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Abstract 

The collective motion of organisms such as flights of birds, swimming of school of fish, 

migration of bacteria and movement of herds across long distances is a fascinating 

phenomenon that has intrigued man for centuries. Long and details observations have 

resulted in numerous abstract hypothesis and theories regarding the collective motion 

animals and organisms. In recent years the developments in supercomputers and general 

computational power along with highly refined mathematical theories and equations have 

enabled the collective motion of particles to be investigated in a logical and systematic 

manner. Hence, this study is focused mathematical principles are harnessed along with 

computational programmes in order to obtain a better understanding of collective 

behaviour of particles.  

Two types of systems have been considered namely homogeneous and heterogeneous 

systems, which represent collective motion with and without obstacles respectively. The 

Vicsek model has been used to investigate the collective behaviour of the particles in 2D 

and 3D systems. Based on this, a new model was developed: the obstacle avoidance 

model. This showed the interaction of particles with fixed and moving obstacles. It was 

established using this model that the collective motion of the particles was very low when 

higher noise was involved in the system and the collective motion of the particles was 

higher when lower noise and interaction radius existed. Very little is known about the 

collective motion of self-propelled particles in heterogeneous mediums, especially when 

noise is added to the system, and when the interaction radius between particles and 

obstacles is changed. In the presence of moving obstacles, particles exhibited a greater 

collective motion than with the fixed obstacles. Collective motion showed non-monotonic 

behaviour and the existence of optimal noise maximised the collective motion. In the 

presence of moving obstacles there were fluctuations in the value of the order parameter. 



 
 

Collective systems studies are highly useful in order to produce artificial swarms of 

autonomous vehicles, to develop effective fishing strategies and to understand human 

interactions in crowds for devising and implementing efficient and safe crowd control 

policies. These will help to avoid fatalities in highly crowded situations such as music 

concerts and sports and entertainment events with large audiences, as well as crowded 

shopping centres.  

In this study, a new model termed the obstacle avoidance model is presented which 

investigates the collective motion of self-propelled particles in the heterogeneous 

medium. In future work this model can be extended to include a combination of a number 

of motionless and moving obstacles hence bringing the modelling closer to reality.  
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1 
 

CHAPTER 1 

Introduction and Background 

1.1  Introduction 

Active matter is a new branch of soft matter physics that includes systems of collectively 

moving entities in nature, for example: flocks of birds, migrating bacteria, swimming 

schools of fish, herds of quadrupeds in motion, ants, molds or pedestrians [1]. It is of 

prime importance to understand the universal features and behaviours of these entities 

when many organisms are included, and when their parameters, such as the level of 

perturbation or the mean distance between the individuals, are varied. An understanding 

of the collective motion of such entities can be helpful in many areas which are useful in 

our daily life; for example, an artificial swarm of autonomous vehicles can be produced 

leading to highly developed fishing strategies, or human interactions in crowds which 

may be helpful in devising and implementing efficient and safe crowd control policies, 

thus avoiding casualties in crowded situations [2].  

Collective motion takes place when individuals interact with one another. Eye-catching 

displays of collectively moving animals are fascinating. Schools of fish can move in order 

or they can change direction abruptly. When a predator is near, the same fish can swirl 

like a vehemently stirred fluid. Flocks of starlings fly together to fields in groups moving 

uniformly. When these starlings return to their roosting site they create turbulent and 

fascinating displays. Numerous examples from the living and non-living world include 

the rich behaviour of the systems in which permanently interacting moving units exist 

[3]. There needs to be better understanding of collective behaviour.  
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1.2  Collective behaviour 

In a system containing similar entities (for example molecules or flocks of birds) the 

interaction between the entities can be simple such as attraction and repulsion or more 

intricate, and can take place between neighbouring entities in space or in a fundamental 

network. Under certain conditions transitions can happen during which the entities 

implement a pattern of behaviour almost fully determined by the collective effects due to 

other entities in the system. The main property of collective behaviour is that the action 

of an individual unit is dominated by the influence of others; the behaviour of a unit is 

totally different from the way it would behave on its own. Such systems exhibit 

fascinating ordering phenomena as the entities simultaneously change their behaviour to 

a common pattern. For example, a group of randomly oriented pigeons on the ground 

looking for food will order themselves into an orderly flying flock when leaving the scene 

after a large disturbance. Understanding new phenomena is usually obtained by linking 

them to known ones: a more complex system is understood by investigating its simpler 

modifications. 

 
 Figure 0.1Collective motion of a flock of starlings  

Figure 1.1 Collective motion of a flock of starlings [4] 

 

 In recent years researchers have modelled the collective behaviour of self-propelled 

particles. Self-propelled particles play an important role in understanding the key features 

of biological systems, such as the collective motion of a flock of birds [5]. Self-propelled 
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particles are present everywhere in nature, for example, non-animated matter such as 

running droplets [6-9] and crawling cells [10-14]. Systems become non-equilibrium due 

to the self-propulsion of the particles. These are fascinating complex behaviours which 

depend upon the interaction of the particles, for example, the energy consumption 

involved in propulsion mechanisms and the amount of energy used for these active 

particles to move without fluctuation dissipation theorem [15-19]. 

Interacting self-propelled particles have extensive applications such as autonomous 

robots, traffic, human crowds and biological systems [20-23]. These include birds [24] 

and bacteria [25, 26]. Interacting active particles show behaviours not included in the 

equilibrium systems. There is the possibility of a long-range orientation order in a two-

dimensional coordinate system with continuum symmetry [27]. 

1.3 Self-propelled particles (SPP) 

Self-propelled particles (SPP) or the Vicsek model is basically a concept which is used 

for the purpose of modelling the collective motion of large groups of organisms. In SPP 

the motion of flocking organisms is modelled by the collection of particles that assume a 

constant speed but respond to random noise by assuming at each time increment the 

average direction of motion of the other particles in their neighbourhood [28]. Interaction 

between SPPs can produce dynamic behaviours that are more complex than those in 

which particles move independently. The Vicsek model defines many features of the 

dynamics of particles with high collective motion in which particles align with their 

neighbours and make groups [29].  

The Vicsek model [28] produces motion of macroscopic and microscopic groups. The 

macroscopic groups include schools of fish and flocks of birds [30]; and microscopic 
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groups include bacterial swarms and cancerous tumors [31]. In the Vicsek model, 

particles aligned with their neighbours when they were in the range of the interaction 

radius. It shows a phase transition in one-directional motion as a function of particle 

density and noise amplitude. Modifications of the Vicsek model involve the addition of 

steric interactions [32] and cohesion [33]; however very little work has been done to 

understand the interaction of flocking particles with obstacles [29].  

In the 1970s, researchers introduced an important concept in statistical physics in the form 

of the renormalization group method which provided a detailed theoretical understanding 

of the general phase transition. The theory demonstrated that the key features of 

transitions in equilibrium systems are insensitive to the details of the interactions between 

the individuals in a system [3].  

1.4 Phase transition  

Phase transition takes place in a system consisting of a large number of interacting 

particles undergoing a transition from one phase to another as a function of one or more 

external parameters [3]. Physical systems can be solids, liquids and gaseous phases. A 

well-known example of phase transition is the freezing of a substance when it is cooled. 

Phase transitions occur when particular system variables, known as order parameters, are 

changed. 

The term ‘order parameter’ has been given because of the observation that phase 

transitions usually include due to an abrupt change in a symmetry property of the system. 

When matter is in a solid state the atoms are arranged in an ordered crystal lattice. In 

liquids and gases, the positions of the atoms are disordered and random. Order parameter 

can be considered as the degree of the symmetry which characterises the phase. Order 



5 
 

parameter will have a value equal to zero when the system is disordered, and it will equal 

1 when highly ordered. i.e. if  0  then the system is disordered and if 1  then the 

system is in perfect order.  

In the case of collective motion, the order parameter is the average normalized velocity  
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where 𝑁 represents the total number of particles, and O  is the absolute velocity of the 

particles in the system. If the motion is in a disordered state then the velocities of the 

particles will be in random directions and will average out to give a small magnitude 

vector, whereas for ordered motion the velocities add up to a vector of absolute velocity 

close to 𝑁𝑣𝑜. 

Order parameter can change from 0 to 1 for large values of 𝑁. Firstly, order transition 

takes place when the order parameter changes discontinuously. For example, the volume 

of water changes discontinuously when it forms ice. However, the second order (or 

continuous) phase transition takes place when the order parameter changes continuously, 

whereas its derivative with respect to the control parameter is discontinuous. Large 

fluctuations occur when the second order phase transition takes place. A spontaneous 

symmetry braking takes place during phase transition. For example, if the critical value 

of the control parameter is exceeded, such as temperature or pressure, the symmetry of 

the system will change.A control parameter is basically a parameter which brings changes 

to the phase transition; for example, a system undergoes a transition from one phase to 

another as a function of the control parameter. In the self-propelled particle model, the 

control parameter is considered to be the noise because the scale of noise can disturb the 
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system: if the noise is very much smaller, the particles will show a higher collective 

motion, and if the noise is much higher, the particles will not demonstrate collective 

motion and there will be a state of disorder in the system. The symmetry of the system 

changes if we pass the critical value of the control parameter (for example, temperature 

or pressure).    

The collective motion exhibited by schools of fish and flocks of bird is a fascinating 

example. They move together in the same direction and have a highly cohesive shape. 

They change their direction in a very short time. When they face any obstacle they change 

their direction from the beginning to the end of the group at the same time in order to 

avoid collision. When humans move in crowded spaces they often form a mass and bump 

against each other. What is the particular characteristic of these animal flocks which 

makes a difference between humans and animals? How can they receive, send and 

integrate information from each individual to show movement in their dynamical 

patterns? These questions have been studied in various ways with different approaches. 

Individual-based collective motion modelling by computer simulation is one of the 

important types of study to investigate the collective motion of the flocks [34]. 

From a functional perspective, the movement of animals in groups is beneficial in 

numerous different ways concerning moving cohesively and staying together. This 

involves an increased ability to detect and avoid predators [35] and reach a target 

destination [36, 37]. As a group, individuals have to balance their own preferences against 

the benefit of staying in a group, for example when negotiating a common direction of 

movement or a common activity [38]. A large body of biological literature exists on how 

such direction consensus is obtained. The main focus is, either on the mechanism by 

which consensus is reached, involving nonlinear, quorum-sensing type responses [39], or 

on individual differences which affect the weight of an animal in a group decision [40-
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43]. There are many features of collective decision-making which do not demand 

heterogeneity in the behaviour of the individual; consistency in individual differences in 

leadership have been found in various species, for instance pigeons [44,45], mosquitos, 

fish [46], zebras [40] and several species of primates [41].    

Leadership means some individuals have a greater influence on the group, inferred from 

the fact that choice of the group follows those individuals’ information or preferences. A 

group decision can show leadership without the active participation of group members in 

choosing a leader. Simulations by Conradt et al. [47] show examples in which 

heterogeneity becomes the source of self-organized leadership without the demand of 

global communication or recognition of the individual. These are divided into two 

categories ‘leading by need’ and ‘leading by social indifference’. In ‘leading by need’, 

stronger attraction to a target stimulus happens, whereas in ‘leading by social 

indifference’, weaker responses to specifics take place. The basis of the two categories 

involves the contrasting functional priorities of the individual:  the importance given to 

reaching the target versus the importance of remaining with the rest of group. It is difficult 

to understand the group decision-making without an understanding of the core interaction 

amongst individuals. The interaction rules that are developed by a particular species will 

reveal a trade-off between the numerous features of collective behaviour, for example 

group cohesion, the accuracy and speed of the group decisions and an ability of an 

individual to avoid predators within the selfish herd’ [46,48,49].  

Due to these competing pressures, it is unclear that the interaction rules will maximise 

collective behaviour. Providing mechanistic links between measured interaction rules and 

group results will help to determine the functional significance of interaction rules, for 

instance whether they enhance the tracking gradient [50] or avoid predators [49]. If the 

positioning of individuals within the group in the context of their interactions can be 
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described, then it is possible to form a link between the interaction rules and the 

information processing at the group level. Consider a group which includes only two 

individuals. Assuming that there is the existence of blind visual angle, the transfer of 

information will be unidirectional if the individuals move one behind the other, whereas 

travelling side by side they can see each other supporting bidirectional information 

transfer [51]. 

The study of active particle systems has emerged in a promising new direction: the design 

and manufacture of biometric and artificial active particles. The directed driving is 

frequently achieved by making asymmetric particles that keep two distinct friction 

coefficients [52-54], light absorption coefficients [55-58], or catalytic properties [59-62], 

subject to whether energy injection is done through vibration, light emission or chemical 

reaction respectively. Artificial active particles are characterised by their diffusion 

coefficient >1 achieved using symmetric particles [59]. Theoretical and experimental 

studies have been undertaken on the statistical description of the motion of the particle in 

idealized, homogeneous mediums. However, the most natural active particle systems 

exist in the wild in the heterogeneous media. For example, active transport inside a cell 

takes place in a space containing organelles and vesicles [63]; the motion of bacteria in 

highly heterogeneous environments such as soil or complex tissues, such as in the 

gastrointestinal tract [64] and diffusion in random media [65, 66]. The impact of the 

heterogeneous medium on the locomotion patterns of active particles is not well 

understood. A simple model is used in which the active particles move at a constant speed 

in a heterogeneous two-dimensional space, where the heterogeneity is specified by the 

obstacles randomly distributed in the system. An obstacle can represent the source of a 

repellent chemical, a burning spot in a forest, a light gradient, or whatever threat makes 

our self-propelled particles turn away upon sensing danger: the avoidance of the obstacle 

is described by a (maximum) turning speed 𝛾. The analysis shows that the similar 
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evolution equations, behaviour rules become the source of various locomotion patterns at 

lower and higher density of the obstacles. Here, the meaning of analysis is a detailed 

examination of the model undertaken by the authors of the articles. They varied different 

parameters for this purpose. These parameters are the particle’s turning speed and the 

obstacle density.   

