cells, including 

self-renewal by symmetric and asymmetric division dependent upon several factors, including 

the functional interplay with surrounding tumor and tumor-associated cells [10]. In comparison to 

the highly proliferating cells from the tumor bulk, this rare quiescent cell population is able to 

reconstitute the tumor mass and spread into the brain. The selective targeting of this functionally 

distinct, highly tumorigenic and invasive cell population is therefore considered critical for the 

success of therapeutic strategy to reduce tumor burden in GBM. The need for precise and safe 

targeted cell delivery and the lack of effective drugs to eradicate GSCs has revealed this as a 

challenging objective. Further, the presence of the tight cerebrovascular barrier hampers the 

passage of large macromolecules to target the brain tumor cells [11]. 

MicroRNAs (miRNAs) are short naturally occurring non-coding RNAs that prevent protein 

expression by forming imperfect base pairing with sequences in the 3′ untranslated region of 

target genes [12]. MiRNAs act in combination to regulate gene expression and coordinately 

modulate key biological processes, including cell cycle, apoptosis, differentiation, motility, 

epithelial-mesenchymal transition and angiogenesis, however these processes are often 

deregulated in tumors. As such, miRNAs are considered molecules of clinical potential in cancer 

treatment either as therapeutic targets or therapeutics [13].  

In GSCs the combined deregulation of a characteristic pattern of miRNA expression has been 

described by several groups where elevated expression of a subset of miRNAs, including both 

miR-10a and miR-10b and downregulation of tumor suppressor miRNAs, such as miR-124, 

miR-9, miR-137, miR-135 have been observed in several cancer types [14-18]. Despite the 

potential held by miRNA-based therapeutics, major hurdles to the translation to clinic include the 

lack of safe and effective carriers able to penetrate and to accumulate into tumor selectively 
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targeting the GSC population. In the past decade, much attention has been focused on RNA-

based aptamers that are emerging as safe delivery vehicles for targeted cancer therapeutics 

[19]. In addition to  inhibitory function of selected targets, aptamers raised against 

transmembrane receptors rapidly internalize into the target cell through recycling of the bound 

receptor [20]. So far, various therapeutic cargoes have been successfully conjugated to 

aptamers, including anti-cancer drugs, toxins, radionuclides, and short therapeutic RNAs 

(siRNAs and miRNAs) [19, 21, 22].  The main advantages for aptamer use in vivo as cell 

targeting moieties, include the extraordinary high binding specificity, long-term stability, little to 

no immunogenicity and off target toxicity [23]. Further, because of their small size, aptamers 

easily penetrate tumor tissues and tumor-derived spheres [24].  

In our laboratory we have previously identified and characterized two internalizing RNA 

aptamers, GL21.T and Gint4.T, that are able to bind at high affinity and inhibit the intracellular 

signaling  of tyrosine kinase receptors (RTKs) Axl and the platelet derived growth factor receptor 

β (PDGFRβ) respectively [25, 26]. Axl and PDGFRβ overexpression has been reported in 

several human cancers and associated with invasiveness and therapeutic resistance [27,28]. 

Expression of PDGFR-β is also high in atherosclerotic plaques and following vascular injury but 

low in normal human arteries [29, 30]. As we have recently shown, both GL21.T and Gint4.T 

may act as carriers for the selective delivery of short miRNA mimics and single chain miRNA 

antagonists, antimiR, into receptor expressing tumor cells both in vitro and in vivo. Furthermore, 

we have demonstrated the combinatorial potential of conjugating the GL21.T aptamer to a 

miRNA (or antimiR) molecule that combines the clinical benefits of both moieties [21, 22]. 

Here we sought to develop a mechanism-based combinational approach to target and eradicate 

the GSC population. To this end, we investigated the combination of miR-137 and the 

antagonist of the miR-10b. The miR-137 is a brain-enriched miRNA that acts as an 

oncosuppressor in several tumors, including GBMs, leading to decreased cell proliferation and 

invasion,  [15] whereas miR-10b acts as an oncomiR and is highly expressed in GBMs and low 

expression is observed in normal human brain [18]. Antagonizing miR-10b expression has been 

shown to reduce glioma cell growth by cell cycle arrest and apoptosis [18].  

Here we used the GL21.T and Gint4.T aptamers as carriers for miR-137 and antimiR-10b 

molecules to target in combination the stem-like glioma cancer cells (Axl+ / PDGFRβ+) in a 

receptor-dependent manner. The resulting multifunctional “smart drugs” combines the inhibitory 

functions of the two aptamers on their target receptors with the gene regulatory function of the 

miRNA/antimiR cargoes, and also increases selective targeting for cells expressing both 

receptors.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

5 
 

Results demonstrate that upon targeting the GSC population with aptamer-miRNA/antimiR 

conjugates, these cells differentiate, losing their ability to propagate and to sustain non-adherent 

growth as spheroids.  
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Materials and Methods 

 

Aptamers and conjugates 

GL21.T: 5′ AUGAUCAAUCGCCUCAAUUCGACAGGAGGCUCAC 3′; 

GL21.T stick: 5′ AUGAUCAAUCGCCUCAAUUCGACAGGAGGCUCACXXXXGUACAUUC 

UAGAUAGCC 3′; 

Gint4.T: 5′ UGUCGUGGGGCAUCGAGUAAAUGCAAUUCGACA 3′; 

Gint4.T stick: 5′ UGUCGUGGGGCAUCGAGUAAAUGCAAUUCGACAXXXXGUACAUUC 

UAGAUAGCC 3′; 

Control aptamer (indicated as Ctrl aptamer):  

5′ UUCGUACCGGGUAGGUUGGCUUGCACAUAGAACGUGUCA 3′; 

Control aptamer .stick (Ctrl aptamer used in the control conjugates): 

5′ GCCGCUAGAACCUUCUAAGCGAAUACAUUACCGCXXXXGUACAUUC 

UAGAUAGCC 3′; 

antimiR-10b stick (indicated as antimiR-10b): 

5′CACAAAUUCGGUUCUACAGGGUAGGCUAUCUAGAAUGUAC 3′; 

miR137 Passenger stick: 

5’ GGUGACGGGUAUUCUUGGGUGGAUAAUAGGCUAUCUAGAAUGUAC 3’  

miR137 guide: 5’ UGUUAUUGCUUAAGAAUACGCGUAGUCUU 3’ 

FAM labelled aptamer or aptamer stick are labelled at 5’. All RNA sequences were synthesized 

by tebu-bio srl (Magenta, Milan, Italy) and contained 2′-F-Py. Stick sequences (underlined) 

consist of 2′-F-Py and 2′-oxygen-methyl purines. The italic X indicates a covalent spacer, a 

three-carbon linker ((CH2)3). Before each treatment, aptamers were subjected to a short 

denaturation-renaturation step (5 min 85 °C, 3 min on ice, 10 min at 37 °C).  

