
Enhancing Virtual Reality Systems with
Smart Wearable Devices

Salah Eddin Alshaal∗, Stylianos Michael∗, Andreas Pamboris†,
Herodotos Herodotou‡, George Samaras† and Panayiotis Andreou∗,
∗Department of Computing, University of Central Lancashire, Cyprus

Email: {sealshaal,smichael,pgandreou}@uclan.ac.uk
†Department of Computer Science, University of Cyprus, Cyprus, Email: {pamboris.andreas,cssamara}@cs.ucy.ac.cy

‡Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Cyprus
Email: herodotos.herodotou@cut.ac.cy

Abstract—The proliferation of wearable and smartphone de-
vices with embedded sensors has enabled researchers and engi-
neers to study and understand user behavior at an extremely high
fidelity, particularly for use in industries such as entertainment,
health, and retail. However, identified user patterns are yet to
be integrated into modern systems with immersive capabilities,
such as VR systems, which still remain constrained by limited
application interaction models exposed to developers.

In this paper, we present SmartVR, a platform that allows
developers to seamlessly incorporate user behavior into VR apps.
We present the high-level architecture of SmartVR, and show
how it facilitates communication, data acquisition, and context
recognition between smart wearable devices and mediator systems
(e.g., smartphones, tablets, PCs). We demonstrate SmartVR in
the context of a VR app for retail stores to show how it can be
used to substitute the requirement of cumbersome input devices
(e.g., mouse, keyboard) with more natural means of user-app
interaction (e.g., user gestures such as swiping and tapping) to
improve user experience.

I. INTRODUCTION

Rapid advances in mobile and smart wearable technologies
have recently led researchers and engineers to explore user
behavior in the context of complex interdisciplinary areas (e.g.,
artificial intelligence, behavioral sciences). Despite having
access to an abundance of devices and valuable data, as well
as the know-how to semantically exploit it, digital immersive
environments such as Virtual Reality (VR) systems are falling
behind the high standards set by users in terms of usability
and truly enticing user experience.

The goal of current VR systems is primarily to immerse
users in virtual environments by exposing a 3D visual setting.
As it stands, however, this is achieved at the expense of us-
ability, since users are inherently obstructed from viewing and
interacting with physical objects. This poses severe limitations
to state-of-the-art VR devices, which typically do not provide a
well integrated input method to complement the high-standard
visual experience they offer. For example, by losing line of
sight of peripheral devices such as the keyboard and mouse,
interacting with such devices is impractical to say the least. As
an alternative, VR systems allow users to aim with their head
(ray-casting approach), which is more intuitive. Nevertheless,
using head movements limits precision, adversely affects ap-

plication responsiveness, and causes discomfort to users after
some time of use.

While the aforementioned limitations have important ram-
ifications for interaction design, typical VR systems also
miss out on the opportunity to leverage valuable information
regarding runtime user behavior. They merely exploit sensor
readings in order to extrapolate user orientation, acceleration,
and position for controlling the virtual camera. However,
data such as the user’s heart rate, with potentially significant
semantic value to VR apps (e.g., to infer the emotional and
physical status of users at runtime), are completely overlooked.
Partly, this is because VR systems are currently built around
single standalone devices, with limitations on the amount of
embedded sensors they can include.

However, wearable technology is currently blooming and
all the more wearable devices with advanced capabilities
(e.g., smart watches, rings, and clothes) are released from
production. The main force driving this development lies in
the recent advancements in embedded sensor systems and
microcontrollers, which allows wearable devices to include an
increasing number of sensors that are packaged in small form-
factor devices. We see this as an opportunity to address the
usability concerns of current VR systems by leveraging wear-
able technology as a means of (1) interacting with a system
in a more natural manner and (2) inferring additional runtime
information about users to enrich VR app functionality.

To this end, this paper presents a user interaction system,
coined SmartVR, intended to increase the usability and func-
tionality of VR apps using multiple wearable devices. The
main contributions of SmartVR are: (1) it supports intuitive
and user-friendly interaction models with VR systems by pro-
viding a framework for specifying such models with minimal
developer effort; and (2) it enables the seamless integration of
wearable technology and virtual reality systems by providing
a programmatic approach to govern the interactions between
the different components involved. It exposes an API that can
be easily ported to a wider range of smart wearable devices
on different platforms, e.g., Android and iOS.