For weaker obstacle densities there is no conflicting information and particles can easily 

turn away from the unwanted area in their way. Alternatively, where environmental 

conditions, for example organisms, sense numerous repellent sources at the same time, 

the process of information is not simple. Particles compute the local obstacle density 

gradient and utilize this information to turn away from higher obstacle densities. Since 

the obstacles are randomly distributed, as the number of obstacles increase, this task 

becomes increasingly challenging. No strategy guarantees how to turn away from 

obstacles and the particles behave more and more if there were no obstacles exist.          

For smaller values of 𝛾 the change in behaviour is reflected by the minimum shown by 

the diffusion coefficient at intermediate obstacle densities. For higher values of  𝛾, 

particle motion is diffusive at smaller obstacle densities  𝜌𝑜, whereas for large obstacle 

densities a new phenomenon appears: the spontaneous trapping of particles. These traps 

are closed orbits found by the particles in a landscape of obstacles. The results open a 

new way to control the systems of the active particle. For example, the emergence of 

spontaneous trapping as a dynamical phenomenon that depends on the basic properties of 

the particles permits us to form a generic filter of active particles. 

The physics of interacting and non-interacting self-propelled particles can be helpful in 

understanding non-equilibrium statistical physics, ecology and developmental biology 

[27].  
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1.5 Aim  

The aim of this study is to obtain a better understanding of the collective motion of self-

propelled particles and how these can be applied more widely in important applications 

such as crowd control policies, fishing strategies, and in designing migration and 

navigation strategies.   

1.6 Objectives 

The collective behaviour of self-propelled particles will be investigated in the 

homogeneous medium with a focus on the effects of various parameters on the system of 

2D self-propelled particles. Furthermore, the order of phase transition will be also 

investigated. The collective motion of self-propelled particles will be investigated in 

three-dimensional spaces to investigate how particles behave when there is a change 

in parameters.  Different values of noise parameter will be used to study the changes in 

the order parameter. Furthermore, there will be variation in the interaction radius and 

speed for the purpose of checking their effect on the collective behaviour of particles. 

Different particle densities will be applied to investigate the patterns formed by the 

particles.  

To investigate the collective motion of the self-propelled particles in the heterogeneous 

medium, the motion of the particles will be studied in the presence of fixed obstacles. 

Collective motion in homogeneous and heterogeneous media will be compared. The order 

of phase transition will be also investigated. Collective motion will be plotted against 

each time step. Obstacle density and its effect on the collective motion of the particles 

will also be investigated. 
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To investigate the collective motion of self-propelled particles in the presence of moving 

obstacles at different parameters to check their effect on the motion of particles, 

comparison will be made for collective motion in the presence of static and moving 

obstacles. Motion will be potted against each time step.  

1.7 Outline of the thesis 

This thesis is divided into seven chapters. The first is the introductory chapter which 

presents the contents, highlights the aims and objectives and gives a brief outline of the 

chapters.   

In chapter 2 literature review is discussed. Main focus is on heterogeneous and 

homogeneous mediums of self-propelled particles.  

The chapter 3 gives details about the methods that are used in the project. First of all, the 

method of the Vicsek model is defined in 2D and then in 3D. Movement of the particles 

is given in three-dimensional space. Collective behaviour of self-propelled particles is 

investigated in the heterogeneous medium. A new model is proposed, termed the obstacle 

avoidance model, where the particles move in the heterogeneous medium involving fixed 

obstacles and moving obstacles. This model is compared with the Chepizkho model [69]. 

The obstacle avoidance model proposed in this study is simpler and easier to simulate. 

The chapter 4 presents and discusses the simulation results. The collective behaviour of 

self-propelled particles is presented in two-dimensional space. The effects of various 

parameters such as noise, interaction radius, speed of the particles, and particle density 

on the collective behaviour of self-propelled particles are investigated. The collective 

motion is plotted against time. The order of phase transition is also investigated. It was 
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observed that for weaker noise systems there was a state of order, and stronger noise 

particles showed random directions. 

In chapter 5 the Vicsek model in 3D is discussed. The positions and the directions of the 

particles are defined in the x, y and z coordinate system. The effects of different 

parameters including noise, interaction radius of the particles, speed and particle density 

on the collective motion of self-propelled particles is investigated. It was observed that, 

in the case of the higher particles such as 3800N along with smaller noise ,1.0  

particles showed alignment in their directions.  

Results obtained from the obstacle avoidance model are discussed in chapter 6. The 

effects of fixed obstacles on the collective motion of self-propelled particles are 

investigated. Various parameters used in this model such as noise, interaction radius of 

the particles, particle density, avoidance radius, and obstacle density are investigated and 

their effects described. The collective motion of the particles is plotted against time. The 

order of phase transition is also investigated. Collective motion is compared in 

homogeneous and heterogeneous mediums. It was observed that the value of the order 

parameter was more consistent in homogeneous systems while there were fluctuations in 

the heterogeneous mediums.  

In chapter 7 simulation results in the presence of moving obstacles are discussed. The 

collective behaviour of self-propelled particles is investigated in the presence of moving 

obstacles. Values of avoidance radius and the obstacle density were varied to investigate 

their effects on the collective motion of the particles. The other parameters that were 

involved in the model were noise, interaction radius, speed, particle density, obstacle 

density, speed of the obstacles, and avoidance radius. Order parameter was plotted as a 

function of time. Moreover, the order of phase transition was also investigated. Compared 
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to fixed obstacles, particles showed fewer fluctuations in the case of moving obstacles for 

lower noise levels. 

 In chapter 8 a summary of results obtained and conclusions are presented. The future 

work is also highlighted. 
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CHAPTER 2 

Collective behaviour of self-propelled particles - a literature 

review 
 

2.1 Introduction 

The study of self-propelled particles is a fascinating area of interdisciplinary research 

which is at the frontier between biology and physics. Current research on self-propelled 

particles focuses on three major directions:  

i) The motion and transport of individual self-propelled particles; 

ii) The motion of self-propelled particles in external and self-produced fields; 

iii) The collective motion of particles that are in contact with one another through 

binary interactions.  

Systems of self-propelled particles are connected with each other through binary 

interactions that produce fascinating patterns of group dynamics, for example, flocks of 

birds, schools of fish, or herds of sheep. The collective motion in nature may give 

enormous advantages for members of the group as well as being of great scientific interest 

[67]. Even though collective motion is a fascinating occurrence in nature, little scientific 

work has been carried out using numerical and mathematical simulations. In this review, 

some of the work carried out using mathematical simulations is presented.    
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2.2 Collective Behaviour in Homogeneous Medium 

The collective behaviour of self-propelled particles in homogeneous systems, where the 

particles are identical, has been investigated by several groups [28, 68, 69]. Examples in 

nature include: bacteria swarming on surfaces [70], the movement of locusts [71], and the 

movement of microtubules on a carpet of fixed molecular motors [72]. 

The first computational model for the behaviour of organisms in flocks was developed by 

Reynolds in 1987 [73]. This model paid attention to the individual behaviour of each 

organism in the system. Almost a decade later, in the year 1995, the concept of self-

propelled particles was modelled by Vicsek et al. [28]. This model focused on the 

collective behaviour of all organisms or particles rather than individual particles. In the 

Vicsek et al. [28] model the only rule was that at each time step the particle followed the 

average direction of the movement of particles which were within its interaction radius, 

with some random noise added. This model enabled larger system sizes to be simulated. 

The results of the model showed that the interaction between the individuals could display 

complex behaviour. Moreover, phase transitions were introduced from disordered to 

ordered systems showing variations in noise and density. This model can be treated in 

terms of moving spins, with the velocity of the particles given by the spinvector. This 

similarity with a spin system allows the alignment mechanism to be denoted as 

ferromagnetic (F-alignment). The temperature associated with spin-systems enters the 

Vicsek model as noise in the alignment mechanism [74]. Self-propelling particles fall into 

two categories: 

i) the first, in which the particles interact with the background, and  

ii) the second, in which the particles interact with each other via kinematic 

constraints [73]. 
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The Vicsek model belongs to the second type, as the only interactions in the system are 

through the particles aligning with the velocities. 

Since Vicsek et al. introduced self-propelling particles to investigate collective behaviour, 

other models based on self-propelling particles have been developed. Such models 

include Lagrangian [75-77], Newtonian mechanics [78, 79] and the mean field theory 

[74]. A simpler model for interaction was given by Couzin et al. [80] who used specific 

behavioural rules. This model updated the positions in the same way as the Vicsek model 

[28], but the velocities were updated according to the behavioural rules. The model 

consisted of three zones and a perception region. The three zones were:  

i) a repulsion zone,  

ii) an orientation zone, and  

iii) an attraction zone.   

The top priority rule in this model was that each particle must have a minimal separation 

distance in order to avoid collision. If all the particles were greater than the minimal 

separation, then the second rule would be implemented, which required individuals to 

attract and orient themselves to avoid isolation.  

Ballerini et al. [81] conducted a study using stereo metric and computer techniques. They 

measured in 3D the positions of individuals within flocks involving up to 2600 starlings. 

They showed that, rather than the individual starling interaction through a metric radius 

of interaction, they interacted with just 6-7 of their nearest neighbours. With the help of 

simple predator models, one using metric interaction and the other topological, the 

topological results provided a lower number of groups than in the metric case, which was 

more of a resemblance to the known survival mechanisms of starlings. In Ref. [82] it is 

revealed that experiments on flocks of birds indicated that interactions are topological. 
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This paper showed that a significantly better stability was achieved when the neighbours 

were selected according to a spatially balanced topological rule.  

The dynamics of systems of SPP with kinematic constraints on the velocities has also 

been studied [83]. A continuum model was proposed that considered the stability of 

ordered motion with respect to noise. 

An important consideration is in the way in which individuals perceive their neighbours 

and the criteria used to decide which neighbours are influential. A simple but effective 

approach to this problem was given in the Couzin model, where individuals responded to 

their neighbours according to the neighbour’s distance [80]. Researchers gave topological 

based rules through which individuals followed a fixed number of neighbours without 

knowing their distances [84].  

 

 Figure 0.1Particles show behaviour of attraction, alignment, and repulsion  
Figure2.1 Particles show behaviour of attraction, alignment, and repulsion [85] 

 

The hydrodynamic interactions encouraged the rise in the collective motion, which could 

take the shape of a macroscopic flock at small densities, or it could be in a homogeneous 

polar phase when there were greater densities [86]. When large density variations took 
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place, the hydrodynamics safeguarded the polar-liquid state. It can be observed here that 

physical interactions at the individual level were enough to set the particles into an 

unchanging focused motion. 

A variant of the Vicsek model that involved pairwise repulsive interactions was also used 

[87]. They observed that there could be changes in the appearance of the system if it was 

confined between two parallel lines; there would be the emergence of a laning state. There 

was the same direction of particles in all lanes and there was a finite separation distance 

between the lanes. In some parameter ranges collectively, the moving clusters arranged 

themselves in an almost hexagonal way. It has been suggested that the reason for such a 

structure is an overreaction in the alignment mechanism.  

The interaction between a pair of pigeons was studied using a high resolution global 

positioning system [51]. Small changes in the velocity showed alignment with the 

direction of the nearest particle, and also there was an attraction or avoidance that 

depended on the distance. When a neighbour was in front, the responses were stronger. 

From the flocking behaviour, the model predicted that this feature was how groups found 

their direction. It was shown that the interactions between pigeons made a stable side-by-

side alignment, helping bidirectional information transfer and decreasing the risk of 

separation. If any bird came in forward-facing, it would lead to directional choices. The 

model discussed in this paper [51] predicted that when a faster bird came in front, it 

determined the direction of the route. Results showed how the group decision arose from 

individual single differences in determining direction behaviour.  

The physical behaviour of the scalar noise model was studied in the smaller velocity 

regimes from different angles. It was proposed that there was an ordering of the particles 

as the noise was reduced below a critical value of the particle density or velocity 

dependent [5]. 
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There is some debate on the nature of the order disorder transition in the Vicsek model. 

Simulations done by the Vicsek group supported consistent second order transitions [28]; 

this contradicts work done by Chate et al. [88], who claimed that the transition was 

discontinuous, i.e. first order. Further controversy arose when subsequent papers of 

Vicsek et al. [5, 89] , Aldana et al. [90, 91]. Dosetti et al. [92], and Baglietto et al. [93, 

94], supported the critical nature of the phase transition. These papers are in conflict with 

the results given by the Chate group [95-97]. A careful review of the existing literature 

showed that various researchers introduced complex changes to the Vicsek model; for 

example, changes in the velocity update process and changes in noise evolution. In Ref. 