To prepare conjugates: 1) stick antimiR-10b were incubated at 95 °C for 10 min in annealing 

buffer (20 mM 2-[4-(2- hydroxyethyl)piperazin-1-yl] ethane sulfonic acid (HEPES) pH 7.5, 150 

mM NaCl, 2 mM CaCl2) or miR-137 passenger and guide were annealed by incubating in 

annealing buffer at 95 °C for 10 min, at 55 °C for 10 min and then at 37 °C for 20 min; 2) stick 

aptamers were refolded (5 min 85 °C, 3 min on ice, 10 min at 37 °C), 3) equal amounts (ratio 

1:1) of stick aptamer and antimiR-stick/annealed passenger-guide were then annealed by 

incubating together at 37 °C for 30 min. The annealing efficiency was evaluated on a 12% non-

denaturing polyacrylamide gel. 

 

Cells and transfection 
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Human glioma U87MG cells were provide from ATCC (American Type Culture Collection, 

Manassas, VA) and grown in Dulbecco's modified Eagle's medium (DMEM, Sigma Aldrich, St 

Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS) (Sigma Aldrich, St Louis, 

MO, USA). To obtain U87MG-derived tumorspheres, cells were grown at low density (2000 

cells/ml) in serum-free DMEM-F12 (Sigma Aldrich, St Louis, MO, USA) supplemented with B27, 

20 ng/ml EGF and 20 ng/ml bFGF (Life technologies Milan Italy) for 10-15 days allowing the 

appearance of floating spheres. Glioblastoma stem-like cells were provided by Dr Lucia Ricci-

Vitiani and cultured in a serum-free medium supplemented with 20 ng/ml EGF and 10 ng/ ml 

bFGF (Life technologies Milan Italy) as reported [31]. 

For treatments, tumorspheres were collected by gentle centrifugation (800 rpm), dissociated 

with 0.25% trypsin for 5 min and treated as indicated with molecular conjugates or aptamers in 

supplemented serum-free appropriate medium. Treatments were renewed by adding 

aptamer/conjugates (200nmol/l) three times a week, as indicated. Spheroids were then 

collected and analyzed, or (for data in Fig. 3E) dissociated and plated at same density in rich 

medium without treatments for further 10 days before analyses.  

All transfections were performed using serum-free Opti-MEM and Lipofectamine RNAimax 

reagent (Invitrogen,Waltham, MA, USA) according to the manufacturer's protocol. Cells were 

transfected with 100 nmol/l (otherwise indicated) of: Anti-miR™ miRNA Inhibitor Negative 

Control (ctrl antimiR); Pre-miR™ miRNA Precursor Negative control and Pre-miR™ miRNA 

Precursor miR-137 (miR-137) or with antimiR-10b (Ambion, Waltham, MA, USA). 

 

Immunoblot analysis 

Total cell lysates were prepared in JS buffer (50 mM Hepes (pH 7.5), 150 mM NaCl, 1% 

glycerol, 1% Triton X-100, 1.5mMMgCl2, 5mMEGTA, 1mMNa3VO4, protease inhibitors) and 

then boiled in sodium dodecyl sulfate/β-mercaptoethanol sample buffer. Proteins were 

separated by electrophoresis and then blotted onto polyvinylidene difluoride membranes 

(Millipore, Billerica, MA, USA) by an electrophoretic transfer. After blocking with 5% dried milk in 

Tris-buffered saline (TBS) containing 0.1% Tween-20, membranes were incubated at 4 °C 

overnight with the following primary antibodies: anti-PDGFR-β (Cell Signalling Technology, Inc., 

Danvers, MA, USA); anti-Bim (Cell Signalling Technology, Inc., Danvers, MA, USA); anti-Sox-2 

(Abnova, Taipei City, Taiwan); anti-Axl (R&D Systems, Minneapolis, MN, USA); anti-Nanog 

(Santa Cruz Biotechnology, Stockton, CA, USA); anti-GLIPR-1 (Abcam, Cambridge, UK); anti-

Slug (Santa Cruz Biotechnology, Stockton, CA, USA); anti-α-tubulin (Santa Cruz Biotechnology, 
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Stockton, CA, USA); anti β-actin (Sigma Aldrich, St Louis, MO, USA). Blots were quantified with 

Image J software.   

 

Cell viability assays 

Dissociated tumorspheres were seeded in 96-well plates (2 × 103 cells/well) and left untreated, 

transfected with indicated miRs/antimiRs or treated with aptamers or conjugated, as indicated. 

Cell viability was assessed by CellTiter 96 Proliferation Assay (Promega, Madison, WI) after 

gentle pipetting. 

 

Flow cytometry analysis  

For cell cycle analyses, dissociated U87MG-derived tumorspheres or U87MG were left 

untreated or treated with aptamers or chimeras (400 nmol/l final concentration) for 10 days. 

Treatments were renewed by adding aptamer/conjugates (200nmol/l) three times a week. Cells 

were centrifuged, dissociated, washed with 1 ml of cold 1X PBS and then fixed with ethanol 

70%. Samples were then washed twice with 1ml of cold PBS to completely remove ethanol. 

Cells pellet was then suspended in 400 µl of PBS with RNase A and Propidium Iodide (PI, 

Sigma, St Louis, MO) to a final concentration of 50 μg/ml. Tubes were incubated for 20 minutes 

at 37°C. Cell cycle were analyzed with BD Accuri C6 (BD Biosciences, Franklin Lakes, New 

Jersey, USA). 

For the Annexin V-FITC apoptosis detection assay, dissociated U87MG-derived tumorspheres 

were left untreated or treated with aptamers or chimeras (400 nmol/l final concentration) for 3 

days. Cells were centrifuged for 5 minutes and washed twice with 1 ml of cold 1X PBS and then 

suspended in 1X binding buffer at a concentration of 1 x 106 cells/ml. Annexin V-FITC and PI 

(Novus Biologicals, Littleton, CO, USA) were added at 100 µl of each sample according to the 

manufacturer's recommendations (5 μL of Annexin V-FITC + PI). Samples were then incubated 

for 20 minutes at RT in the dark. 400 µl of 1X binding buffer was added to each sample before 

flow cytometry analysis with BD Accuri C6 (BD Biosciences, Franklin Lakes, New Jersey, USA). 