Our demo showcases how wearables can be leveraged
within the VR realm by periodically collecting sensor data to
infer user hand gestures, which are then mapped to program-

Event Listeners

Wearable
Device

Sensors API

Accel.
Heart
Rate

Mediator Device

Query Manager

Smart Data
Fusion

Context
Manager

8. RetrainingContext
Recognition

Parser

Cloud

Machine
Learning

Algorithms

Predictive
Model

9. Recognition

model

2. Initial Training

VR System

Application

Developer

App
Engine

Rendering
Pipeline

End user

VR EngineOculus Rift

Oculus Rift
Context Mapper

1. Context
definition

&
Mapping

Commands

Context

Notifications

9. Context

Local Context
Recognition

Models

10. Mapping

Fig. 1. The SmartVR architecture

defined actions in the VR context. In particular, SmartVR
supports VR apps running on desktop machines. We illustrate
SmartVR using a VR retail app where users can roam within
a shop, browse clothing items, and complete purchases. The
demoed setting uses the Oculus Rift headset and Microsoft
Band 2, a hand wearable equipped with numerous sensors.
The program will accept hand gestures (e.g., swipe left, right,
up, and down) as a means of interaction within the program.
As part of the demo, a user will navigate through the virtual
shop, select an article of clothing, and manipulate its color
and size. This will be realized using only the aforementioned
devices and no peripherals.

In Section II, we provide a brief overview of the system
architecture of the SmartVR platform. Section III discusses
related work and Section IV concludes this paper with an
overview of the SmartVR demo.

II. SMARTVR PLATFORM

In this section, we summarize the main architectural com-
ponents of the SmartVR platform, shown in Figure 1. We start
by presenting the architecture of SmartVR and describe how
developers can use the platform for incorporating user gestures
into VR apps. We then focus on the main components of the
architecture and their interactions.

A. System Architecture

SmartVR enables developers to enhance and extend their
VR apps by integrating context information such as gesture
and behavior recognition. This information is acquired by
interpreting sensor data generated by a wearable device,
typically mediated by another device (e.g., smartphone or
computer), and then mapping this data to specific commands
of an app running on a VR system, such as rotating the camera
to the left, selecting an item, etc.

The process of context integration starts during (or after)
application development. During Step 1, the developer defines
a list of context recognition events (e.g., move hand to the left,
tap hand) that, when identified by the platform, will trigger
the execution of an application command (e.g., rotate camera

to the left, select item). These context recognition events are
stored in the Context Manager of a Mediator Device (e.g.,
smartphone) and are then mapped to application commands
in the Context Mapper. Developers can use a number of
predefined local context recognition models to identify events
or alternatively they can define their own by training new
predictive models (Step 2).

During application execution, the Context Manager queries
the wearable device through the Query Manager (Step 3)
for sensor data (e.g., accelerometer, heart rate) according to
context recognition requirements. The Query Manager first
connects to the wearable device (Step 4) and then transmits
a number of low level queries to the local sensors through
the Sensors API (Step 5). The data sent from the wearable
device (Step 6) is first received by the Smart Data Fusion
component, which maps it to a unified data model and then
propagates it to the Context Recognition component in the
desired format (Step 7). The Context Recognition component
can use the Local Context Recognition Models to infer context.
If this is not possible, the associated data may be transmitted
to the Cloud component (Step 8) for model retraining. Finally,
the recognized context events are transmitted to the VR system
(Step 9), which are then mapped to specific commands of the
app (Step 10).

B. Query Manager

The Query Manager is responsible for establishing com-
munication with the wearable device and for disseminating
queries using the device’s native Sensors API. The low level
query format used by the Query Manager is in the form:
{(t, f, e)}, where t is the sensor type (e.g., accelerometer,
gyroscope), f is the frequency of data acquisition and e is
an event handler object that will be binded to events raised by
the sensor when data is generated. As the wearable device
executes the query, it propagates its data response to the
Smart Data Fusion component of the Query Manager in a
proprietary to the device format. Finally, the Smart Data
Fusion component parses the received data to transform it
according to a unified data model so that it can be easily
utilized by other components and applications.

C. Context Manager

The Context Manager handles requests to communicate
with wearable devices. In particular, the Context Manager is
responsible for: i) sending the queries to the Query Manager;
ii) using the query response to (re)train machine learning
models; and iii) communicating context information to the
Context Mapper.

The Context Manager communicates natively with the
Query Manager by querying for unified sensor data. We
currently support two different types of queries: i) Basic
queries that return the unprocessed unified data from one
or more sensors; and ii) Event-based queries that allow for
the correlation of data to programmable events. Event-based
queries can also accept a lifetime parameter that defines the
duration for which the query will be executed. The queries can

be provided directly by the developer or can be communicated
through the VR system.