[89], the nature of the phase transition is discussed in the scalar noise model. The results 

of the paper verified the findings of the Vicsek et al. model [28] where for small velocities 

(v ≤ 0.1), the nature of the order-disorder transition was continuous second order phase 

transition. For larger velocities (v≥0.3), strong anisotropy was found in particle diffusion 

in comparison with the isotropic diffusion for smaller velocities. The artificial symmetry 

breaking and the first order transitions were due to the interplay between the anisotropic 

diffusion and the periodic boundary conditions. It is impossible to draw a conclusion 

regarding physical behaviour in a higher particle velocity regime based on the scalar noise 

model. 

2.3 Statistical physics of self-propelled particles 

Recently, there has been an increase in the number of scientific studies on self-propelled 

particles in the context of statistical properties of the motion where the particles freely 

move without any obstacles or gradients acting on them. One of the main purposes of 

such studies is to understand the role of the fluctuations in the motion of the self-propelled 

particles. The statistics of such free movement may give useful information on the 

efficiency of the different kinds of motion.  
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Statistical physics and its theoretical methods and models have provided a unifying 

viewpoint for kinetic modelling of the single and multiple particle systems. The 

modelling of spatio-temporal behaviour as non-equilibrium processes needs new tools in 

the theory of non-linear stochastic dynamics and new experimental techniques for in vivo 

observations [67].  The solution to new situations in living matters requires an 

interdisciplinary focus.     

The first study was undertaken by Vestergaad et al. [98], where they investigated the 

estimation of motility parameters of self-propelled particles from experimental data, 

especially in situations where the empirical data analysis was challenging,  i.e. when the 

trajectories were shorter and  with a smaller number of them. Brownian motion with a 

linear time-dependent of the mean squared displacement was considered, along with 

different causes of errors, and provided the best estimator for diffusion coefficients.   

Gotz et al. [99], applying similar methods, studied the impact of the intracellular 

architecture and cytoskeleton dynamics on the intracellular transport. The mean square 

displacement of the silica particles was investigated. These particles were engulfed by the 

slime mould Dictyostelium discoideum. In this paper, the authors reported the roles of 

active transport, subdiffusive, diffusive, and super-diffusive particle motion.  

Raatz et al. [100] studied the swimming patterns of the bacterium Pseudomnas putida 

particles in confined atmospheres. They defined a systematic approach by means of 

proven experimental (microfluidic) technologies. They also used a data analysis 

algorithm to describe the swimming motility of the P. putida. Furthermore, they discussed 

the hydrodynamic effect of obstacles and interfaces on the swimming patterns and 

showed how growing confinement brought about changes to the turning angle statistics 

and the mean run lengths of bacteria.   
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Rodiek and Hauser [101] studied experimentally the motility of amoeboid cells of the 

slime mould Physarum polycephalum. An investigation of their trajectories and mean 

square displacements showed two characteristic behaviours that depended upon the time 

interval considered. The free migration of the cells showed persistent random motion. 

The motility was due to changes in the cell shape encouraged by the peristaltic pumping 

of protoplasm through the cell. Superdiffusive motion was observed during free 

migration. An asymptotic component was shown by the typical velocity distributions 

from the freely migrating cells. The higher propagation velocities correlated with straight 

motion and an elongated cell shape.  The mean square displacement of the trajectories 

was compared for cells, avoiding their own slime trails, to freely migrating cells.  

Romanczuk et al. [102] investigated the velocity distributions of swimming algae 

Euglena gracilis into a microfluidic channel and interpreted the data. The observed 

velocity distributions were consistent with the theory based on the Brownian motion with 

active fluctuations. The applied theory of active fluctuations involved forced fluctuations 

heading in the direction of the propulsions. Fluctuations took place due to the random 

internal performance of the propulsive motors; hence noise originated in the propulsive 

mechanism.  

Solon et al. [103] provided a theoretical comparison of “active” and “run and tumble 

movements”. For these two cases, the analysis was done on the basis of kinetic description 

by means of master equations and equations for the moments of the probability density 

functions. They also investigated the behaviour of individual particles in external fields 

and in confinement, as well as the interaction of the particles. There is a great deal of 

material given, which also comprises a broad description of the technical details of the 

applied approach. The crossover from a particle-oriented description to a field description 

with density dependent velocity is explained.  
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Hernandez-Navarro et al. [104] studied the driven motion of colloids in anisotropic 

matrices such as nematic liquid crystals. The colloids’ driving mechanism was based on 

the principle of nonlinear electrophoresis which was brought about by the asymmetry in 

the structure of the defects created by the inclusions in the host’s elastic matrix. They 

discussed numerous kinds of individual and collective motion of charged colloids, which 

were brought about by the electric fields.  

Kaiser et al. [105] studied the motion of two wedge shaped objects in a bath of self-

propelled rods. The wedges were moved when pushed by the self-propelled rods, whereas 

their orientation remained constant. In experiments, this situation was controlled by the 

influence of the magnetic field.        

The hydrodynamic limit for collective motion in the Vicsek model was discussed by Ihle 

[106], who established an exact equation for the N-particle distribution function. The 

hydrodynamic equation explained two cases by means of a mean-field approximation and 

by a dimensional reduction through eliminating fast variables.  

Grobmann et al. [107] undertook an amendment to the Vicsek model and showed that the 

particles added provided additional alignment rules. Apart from repulsion-like behaviour 

at very small distances, the particles displayed parallel alignment interactions at short 

separation distances; whereas at a greater separation, the particles showed antiparallel 

alignments. Lastly, the extremely separated particles did not interact. These types of 

competing effects brought about a wide range of structures and patterns collectively; for 

instance, grouped structures and turbulent regimes.     

Slomaka and Dunkel [108] used a Navier-Stokes-like equation to describe a fluid 

involving SPPs or bacteria. They derived two equations for the fluid velocity and for the 
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active component. They gave priority to the effective one-component description, but 

provided the addition of higher-order terms into the stress tensor.  

The incompressible Navier-Stokes equation for Newtonian fluids is given as:  

𝜕𝑡𝑉 + (𝑉. ∇)𝑉 − ∇. (2𝑣𝐷𝑉) + ∇𝑝 = 𝑓                                                                       (1.1) 

∇. 𝑉 = 0                                                                                                                        (1.2) 

where 𝑉 represents the velocity of the flow, 𝐷𝑉 = (
1

2
)(∇v + ∇v𝑡) its deformation tensor, 

and 𝑝 represents its pressure. The equation (1.1) is obtained from Newton’s law, while 

equation (1.2) represents the mass conservation equation. 

In the actual Navier stock equation for incompressible fluid there is no stress tensor given 

up to the sixth order partial differential equation, but in [108] the authors have given a 

minimal generalized Navier stock equation which has a stress tensor up to the sixth order. 

This appears to be the main difference between the actual Navier stock equation and the 

equation discussed in [108]. Furthermore, the authors provided the analytical and 

numerical solution of the Navier stock equation. It was assumed that complex fluid-

swimmer interactions can be captured by the generalised form of stress energy tensor, 

which can be expanded in the context of higher order differential equations that creates 

turbulent flow features. 

 2.4 Collective Behaviour in Heterogeneous Medium  

The collective behaviour of self-propelled particles for identical particles has been widely 

studied [28, 68, 69, 109]; however little work has been done to introduce a second 

component to the system, such as an obstacle which could be moving or fixed [110]. 
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2.4.1 Fixed obstacles 

Movement in dynamic and complex environments is an integral part of our daily activities 

such as involving driving on busy roads, walking in crowded spaces and playing sports. 

Many of these tasks that humans perform in such environments involve interactions with 

static or fixed obstacles. There is a need to coordinate ways in which to deal with the 

obstacles [111]. This theory can also be applied to other living things, such as flocks of 

birds, which also face obstacles while moving collectively. It is also very important to 

understand the detection and avoidance of the obstacles wherewith existing noise.  

The interaction of individual particles with obstacles from different angles has been 

investigated [112-114]. There is still an urgent need to investigate natural systems 

involving fixed obstacles because the collective motion of the natural system sometimes 

takes place in a heterogeneous media. Many examples are available in the natural 

environment: bacteria show complex collective behaviours, for example swarming in a 

heterogeneous environment such as soil or highly complex tissues in the gastrointestinal 

tract; in addition, herds of mammals travelling long distances crossing rivers and forests 

[115]. There has been little work done on experimenting and theorising regarding the 

impact of a heterogeneous medium on collective motion [3].  

An individual based modelling approach was discussed which defined group interactions 

with obstacles [116]. The particles’ avoidance behaviour was simulated. The effect was 

also measured by group size where there was the probability of a single particle colliding 

with a fixed obstacle and the degree of efficiency in navigation and cohesion; when larger 

model suppositions and larger values of parameters occurred, the social interactions had 

a higher chance of colliding with the obstacles. The risk of colliding was a non-linear 

function of the group sizing. It was shown that the motion created due to social interaction 

had an impact on the metrics, which could be useful in managing and policy deciding.  
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A continuum model was involved which involved flocks [49] where the linearized 

interaction of a flock to an obstacle was studied. The flock behaviour, after interacting 

with obstacles, was shown by the density disturbances. This disturbance is like Mach 

cones, in which order is expressed by an anistropic spread of waves of flocking.  It was 

shown through a simple model that the existence of obstacles, either static or moving, 

could change the dynamics of collective motion [115]. The optimal noise amplitude 

maximized the collective motion, while in a homogeneous medium this type of optimal 

did not exist. When there were small obstacle densities, with a weak heterogeneous media 

in the system, the collective motion showed a unique critical point below which the 

system showed a long range order similar to that of the homogeneous media. Furthermore, 

when there were high obstacle densities and a strong heterogeneous media, it was found 

that there were two critical points which made the system disordered at both low and large 

noise amplitudes, and showing only a quasi-long range order in between these critical 

points. The optimal noise that increased the collective motion was helpful in developing 

and understanding migration and navigation strategies in a moveable or non-moveable 

heterogeneous media, which should help to understand the evolution and adaptation of 

stochastic components in natural systems which show collective motion.   

The movement of self-propelled particles was studied in a heterogeneous environment. 

Here obstacles were randomly placed into a 2-dimensional space [64]. In this model, the 

particles were avoiding obstacles and the particles’ avoidance was determined by the 

turning speed  . It was shown in this model that the mean square displacement of 

individuals was giving two regimes as a function of the obstacle density o , and . It was 

also found that when there was a smaller value of  , the movement of the particles was 

diffusive and was defined by the diffusion coefficient, which showed a least at  

intermediate densities of obstacles o .  
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The model proposed by the authors showed the dynamics of the particles in the presence 

of obstacles [115]. This model involved too many terms in the final equation of the model. 

Incorporating the noise parameter, it created a high degree of randomness in the system. 

This model showed a lower collective behaviour of particles with little cluster formation. 

There was a need to develop a more simple and easily applicable model.    

2.4.2 Moving Obstacles 

An example of moving obstacle is a predator. Such models involving the presence of a 

predator or predators are the Inada model for the order and flexibility in schools of fish 

[117], and Lee’s model which investigated the escaping behaviour of a prey-flock in 

response to a predator’s attack [118]. The Zheng model involved collective evasion from 

predation in fish schools and Nishimura’s model showed a prey-predator game model 

[119]. In Inada’s model there was a reaction field for fish such as that in the Couzin model 

[80]. The model was modified for the inclusion of a predator by causing the fish to align 

its velocity in the direction to repulse the predator if it was within the reaction field. The 

predator in this model aligned its velocity to attract the prey within the reaction field, and 

if no prey was found then it moved in random directions to search for prey.  

Lee’s model made use of molecular dynamics simulations in a 2D continuum model. In 

this model, the behaviour of individuals in a school without a predator involved regions 

of repulsion, orientation and attraction. The predator’s behaviour aligned its velocity to 

the centre of the prey. Zheng’s model also included zones, but in this case the prey 

behaved in a manner to confuse the predator as it made a strike. Individual prey 

components focused on the behavioural rules depending on the three zones: a selfish zone 

where the prey orients to repulse the predator; a zone of decision to behave selfishly; and 

a no detection zone, where schooling motion takes place. In this model the predator 
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selects its prey at random at every time step. Carere et al. [120] studied the movement of 

starlings with different predation pressures and found that small groups formed roosts 

with lower predation pressures in comparison to that of a roost in which the predator’s 

pressure was high.   

                     

 

Figure 0.2Predator and prey behaviour is shown. Preys are trying to escape from the  predators  
Figure 2.2 Predator and prey behaviour is shown. Preys tried to escape from the  

predators [121]. 

