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Abstract—In this paper we presentMicroPulse, a novel frame- It is important to mention that the exact valuerois query-
work for adapting the waking window of a sensing devices based  specific and can not be determined accurately using current
on the data workload incurred by a query Q. Assuming a typical  tachniques. For instance a sensor does not know in advance

tree-based aggregation scenario, theaking window is defined as L . . . .
the time interval = during which S enables its transceiver in order how many tuples it will receive from its children. Choosimgt

to collect the results from its children. Minimizing the length of ~ correct value for- is a challenging task as any wrong estimate
7 enables S to conserve energy that can be used to prolong might disrupt the synchrony of the query routing tree.
the longevity of the network and hence the quality of results The objective of this work is to automatically tune

Our method is established on profiling recent data acquisitin : P
activity and on identifying the bottlenecks using an in-netvork locally at each sensor without any a priori knowledge or user

execution of the Critical Path Method. We show through trace ~ Intérvention. Note that in defining we are challenged with
driven experimentation with a real dataset that MicroPulsecan the following trade-off:

:ﬁggﬁﬁutg: energy cost of the waking window by three orders of | g4y Off Transceiver: Shall S power-off the transceiver
I ndex ferms—Critical Path Method, Waking Window, too early reduces energy consumption but also increases
Scheduling, Sensor Networks. the number of tuples that are not delivered toghe the
root of the routing tree. As a result the sink will generate
an erroneous answer to the quépy and
« Late-Off Transceiver: Shall S keep the transceiver ac-
tive for too long decreases the number of tuples that are
lost due to powering down the transceiver too early but
also increases energy consumption. Thus, the network
will consume more energy than necessary which is not
desirable given the scarce energy budget of each sensor.

I. INTRODUCTION

Recent advances in embedded computing have made it fea-
sible to produce small scale sensors, actuators and porsess
that can be used for ad-hoc deployments of environmental
monitoring infrastructures [13], [5], [9]. The longevityf o
a Wireless Sensor Network (WSN) heavily relies on the
existence of power-efficient algorithms for the acquisitio In this paper we preserilicroPulse a novel framework
aggregation and storage of the sensor readings. for adapting the waking window of a sensing devigdased

Communicating over the radio in a WSN is the mofn the data workload incurred by a quefy Our ideas are
energy demanding factor among all other functions, such @&tablished on profiling recent data acquisition activity an
storage [17] and processing [9]. The energy consumption fgentifying the bottlenecks using an in-network executain
transmitting 1 bit of data using the MICA mote is approxthe Critical Path Method.
imately equivalent to processing 1000 CPU instructions [9] The Critical Path Method (CPM)[10] is a graph-theoretic
One way to cope with the energy challenge is to power dovtgorithm for scheduling project activities. It is widelysed
the radio transceiver during periods of inactivity. In fmrtar, in project planning (construction, product developmetanp
it has been shown that sensors operating at a 2% duty cy@l@intenance, software development and research projects)
can achieve lifetimes of 6-months using two AA batteries [8he core idea of CPM is to associate each project milestone

The continuous interval during which a sensor nofle With a vertexv and then define the dependencies between
enables its transceiver, collects and aggregates thdégdmuh the given vertices usingctivities For instance, the activity
its children, and then forwards them all together to its owy < vj denotes that the completion of depends on the
parent is defined as theaking windowr. Note thatr is completion ofv;. Each activity is associated with a weight
continuous because it would be very energy-demanding (tenoted aswel':qht) which quantifies the amount of time that
suspend the transceiver more than once during the interimfequired to complete; assuming that; is completed. The
of an epoch which specifies the amount of time that sensoxgitical path allows us to define the minimum time or otheewis
have to wait before re-computing a continuous query. the maximum path that is required to complete a project, (i.e.



SINK (SO)[" critical Path Our Contributions
sO<=s1<=s3<=s8 . . . .
Y =99 In this paper we make the following contributions:

« We formulate the problem of adapting the waking win-
dow 7 of a sensing device in order to conserve energy
that can be used to prolong the longevity of the network
and hence the quality of results.

« We solve the waking window problem by combining a
custom profiling structure and the critical path method.