Context recognition based on unified sensor data can be
done either locally (for simple recognition tasks) or on the
cloud. For the latter, the extracted features are sent as JSON
objects through an HTTP request to the Cloud component.
The Cloud component then encapsulates its response in a
JSON object and sends it back to the Context Manager. An
important use for the queries’ data is to retrain models defined
by developers in order to increase the accuracy of context
recognition. This is done by extracting features (e.g., min,
max, avg for accelerometer) relevant to training the model
and then transmitting them to the machine learning model for
further training.

The Context Manager supports two modes of interaction:
i) context-based mode, which recognizes events and returns
flags to the requester; and ii) raw mode, which enables the
continuous transmission of processed data and is typically
used for free interactions such as binding camera rotation
to processed gyroscope values. The latter includes minimal
data processing, thus offering better real-time experience.
Nevertheless, it still contains context recognizers for dynamic
and intuitive alternating between modes (without affecting
user experience by relying on typical peripheral devices like
keyboards); for instance, the developer can specify the gesture
of knocking to be used for switching between modes.

Finally, the Context Manager can also be used to activate
feedback modules such as haptic feedback or sound for better
user experience.

D. Cloud Component

The Cloud component assists the mediator device in the
execution of computationally-intensive tasks. For example, it
can be leveraged for the execution of machine learning algo-
rithms that are used to train models for context recognition.
These models would be hosted on the cloud so that they can
be reached for retraining and predicting values through service
requests. The use of this component is optional and the same
functionality can be achieved locally on the mediator device,
albeit with degraded performance.

E. Context Mapper

Depending on the app and based on its program state,
specific actions can be interpreted differently at runtime. The
Context Mapper is responsible for providing meaning to the
recognized actions. For example, swiping left in one context
definition might translate to selecting a previous item, whereas
in another it might translate to canceling the current event. The
App Engine is responsible for performing the actions identified
in the Context Mapper. Finally, the VR Engine translates the
app state into a stereoscopic display that gives the user an
immersing and interactive surrounding experience.

F. Communication layer

SmartVR includes a communication layer for internal com-
munication, which overcomes the barrier imposed by different

programming languages, e.g., Java, C#, or Swift, used for
developing apps that execute on the mediator device. This
promotes system modularity and overcomes challenges associ-
ated with the lack of a direct communication channel between
the recognition framework and the graphical project language
in game engines like Unity or Unreal. Using SmartVR, de-
velopers are able to write programs using their language of
preference by utilizing the supported libraries.

We chose SignalR as the basis for our communication
layer due to its assurances regarding real-time communication
between components. SignalR is open source and can be
used across all major wearable platform languages such as
C#, Java, Swift, and JavaScript. The main objective of the
SignalR server is to receive messages from the VR app,
which requests to activate the wearable connection or to
execute a query, before redirecting the messages to the Context
Manager. The communication layer accepts two formats of
communication that correspond to the two aforementioned
modes of interaction in the Context Manager.

III. RELATED WORK

Recent work explores approaches for enhancing the human-
computer interaction within VR environments, which can be
grouped into two main categories. The first one involves the
use of motion sensors, cameras, or depth sensors for capturing
hand gestures and translating them into actions in VR apps.
Leap Motion is a motion-sensor device that can be mounted
on a VR headset such as Oculus Rift to track hand and finger
movements. It has been successfully used to control avatar
movements in VR apps [1] and first-person-shouter games [2].
Cameras [3] and depth sensors [4] have also been proposed
for performing complex hand gesture recognition without the
use of wearable devices.

Nevertheless, Leap Motion and head-mounted cameras suf-
fer from a limited field of view (typically 135deg). As a
result, hand gestures may not be detected when the headset is
facing away from the hands. In addition, gesture recognition
using cameras and sensors is too computationally expensive
for smooth real-time usage. Instead, through SmartVR, the
use of wearable devices such as smart wristbands and rings
avoids such limitations and at the same time supports similar
fine-grained hand and finger recognition.

The second category includes specialized (and often expen-
sive) wearable devices, including gloves, smart armbands, and
smart vests, that pair with specific VR headsets for improving
user control and immersion [5], [6], [7]. In contrast to such
approaches, the SmartVR design promotes the interoperability
of VR technologies with common wearable devices, which
many users may already own (e.g., smart watches and smart
wrist bands).