 

Two groups of self-propelled organisms have been simulated using a Viecsek-like model 

involving steric intragroup repulsion. Chase and escape are described by intergroup 

interactions, attraction for predators and repulsion for preys from the nearest particles of 

the interactions [121].  The risk-related selection for collective motion by allowing real 

predators to hunt mobile virtual prey has also been investigated [49]. They isolated 

predator effect while controlling for confounding factors. They found that prey with 

tendency to be attracted toward and to align direction of travel with, near neighbours 

tended to form mobile coordinated groups and were rarely attacked. 
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CHAPTER   3 

Models for Collective Behaviour of Self-Propelled Particles 

for Homogeneous and Heterogeneous Systems 
 

 

3.1 Introduction 

To investigate the collective motion of self-propelled particles in the heterogeneous 

medium (presence of obstacles) and to see the effect of various parameters on the 

collective motion of the particles, it is necessary to model the motion in the homogenous 

medium (without obstacles); hence the Vicsek model is reproduced. This model is done 

in two-dimensional and three-dimensional spaces. Particles move without obstacles. The 

effects of various parameters were investigated including noise, interaction radius, speed 

and particle density. Following on from the homogeneous medium, the heterogeneous 

medium, where motion of the particles was modelled in the presence of obstacles, was 

discussed. For this purpose, the Chepizkho model was explained in detail. Subsequently 

a new model was developed and named the ‘obstacle avoidance model’. The effects of 

fixed obstacles and moving obstacles were studied. Different parameters were 

investigated, such as noise, interaction radius, speed of the particles, particle density, 

obstacle density and avoidance radius. An order parameter was used to characterise the 

macroscopic collective motion of the self-propelled particles.   
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3.2 Methods for the collective behaviour of self-propelled particles in 

homogeneous and heterogeneous medium  

In this section existing methods are discussed for the collective behaviour of self-

propelled particles in homogenous and heterogeneous mediums. Homogeneous systems 

contain particles alone, whereas heterogeneous systems contain both particles and 

obstacles. The latter is a better representation of behaviour in nature, such as in a school 

of fish or a flock of birds, where obstacles are frequently encountered. 

3.2.1 Vicsek model in 2D 

This model was employed to simulate collective motion in homogeneous systems in 

which no obstacles were included. The Vicsek model [28] is basically a concept which is 

used to model the collective motion of large groups of organisms. The motion of flocking 

organisms is modelled by a collection of particles that assume a constant speed but 

respond to a random noise by assuming at each time increment the average direction of 

motion of the other particles in their local neighbourhood. This model is used to simulate 

𝑁 identical particles, each with an absolute velocity v . Simulation is undertaken in a 

square-shaped box which has size L  and periodic boundary conditions. Particles are 

expressed through points that move inside the box. Interaction radius r  is used to measure 

the distance between the particles. At a time step equal to zero, particles move randomly; 

each particle has a random direction which is defined by  . Equations used in this model 

are taken from [28]. The position of the particle is updated at every time-step according 

to the following equation: 

ttttt iii  )()()( vxx ,                                                      (3.1)                                             
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where ix  represents the position vector of the ith particle, t  is the time unit, and )(tiv   

represents the velocity of the particle with an absolute velocity v .      

The direction of the particles within the interaction radius is defined as: 

      
rrr

t  cossinarctan ,                                       (3.2) 

and the direction of the particles after adding random noise can be given as: 

   
r

tt )1( .                                                             (3.3) 

Here  
r

t  is the average direction of the particles. Unit of angle  t  is in the radian 

measure between the velocity vector and x-axis.   represents random noise, which can 

be chosen by using uniform probability distribution from the interval  2/,2/  .  

The amount of order at any time in the system is given by an instantaneous order 

parameter that is determined as the absolute value of the sum of all the particle velocities 

in the system, divided by the total number of particles multiplied by the speed:  
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 .                                                               (3.4) 

In the case of collective motion, the order parameter is the average normalized velocity 

where N  represents the total number of the particles and O  is the absolute velocity of 

the particles in the system. If the motion is in a disordered state, the velocities of the 

particles will be in random directions and will average out to give a small magnitude 

vector, whereas in the case of ordered motion, the velocities will add up to a vector of 

absolute of velocity close to ON .  
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There are two main parameters of the Vicsek model:   the surface density of the particle 

which is defined as 𝜌 = 𝑁/𝐿2, and  , the noise strength. At zero noise, perfect alignment 

takes place in the system. At maximum noise value, particles have random direction and 

they have non-interacting behaviour. 

 
 Figure 0.1Interaction of self-propelled particles in the original Vicsek model 
  

Figure 3.1. Interaction of self-propelled particles in the original Vicsek model [28] 

 

 

In Figure 3.1 the velocities of the particles are shown for varying values of the density 

and noise. The number of particles is 300N in each case. (a) For initial time step 

particles have random motion, here 𝑡 = 0,  = 2.0.  (b) For smaller densities and the 

noise particles make groups move coherently in the random directions, here, L = 25, 

= 0.1.  (c) For larger densities and higher noise ( L = 7,  = 2.0) the particles move 

randomly with some correlation. (d) For higher densities and smaller noise ( L = 5,  =

0.1) the motion of the particles show order and it is at a larger scale. 
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3.2.2 Vicsek model in 3D 

The model has also been used for homogeneous systems and, as for 2D models, no 

obstacles were included. In this model the particles move in the three-dimensional space 

with periodic boundary conditions. At each time-step a particle follows the average 

direction of the motion of the neighbouring particles with some noise [122].  At the start 

time the particles are randomly distributed. Each particle has an interaction radius and 

speed. In this model, spherical coordinates are utilized. The positions and the directions 

of the particles are defined in the three-dimensional coordinate system. Czirok et al [122] 

defined the equation of the direction of the particle as follows: 

𝑣⃗𝑖(𝑡 + ∆𝑡) = 𝑁(𝑁(〈𝑣⃗(𝑡)〉𝑠(𝑖)) + 𝜉),                                                    (3.5) 

where 𝑁(𝑢⃗⃗) =  𝑢⃗⃗/|𝑢⃗⃗| and the noise 𝜉 has uniform distribution in a sphere of radius 𝜂. 

Here  𝑠(𝑖) represents the local neighbourhood. It is at radius 𝑟 where particles start an 

interaction with each other.  

The positions of the particles are defined as follows: 

 𝑥⃗𝑖(𝑡 + Δ𝑡) = 𝑥⃗𝑖(𝑡) + 𝑣𝑜𝑣⃗𝑖(𝑡)Δ𝑡,                                                       (3.6) 

For statistical characterisation of the system, an order parameter is defined as: 





N

i

iv
N 1

1
 .                                                                                        (3.7) 

The value of   is between 0 and 1. If the value of   reaches near to 1, we say there is 

direction consensus in the system. 
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Figure 0.2Collective behaviour of particles in three-dimensional space 

Figure 3.2 Collective behaviour of particles in three-dimensional space [123] 

 

 

This figure displays the distribution of particles for different values of the 𝑣𝑜 ∶ (a) the 

initial distribution of the particles. The final distribution of the particles for (b) 𝑣𝑜 = 0.02; 

(c) 𝑣𝑜 = 0.3; (d) 𝑣𝑜 = 0.5, respectively. 

3.2.3 Chepizkho model 

This model has been applied to heterogeneous systems in which obstacles have been 

included. It involves a more realistic modelling of real systems in which schools of fish 

or flocks of birds often encounter obstacles during their collective motion and thus have 

to respond to these to maintain collective motion in as ordered manner as possible. This 

model represents an advance on the previous two models described previously since it 

includes obstacles.   

Chepizkho et al. [115] studied the effect of spatial heterogeneity on the collective motion 

of the self-propelled particles. They considered a continuum time model for bN  self-
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propelled particles which move in two dimensions with periodic boundary conditions of 

size L . The movement of particles is modelled in the presence of fixed obstacles. The 

introduction of a new element in the equation of motion for self-propelled particles is 

expressed by the obstacle avoidance interaction function. Equations of motion of an ith 

particle are given as:  

             )( ioi v Vx                                                                                                (3.8)                                                                                                                                                    

Here ov is absolute velocity of the particle, )(V  is a two dimensional vector and it can 

be defined as
 ))sin(),(cos()( V . The direction of the particle is given by the 

following equation: 
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where the dot represents the temporal derivative, ix denotes the position of the ith particle 

and i  represents the direction of the ith particle. The function )( ih x denotes the particle’s 

interaction with obstacles and is defined as: 
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  ,               (3.10)                                                   

In Equation (3.10), ky  represents the position of the kth obstacle. oR  is the interaction 

radius between particle and obstacle, and )( ion x  represents the number of obstacles 

which are located at a distance less than oR  from particle ix . In the above Equation 
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(3.10), two conditions are given. In the first, if  0)( ion x  , then )( ih x  will show an 

interaction with obstacles; in the second condition, if 0)( ion x  , then )( ih x  will be zero.    

In Equation (3.10) there is the term oki R || yx . This means that if the distance between 

the obstacle and the particle is less than the interaction radius oR , then the values of sine 

will be summed; the term    iik  ,sin , is the sum of sine values. The number of sine 

values that will be summed will depend on the number of obstacles ))(( ion x  that are 

located in the interaction radius range of the particle ix . The term ik ,  represents the 

angle in polar coordinates of the vector ki yx   and it is also known as polar angle.  In 

the above equation there is the parameter o , which is for the interaction with obstacles 

and particles; it is known as the particle’s turning speed during interaction with the 

obstacle. 

 
  Figure 0.3Collective motion of self-propelled particles in the presence of obstacles 

 

Figure 3.3. Collective motion of self-propelled particles in the presence of obstacles 

[115] 

 

 

Snapshots of different phases are shown by the system with an obstacle density 𝜌 =

2.55 × 10−3: (left) clustered phase, (centre) homogeneous phase, and (right) band phase. 
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The insets show snapshots of the entire system, where the red box displays the area that 

is shown in the main panel.  

The band phase takes place in the case of polar alignment in self- propelled particles. 

Polar alignment is where particles lead to parallel alignment. Huge group formation 

occurs in the case of band phase, where large numbers of particles are very close to each 

other. In the band phase there is the presence of large scale, higher density structures. By 

increasing noise value, there appears large scale, elongated, high density, high ordered, 

solitary structures.   

3.2.4 Order of phase transitions 

The order of phase transition can be investigated by plotting the probability density 

function (PDF) of the order parameter. This technique of finding the order of phase 

transition is introduced in the [5]. If the curve is one-humped, we will say that phase 

transition is of the second order; if the curve has more than one hump, then phase 

transition will be of the first order.  

The process of finding a smooth curve is undertaken by finding the frequency of the 

values of the order parameter for each interval at the last time step. After that, this 

frequency is divided by the value which is obtained after multiplication of the width of 

the interval by the total sum of the frequency values. After doing this, values are 

connected with the smooth curves. Hence the area under the curve is equal to1.   
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3.2.5 Limitations of the existing models 

The Vicsek model consists of three major components:  the interaction radius, the 

velocities of birds, and the noise. Particles make their decisions on the basis of these 

components. The limitations of this model include the following: 

 This model has a minimalistic approach to model complex living systems and it 

needs more control terms;  

 It does not inform us  how living entities influence the average [124];  

 It does not give information when a higher interaction radius and speed are applied 

in the system. Not all articles have an azimuthal field of vision corresponding to 

their surroundings, thus particles are unaware of other particle neighbours 

travelling behind each other [125].  

The Chepizkho model [115] is an improvement on the Vicsek models and involves three 

main terms interaction of particles: with each other, interaction of particle with obstacles, 

and noise. Here the interaction of the particles depends upon two parameters b  and bR .  

This model has the following disadvantages: 

 It contains too many parameters. There is no need to introduce two parameters; 

interaction can be defined by introducing a single parameter bR ; 

 The effect of noise is not investigated on a larger scale;  

 There is a lack of focus on moving obstacles;   

 The order of phase transition is not investigated.   
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3.3 Development of a new improved model for understanding the 

collective behaviour of self-propelled particles 

In order to overcome the limitations of existing models from the literature in this study, a 

new model is introduced. This model has been termed the ‘Obstacle Avoidance Model’ 

(OAM). The major advantage of the OAM is that it enables the collective behaviour of 

self-propelled particles to be studied in the presence of fixed and moving obstacles. 

3.3.1 Obstacle avoidance model (OAM) 

The OAM investigates the effects of various parameters on the collective motion of self-

propelled particles in the presence of obstacles. These parameters include noise, 

interaction radius, avoidance radius, speed, number of particles, and number of obstacles. 

The motion of the bN  self-propelled particles is in a two-dimensional space with periodic 

boundary conditions of size L . Here, L  denotes the box length in which the simulations 

are carried out. In this model, particles move collectively in the presence of obstacles. 

The obstacles can be fixed or moveable. In the case of fixed obstacles there is no change 

in the position of the obstacles, whereas for moving obstacles their positions are changed 

according to Equation (3.15), which is the sum of the previous position of the obstacle 

and the new velocity value. Obstacles are randomly distributed in the system. Interaction 

of the particles among themselves is the same as in the Vicsek model [28], where the 

particle assumes the average direction of the neighbours that are in its interaction radius 

r . Noise parameter is also introduced to the system, which is randomly given and has a 

value in   , . At a time step equal to zero, each particle has a random position and 

random direction. Particles update their positions according to Equation (3.1). This 

equation is rewritten here:    
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ttttt iii  )()()( vxx ,                                                    (3.11) 

The direction of the particle is defined by the following equation: 

  )()()( iri httt x ,                                        (3.12)                                                                                    

In Equation (3.11), ix  represents the position of the ith  particle. )(tiv  is the velocity of 

the particle with absolute velocity ov , and t is the time interval that particles take to 

move from one point to another.   