Axl and PDGF Rβ expression of GSCs were detected by anti-human Axl and PDGF Rβ goat 

IgG antibodies (R&D Systems, Milan, Italy). Alexa Fluor 647 donkey anti-goat IgG (Invitrogen, 

Milan, Italy) was used as secondary antibody. Viable cells were identified using 7-amino 

actinomycin D (7AAD; Sigma Aldrich, St. Louis, MO).  Cells were analyzed with FACSCanto 

flow cytometer (Becton Dickinson, Milan, Italy). 

 

Immunofluorescence  
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To assess Axl and PDFGRβ expression, U87MG-derived tumorspheres were seeded on poly-L-

Lysine coated glass coverslips and incubated with anti-Axl or anti- PDFGRβ antibodies (R&D 

System, Minneapolis, MN) for 30 min at 37 °C prior to fixation. Cells were then fixed with 

paraformaldehyde 4 % in PBS for 10 minutes and incubated at 37 °C for 30 minutes with 

Alexa568 secondary antibody (Invitrogen, Waltham, MA, USA). Coverslips were then mounted 

on microscope slides with prolong gold antifade reagent with DAPI (Invitrogen, Waltham, MA, 

USA) and visualized by confocal microscopy. Images were obtained using a Zeiss 510 LSM 

confocal microscope with a 40x oil objective.  

 

Transwell migration assay 

Dissociated tumorspheres were counted and 1.4 × 105 cells/point were treated (400 nmol/l final 

concentration) or transfected as indicated. Following 24 h, 1 × 105 cells were plated into the 

upper chamber of a 24-well transwell (Corning Incorporate, Corning, NY) in serum free DMEM 

and exposed to 10% FBS as inducers of migration (0.6 ml, lower chamber) for additional 24 h. 

Migrated cells were visualized by staining with 0.1% crystal violet in 25% methanol and 

photographed with Leica Application Suite. Percentage of migrated cells was evaluated by 

eluting crystal violet with 1% sodium dodecyl sulfate and reading the absorbance at 594 nm 

wavelength. 

 

Tumorsphere formation assay  

Tumorsphere formation assay was performed in 96 well plate in duplicate. Dissociated 

tumorspheres were counted and 500 cells/well were maintained in stem medium in the absence 

or in presence of aptamers or chimeras at 400nmol/l concentration. Treatments were renewed 

by adding aptamer/conjugates (200nmol/l) three times a week. Following 10 days, wells were 

photographed with Leica Application Suite and spheres with a diameter greater than 25 µm 

were counted.  

 

Chimeras stability in human serum 

GL21.T-137, GL21.T-10b, Gint4.T-137 and Gint4.T-10b chimeras were incubated at 4 μM in 

80% human serum from 1 h to 7 days. Type AB Human Serum provided by Euroclone (Cat. 

ECS0219D) was used. At each time point 8 μl (32 pmol RNA) was withdrawn and incubated for 

2 h at 37 °C with 1 μl of proteinase K solution (600 mAU/ml) in order to remove serum proteins 

that interfere with electrophoretic migration. Following proteinase K treatment, 9 μl 1× TBE and 

3 μl gel loading buffer (Invitrogen, Waltham, MA, USA) were added to samples that were then 
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stored at −80 °C. All time point samples were separated by electrophoresis into 10% non-

denaturing polyacrylamide gel. The gel was stained with ethidium bromide and visualized by UV 

exposure. 

 

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) 

For Real-time PCR, RNAs were extracted with TRiZol (Invitrogen, Waltham, MA, USA). To 

assess miRNA levels 500 ng of total RNA was reverse transcribed with miScript Reverse 

Transcription kit (Qiagen, Milan, Italy) according to the manufacturer's protocol. Amplification 

was performed by using the miScript-SYBR Green PCR Kit and specific miScript Primer Assay 

(Qiagen, Milan, Italy). U6 RNA was used as a housekeeping control gene. 

To evaluate PDGFR-β, Nanog, Sox-2, Shh, Oct-4, GFAP and TUBB-3 mRNA levels, 1 μg of 

total RNA was reverse transcribed with iScript cDNA Synthesis Kit and amplified with IQ-SYBR 

Green supermix (Bio-Rad, Hercules, CA, USA). β-actin was used as a housekeeping control 

gene. The specific primers used were: GFAP: fw 5’ CTGCGGCTCGATCAACTCA 3’, rev. 5’ 

TCCAGCGACTCAATCTTCCTC 3’; TUBB-3: fw 5’ GAGCGGATCAGCGTCTACTAC 3’, rev. 5’ 

CCCCACTCTGACCAAAGATGAA 3’; .Nanog: fw 5’ CTAAGAGGTGGCAGAAAAACA 3’, rev 5’ 

CTGGTGGTAGGAAGAGTAAAGG 3; Sox-2: fw 5’GCACATGAACGGCTGGAGCAAGC 3’,  rev. 

5’ TGCTGCGAGTAGGACATGCTGTAGG 3’; Shh: fw 5’TCGGTGAAAGCAGAGAAC 3’, rev 5’ 

AGGAAAGTGAGGAAGTCG 3’; PDGFRβ : fw 5’ GCTCACACTGACCAACCTCA 3’, rev. 5’ 

GGTGGGATCTGGCACAAAGA 3’; Oct-4: fw 5’ CGAAAGAGAAAGCGAACCAG 3’, rev. 5’ 

GCCGGTTACAGAACCACACT 3’; β-actin: fw: 5′ CAAGAGATGGCCACGGCTGCT 3′; rev.: 5′ 

TCCTTCTGCATCCTGTCGGCA 3′. 

TaqMan Array Human Molecular Mechanisms of Cancer (Applied Biosystems, Foster City, CA, 

USA) were performed following manufacturer’s instructions by using a TaqMan Universal PCR 

Master Mix (Applied Biosystems, Foster City, CA, USA) and 50ng cDNA as input. Three 

endogenous control gene (GAPDH, HPRT1, GUSB) were used as housekeeping control genes. 

Relative mRNA and miRNA quantization was performed by using the ΔΔCt method applying the 

equation 2−ΔΔCt. 

For miRNA absolute quantitation, RNAs were recovered in TRIzol containing 0.5 pmol/ml of CL4 

aptamer (CL4: 5′ GCCUUAGUAACGUGCUUUGAUGUCGAUUCGACAGGAGGC 3′) used as a 

reference control. Amplification were performed with 50 ng of RNA retrotranscribed with 

miScript Reverse Transcription kit. Standard curves with purified miR-137 and miR-10b (from 

Eurofins Genomics, Milan, Italy) were performed to quantity samples and number of copies 
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were calculated (number of copies = (ng * 6.022x1023) / (length * 1x109* 650)). Data were 

normalized to the CL4 reference control.  