« We experimentally validate the efficiency of our solution

Fig. 1. The figure illustrates nine sensing devices (showedsces) and the using real sensor dataset from Intel Research [6]

resdpecti\t/_e time cost (Sfth\thneélssinid(?fé)S)Ntl?C:ggljfseg Lf;:ﬁ :g:ﬂtmsaifr:fifr?]i:;:)yn The remainder of the paper is organized as follows: Section

ﬁ]norgg?tlgﬁggasllguaﬂg?ptothe waking(ilv.indow of each sensongisheCritical I stgd_lgs the waking WlndOW mechanism of popular data

Path Method acquisition systems and discusses the advantages andggsort

for each of these systems. Section Ill presents the underlyi
algorithms of the MicroPulse Framework. Section IV present
milestonewvo). Any delay in the activities of the critical paththe experimental study using a trace-driven simulator and

will cause a delay for the whole prOjeCt. Section V concludes the paper.
In order to adapt the discussion to a sensor network context

assume that each sensgqris represented by a CPM vertex. Il. BACKGROUND AND RELATED WORK

More formally, we map each; to the elements of the vertex _ ) ) ) _
setV = {v1,vs,...,v,} using a 1:1 mapping functiof : In this section we study the waking window mechanism

s; — v;, i < n. Also, let the descendent-ancestor relations of the two most popular declarative acquisition frar_ne_works
the sensor network be denoted as edges in this graph.  TAG [9], [8] and Cougar [15]. We start out our description by
An example with 9 sensing devices, ..., sy} is illus- assuming that the query has been disseminatedicsensors.
trated in Figure 1. The weights on the edges define the rejuifiiny Aggregation (TAG): In this approach, the epoch
time to propagate the query results between the respeciigedivided into a number of fixed-length timétervals

pairs. It is easy to see that the total time to answer the quey, es, ..., eq}, Whered is the depth of the routing tree,
at the sink in the given network is at leagt= 99, since the rooted at the sink, that conceptually interconnects the
critical path issq L S1 L S3 2 Ss. sensors. The core idea of this framework is summarized as

Having this information at hand enables the scheduling &fllows: “when nodes at level i+1 transmit then nodes at level
transmission between sensors. In particular, sepsean be i listen”. More formally, a sensos; enables its transceiver at
scheduled to wake-up and transmit at the following deadlinehrononw; = |e/d|*(d—depth(s;)) and keeps the transceiver
(w;): wy = 1—40 = 59, wy = w; —13 = 46, w3 = w; —30 = active forr; = |e/d] chronons. Note thaE?:d(ei) provides
29, wy = wy — 22 = 37 while sq and s; will be listening a lower-bound ore, thus the answer will always arrive at
for these transmissions during the intervajs[59..99) and the sink before the end of the epoch. Settings a prime
71=[29..59) respectively. The same intuition also applies femumber ensures the following inequal@?:d(ei) < e, which
the leaf nodes, e.gs; starts transmission at; = w, — 11 = is desirable given that the answer has to reach the sink at
35 ands, listens for this transmission in the range=[35..46). chronone.

Additionally, the critical path enables a sensoto estimate  For instance, if the epoch is 31 seconds and we have a
the interval during which its paregtwill have its transceiver three-tiered network (i.e., d=3) like Figure 2 (top, leff)en
enabled. This is very useful because in the subsequent epdtie epoch is sliced into three segmeftD,10,1¢. During

and under a different workload, can find out if it can deliver interval [0..10), nodes at level 3 will transmit while nodes
the new workload without first asking to adjust its waking at level 2 will listen; during interval [10..20) level 2 ncgle
window. transmit while level 1 nodes listen; and finally during [30),

It should be noted that the edges in Figure 1 have differdetvel 1 nodes transmit and the sink (level 0) listens. Thius, t
weights. This is very typical for a sensor network as the linknswer will be ready prior the completion of chronon 31 which
quality can vary across the network [13]. Another reason iis the end of the epoch.
that some sensors might return more tuples than other sensorThe parent wake-up window is an over-estimation (in

Note that our scheduling scheme is distributed whidhe above example 10 seconds!) of the actual time that is
makes it fundamentally different from centralized schedul required to transmit between the children and a parent . The
approaches like DTA [16] and TD-DES [1] that generatetionale behind this over-estimation is to offset the fations
collision-free query plans at a centralized node. Add#ibn in the quality of the clock synchronization algorithms [Q]tb
our approach is also different from techniques such as [liB]reality it is too coarse. In the experimental Section I\& w
which segment the sensor network into sectors in order frund that this over-estimation is three orders of magmitud
minimize collisions during data acquisition. larger than necessary.