In Equation (3.12), i   represents the direction of the particle.   is the random 

fluctuation in the system, which is created by noise; this is chosen randomly and has a 

value of   , .   is the noise amplitude. 
r

t)(  represents the average direction of 

the particles which are within the interaction radius r .  This r  is the radius of interaction 

between the self-propelled particles. 
r

t)(  is given in the following equation: 

      
rrr

t  cossinarctan ,                                    (3.13)      

In Equation (3.12), the function )( ih x  defines the interaction of the particle with the 

obstacles. Through this function, the particle avoids the obstacles that are located in its 

neighbourhood.  The interaction of the particle with the obstacle is defined by Equation 

(3.14) which is taken from [115]: 
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In Equation (3.14), ix is the position of the ith particle, and ky  is the position of the kth 

obstacle. oR  is known as the interaction radius between the particle and the obstacle. 

)( ion x   represents the number of obstacles located at a distance less than oR  from ix . In 

the above equation, two conditions are given; in the first, if )( ion x  is greater than zero, 

)( ih x  will show interaction with obstacles; in the second, if )( ion x  is equal to zero, 

)( ih x  will be zero, meaning that no obstacle is located near the particle.    

In Equation (3.14) there is the term: oki R || yx , which means that if the distance 

between the obstacle and the particle is less than the interaction radius oR , then the 

summation of sine     iik  ,sin  will take place. The number of sine values that will 

be summed depends upon the number of obstacles ))(( ion x  that are located in the 

interaction radius range of the particle ix . The term ik ,  represents the angle in the polar 

coordinates of the vector ki yx  . In the above equation there is parameter  o , which is, 

for interaction purposes, known as the particle’s turning speed when it interacts with the 

obstacle. The simulation studies using this new model are presented in Chapters 6 and 7. 

 
(a)                   (b)                                                      (c) 

 

Figure 3.4 Free body diagram represents the behaviour of the particle. 
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The above figure demonstrates the free body diagram of the self-propelled particles, and 

it can be clearly seen that there are five particles given in the domain, see figures 3.4(a) 

and 3.4(b).  

To obtain its new orientation, particle 𝑖 calculates the mean orientation 𝜃𝑖 of the 

neighbours which are in the domain (figure 3.4(a)), and makes an error ∆𝜃  (figure 3.4(b)). 

The dynamics of the self-propelled particles is simulated in periodic boundary conditions. 

The interaction radius 𝑟 and the time step ∆𝑡 can be set to 1. In figure 3.4(c), interaction 

between the self-propelled particle and the obstacle is demonstrated. The dashed circle 

shows the interaction area of radius 𝑅𝑜 , the solid curve represents the trajectory of the 

particle, and ∝ is known as the scattered angle. 

(i)  Moving obstacles 

The collective behaviour of self-propelled particles in the presence of moving obstacles 

is investigated. These obstacles move with random directions. The position of particle ix  

is updated by Equation (3.11), and the direction of the particle is given by Equation (3.12). 

Moving obstacle ky  updates its position in the following way: 

ttttt kkk  )()()( vyy ,                                                              (3.15)  

Here ky  is the position of the kth obstacle, and )(tkv  is the velocity of the obstacle with 

an absolute velocity yv . t  is the time taken by the obstacle to move from one point to 

another. The following order parameter ( w ) is used to characterise the macroscopic 

collective movement of the particles [115]:             
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 Here 
t

tw )(  shows the temporal average. The term )(tie   represents the complex number. 

This complex number is a particle whose direction is determined after interaction with 

obstacles.  In this equation, a modulus of complex numbers is determined and then 

divided by the total number of particles bN . Equation (3.16) determines the average 

collective motion of the particles.   

In developed model particles, density b  can be interpreted by using the following 

equation: 

          2/ LNbb  ,                                                                          (3.17) 

 Here bN  is the number of particles, and L  is the length of the box. 

3.4 Comparison of OAM and the Chepizkho model 

The obstacle avoidance model which is proposed in this thesis investigates the collective 

motion of self-propelled particles in the presence of obstacles. The main reason for 

proposing a new model was to study the effect of fixed and moving obstacles on self-

propelled particles when noise values are varied in the system.  

Chepizkho et al. [115] also studied the effect of obstacles on the collective motion of self-

propelled particles; their model is discussed in Section 3.2.3 of this chapter. The main 

difference between the Chepizkho model and the obstacle avoidance model is in defining 

the direction of the particle, the control of strength of alignment ( )( ig x ) of the particles, 

and the declaration of the noise value in the model. In their model (Eq. 3.9), the direction 
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of the particles includes three terms which are:  
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which interact with each other; here interaction of the particles depends upon two 

parameters b  and bR . If the values of these parameters are larger then there will be more 

interaction, and if the values of the parameters are smaller, there will be less interaction 

in the particles. In the obstacle avoidance model (Eq. 3.12) there is no such dependence 

of interaction on these two parameters. Particles interact with each other only through the 

interaction radius r . The direction of the interacting particles is given by a very simple 

equation which has three terms 
r

t)( , )( ih x , and   , where
r

t)(  represents the 

average direction of the velocities of the particles within an interaction radius r ; and 

)( ih x  is the obstacle interaction function and   is the random fluctuation. In the 

Chepizkho model (Eq. 3.9) there is the term: )sin( ij   , which calculates the difference 

of directions of two neighbouring particles. In the obstacle avoidance model this sine 

function does not exist because when particles interact with each other their velocities are 

summed and as a result of this the particles move collectively. The term )( ig x  in 

Equation (3.9) controls the strength of alignment of the particles. This term does not exist 

in the obstacle avoidance model (Eq. 3.12) because the motion of the particles follows 

the rules of the self-propelled particles, where alignment of the particles is controlled 

through the interaction radius and the noise value.   
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In the Chepizkho model equation (3.9) there is the term: )(ti , which represents the 

noise in the system where   is the noise amplitude which is multiplied with the interval 

],[)(  ti . This noise term produces randomness, whereas in the obstacle avoidance 

model (Eq. (3.12) there is the term    which is called random fluctuation. This random 

fluctuation is due to the noise which is chosen with a uniform probability from the interval

],[  , where   is the noise amplitude. This process of introducing noise into the 

system is beneficial because particles are not only able to deal with obstacles, but also 

face noise in the system more efficiently. A higher value of noise also generates huge 

randomness in the system, but particles have the ability to move collectively at smaller 

noise values 1.0 . Collective motion shown by the particles at smaller noise levels (

01.0 ) is greater than the results in [115] at the same noise. In Equation (3.9), obstacle 

interaction function )( ih x  works in the same way as it does in the obstacle avoidance 

model in Equation (3.12). The Chepizkho model [115] works for the fixed obstacles, 

whereas the obstacle avoidance model not only works for the fixed obstacles but it also 

works for the moving obstacles. In the case of moving obstacles, the position of the 

obstacles is updated by a simple rule given in Equation (3.15):  in the presence of moving 

obstacles, particles show more collective motion than fixed obstacles. 
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3.7 Conclusions 

The various models for self-propelled particles are discussed in detail. Two types of 

media are used, firstly the homogeneous medium, and secondly the heterogeneous 

medium. The homogeneous medium involved the 2D Vicsek model  and the 3D Vicsek 

model. Movement of the particles is very smooth when there are no obstacles in the 

system. The collective behaviour of the particles continuously decreases when noise 

increases in the system and collective motion increases when there is an increase in the 

interaction radius of the particles.  

In the 3D Vicsek model, the positions and the directions of the particles are defined in the 

x, y, and z coordinates. In this model, different parameters are used to investigate the 

collective motion of the particles. These parameters are noise, interaction radius, and 

particle density. For the movement of the particles in the heterogeneous medium, a new 

model was used: the obstacle avoidance model. In this model, particles interacted with 

fixed and moving obstacles. This model compared with the Chepizkho model [115]. It 

observed that obstacle avoidance was more simple and easy to simulate. For large 

obstacle densities, the particles showed a different behaviour, displaying trapping. 

Movement of the particles was totally disturbed. Furthermore it was also observed that 

avoidance of the particles depended on the gamma parameter which is the particle's 

turning speed when it interacts with the obstacle. An order parameter was introduced 

which measured the collective motion of the self-propelled particles. For simulation, 

Fortran language was used. Plots were obtained by the GNUPLOT and the videos were 

obtained through OPENDX software.   
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CHAPTER  4 

 

Simulations Studies using the 2D Vicsek Model  

for Self-Propelled Particles  

 

4.1 Introduction  

In this chapter the simulations of the self-propelled model are presented. This is known 

as the Vicsek model. The effect of different parameters on the collective motion of self-

propelled particles is investigated. In this model the particles interacted with each other 

via an interaction radius. The velocities of the particles were determined by a simple 

rule and the random perturbation in the system. Each particle assumed the average 

direction of the particles in the radius r and some random perturbation was added. The 

level of random perturbation is analogous with the temperature.   

The Vicsek model has applications in a wide range of biological systems involving 

clustering and migration, for example, in flocks of birds, schools of fish, herds 

of quadrupeds and bacterial colony growth. 

In the Vicsek model, variations take place in two main parameters: the density of the 

particles and the noise. Other parameters, such as the interaction radius and the speed of 

the particles, were also varied. The order of the phase transition is also investigated by 

using probability density function. The Viscek model is characterised by Equations 3.1 

and 3.2, as discussed in Chapter 3.  
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4.2 Parameter table  

The parameters that were used in the Vicsek model are given in Table 4.1. Variation took 

place in the parameters such as noise, density of the particles, speed of the particles, and 

the interaction radius of the particles.  

Table 4.1  Symbols used in captions of figures 
                                        Table 2Table 4.1 – Symbols used in captions of figures 

Symbol Description 

L  Box Length 

N  Number of Particles 

t  Number of time steps 

  Noise 

r  Interaction radius 

v  Absolute Velocity or speed 

 

4.3 Comparison of calculated results and the simulation results 

In this section a comparison between the manual calculation results and the simulation 

results of the Vicsek model is given. Two particles were chosen for two time steps. Firstly, 

the positions and the directions of the particles were selected randomly. The length and 

width of the box was equal to 6. A smaller box size was chosen because of the interaction 

of the two particles. Noise was kept to zero. It was observed that there was consistency 

in the manually calculated values and the simulation results. This can be seen in Tables 

4.2-4.6. The initial positions and the velocity direction of two particles are given in Table 

4.2. 
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Table 4.2 Initial positions and the velocities of the two particles 

Table 3Table 4.2 Initial positions and the velocities of the two particles 

Particle serial 

No. 

                        Position Velocity direction 

X                  Y X Y 

1 0.000001 0.127402 -0.600501 0.799623 

2 3.334572 4.815278 0.526714 -0.850042 

 

Table 4.3 Calculations of two particles at first time step 

 
Table 4Table 4.3 Calculations of two particles at first time step 

First time step 

Particle serial 

No. 

                        Position Velocity direction 

X                  Y X Y 

1 4.975232 0.110477 -0.024769 -0.016925 

2 3.309802 4.798352 -0.024769 -0.016925 

 

Table 4.4 Calculations of two particles at second time step 
Table 5Table 4.4 Calculations of two particles at second time step 

 

Second time step 

Particle serial 

No. 

                        Position Velocity direction 

X                  Y X Y 

1 4.950462 0.093551 -0.024769 -0.016925 

2 3.285032 4.781427 -0.024769 -0.016925 
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In the following tables, the simulation results of two particles are given: 

Table 4.5 Simulation result of two particles at first time step 

 
Table 6Table 4.5 Simulation result of two particles at first time step 

First time step 

Particle serial 

No. 

                        Position Velocity direction 

X                  Y X Y 

1 4.975232 0.110477 -0.024769 -0.016925 

2 3.309803 4.798352 -0.024769 -0.016925 

 

Table 4.6 Simulation result of two particles at second time step 

Table 7Table 4.6 Simulation result of two particles at second time step 

Second time step 

Particle serial 

No. 

                        Position Velocity direction 

X                  Y X Y 

1 4.950462 0.093551 -0.024769 -0.016925 

2 3.285032 4.781427 -0.024769 -0.016925 

 

4.4 Simulation results 

The results were obtained from the simulation with the help of Fortran 90 by using the 

Linux operating system. The figures given below are obtained with the help of 

GNUPLOT.  The particle density and noise were varied and the results are displayed in 

the figures. For smaller densities and lower noise, the particles moved in groups and 

showed coherence in the system. After a period and with large particle densities of 

particles, they tried to move with some correlation. In the case of higher particle densities 

and lower noise value, i.e 5L   and 1.0 , the particles showed an ordered motion and 

a strong coordination in the system.  
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Figures 4.1-4.4 demonstrate the actual selection of the variation of the particle density   

and ; the actual velocity of the particle is indicated by an arrow. The trajectory of the 

particle is given by the short continuous curve for 20 time steps. 

In the following results, the movement of the particles is given at the initial time step. 

 

Figure 0.11  Random motion of the particles at 

Figure 4.1  Random motion of the particles at 03.0,1,0,300,2,7  vrtNL   

 

 

This result was obtained at a time step equal to zero. Here the density was higher because 

the box length was 7L . It can be clearly seen that particles took random directions and 

the positions of the particles were randomly distributed. At the zero time step they were 

not in a position to contact one another. There was higher noise in the system. In this 

result system was in a state of disorder; 03.0v was the absolute velocity of the particles, 

which remained constant for all the particles. 