 

In vitro blood brain barrier model 

The all human in vitro tri-culture cell model of the BBB was set up using short-term cultures of 

endothelial cells (HBMEC, SC1000), astrocytes (HA, SC1800) and pericytes (HBVP, SC1200) 

(ScienCell Research Laboratories, CA, USA), based on a previously published method (Kumar 

et al., 2014).  The transendothelial electrical resistance (TEER) of the BBB was measured using 

the EVOM-2 (Merck Millipore, Oxford, UK) on the insert for each of the models every day for 7 

days, to ensure barrier formation. On day 8, the permeability of the FAM-aptamers and 

chimeras were tested by seeding the aptamers in the apical side of the tri-culture at a final 

concentration of 2.5 µM. At set time intervals (0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 24 h), the TEER was 

measured and media from the basolateral side of the transwell insert was sampled media and 

fluorescent read on a Tecan GENios Pro® plate reader (Tecan UK Ltd., Theale, UK) excitation 

and emission wavelength 492 nm and 518 nm respectively. The apparent permeability of each 

aptamer was calculated using the formula in Equation 1 (Artursson, 1990). All data was 

obtained from three experimental replicates.  

     
  

      
   
  

  
 

(Equation 1) 

Where: V=Volume of basolateral compartment (0.5 cm3); A= surface area of the polycarbonate 

membrane (0.3 cm2) C0=Final concentration of the FAM-aptamer in the apical side (2.5 µM) dQ 

Concentration of FAM-aptamer passing across the cell layer to basolateral side (µM) dt= Time 

(min). 

 

Statistical analyses 

Statistical analyses were performed by one-way Anova with GraphPad Prism v.6.0 as indicated.  
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RESULTS 

 

miR-137 and anti-miR-10b combination in U87MG-derived stem cells 

We first used tumor-spheres from U87MG cancer cells to determine whether interfering with 

multiple miRNA expression would revert the stem-like phenotype. As shown in Supplementary 

Fig. 1, upon induction of tumorsphere growth by serum-free culturing conditions the U87MG 

cells express a stem-like phenotype associated with the down regulation of miR-137 levels and 

up-regulation of miR-10b levels. In U87MG tumorspheres, we restored the relative expression of 

these two miRNAs by transfecting the miR-137 mimic and the miR-10b antagonist (antimiR-

10b), either separately or in combination. As shown in Fig. 1A, both the miR-137 mimic and the 

antimiR-10b alone and in double transfections retain functional activity as determined by the 

simultaneous downregulation of the miR-137 validated target, glioma pathogenesis-related 

protein 1 (GLIPR-1) [15], and up-regulation of the miR-10b validated target, BH3-only protein, 

(Bim) [18]. Further, both molecules synergize to inhibit cell migration (Fig. 1B) and cell viability 

(Fig. 1C) of transfected cells, ultimately inhibiting the self-renewal potential of U87MG cells as 

indicated by the reduced number of spheres in double-treated cells as compared to controls 

(Fig. 1D). Results indicate that these two miRNAs synergize to regulate survival and self-

renewal of U87MG spheres. 

 

Anti-Axl and anti-PDGFRβ aptamers as functional carriers for miRNA delivery in GSCs 

As previously shown, the GL21.T and Gint4.T aptamers target and inhibit the Axl and the 

PDGFRβ receptors respectively [25, 26]. While both Axl and the PDGFRβ receptors are 

expressed in U87MG, only PDGFRβ expression is strongly enhanced in tumor-spheres, 

compared to 2D cultured cells (Supplementary Fig. 1A). Therefore, by adopting a stick-end 

approach for the non–covalent conjugation, we took advantage of GL21.T and Gint4.T as 

carriers for the receptor-dependent delivery of miR-137 and of antimiR-10b into tumor-derived 

spheres. We first designed the conjugates in the four possible configurations with the GL21.T 

(anti-Axl) and the Gint4.T aptamer (anti-PDGFRβ) either annealed to the miR-137 or to the anti-

miR-10b sequences (Fig. 2A). By treating U87MG tumorspheres cells with each of the 

conjugates, we show that the ability to regulate the respective microRNA levels and microRNA 

target protein expression (Supplementary Fig. 2) are preserved. We thus treated U87MG 

derived tumorspheres with each of the conjugates and determined the ability to interfere with 

stem-like properties (Fig. 2B-F). Upon 10 days of treatment, each conjugate alone strongly 

reduces the number and size of spheroids.  
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The GL21.T-miR137 and Gint4.T-anti10b conjugates act in combination to affect 

tumorsphere formation  

As shown above, both configurations work with similar efficacy, yet, the efficiency of aptamer 

uptake (either of GL21.T or Gint4.T) is restrained by the amount of target receptors on the cell 

surface [21]. Using two different aptamers together, would thus increase the efficiency of uptake 

of each conjugate and would inhibit the two target receptors.  On first attempt we used the 

GL21.T (anti-Axl) conjugated to the miR-137 and the Gint4.T aptamer (anti- PDGFRβ) 

conjugated to the anti-miR-10b sequence. We determined whether combining Gl21.T-miR137 

and Gint4.T-anti10b to treat tumor-spheres might synergize thus antagonizing stem-like glioma 

cell growth. Indeed, as shown in Fig. 2B-F each aptamer conjugate interferes independently 

with sphere formation participating in the functional inhibition of stem cell-like phenotype. In 

double treatments, both conjugates acted in combination as determined by the increased 

intracellular miR-137 and down-regulation of the miR-10b (Supplementary Fig. 3). Treatment of 

U87MG-derived spheres with both conjugates strongly reduced the expression of stem-cell 

associated genes PDGFRβ, Sox-2 and Nanog and of the epithelial mesenchymal transition 

associated gene, SLUG (Snail2) (Fig. 3A), decreased the number (to approximately 20% of 

spheres > 50μm diameter) and size of sphere formation (Fig. 3B-D) indicating a strong 

reduction of self-renewal potential. Notably, the treatments with control aptamer conjugates as 

well as with a mixture containing GL21.T/Gint4.T and miR-137/antimiR-10b molecules 

unconjugated were unable to affect sphere formation (Supplementary Fig. 4), indicating that the 

functional effects were dependent upon the annealing of the miR/antimiR cargoes to the 

targeting aptamer. To evaluate if the surviving small tumorspheres were still able to propagate 

in adherent growth conditions, we dissociated the sphere aggregates from the combined 

treatments and from controls, plated and cultured cells in the absence of any treatment for 

further 10 days in 10% FBS. As shown in Fig. 3E, the surviving spheres were constituted of 

poorly viable cells but were still able to propagate in 2-D cultures. 