IV. SMARTVR DEMONSTRATION

A. Demonstration Setup

Equipment: For the demo, we will use the following de-
vices: (i) a Microsoft Band 2 wristband; (ii) a VR worksta-
tion; (iii) a high definition monitor; (iv) a Bluetooth 4.0 LE

Fig. 2. The SmartVR prototype: (left) Select mode, (right) Navigation

transceiver; and (v) an Oculus Rift Development Kit 2 (DK2)
headset. The headset and the monitor will be attached to the
VR workstation to allow visitors to view the visual output of
the application both in 2D and 3D. The Bluetooth transceiver
is used to allow communication between the VR workstation
and the wearable device. We chose to use the Microsoft Band 2
wearable device as it features multiple embedded sensors such
as 3-axis accelerometer, 3-axis gyroscope, UV and heart rate
sensors, which we leverage to recognize a variety of gestures.
In addition, Microsoft Band 2 operates a proprietary operating
system with built-in support for interoperability with different
programming languages such as C#, Java, or Swift.

Prototype Implementation: Our platform is implemented
using the Band SDK for the Universal Windows Platform in
C#. The gesture recognition model is implemented using SVM
algorithms with the help of scikit-learn library1 in Python. On
the cloud side, we used AzureML2 to handle data parsing to
train our Python model, as well as to automatically deploy
a request service for the predictive model. On the user end,
we employed Unity3 to develop the application and to support
Oculus Rift4. The game received recognized context through
a SignalR-based5 communication platform.

B. Use Case Scenario

We will demonstrate a prototype implementation of
SmartVR by showing how, based on wearable signals, recog-
nizing and using hand gestures can significantly improve user
experience in the context of an online virtual clothing store. In
particular, during the demo, conference attendees will be able
to wear the Oculus Rift headset and enter a virtual store. Inside
the store, a user can perform a number of actions: navigate
through the store; browse different clothing items; select and
view a specific item; and add/remove items to/from the virtual
shopping cart.

1scikit-learn, http://scikit-learn.org/
2Azure Machine Learning Studio, https://studio.azureml.net/
3Unity Game Engine, http://unity3d.com/
4Oculus Rift, https://www.oculus.com/en-us/
5SignalR, http://signalr.net/

The aforementioned actions will be supported through two
distinct gesture modes, i.e., the navigation and the selection
mode. Using the former, a user will be able to explore
her spatial surrounding by swiping her hand accordingly in
different directions to move to the left and right, or back
and forth. Using the selection mode, the camera will remain
static, allowing the user to select an item of interest using a
cursor that moves according to user swipes. When an item is
selected, the user will be provided with additional menus for
customizing the item according to size and color preferences.
Upon completion of this process, the user can gesture a
forward press to add the selected item into the corresponding
shopping cart. For switching between the available modes, the
user will need to perform a special gesture, named knock-
knock. The users will receive feedback about their gestures in
the form of overlay messages at the bottom right corner of the
screen.

REFERENCES

[1] C. Khundam, “First Person Movement Control with Palm Normal and
Hand Gesture Interaction in Virtual Reality,” in Proc. of the 12th Intl.
Conf. on Computer Science and Software Engineering (JCSSE). IEEE,
2015, pp. 325–330.

[2] J. Chastine, N. Kosoris, and J. Skelton, “A Study of Gesture-based First
Person Control,” in Proc. of the 18th Intl. Conf. on Computer Games
(CGAMES). IEEE, 2013, pp. 79–86.

[3] M. Van den Bergh and L. Van Gool, “Combining RGB and ToF Cameras
for Real-time 3D Hand Gesture Interaction,” in Proc. of the IEEE
Workshop on Applications of Computer Vision (WACV). IEEE, 2011,
pp. 66–72.

[4] Z. Ren, J. Yuan, and Z. Zhang, “Robust Hand Gesture Recognition Based
on Finger-earth Mover’s Distance with a Commodity Depth Camera,” in
Proc. of the 19th ACM Intl. Conf. on Multimedia. ACM, 2011, pp.
1093–1096.

[5] C.-M. Wu, C.-W. Hsu, and S. Smith, “A Virtual Reality Keyboard
with Realistic Key Click Haptic Feedback,” in HCI International 2015,
ser. Comm. in Computer and Information Science, C. Stephanidis, Ed.
Springer International Publishing, 2015, vol. 528, pp. 232–237.

[6] S. Hibbert, “Combining the Virtual and Physical Interaction Environ-
ment,” in Serious Games. Springer, 2015, pp. 191–194.

[7] E. Vogiatzaki and A. Krukowski, “Virtual Reality Gaming with Immersive
User Interfaces,” in Modern Stroke Rehabilitation through e-Health-based
Entertainment. Springer, 2016, pp. 195–214.