The time steps were increased along with the box length for the purpose of seeing the 

movement of the particles. 
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Figure 0.2Group formation by the particles at 

Figure 4.2 Group formation by the particles at ,20,03.0,300,1.0,25  tvNL 

.1r  

 

 

In figure 4.2, the density and noise chosen were lower; the formula for the density was 

2/ LN . The value of the density was 0.48. It can be clearly seen that particles have 

formed groups and inside the groups, particles had coherent movement. Particles showed 

this behaviour because of the huge space provided to them and there was lower noise. At 

the initial time step, each particle moved randomly; after some time steps they contacted 

each other and formed groups.            

In the following result, a higher density and higher noise was used. 
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  Figure 0.3Figure 4.3 Movement of the particles with some correlation at 

Figure 4.3 Movement of the particles with some correlation at ,20,2,7  tL   

,1r  ,03.0v .300N  

 

 

The impact of higher noise and higher density on the movement of particles is shown in 

figure 4.3. It can be clearly seen in this figure that the particles showed random 

movement. Here the particles had randomness due to higher noise. After the 20th time 

step they exhibited some correlation which was due to a higher density and the interaction 

radius.  

In the self-propelled particle model, collective motion is quantified through an order 

parameter which is defined in Section 3. If the value of the order parameter is 

approximately zero, it is said to be disordered motion, and if the value of the order 

parameter is approximately 1, we say there is ordered motion in the system. 

In figure 4.4, the impact of low noise and higher density can be seen. The system displays 

an important behaviour of the particles. 
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Figure 0.4Figure 4.4 Alignment in the direction of the particles at 

Figure 4.4 Alignment in the direction of the particles at ,5L ,1.0  ,1r ,20t  

,03.0v   .300N  

 

 

This is the most interesting result. In figure 4.4, it can be clearly seen that the system is 

in a state of order. Particles had the same direction. The motion of the particles appeared 

to be in order. This movement of particles was due to the low noise  1.0  and higher 

densities. When the box length was smaller )7( L , higher density in the system took 

place; particles came close to each other for the purpose of collective movement. 

Furthermore, there were fewer disturbances which were helpful in ordering them. Having 

20 time steps played an important role in giving the system a state of order; the particles 

had more time to coordinate with each other.     
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4.4.1 Larger number of particles 

The following figures were obtained by using the same parameters as were used in the 

results shown in figures 4.1-4.4, the only difference being in the parameters concerning 

the number of particles. In the results shown in figures 4.5-4.8, 2000 particles were used. 

The simulation results showed similar behaviour to those in Vicsek’s results.  

The main difference between the results for N =300 and N =2000 appears in the value of 

the collective motion. For a larger number of particles, the system showed higher 

collective motion because there were more particles and there were more chances of 

coordination in the system. Within a short time they showed alignment with each other.  

 

 
Figure 0.5Random motion for   at  . 

Figure 4.5 Random motion for 2000N  at 0t . .03.0,1,2,7  vrL   

 

 

The above figure 4.5 demonstrates the results for the first time step. The particles 

exhibited random motion, with each particle moving in a different direction. The particles 

were scattered across the whole box.  Collective motion was approximately zero, 
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suggesting that the system was in a state of disorder. Higher noise  ( 2 ) was used in 

the system, which also provided perturbation to the orientation of the particles. The 

system appeared to be very dense. Each particle carried a radius of 1. Through this radius 

they interacted with each other. Each particle assumed the average direction of the 

neighbouring particles which were in its interaction range and also particles received 

some random perturbation. 

 
Figure 0.6Group formation by the particles at 

Figure 4.6 Group formation by the particles at ,25L ,1.0 ,2000N ,20t

,03.0v .1r  

 

 

The above figure demonstrates the results of simulation at the 20th time step. The length 

of the box was increased to 25 and noise was kept very low at 1.0 . It was observed 

that the particles formed groups, each group having a different direction. The behaviour 

exhibited by the particles was similar to that shown in figure 4.2, the only difference being 

that here, 2000 particles were used. Due to the larger box length, particles were scattered 

in the form of groups. Lower noise provided much less disturbance in the system. There 

is another factor which helped the particles to align in groups, which was the number of 

the time steps, at 20, so the particles had time to interact with each other. 
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 Figure 0.7Correlation in the system  

Figure 4.7 Correlation in the system ,20,2,7  tL   ,1r  03.0v , 2000N  

 

 

In the above figure 4.7, simulation is shown for a smaller box length ( 7L ) and higher 

noise level ( 2  ). It can be clearly seen that at the 20th time step, particles exhibited 

some correlation. Due to the noise, the randomness in the motion of the particles can be 

seen but this randomness was on a smaller scale even when the noise level was higher. 

Due to the smaller box length and large number of particles, the system becomes very 

dense. The value of the order parameter obtained at the last time step was equal to 0.61. 

This value suggests that there existed collective motion in the system.  
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Figure 0.8Figure 4.8 Alignment in the system at 

Figure 4.8 Alignment in the system at ,1,20,1.0,5  rtL   ,03.0v .2000N  

 

 

Above figure (4.8) demonstrates the result for a smaller box length ( 5L ) and lower 

noise level ( 1.0 ). It was observed that at the 20th time step the particles exhibited 

fascinating behaviour. The particles showed ordered motion and were aligned in one 

direction. The collective motion was higher in the system because of the similar direction 

of the particles. The behaviour exhibited by the particles was due to the lower noise and 

higher density of the particles. In the previous figure, the results showed some 

randomness, whereas in this result no randomness existed. Hence, less noise and a higher 

density of the particles made the system more stable. It is believed that if more than 2000 

particles were used, by keeping the other parameters the same, then the particles would 

show a similar behaviour pattern.   
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4.4.2 Phase transitions 

A system is said to have a phase transition when there exists a large number of interacting 

particles undergoing from one phase to another as a function of one or more external 

parameters [3]. A well-known example of phase transition is the freezing of a substance 

when it is cooled. Phase transitions occur when particular system variables, known as 

order parameters, are changed. The term ‘order parameter’ is given because of the 

observations that phase transitions usually include to an abrupt change in the symmetry 

property of the system. 

The nature of the phase transition was investigated by determining the absolute value of 

the average normalized velocity of the whole system when changes take place in the 

density and the noise. This average velocity carries a value approximately equal to zero 

when there is random direction of the particles, while for the case where particles have 

ordered direction, average velocity carries a value which is approximately equal to 1. 

(i)  Variation in noise 

In the following results, trajectories are given. Noise slowly increased for various sizes 

for fixed density of the particles in the system. There is transition from orderly state to 

disorderly motion in the system. The interaction radius is ,1r  speed 03.0v  and time 

is .2500t    
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Figure 4.9 Phase transition for 40 particles at 1.3L . 

 

 

In the system of self-propelled particles, noise is considered to be the control parameter. 

Noise has a huge effect on the collective motion of the particles. Phase transitions take 

place in the system when noise is varied. An example of phase transition can be seen in 

figure 4.9. At zero value of noise, we see collective motion is highly ordered; there was 

a decline in the collective motion of the self-propelled particles when noise was increased. 

At noise value equal to 5, collective motion was much lower, suggesting a disordered 

phase in the system; and there was a transition from a highly ordered to a disordered 

phase.  

Figure 0.9Figure 4.9 Phase transition for 40 particles at 
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Figure 0.10Figure 4.10  Phase transition for 100 particles at  

Figure 4.10  Phase transition for 100 particles at 5L  

 

 

Figure 4.11  Phase transition of 400 particles at 10L . 
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Figure 0.11 Phase transition for 4000 particles at 

Figure 4.12  Phase transition for 4000 particles at .6.31L  

 

 

 
Figure 0.12Figure 4.13  Phase transitions for 10000 particles at 

Figure 4.13  Phase transitions for 10000 particles at 50L  

 

 

In the above figures (4.9-4.13), the order parameter was plotted against noise. The noise 

values varied from 0 to 5 with an interval length of 0.5. It can be clearly seen that when 

noise slowly increased in the system, the collective motion of the particles decreased. It 

was also observed that fluctuations in collective motion took place. The main reason for 
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this was that when the number of particles was increased, the system showed larger 

fluctuations because noise provided random values in the system.  

In figure 4.10, more fluctuations were observed and the curve showed a downward trend. 

At 0.5 , the order parameter had a value equal to 0.1621; if a higher value of noise 

was applied then the order parameter would go down further. For a higher number of 

particles the order parameter was approximately equal to 0 at noise level 0.5 . This 

can be clearly seen from figures 4.11-4.13. For large system sizes there was the need to 

use a larger number of time steps in order for the particles to coordinate with each other. 

It was also observed that at noise value 0.0 , the order parameter was approximately 

equal to 1. 

(ii)  Variation in the density   

Another aspect of the phase transition was also investigated: the noise was kept constant 

in the system and the density of the particles was increased. The other parameter values 

that were constant in the system were 0.2,20  L , and 1r . The collective motion 

of the self-propelled particles increased when noise was kept constant and only the 

number of particles was increased.  
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Figure 0.13Figure 4.14 Evolution of collective motion for different densities at t = 500 

Figure 4.14 Evolution of collective motion for different densities at t = 500 

 

 

 
  Figure 0.14Evolution of the collective motion for different particle densities at  . 

Figure 4.15 Evolution of the collective motion for different particle densities at

2500t  

 

In figure 4.14 it is observed that with increasing density a growth in the collective motion 

appears. This observation also proved that with the increasing number of particles, the 

collective motion rose. At a particle density of 1, the order parameter had a value equal 
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to 0.76. Furthermore, in figure 4.15 the same type of behaviour was observed. The 

collective motion of the particles increased along with a slower increase in the density of 

the particles. It can be clearly seen that at 10 , the value for the order parameter was 

0.81, which was the highest value.  

4.4.3 Effect of the interaction radius 

The effect of the interaction radius was studied in the Vicsek model, which was not 

studied in the original model [28] presented in the literature. In their work, the radius was 

kept to 1, but the model developed here was simulated for the radius value and varied 

from 0 to 10 with an interval length of 0.5. The simulation results were obtained at 

different time steps. The noise value used here was very small at 1.0 . The box length 

was 𝐿 = 20 and the number of particles was 𝑁 = 3000. The following results were 

obtained at  t = 200, 500, 1000 and 3000. 

 

                              (a) 200t                                                     (b) 500t                                                  

Figure 4.16  Collective motion as a function of interaction radius for smaller number of 

time steps 
Figure 0.15 Collective motion as a function of interaction radius for smaller number of time steps 
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                             (a) 1000t                                                     (b) 3000t                                                                                

Figure 4.17 Collective motion as a function of interaction radius for 1000 and 3000 

time steps 
Figure 0.16Collective motion as a function of interaction radius for 1000 and 3000 time 
 steps 
Figures 4.16-4.17 demonstrate the effect of the interaction radius on the collective motion 

of self-propelled particles at different time steps. It can be clearly seen that the value of 

the order parameter remained almost 1 for all the radius values greater than 0. At the 

initial value of  𝑟 = 0 , the order parameter carried a value near to zero. This showed there 

was no collective motion occurring in the system. There was ordered motion when lower 

noise levels and 0r  existed in the system.  

Increasing the value of the radius parameter enabled more particles to interact with one 

another. The collective motion remained consistent when a higher number of time steps 

was used to simulate the system. If fewer steps were used, the system showed fluctuations. 

This could be seen in the case where t = 200. The results showed that the order parameter 

had fluctuations when 1r . From 5.1r , the system showed a higher order as the 

collective motion approached a value of 1. As the simulation time increased, fewer 

fluctuations appeared in the system. This can be seen from the result where t = 500; the 
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figure showed zigzag behaviour, but it was at a smaller scale. For t = 1000, the collective 

motion was better than at the two previous time step results. The graph showed an upward 

trend. As the time steps were increased further to 3000, the results exhibited fascinating 

behaviour, and the particles showed a higher collective motion. The value of the order 

parameter was near to 1 for all values of radius except for .0r     

4.4.4 Effect of the Speed 

The effect of the speed )(v  was investigated at various time steps. The number of 

particles was 𝑁 = 3000; the box length was 𝐿 = 20; noise was 1.0 ; the interaction 

radius was .1r  The value of the speed parameter v  was varied from  0.1 to 2.0 with an 

interval length of  0.1. The trajectories were plotted for time steps of  t = 200, 500, 1000 

and 3000. 

 

      (a) t = 200                                                  (b) t = 500 

Figure 4.18  Collective motion as a function of speed for small number of time steps 
Figure 0.17Collective motion as a function of speed for small number of time steps 

 



67 
 

Figure 4.18 presents the collective motion as a function of the speed. It was observed that 

for t = 200, the system showed inconsistency due to the fluctuations in the order 

parameter; for  t = 500, the system showed greater stability. The highly ordered motion 

in the system was evident. The results showed that time played an important role in 

stabilising the system. For shorter times, the particles had fewer chances of interacting 

with each other, whereas in the case of longer time steps, the chances of higher 

coordination increased.  

    
 

           (a) t =1000.                                                      (b) t =3000. 