On the other hand, the clear increases in glial fibrillary acidic protein (GFAP) and β-tubulin III 

(TUBB3) levels in double-treated cells (Fig. 3F) indicated that the combined treatment induced 

the stem-like cells to differentiate acquiring an adherent-like cell phenotype similar to that of the 

proliferating U87MG cells. We thus determined by FACS analysis the distribution of the cell 

cycle phases in the treated cell populations. As shown in Fig. 4A, in contrast to adherent 

U87MG population, where more than 30% of cells were distributed between S and G2/M (12.9 

% and 20% respectively), in tumor-spheres the majority of cells were in G1 with less than 10% 

distributed between the S and G2/M as expected for a poorly replicating/quiescent cell 
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population. In agreement with the expression of differentiated markers (Fig. 3F), upon treatment 

with the combination of conjugates the fraction of cells in G1 was clearly reduced, with a 

corresponding increase of cells found in the S and G2/M (14.1% and 21.5% respectively); which 

was similar to levels observed for the adherent U87MG population. Further, the increase in cells 

in the pre-G1 fraction (7.2%) indicated the presence of a fraction of cells undergoing apoptosis. 

This latter observation is well supported by the MTT analysis of cell viability showing that the 

combined treatments induced a 40 per cent reduction in cell viability (Fig. 4B) and Annexin V/PI-

positive cells (21% in the sample from combined treatments as compared to 14.5% in untreated 

controls) (Fig. 4C). 

The intracellular processes initiated by Axl and PDGFRβ and those regulated by miR-137 and 

miR-10b engage multiple converging pathways in the cell, including Ras-MAPK and PI3k-Akt, 

therefore extensive changes in the pattern of gene expression were predicted for the treated 

tumorspheres. RT-qPCR array analysis of U87MG tumor-spheres showed (Fig. 4D, E) that the 

combined treatment drastically changed the expression of multiple genes converging on key 

processes such as cell cycle and apoptosis, where are ultimately responsible for GSCs 

differentiation and cell death. At least for the gene-set analyzed, the gene expression pattern 

found upon the combined treatments comes from the contribution of at least one conjugate, 

even though the GL21.T-miR137 seems to have by far the major impact on this set of genes.  

In addition, since stem-like cancer cells typically migrate in the presence of a chemoattractant 

stimulus, we determined whether treatment with conjugates might synergize to inhibit migration. 

Indeed as shown above, transfecting miR-137 synergizes with antimiR-10b to inhibit migration 

(Fig. 1B). Moreover, both aptamers, GL21.T and Gint4.T, have been reported to interfere with 

cell migration [25, 26]. As shown in Fig. 4F, the combined treatment with conjugates reduces 

migration by approximately 60% suggesting that the pathways involved largely superpose each 

other. Taken together these results show that treating cells with the two conjugates in 

combination dramatically inhibits tumor-sphere formation and migration.  
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The GL21.T-miR137 and Gint4.T-anti10b as inhibitors of primary GSC propagation, 

Based on the demonstration that appropriately combining aptamer-miR/antimiR conjugates 

inhibited the U87MG tumor-sphere cell growth we evaluated the targeting of GSCs from patient 

derived gliomas. From a collection of patient-derived primary human GSCs, we selected three 

primary cell lines displaying the more aggressive signature of GSr-like (restricted-like stem) [32]. 

The cell lines, named GSC#61, GSC#74 and GSC#83, were derived from two classical (#61 

and #74) and a mesenchymal (#83) GBM subtype (according to [5]), and all expressed both Axl 

and PDGFRβ aptamer targets on the cell surface (Supplementary Fig. 5A, B). In contrast to 

U87MG, primary human GSCs were propagated in growth factors supplemented minimal 

medium as non-adherent tumor spheroids. The expression of miR-137 and miR-10b were 

evaluated by RT-qPCR as absolute amounts per microgram of total RNA. As shown in Fig. 5A, 

both, the miR-137 and miR-10b, were equally expressed in the three non-adherent growing cell 

lines with miR-10b being expressed approximately three fold more than miR-137. 

The fact that the GSC#61, GSC#74 and GSC#83 cells express similar absolute amounts of 

miRNA-137 and miRNA-10b allowed us to investigate the implication of these miRNAs in the 

propagation of the stem-like cell phenotype in these primary cell lines. Upon dissociation, we 

treated cells with conjugates either separately or in combination and left them to form clonal 

spheres for two weeks, and thus determined the functional inhibition of the stem-like phenotype. 

As previously observed with U87MG cells (Fig. 3B), each conjugate independently affected 

number and size of spheroids in the three cell lines. The combined action of the two conjugates 

synergized to drastically inhibit the ability of cells to grow as non-adherent spheroids (Fig. 5B, D 

and Supplementary Fig. 6 and 7) and strongly reduces cell viability (Fig. 6A-C) and migration 

(Fig. 6D-F), the GSC#61 being less sensitive to treatments. Taken together these data show 

that the combined treatment with GL21.T-miR137 and Gint4.T-anti10b conjugates abrogate the 

ability of GSCs to grow as tumor spheres leading to reduced cell viability. 
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BBB tri-culture model is permeable to conjugates 

Major hurdles that must be addressed in the development of RNA-based therapeutics for 

gliomas include the resistance of RNA molecules to enzymatic degradation in circulating fluids 

and penetration through the tight cerebrovascular endothelium that constitutes a physical barrier 

for the passage of macromolecules. We thus first evaluated the stability of each conjugate by 

incubation in 80% human serum for increasing times up to one week. Serum-RNA samples 

were recovered at the indicated time-points and analyzed by non-denaturing polyacrylamide gel 

electrophoresis (Fig. 7A). As shown, the conjugates were all stable up to approximately 8 h and 

then gradually degraded. The multiple RNA bands observed at longer times in antimiR-10b 

conjugates likely reflect the different stability of the single chain component in the conjugates. 

We next took advantage of an in vitro cell model to measure the ability of aptamer conjugates to 

cross the BBB. Short-term tri-cultures of human endothelial cells, astrocytes and pericytes 

grown on a three-dimensional scaffold were measured for their trans-endothelial electrical 

resistance (TEER) to confirm the tightness of the barrier [33]. Evans Blue was incubated in the 

apical chamber to check for any leaks in the model prior to and after addition of aptamer (Fig. 