TAG

2) Pulse Phasgexecuted once prior the execution @f

::://Z:(l) during whic_h each sensat tunes its wake-up chronon
w; and waking windowr; according to the value.

Level 24 d 3) Adaptation Phaseexecuted when a topology or work-
Lovel A load change occurs which results in a new critical path.

0 : e 8 A. The Critical Path Construction Phase

Micropulse _ .
Level 0 Tsmk This phase starts out by having each nogeselect one
Level d [ Listening nodes; as its parent. This results inveaiting list similarly to
. Cougar [15]. To accomplish this task, the parenis notified

Level - Process.m.g through an explicit acknowledgement or becomes aware of
Level [ Transmitting s;'s decision by snooping the radio. Note that in both TAG [9]

0 e and Cougar [15] nodes select as their parent whichever senso

forwarded the query first. Alternatively, nodes could have
chosen as their parent the neighbor with the smallest hoptcou
from the sink or the one with the highest signal strength. In
more recent frameworks, like GANC [11] and Multi-Criteria
Additionally, it is not clear howr is set under avariable Routing [7], sensors select their parents based on quergrsem
workloadwhich occurs under the following circumstances: ijics, power consumption, remaining energy and others. lremo
from anon-balanced topologywhere some nodes have manynstable topologies a node can maintain several parenis [4]
children and thus require more time to collect the resutimifr order to achieve fault tolerance but this might impose some
their dependents; and ii) fromulti-tuple answerswhich are limitations on the type of supported queries. Neverthelabs
generated because some nodes return more tuples than ditese alternatives are supplementary to this step.
nodes (e.g. because of the query predicate). In the next step, we profile the activity of the incoming and
The MicroPulse framework presented in this paper gracedtgoing links, and then propagate this information toward
fully handles both cases of variable workload by utilizilg t the sink. In particular, we execute one round of data aciirisi
Critical Path Method. Our framework, like TAG, utilizes thewhere each sensgf maintains one counter for its parent con-
TinyOS MAC layer [14] to handle the collisions that will oacu nection (denoted ag**) and one counter per child connection
if nodes in the same vicinity transmit during the same irderv (denoted as;}";), where;j denotes the identifier of the child.
These counters measure tireethat is required to transmit the
fiples between the respective sensors and will be utilized a
constructed by having each child explicitly acknowledgiitsg indicators of the link workload in the sybsequent epqchSeNp
parent during the query dissemination phase. Having theflis that these counters account for more time than what is reduir
children enables a sensor to shut down its transceiver as s§gd We assumed a collision-free MAC channel. Additionally,
as all children have answered. This yields a set of non-tmifo ! IS important to mention that we could have deployed a more
waking windows{r,, 7, ...} as opposed to TAG where wecomplex structure rather than_ the counte{?r’st_ar?dsgj_}. That
have a single- which is uniform for all sensors (i.ele/d)). WOU!d aIIov_v a sensor 'Fo o.btam a petter stat|st|cgl indicato
The main drawback of Cougar is that a parent node has!ft§ link activity. By projecting the time costs obtained ézch
keep its transceiver active from the beginning of the epo&§9€ 0 @ virtual spanning tree creates a distributed sirict
until all children have answered. In particular, it holdstth Similar to the one depicted in Figure 1.
7 > 7 if depth(v;) < depth(v;). In order to cope with The_ final step is to percola_te these Ioca_l edge costs to
children sensor that may not respond, Cougar depmystr}g §|nk by recursively executing the following in-network
timeout i To understand the drawback of Cougar considfynction at each senser:
Figure 2 (top, right), where level 2 and level 1 nodes have {0 if s; is a leaf node,

Fig. 2. The Waking (Listening) Windowr{ in TAG, Cougar and MicroPulse.

Cougar: In this approach, each sensor maintaingaating list
that specifies the children for each node. Such a list can

activated their transceivers at chronon zero and wait fer thti =
leaf nodes to respond. If we have a failure at any given node

x, then each node on the path— ... — sg (sink), has to The critical path cost is theg, (denoted for brevity ag).
keep its radio active foh additional seconds. Using our working example of Figure 1, we will end up with
the following values 1)5<;<g = 0, 4 = 4, 3 = 29,1, = 11,
=59 andyy = 99.

MaTyjechildren(s;)(Yj + si5) otherwise.