 

Figure 4.19   Collective motion as a function of speed for large 1000 and 3000 time 

steps 
Figure 0.18Collective motion as a function of speed for large 1000 and 3000 time steps 

 

Figure 4.19 shows that no fluctuations were observed. The values of the order parameter 

were close to 1 for all the values of the speed. At  t = 1000, the system achieved a better 

position in terms of collective motion;  similar behaviour was also observed in the case 

of  t = 3000. It can be clearly seen that the value of the order parameter was consistent 

and close to 1 for all the values of speed greater than zero.  From these results it was 

observed that time played an important role in the collective motion of the self-propelled 
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particles when speed variations took place. For further increases in the simulation time, 

the value of order parameter remained near to 1. 

4.4.5 Collective motion as a function time 

The collective motion was plotted against time using various numbers of particles. Noise 

was equal to 2.0 in order to see how particles behaved at each time step in the presence 

of greater noise. Here 1,2500,20  rtL , and 03.0v .     

   
 
                                (a)                                                                    (b) 

Figure 4.20  Collective motion as a function of time for 56 and 112 particles 

 
Figure 0.19Collective motion as a function of time for 56 and 112 particles 

The graphs in figure 4.20 are demonstrated for the purpose of giving a comparison for the 

collective motion of the particles when variation in particle density takes place. There 

were initially 56 particles simulated and then their collective motion was plotted against 

each time step. After this, there were 112 particles simulated and then their collective 

motion was also plotted. In figure 4.20(a), particle density was 14.0 , whereas in 

figure 4.20(b), particle density was 28.0 . It was found from this comparison that 

when 14.0 , the system showed very frequent rise and fall in the value of the order 
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parameter, which can be clearly seen in figure 4.20(a). In the case of 28.0 , the order 

parameter also had fluctuations but these were less fluctuations, which can be seen in 

figure 4.20(b). By comparing both graphs it was found that the graph in figure 4.20(b) is 

better than the graph in figure 4.20(a) because fewer fluctuations are shown in figure 

4.20(b). 

  

(a)                                                                (b) 

Figure 4.21  Collective motion as a function of time for 336 and 504 particles 
Figure 0.20Collective motion as a function of time for 336 and 504 particles 
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                                  (a)                                                                 (b) 

Figure 4.22  Collective motion as a function of time for 560 and 720 particles 
Figure 0.21Collective motion as a function of time for 560 and 720 particles 
  

 

                                  (a)                                                                  (b)               

Figure 4.23  Evolution of collective motion for 2800 and 4000 particles 
Figure 0.22Evolution of collective motion for 2800 and 4000 particles 

In the results shown (figures 4.21-4.22), fluctuations were observed in the order 

parameter, but these fluctuations were lower compared with the results shown in figure 

4.20. It was observed that for higher particle density, the system showed very little 
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fluctuation, even in the case of higher noise, i.e. 0.2 . In figure 4.23(a), the result was 

shown for 2800N . The order parameter had a value equal to 0.78, indicating good 

alignment in the direction of the particles. At the initial time step there was little order in 

the system, but after several time steps, the order start increasing. It can also be seen that 

sometimes it rises but appears to decrease suddenly due to random noise in the system. 

In figure 4.23(b), where 4000N , a similar type of behaviour was shown to that in 

figure 4.23(a). The order parameter was equal to 0.81 at the 2500th time step. 

4.4.6 Order of the phase transition 

For this purpose, the probability density function (PDF) of the order parameter was 

plotted. The probability density function of an order parameter is the function that 

describes the relative likelihood of the order parameter to take on a given value. The 

probability density function of the order parameter is non-negative everywhere, and its 

integral over the entire space was equal to 1.   

It is known that phase transition occurs when the value of the order parameter changes 

from 0 to 1. If the value of the order parameter is approximately zero, we say that there 

is a disordered phase. If the value of the order parameter is approximately equal to 1, we 

say that there is a highly ordered motion in the system, in other words, ordered phase 

exists in the system. In the figure 4.24 it can be clearly seen that the order parameter has 

values near to zero and as well as near to 1. These values suggest that phase transition 

exists in the system.  

In order to learn the order of phase transition, there was a need to see the formation of the 

curve. If the curve had one hump, then the phase transition was of the second order; if the 

curve had more than one hump, then the phase transition was of the first order. A large 

number of particles was chosen, such as .32768N  The box length was also larger, at 
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.512L  The speed was ,5.0v with three noise values and 5000 time steps used in the 

simulation. A similar technique of finding the order of the phase transition was also used 

in [5]. 

 

Figure 0.23First order phase transition at noise level 

Figure 4.24  First order phase transition at noise level 193.0  

 

The graph shown in figure 4.24 tells us only about the order of phase transitions. Noise

193.0   was applied, which provided a first order phase transition. This curve shows 

us that there is occurrence of phase transition, but it is not continuous because the curve 

has shown more than one hump. This graph shows the occurrence of phase transitions 

and we knew this from the values of the order parameter. At the order parameter 0.1, the 

PDF has a higher value, which suggests that most of the time there remains a disordered 

phase. At 0.9, the PDF also has a value which shows an ordered phase. This variation in 

the values of the order parameter suggests that phase transitions exist in the system. 
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Figure 4.25 First order phase transition at .196.0  

 

 
Figure 0.25First order phase transition at 

Figure 4.26  First order phase transition at 198.0  

 

Figures 4.24-4.26 show the first order phase transition as exhibited by the system. From 

figure 4.24, it can be clearly seen that two bigger humps are shown. These humps suggest 

that the phase transition was discontinuous (first order). In figure 4.25, the same 

behaviour was shown where there are two humps. The phase transition was of the first 

order. In figure 4.26, the phase transition was also discontinuous and had the first order. 

These results show that for smaller noise values and larger box length, there was a loss in 

the cohesion. Collective motion of the particles alternates between larger scale and  
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Smaller scale. 

 

 

Figure 4.27  Second order phase transitions at 0.2  

 

 

Higher noise and higher densities of particles were used. The results are demonstrated in 

figure 4.27. The curve shows one larger hump which suggests that phase transition was 

of the second order. The above results show that higher densities and higher noise values 

had a greater impact on making the phase transition the second order. Initially, collective 

motion of the particles remained disordered, but after some time the particles started 

aligning with each other due to the higher density of the particles. The system will show 

second order phase transition when further higher noise is applied, for example 0.2 . 

 

 

 

-2

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2

P
D

F

Order parameter

Figure 0.26Second order phase transitions at 



75 
 

4.5 Conclusions 

In this chapter, the simulation results of self-propelled particles models are presented. At 

the initial time step, 300 particles showed a completely disordered phase of the system. 

At the 20th time step and at L = 25, particles made groups which had random directions. 

This group formation was because of the smaller density of the particles. The system was 

not sufficiently dense to align all the particles with each other.  At  L = 7   and 0.2  

there was correlation in the system,  which was due to the higher densities and noise.   For 

smaller noise levels ( 1.0 ) and smaller box lengths (L = 5), particles showed highly 

ordered motion, with all particles aligned in the same direction. The self-propelled 

particles model was also tested with a large number of particles: .2000N  The 

simulation results showed similar behaviour, as in the case of particles where 300N . 

The effect of noise on the collective motion was investigated to show the different 

densities of the particles. It was observed that due to lower noise, the collective motion 

was at a larger scale and in the case of higher noise, collective motion was at a smaller 

scale. For large system sizes, fluctuations appeared.  

The effect of particle density on collective motion was also investigated. In this case, 

noise was kept constant and the particle density was varied. It was observed that when 

the particle density was increased, the order parameter obtained a larger value which 

meant that the particles had a higher collective motion.  

The effect of the interaction radius on the collective motion of self-propelled particles 

was also studied. The results showed fascinating behaviour of the particles: the order 

parameter obtained a very consistent value for higher time steps. In this case, the particles 

showed alignment in their directions.  
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The collective motion of the particles was also investigated for higher speed 1.0v  at 

different time steps. It observed that at t = 200, collective motion was not consistent 

because fluctuations appeared in the value of the order parameter. When the simulation 

was run for t = 3000, the collective motion remained consistent because the order 

parameter had a value near to 1.  

The order parameter was also plotted as a function of time for different numbers of 

particles at noise level 0.2 . It was observed that for a smaller number of particles, for 

example 56N , large variations in the value of the order parameter appeared with 

increasing time. When the number of particles was higher, for example 4000N , fewer 

fluctuations appeared in the system;  the curve showed more smoothness when it 

compared with the curve for a smaller number of particles.  

The order of phase transition was also investigated. The results showed that for lower 

noise levels, 198.0 , there existed first order phase transition. For larger noise values, 

for example 0.2 , there existed second order phase transition.          
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CHAPTER  5 
 

 

Simulations Studies using the Vicsek 3D Model  

for Self-Propelled Particles 

 

5.1 Introduction 

In this chapter the simulation results are presented for the Vicsek 3D model. The positions 

and direction of the self-propelled particles are defined by x, y and z coordinates. Particles 

move in three-dimensional spaces with a linear size of  L with periodic boundary 

conditions. Each particle has position and velocity. Initially, particles are randomly 

distributed with a constant absolute velocity. Velocities of the particles are updated 

simultaneously at every time step. A particle assumes the average direction of the motion 

of its neighbour along with some random perturbation. Average normalised velocity is 

used to characterise the collective motion of self-propelled particles and to describe the 

phase transition. The effects of various parameters are investigated including noise, 

interaction radius, speed and particle density. The order of the phase transition is also 

investigated. The collective motion of the particles is plotted as a function of the time.  In 

this study the parameters given in Table 5.1 were used in the simulations.  
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   Table 5.1  Symbols used in captions of figures 
  
                                     Table 8Table 5.1  Symbols used in captions of figures 

Symbol Description 

L  Box length 

N  Number of particles 

t  Number of time steps 

  Noise 

r  Interaction radius 

ov  Absolute velocity 

 

5.2 Results obtained from the simulation studies  

Initially, the parameter values applied were the same as they were in the Vicsek 2D model. 

After applying these parameters, the effects of the different parameters were investigated 

including speed, noise, particle density and interaction radius.  

 
Figure 0.1Figure 5.1 Random motion of the particles at 

Figure 5.1  Random motion of the particles at ,2,7  L ,0,300  tN ,1r

03.0ov  
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Figure 5.1 demonstrates the initial stage of the movement of the particles. The results 

obtained for higher noise levels and higher density of the particles is shown by the red 

arrows indicating a disordered motion in the system. The order parameter was 0.06, which 

is approximately equal to zero. The motion of the particles was highly disturbed, and there 

was a loss of cohesion in the system. When more time steps are applied, there will be 

contact between the particles because of their self-propelled nature. 

The order parameter in a three dimensional coordinate system is defined by the equation 

(3.7) in Section 3.2.2 of Chapter 3.  It is rewritten here 



N

i

iv
N 1

1
 , where iv  is the 

vector in a three dimensional coordinate system and whose magnitude is given as | iv | =  

√𝑥2 + 𝑦2 + 𝑧2 and 𝑁 is the number of particles.  

 

 
 Figure 0.2Figure 5.2 Disordered motion of the particles at  

Figure 5.2  Disordered motion of the particles at ,20,300,1.0,25  tNL 

03.0ov  

 
 

The results obtained demonstrate the movement of the particles at the 20th time steps, as 

shown in figure 5.2. At the smaller particle density, 0192.0 , and with lower noise of 

1.0  , the order parameter had a value approximately equal to zero. For weaker noise 
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particles, alignment was expected but it can be clearly seen that there is no alignment or 

cohesion in the direction of the particles due to the lower particle density. The system was 

not too dense; therefore there was a loss of cohesion. The smaller particle density was 

also a source of providing the value of the order parameter equal to zero. The value of the 

order parameter was equal to 0.07. 

 
Figure 0.3Figure 5.3 Disordered motion of the particles at 

Figure 5.3  Disordered motion of the particles at ,20,300,2,7  tNL   ,1r  

03.0ov  

 

 

 Figure 5.3 shows the results of the simulation where a higher density and greater noise 

were applied. The higher density provided the particles with greater chances of interacting 

with one another. As a result, some particles moved in the same direction and the high 

noise value disturbed the movement of the particles. As is evident from the above figure, 

some particles took a random direction. The occurrence of the two behaviours at the same 

time: randomness and ordered motion, showed an interesting property of the 3D model. 