7B). A decrease in the TEER values typically indicated an interaction with the actin-myosin tight 

junction proteins that contributed to the restrictive properties of the endothelial barrier [34]. The 

increase in the permeability is due to the loss of adhesive properties of the tight junction 

proteins, which may occur during the reorganization of the actin cytoskeleton following 

membrane alterations during endocytosis [35, 36]. As shown in Fig. 7C, a scrambled sequence 

did not cause a change in the physical barrier as TEER remained relatively constant at 300 Ω/ 

cm2, while the in vitro BBB model was permeable to both GL21.T and Gint4.T aptamers, either 

as single molecules or conjugated (to miR-137 or anti-miR-10b respectively), as indicated by a 

transient drop in TEER values between 30 min to 1 h which was gradually restored by 6 h and 

was seen to be stable at 24 h. To confirm penetration of the BBB, aptamer molecules were 

FAM-labelled and the fluorescence of medium was sampled at different time points from the 

basolateral side of the transwell. As shown in Fig. 7C, the fluorescence measurements confirm 

that the BBB tri-culture model was permeable to aptamers and conjugates but not to a 

scrambled aptamer sequence. The Gint4.T and GL21.T aptamer appeared to show increased 

BBB permeability relative to the corresponding conjugates as measured by increased 

fluorescence, hence higher aptamer concentration in the basolateral compartment. Some 

transmembrane receptors, including transferrin, have been shown to promote transcytosis of 

bound ligands and antibodies through endothelial cells enabling them to cross the BBB [37]. We 

have therefore determined whether the aptamer target RTKs Axl and PDGFRβ were expressed 
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in the endothelial cells, astrocytes and pericytes used for the BBB model. Indeed from the 

literature [38] aptamers would be typically classed as low permeability compounds (Papp < 60 x 

10-6 cm/min) based on the FDA Biopharmaceutics Classification System [39], a likely 

explanation for permeability would be that aptamers cross the BBB by transcytosis mediated by 

their target RTKs. To gain further insight on this possibility, by immunoblot we analyzed the 

expression of Axl and PDGFRβ in the cell types present in the tri-culture model. As shown in 

Fig. 7D, both PDGFRβ and Axl, receptors were expressed in endothelial cells and pericytes, but 

not in the astrocytes. In the tri-culture, expression of PDGFRβ and Axl receptors was higher 

than the endothelial and pericyte monocultures. In conclusion, the aptamer conjugates, but not 

a scrambled control, have the ability to cross a tri-culture cell barrier likely by a receptor-

mediated mechanism making these aptamers promising carrier candidates for targeting brain 

tumors. 
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Discussion 

 

In this study, we addressed the targeting of GBM tumor-initiating/stem-like cell population by the 

combined action of multiple miRNA-based therapeutics and inhibition of RTKs as a mechanism-

based therapeutic strategy to combat this cancer. Several different strategies are currently 

being investigated to modulate (either reducing or restoring) the expression of miRNAs, 

including antisense, miRNA sponges or replacing therapies. Efficacy of treatments is however 

hampered by the lack of effective and safe delivery modalities [16].  

To target the GSC population, here we used two well characterized nuclease-resistant RNA 

aptamers against two RTKs, Axl and PDGFRβ, which are frequently highly expressed in GSCs. 

These aptamers have the double advantage to 1) inhibit target receptor kinase activity with the 

consequential downregulation of the intracellular pathways governing the survival of the target 

cells; and 2) be suitable carriers for the intracellular delivery of miRNA/antimiR molecules.  

Indeed, it has recently been shown that the expression of multiple miRNAs is deregulated in 

GBM governing the main processes of this highly aggressive brain tumor, including 

neoangiogenesis, invasion, and resistance to apoptosis [16, 40, 41]. Furthermore, several 

miRNAs are differentially expressed in glioblastoma stem cells and normal neural stem cells 

and shown to be implicated in maintenance and propagation of the GSCs by regulating 

malignancy, differentiation and fate determination [42].  

Here we focused on two miRNAs that have been implicated in GSC propagation: the miR-137, 

downregulated in GSCs, considered as a putative tumor suppressor miRNA implicated in cell 

cycle arrest and neuronal differentiation in primary GBM [43] and miR-10b considered an 

oncomiR required for GSC self-renewal and proliferation [18]. Since the aptamer conjugates are 

internalized through a receptor mediated manner whose effectiveness is thus limited by the 

amount of available receptor present on the cell surface [21], we conjugated the miR-137 and 

the single chain miR-10b antagonist to two different aptamers in order to deliver them 

separately into the target cell by targeting two distinct RTKs. This approach has the double 

advantage to overcome the competition of conjugates for the same target receptor and to 

increase the selectivity of targeting of the miRNA/antimiR combination for cells that overexpress 

both receptors. On the other hand, the levels of PDGFRβ are high in stem–like tumorspheres 

(Supplementary Fig. 1 ), but are significantly decreased following the combined treatments (Fig. 

3), while the levels of AXL remain high in the residual adherent-differentiated spheroids. 

Therefore, we conjugated the GL21.T aptamer to the miR137 that exhibited a stronger inhibitory 

effect on cell cycle and survival, and Gint4.T to the antimiR-10b. 
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To demonstrate the effectiveness of this approach we first used tumorspheres derived from 

U87MG cells. When grown in 3-dimensional cultures as spheroids U87MG cells expressed the 

transcription factors Sox-2 and Nanog, which are involved in maintaining the pluripotency of 

stem-cells, and an increased expression of PDGFRβ, downregulated the neuronal differentiation 

[44]. Further, in the spheroids the levels of miR-137 are downregulated while those of miR-10b 

upregulated as described for GSCs [15, 18]. 

Since the U87MG tumorspheres express both Axl and PDGFRβ, they are a good target for the 

combined treatment with the GL21.T-miR137 and the Gint4.T-anti10b conjugates. As predicted 

from the transfection experiments, the combined treatments repress the stem-like phenotype of 

tumorspheres by decreasing the expression of Sox-2 and Nanog and by drastically hampering 

the formation of spheroids. Although each conjugate by its own is able to interfere with spheroid 

formation, the two conjugates strongly synergize reducing the median size of spheres. Further, 

the rare and small spheroids still remaining upon two weeks of combined treatment are 

essentially constituted by differentiated cells with poor PDGFRβ and sustained GFAP and 

TUBB-3 expression. The increased per cent of cells in apoptosis likely underpins the reduced 

number of viable cells per spheroid. As such, the combined treatment converted stem-like large 

undifferentiated spheroids that expressed Axl and PDGFRβ, into differentiated adherent-like 

cells unable to grow as spheroids.  