Ill. THE MICROPULSE FRAMEWORK

In this section we describe the underlying algorithms (;lel
the MicroPulse Framework. We divide our description in thB. The Pulse Phase
following three conceptual phases: In this phase we shape the waking windeyand the wake-
1) Construction Phaseexecuted once prior the executiorup chrononw; of each sensor by disseminatitig constructed
of @, during which the sink constructs the routing treeluring phase 1, in the network. Algorithm 1 presents the main
and becomes aware of the critical path cost steps of this procedure which has a message complexity of



Algorithm 1 : MicroPulse: The Pulse Phase child may be able to start delivering the workload earliér, i

Input: n sensing device$sy, so, ..., s,} and the sinksg, the so, succeeding in completing the transmission on-time.
Critical Path cost), the epocte. In particular, each sensef knows the maximum incoming
Output: A set of n waking windows{ry,72,...,7,} andn edge of its parenX from step 4 of Algorithm 1, denoted as
wake-up times{wy, ws, ..., wn}. % asenia- Te childs; then calculates thiatency toleranck
Execute these steps beginning from, (top-down): A; of its parentX as follows:
1) If ¢ > e then abort‘The Critical Path is larger than in out
the Epoch': )\1 = SX,mamchild -5 (4)

2) Find the maximums;”; in s;'s children and denote the  Note that); provides a sensor; with the maximum leeway
identifier of this sensor asaxzchild. Now calculate the from the workload indicato@qut_ For instance in Figure 1'
waking timew; as follows: s7 calculates\; = 29 — 2 = 27. Thus, s;'s workload can

R 7o) increase by 27 chronons without affecting the synchrony of
Wi = w Si,mazchild (1) . . .
the query routing tree. The same also applies to the opposite
wherea, b and c are three variables which offset thecase, where we have a decrease in the workkgad If s; is
costs ofprocessingthe inaccurate clocland collisions not on the critical path then there is absolutely no consecgie
at the MAC layer The waking window is the interval: on efficiency. If on the other hand, is on the critical path
. then a decrease isf“* might result in some waste of energy
7 = [wi-. (Wi + 87 azenita)) (2) ass;’s parent will have a larger than necessary.

In order to cope with such cases and the fact that
5% mazeniza Might change on\; might become negative, we
reconstruct and re-pulse the critical path in the networiope
=1 — s;?“t (3) ically after a certain number of changes, failures or cioliis.

However, these updates represent the minority of the cases
as our framework is tailored for stationary wireless sensor

. . ~networks where the critical path will not change frequently

in the next adaptation In the future we plan to devise more elaborate algorithms to

—a—b—c,

3) Now disseminate) to s;’s children. Upon receiving),
each child node; decreaseg locally, as follows:

4) At the same time with step 3, disseminaf® ,...;,.14 t0
s;'s children. This information, will be useful to define
the latency toleranceg\;) of s;

phase. . . . _cope with the adaptation under more dynamic environments.
5) Repeat steps 2-4, recursively until all sensors in the
network have sety; and; respectively { < n). IV. EXPERIMENTAL EVALUATION

In this section we describe our experimental methodology

and the results of our evaluation.
O(n). At the end of the algorithm execution each sensor knows

exactly when it should wake up (i.ew;) and for how long A. Experimental Methodology

(i.e., 7i). We adopt a trace-driven experimental methodology in which

To facilitate our presentation assume that firecessing a real dataset fromn sensors is fed into our custom-built
the inaccurate clockand collisions at the MAC layer simulator. Our methodology is as following:

costs denoted ase,b and ¢ respectively, are all equal to
zero. Executing Algorithm 1 on the example of Figure
which has ay equal to 99 along with an epoch of 100
yields the following triples £;,w;, 7:): { (s0,59,[59..99)),
(s1,29,[29..59)), (s2,46,[46..59)), (s3,29,[29..59)),

Igorithms: We have implemented th&@AG, Cougar and
icroPulse waking window algorithms. We utilize a failure
rate of 20% where a sensor has a probability of 0.2 to not

participate in a given epoch. We set the child waiting tirher

to 200ms.
(54,37,[37.59)),  (55,35,[35.46)),  (s6,39,[39..46)), < oo
(s7,27,[27..29)), (ss,0,[0..29)), (s0,33,[33..37)) } Sensing Device:We use the energy model of Crossbow’s
new generation TelosB [2] sensor device to validate ourddea
C. Adaptation Phase TelosB is a ultra-low power wireless sensor equipped with a