As mentioned above, when the contribution of each conjugate to the final spheroid phenotype is 

combined, there appears to be qualitative equivalence indicating that the biological processes 

engaged largely superpose. As expected, we found that the gene expression variations induced 

by the combined treatment result from the synergic effects of each conjugate, however, for the 

specific gene set analyzed, the contribution of the GL21.T-miR137 is clearly predominant over 

that of the Gint4.T-anti10b conjugate. Indeed, as previously reported, the GSCs share a 

common characteristic miRNA expression profile [ 42] suggesting that a reduced number of 

miRNAs act in concert to modulate the expression of large sets of genes that ultimately 

converge to propagate the stem-cell like glioblastoma cell population. Furthermore, recent 

reports have highlighted the involvement of miRNA deregulation in maintaining the GSC hypoxic 

microenvironment [45, 46].  

Notably, the results obtained in U87MG tumorspheres were then validated with patient derived 

GSCs, by using three primary cell lines derived from patient tumors with GBM, of classical, and 

mesenchymal subtypes. Results obtained showed drastic inhibition of self-renewal and 

migration driven by the combined treatment that was irrespective of the tumor subtype. While 

cell viability and migration were comparable in the three cell lines, in the classical GSC#61, 
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inhibition of tumorsphere formation was less marked than in the GSC#74 and in the 

mesenchymal GSC#83. This is hardly imputable to the minor amount of Axl in GSC#61, since 

the Gint4-anti10b, was a less efficient inhibitor of sphere formation and the amounts of cell 

surface receptor were similar among the three cell lines. Plausible explanations for the 

refractoriness of GSC#61 to treatment may be attributable to either the other pathway that 

would compensate the restoration of miR-137 and miR-10b intracellular levels [17, 32] or 

because of a lower rate of recycling of the receptors. 

A serious impediment to the development of macromolecular therapeutic compounds (>1000 

Da) for brain tumors has been constituted by the presence of the BBB that hampers the 

transport of large peptides and nucleic acids through the cerebrovascular endothelium. To date, 

strategies have been developed to transport large therapeutic molecules through the BBB 

involving receptor-mediated mechanisms, as transferrin and insulin receptors, or loaded 

nanocarriers [16, 47, 48]. Most likely involving an endocytosis-based mechanism, aptamers able 

to cross the BBB have been recently described as targeting agents for functionalized 

nanoparticles [49]. Given that both Axl and PDGFRβ are expressed in vascular endothelial cells, 

we thus determined whether the conjugates might be able to cross an in vitro reconstituted 

model of BBB in a receptor-dependent manner. The cell model well reflects the poor 

permeability of the BBB to macromolecules and as expected also impedes the transport of a 

scrambled aptamer molecule. Therefore, the passage observed for the two labelled GL21.T and 

Gint4.T aptamers, or their conjugates, and the corresponding decrease in TEER is plausibly 

owed to a receptor mediated mechanism that promotes endocytosis and transcytosis. Even 

though in vitro evaluation of CNS targeting via BBB permeability cannot be a replacement for in 

vivo evaluation of CNS delivery, the in vitro BBB has enabled selection of aptamers and 

conjugates based on ranking those with specific transport features [34]. 

In conclusion, these results show the possibility of designing a mechanism-based combined 

cytotoxic therapy to target the elusive tumor-initiating GSC population. In this context, the 

GL21.T and Gint4.T aptamers play the double role of selective carriers for receptor-expressing 

cells and of functional inhibitors for target RTK activity (Axl and PDGFRβ respectively). 

Therefore, combined with the regulatory function of the conjugated miRNA-based molecules 

treatment results in high cell target specificity (because binding to two distinct RTKs is required) 

and robust therapeutic efficacy (because of their convergent action on key oncogenic 

pathways). Further, targeted delivery via RNA aptamers alleviates the safety of treatments also 

enhanced by the use of chemically modified nucleotides, which minimize nonspecific 

immunostimulatory effects [23]. Therefore, aptamer conjugates that are able to block 
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propagation and self-renewal eluding their intrinsic refractoriness to conventional therapeutics 

would represent a safe and precise therapeutic option for the GSC population. 

Combining RNAi to achieve a synergistic antitumor effect is an emerging therapeutic field for 

several cancer types, including ovarian and non-small lung cancers [50, 51]. Nevertheless, to 

date the available delivery options are mostly confined to liposome-encapsulated RNAi that are 

selectively trapped in the liver. Therefore, the use of multiple targeting aptamers to increase the 

selectivity and the cytotoxicity of RNA therapeutics foresee a broad applicability to more 

refractory and aggressive solid cancers. 

 

 

 

Conclusions 
 
In conclusion, we described the development of a novel combined therapeutic strategy to target 

the glioma stem-like cell population through the selective delivery of multiple RNA-based 

conjugates. To this end, we used as molecular carriers two RNA aptamers that bind to and 

inhibit the receptors tyrosine kinase, Axl and PDGFRβ, and, as therapeutic cargoes, the 

microRNA (miR-137) and micro-RNA inhibitor (antimiR-10b). We demonstrated that the 

effective delivery of miRNA- therapeutics to the glioma stem cell population resulted in the 

inhibition of GSC propagation. Importantly, we showed that the aptamer conjugates are 

transported by a receptor-dependent mechanism through an in vitro blood-brain barrier tri-

culture model. By the rational design of a new mechanism-based approach, these results offer 

the blueprint for an effective and safe therapeutic option with great potentiality for the still unmet 

glioma cancer treatment. 
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Figure legends 

 

Fig. 1. MiR-137 and antimiR-10b combined transfection. (A-D) U87MG-derived tumorspheres 

were left untransfected (-) or transfected with control miRNA (Ctrl miR), control anti-miRNA (Ctrl 

antimiR), miR.137 or antimiR-10b alone or in combination, as indicated. (A) Following 72 h cell 

lysates were immunoblotted with antibodies against either GLIPR-1 or Bim. Anti-βActin was 

used to confirm equal loading. Values below the blots indicate normalized quantitation relative 

to untransfected. (B) After 24 h cell motility was analyzed and microphotographed (left panel). 

Quantization is expressed as per cent of migrated cells with respect to untransfected cells (right 

panel). (C) Following 72 h, cell viability was measured and expressed as per cent of viable cells 

with respect to untransfected cells. Ctrl miR, 200 nmol/l; Ctrl antimiR, 200 nmol/l; Ctrl miR/Ctrl 

antimiR, 100 nmol/l each; miR-137/antimiR-10b, 100 nmol/l each. (D) Tumorsphere formation 

were analyzed following 10 days from transfection of synthetic controls (Ctrl), miR-137, antimiR-

10b or combined miR-137 and antimiR-10b as indicated. Left panel, spheres with a diameter 

greater than 50 µm were counted; right panel, representative microphotographs are shown 

(scale bar: 100 µm). In (B-D) Vertical bars indicate the standard deviation values. Statistics for 

conjugate treatments versus untrasfected sample: *, p< 0.05; **, p< 0.01; ****, p< 0.0001.  

 

Fig. 2. GL21.T and Gint4.T conjugates activity in U87MG derived tumorspheres. (A) Upper 

panel, scheme of miR-137 and antimiR-10b aptamer conjugates. Lower panel, scheme of the 

general protocol used for 10 day-treatment of tumorspheres.  (B, C) Levels of Nanog, Sox-2 and 

PDGFRβ were analyzed by immunoblotting. Equal loading was confirmed by immunoblot with 

anti-Tubulin (αTub) antibodies. Values below the blots: normalized quantitation relative to 

untreated. Ctrl aptamer: unrelated aptamer used as control; GL21.T-137: GL21.T conjugated to 

miR-137; GL21.T-anti10b: GL21.T conjugated to antimiR-10b; Gint4.T-137: Gint4.T conjugated 

to miR-137; Gint4.T-anti10b: Gint4.T conjugated to antimiR-10b. (D- F) Analyses of 

tumorsphere formation. (D) Spheres with a diameter greater than 50 µm were counted and 

expressed as percentage relative to untreated sample (-) that was set to 100%. (E) 

Representative microphotographs are shown (scale bar: 100 µm). (F) Box plot representation of 

diameter measures of spheres with a diameter greater than 25 µm (indicated by the horizontal 
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red line). In (D) Vertical bars indicate the standard deviation values. In (D, F) Statistics: *, p< 

0.05; **, p< 0.01; ****, p< 0.0001 (versus untreated sample). 

 

Fig. 3. GL21.T-miR137 and Gint4.T-anti10b conjugates combined effect on U87MG stemness. 

(A-D) U87MG derived tumorspheres were left untreated (-) or treated as indicated in Fig. 2A 

(lower panel). (A) Levels of PDGFRβ, Nanog, Sox-2 and Slug were analyzed by 

immunoblotting. Anti-βActin antibodies were used to confirm equal loading. Values below the 

blots: normalized quantitation relative to untreated. (B-D) Analyses of tumorsphere formation. 

(B) Spheres with a diameter greater than 50 µm were counted and expressed as percentage 

relative to untreated sample (-). (C) Representative microphotographs are shown (scale bar: 

100 µm). (D) Box plot representation of diameter measures of spheres with a diameter greater 

than 25 µm (indicated by the horizontal red line). (E) Tumorspheres were treated as 

schematized and cell viability was measured and eexpressed as percentage relative to 

untreated sample (-, set to 100%). (F) Levels of GFAP and TUBB3 were measured by RT-qPCR 

in U87MG derived tumorspheres left untreated (-) or treated for 10 days with indicated aptamers 

or conjugates as in Fig. 2A. In (B, D and E) Statistics for conjugate treatments versus untreated 

sample: *, p< 0.05; **, p< 0.01; ****, p< 0.0001. In (B, E and F) Vertical bars indicate the 

standard deviation values. 

 

Fig. 4. GL21.T-miR137 and Gint4.T-anti10b conjugates combined effect on cell proliferation and 

migration. (A, B) U87MG derived tumorspheres were left untreated (-) or treated as in Fig. 2A. 

(A) Cell cycle were analyzed following PI incorporation. Differentiated 2-D growing U87MG cells 

were included as control. (B) Cell viability was measured and expressed as per cent of viable 

cells with respect untreated cells (-). (C) Annexin V/PI staining was analyzed by flow cytometry 

of U87MG derived tumorspheres following 72 h of treatment. (D, E) RT-qPCR array analysis of 

U87MG-derived tumorspheres treated with indicated conjugates for 7 days, renewing the 

treatments at day 3 and 5. A combination of control aptamer conjugated either to miR-137 or 

antimiR-10b (Ctrls) was used as control. (D) Genes whose levels significantly changed (≥ ±1.5) 

are shown as heat map. (E) Gene ontology (by GOrilla) analyses of significantly changed 

genes. (F) Cell motility was analyzed following 24 h treatment. Left panel, representative 

microphotographs are shown. Right panel, the results were quantified and expressed as per 

cent of migrated with respect to untreated cells. Statistics versus untreated sample: ****, p< 

0.0001. In (B, F) Vertical bars indicate the standard deviation values.  
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Fig. 5. Combined effect of conjugates on primary GSC tumorsphere formation. (A) Absolute 

quantization of miR-137 and miR-10b in GSC#74, GSC#83 and GSC#61. (B-D) Sphere 

formation of indicated primary GSC-derived tumorspheres left untreated (-) or treated as in Fig. 

2A. Left panels, spheres with a diameter greater than 50 µm were counted and expressed as 

percentage relative to untreated samples (-) set to 100%. Right panels, Box plot representation 

of diameter measures (spheres with a diameter greater than 25 µm, indicated by the horizontal 

red line). In (A-D) Vertical bars indicate the standard deviation values. In (B-D) Statistics of 

conjugate treatments versus untreated samples: *, p< 0.05; **, p< 0.01; ***, p< 0.001; ****, p< 

0.0001.  

 

Fig. 6. Combined effect of conjugates on primary GSC cell viability and migration. (A-C) Primary 

GSC cell viability was measured following 10 days of aptamer or conjugate treatments as in Fig. 

2A. Results are expressed as per cent of viable cells with respect to untreated cells (-) set to 

100%. (D-F) Cell motility of indicated GSC left untreated or treated with indicated aptamers or 

conjugates (400 mol/l) for 24 h was analyzed. Left panels, representative microphotographs are 

shown. Right panels, the results are expressed as per cent of migrated with respect to untreated 

cells. In (A-F) Vertical bars indicate the standard deviation values. Statistics of conjugates 

versus untreated samples: *, p< 0.05; **, p< 0.01; ***, p< 0.001; ****, p< 0.0001. 

 

Fig. 7. Conjugate serum stability and BBB permeability. (A) Analyses of serum stability of 

indicated conjugates. (B) Confirmation of the integrity of the BBB model prior to addition of 

aptamers or conjugates. Change in trans-endothelial electrical resistance measured in the 

presence of Evans Blue incubated in the apical chamber, relative to trans-endothelial electrical 

resistance in presence of media alone. (C) FAM-labelled aptamer or conjugates ability to cross 

the in vitro BBB model. Change in trans-endothelial electrical resistance in presence of aptamer 

or conjugates relative to trans-endothelial electrical resistance in presence of media alone and 

concentration of aptamer or conjugates measured by fluorescence from the basolateral side. (D) 

Axl and PDGRβ expression were analyzed BBB model tri-culture. Equal loading was confirmed 

by immunoblotting with anti-βActin antibodies. Values below the blots: normalized quantitation 

relative to tri-culture.  
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