8 MHz MSP430 core, 1MB of external flash storage, and a
In this section we summarize the main ideas behind th&okpps RF Transceiver that consumes 23mA when the radio
adaptation phase which adjusts the critical path in casesi®fn 1.8/m4 in active mode with the radio off ansl1pA in
workload or topology changes. sleep mode. Our performance measur&iergy in Joules
To motivate our discussion, consider the scenario wheretgt is required at each discrete chronon to resolve theyguer
child in round (+1) requires more time to deliver the resultshe energy formula is as followingEnergy(Joules) =

to its parent than in round (i.e., an increased workload). INVoits x Amperes x Seconds. For instance the energy to
the worst case this might require a complete reconstructiontransmit 30 bytes at 1.8V is 1.8V x 23 * 10734 x 30 *

the critical path cost. Fortunately, the structures degdolpy 8bits/250kbps = 39
MicroPulse enable a child to know the interval during which
its parent will have an active transceiver. Therefore, tivery  !Thelatency tolerances often also referred to adlack



Intel Berkeley Dataset - Energy Consumption (for all n sensors)
(Graph:real, n=52, d=14, e=31, link=250Kbps)
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Cougar - no failures
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Fig. 3. Energy Consumption: Comparing the aggregate enevgy of the
three algorithms using the TelosB energy model.

consume more energy than necessary. This is shown by the
third line in which Cougar under no failures requires only
42mJ which is only the 14% of what Cougar requires under
failures. It is interesting to highlight that MicroPulse imi@ins

a competitive advantage even over Cougar (no failures).

V. CONCLUSIONS ANDFUTURE WORK

This paper studies the problem of optimizing the length of
the waking window in sensor networks in order to conserve
energy. Our ideas are established on profiling recent data
acquisition activity and on identifying the bottlenecksngs
the Critical Path Method. We have described the core ideas
of our framework and some preliminary experimental results
using our trace-driven simulator with real datasets frotelin
Research. We found that MicroPulse offers tremendous gnerg
reductions under realistic conditions. In the future wengdia
devise efficient adaptation algorithms which will be trigegk
in cases of variable workload between consecutive chranons

Acknowledgements: This work was supported in part by
the US National Science Foundation under projects S-CITI

Dataset: We utilize a real dataset from Intel Berkeley(#AN|_0325353) and AQSIOS (#11S-0534531), the European

Research [6]. This dataset contains data that is collected f

Union under the project mPower (#034707) and the Cyprus

58 sensors deployed at the premises of the Intel Researchhll o4 ch Foundation under the project GEITONIA (#PLYP-

Berkeley between February 28th and April 5th, 2004. Tf’@s
motes utilized in the deployment were equipped with weather
boards and collected time-stamped topology informationgl
with humidity, temperature, light and voltage values once[y
every 31 seconds (i.e., the epoch). The dataset includes 2.3
million readings collected from these sensors. We use mgadi [g%
from the 52 sensors that had the largest amount of Ioca‘
readings since some of them had many missing values. Ou¥]
query is“SELECT moteid, temp FROM sensorsThe depth [5]
of the query spanning tree is 14.

B. Energy Consumption [6]

In order to assess the efficiency of the MicroPulse algorithmm
we measure the energy that is spent on the waking window
for then sensors in isolation from the rest components (flash [8]
weather board, etc.). In particular, we measure the time tha
is spent in each MicroPulse phase and then multiply this by9]
the respective current and voltage. Figure 3 shows that t eO]
aggregate energy consumption for the 52 sensors under TAG,
requires 7,984mJ. This is three orders of magnitude more1]
than what the MicroPulse algorithm requires (13:0558mJ).
The big difference in performance is clearly attributedte t
uniform size ofr in TAG which is ~ 2.21 seconds (i.e., 31
(seconds) / 14 (depth)), while in MicroPulsds only 146ms
on average.

The same figure also shows that the Cougar algorithm4]
requires on average 288:824.42mJ which is one order of
magnitude more than the energy required by MicroPulse. -”%5]
disadvantage of the Cougar algorithm originates from thgis]
fact that the parents keep their transceivers enabled alhtil
the children have answered or until the local tinferhas
expired (in cases of failures). Thus, any failure is autacadly
translated into a chain of delayed waking windows all of viahic

(12]

(13]

(17]

06).
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