When there was higher interaction between the particles, they were not influenced by the 

noise; when particles were not in the interaction radius range they were highly disturbed 

and the value of the order parameter obtained here was equal to 0.09.        
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  Figure 0.4Figure 5.4 Group formation by the particles at 

Figure 5.4  Group formation by the particles at ,1,20,300,1.0,5  rtNL 

03.0ov  

 

 

The impact of the higher density )4.2(   along with lower noise and interaction radius, 

is shown in figure 5.4.  The particles have formed groups, with each group having random 

directions. The results indicated that the particles showed a correlation. The interaction 

radius played an important role in the collective motion of self-propelled particles. The 

particles moved collectively due to the contact between the particles, this contact is in the 

form of interaction radius; the smaller degree of randomness can be seen which was 

produced by the lower noise. The order parameter obtained through the simulation was 

equal to 0.18. 
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Figure 0.5Figure 5.5  Initial movement of the particles at 

Figure 5.5  Initial movement of the particles at ,0,2000,2,7  tNL  ,1r

03.0ov  

 
 

Figure 5.5 shows the result for the 2000N  particles. At 0t , and in the presence of 

higher noise, the particles showed completely disordered motion; each particle had a 

different direction. The system was quite dense, having a particle density of 8.5 . The 

value of the order parameter obtained after simulation was equal to 0.02, which is 

approximately zero. This is the initial stage where the particles start moving in the general 

direction of their neighbourhood. Due to the smaller box length and higher number of 

particles, the system was very dense and the particles were very close to each other.  
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Figure 0.6Figure 5.6  Disordered motion at 

Figure 5.6  Disordered motion at ,20,03.0,2000,1.0,25  tvNL o 1r  

 
 

The impact for lower noise ( 1.0 ) and smaller particle density ( 128.0 ) is 

demonstrated in figure 5.6. It can be clearly seen that the system was in a state of disorder 

and the particles showed disordered motion, having random directions. The behaviour 

exhibited by the particles was due to the smaller particle density. Where there was smaller 

particle density, there was a loss of cohesion. This density is higher than the density given 

in figure 5.2; however, in both cases, the results were similar because the order parameter 

had a value of approximately zero. 
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Figure 0.7Figure 5.7  Loss of cohesion in the system at 

Figure 5.7  Loss of cohesion in the system at ,20,2000,2,7  tNL   ,1r  

03.0ov  

 

The impact of the higher noise and higher density of the particles is shown in figure 5.7. 

It can be clearly seen that the collective motion of the particles was highly disordered due 

to the higher noise level in the system. The value of the order parameter was equal to 0.11 

at the 20th time step, which was slightly higher than the values in figures 5.5 and 5.6. This 

rise in the value of order parameter was due to the dense system because 8.5 . Despite 

the higher density of the particles, their motion was highly affected due to the noise and 

the particles moved in different directions with a loss of cohesion and there was no 

alignment in the direction of the particles.  
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Figure 0.8Figure 5.8  Ordered motion at 

Figure 5.8  Ordered motion at ,1,20,2000,1.0,5  rtNL  03.0ov    

 
 

It can be clearly seen from figure 5.8 that the particles showed some order and group 

formation. Some of the particles in groups moved in different directions, but the majority 

of the particles took the same direction. This type of behaviour was due to the lower noise 

level and higher particle density and the particles became cohesive and tried to align with 

each other. The value of the order parameter was equal to 0.79, whereas in previous cases 

it was equal to zero. The interaction radius was equal to 1. If the value of the radius was 

higher than 1, then there would be more coordination amongst the particles. At longer 

time steps there would be greater chances for the particles to interact with each other; as 

a result, the collective motion of the particles would increase with a particle density of 

.16   
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Figure 0.9Figure 5.9 Alignment in particles at 

Figure 5.9 Alignment in particles at ,1,1.0,3001,3800,20  rtNL   0.1ov  

 

 

Figure 5.9 demonstrates a very fascinating collective behaviour of particles, where all the 

particles moved in the same direction and the system was in a state of order. There are 

three aspects involved that contribute to this: firstly, we see that there is a non-zero 

interaction radius which is 1; due to this value, the interaction of the particles with each 

other was very high. Secondly, the noise value was equal to 0.1; due to this the lower 

value particles showed little disturbance. Thirdly, the time provided for the simulation 

was very high and was equal to 3000 time steps. The time played an important role 

because at a higher value of time steps, the particles had a greater chance of coordinating 

with each other with more time to move and with the motion being more ordered. The 

particle density was equal to 475.0 and the order parameter at the 3000th time step 

was equal to 0.98. This is a very high value that showed the system in a state of order.  
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Figure 0.10Figure 5.10  Group formation by the particles 

 at 

Figure 5.10  Group formation by the particles at ,20L ,3000N  ,3000t  ,0.0  

,5.0r 0.1ov  

 

 

From figure 5.10, a group formation is clearly evident and the impact of the smaller 

interaction radius is given, which is equal to 0.5 and the noise was maintained at 0.0. Due 

to these parameter values, the particles formed groups. There was a very high alignment 

in the direction of the particles, moving in a similar direction. The value of the order 

parameter after the 3000th time step was equal to 0.99, indicating a state of order. This 

result carried a higher value of order parameter than the results as shown in the previous 

figure 5.9.  Hence, there is always higher cohesion in the system when no noise exists in 

the system.  

Group formation in the system occurred due to the large box size and the smaller 

interaction radius.  The particles have plenty of space inside the box and they interacted 

only when they were close to each other. The system was not quite dense where each 

particle gets the opportunity to interact with every other particle. The absence of noise 

also played an important role in making a group formation because noise always provides 

disturbance in the direction of the particles. The interaction radius played an important 
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role in making the group formation. If we compare this result with the result demonstrated 

in figure 5.9, where the radius was 1, we see a higher alignment in that case; hence it was 

observed that a smaller radius will lead the self-propelled particles to a group formation. 

5.2.1 Effect of speed 

The speed parameter was varied from 0.0 to 2.0, with an interval length of 0.1.  At 0.0ov  

the collective motion of the particles had a value equal to zero. There was no movement 

in the particles and the model became an equilibrium type. If 1.0ov , then the model 

becomes a self-propelled model and the order parameter has values. The parameter values 

that were used in the simulations were: box length ,20L  noise ,0.0  particles 

3000N  and interaction radius 0.1r . The following figures demonstrate the effect of 

speed at different time steps. It was observed that at a lower speed, less collective motion 

took place; whereas at a higher speed, the order parameter became greater, which showed 

that collective motion took place on a larger scale. 
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                             (a) 500t .                                                   (b) .1000t  

Figure 5.11  Collective motion as a function of speed for 500 and 1000 time steps 

Figure 0.11Figure 5.11  Collective motion as a function of speed for 500 and 1000 time steps 

 

                               (a) 2000t                                                   (b) 3000t  

Figure 5.12  Collective motion as a function of speed for 2000 and 3000 time steps 
Figure 0.12Figure 5.12  Collective motion as a function of speed for 2000 and 3000 time steps 
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In the above figures, the results are plotted for the order parameter as a function of the 

speed at different time steps, such as ,2000,1000,500t and 3000. Figure 5.11(a) shows 

that at initial values of v  such as 2.0,1.0  less collective motion occurred, with 

fluctuations at 500t . With the value of speed equal to 1.4, the system became consistent 

and there were no fluctuations in the system. In figure 5.11(b), the collective motion 

appeared to be more stable compared to in the previous case but slight fluctuations 

occurred. Figure 5.12(a) shows that the order parameter had a consistent value and the 

system was more stable than in the previous two cases. Figure 5.12(b) at 3000t  shows 

that the order parameter remained approximately equal to 1 with no fluctuations for 0ov

. Collective motion of the particles occurred on a larger scale. This shows that with a 

higher time step, particles had more time to interact with each other and develop collective 

motion. 

 

5.2.2 Effect of noise  

The collective motion of the particles was investigated by varying noise parameter  . 

The value of   was varied between 0 to 2 with an interval length of 0.1. The parameter 

values that were used in the simulations were box length ,20L  particles 3000N , 

speed 1ov  and interaction radius 0.1r . The following results were obtained at 

,2000,1000,500t and3000 . It was observed that the noise parameter had a huge impact 

on the collective motion of the particles. 
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                             (a) 500t                                                      (b) 1000t  

Figure 5.13  Collective motion as a function of noise for 500 and 1000 time steps 

 

                               (a) 2000t                                                  (b) 3000t  

Figure 5.14  Collective motion as a function of noise for 2000 and 3000 time steps 
Figure 0.13Figure 5.14  Collective motion as a function of noise for 2000 and 3000 time steps 

 

With increasing noise, there was a loss of cohesion in the system and the order parameter 

became of a smaller value. The collective motion of the particles took place on a smaller 
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scale when greater noise was applied. Figure 5.13(a) shows results for 500t . For a 

lower value of noise, the order parameter was approximately equal to 1. At noise level 

2 , the value of the order parameter was approximately equal to zero. Figure 5.14 

shows similar behaviour at 2000t  and 3000 . It was observed that with the increase in 

time, the noise continuously put the motion of the particles in a state of disorder. This can 

be clearly seen as at 2 , the value of the order parameter was approximately equal to 

zero, whereas at 0  the order parameter was approximately 1.  

5.2.3 Effect of particle densities  

The collective motion of the self-propelled particles was plotted against particle densities. 

Only the number of particles ( N ) was varied from 200 to 4000 with an interval length of 

200 and all other parameters were fixed.  The noise value was fixed to 1.0 , whereas 

the other parameter values were ,0.1r ,1ov  and 20L . The results for different time 

steps such as ,2000,1000,500t and 3000 are given in figures 5.15 and 5.16.  
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                                (a) 500t                                                    (b) 1000t  

Figure 5.15  Collective motion as a function of particle density for 500 and 1000 time 

steps 

Figure 0.14Figure 5.15  Collective motion as a function of particle density for 500 and 1000 time steps 

  

  

                              (a) 2000t .                                                   (b) 3000t  

Figure 5.16  Collective motion as a function of particle density for 2000 and 3000 time 

steps 
Figure 0.15Figure 5.16  Collective motion as a function of particle density for 2000 and 3000 time steps 
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The above figures demonstrate results for the order parameter as a function of the particle 

density. At 500t  in figure 5.15(a) it can be clearly seen that for 200N  the order 

parameter has a value equal to 0.90 whereas at 4000N  the value reached 0.98, which 

is the maximum value.  As the number of particles increased, the collective motion of the 

particles also increased. At 1000t  in figure 5.15(b), more consistency occurred in the 

value of the order parameter than in the previous case. At 2000t  and 3000t , the 

order parameter was stable, as shown in the curve in figures 5.16(a) and 5.16(b). It was 

also observed that a large number of time steps were required when there was a higher 

number of particles used in the system. In the above results, smaller perturbation was 

added, which was 1.0  and the interaction radius value was kept constant, which was 

equal to 1. 

 

5.2.4 Effect of the interaction radius 

The effect of the interaction radius on the collective motion of the self-propelled particles 

is given and the interaction radius varied from 0 to 10 with an interval length of 0.5. This 

radius is the distance at which particles contact each other. The parameter values used in 

the simulation were ,3000N  ,1ov  ,20L  and noise was kept equal to zero. The 

results are demonstrated at different time steps. 
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                               (a) 100t                                                    (b) 500t  

Figure 5.17  Collective motion as a function of interaction radius for 100 and 500 time 

steps 

Figure 0.16Figure 5.17  Collective motion as a function of interaction radius for 100 and 500 time steps 

  

                            (a) 2000t                                             (b) 3000t  

Figure 5.18  Collective motion as a function of interaction radius for a large number of 

time steps 
Figure 0.17Figure 5.18  Collective motion as a function of interaction radius for a large number of time steps 
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Figures 5.17 to 5.18 show that the order parameter had a consistent value. It can be seen 

in figure 5.17(a) that at t = 100 some fluctuations were observed, but these fluctuations 

were not large scale and the value of the order parameter was approximately equal to 1 

from  1r . In the case of  0r , the collective motion of the particles was in a disordered 

state with no interaction between the particles. In figure 5.17(b) the collective motion of 

the particles is shown at 500t , at a radius equal to zero, the particles showed similar 

behaviour as in the previous case where the system showed disordered motion. At 5.0r

, the order parameter had a value equal to 0.99 which suggested that there was greater 

alignment in the direction of the particles. Here the value of the order parameter was more 

stable than in the previous case, see figure 5.17(a). In figure 5.18(a) the results are shown 

for the time 2000t , at 0r , and the system is in a state of total disorder. For 0r , 

collective motion takes place on a larger scale. Similar behaviour was shown by the 

particles at 3000t  which is shown in figure 5.18(b). For 0r ,  the order parameter 

was approximately equal to 1. 

5.2.5 Order of phase transitions 

For this purpose, the probability density function of the order parameter was plotted. This 

technique of finding the order of phase transition is introduced in the [5]. If the curve had 

one hump, the phase transition was of the second order; if the curve had two humps then 

the phase transition was of the first order.  

Following the simulation, results were obtained after variation in the noise, density, 

radius, and the speed parameters. Figures 5.19 to 5.21 demonstrate the second order phase 

transitions and the following figures 5.22 to 5.24 demonstrate the first order phase 

transitions. 
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Figure 0.18Figure 5.19  Second order phase transitions at 

Figure 5.19  Second order phase transitions at ,20L ,1ov ,3000N ,3000t ,0.1

0.1r  

 

 

Figure 0.19Figure 5.20  Second order phase transitions at 

Figure 5.20  Second order phase transitions at ,20L ,1ov ,3000N ,3000t ,5.1

0.1r  
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Figure 0.20Figure 5.21  Second order phase transitions at 

Figure 5.21  Second order phase transitions at ,100L ,5.0ov ,3000N ,3000t

,1.0 0.1r  

 

 

The second order phase transition is demonstrated in figure 5.19. It shows one big hump, 

indicating that the phase transition was of the second order. Higher noise was considered 

at 0.1 . Figure 5.20 demonstrates the results for a slightly higher noise value of 5.1

. The curve shows one big hump, which suggests second order phase transition. The box 

size was increased from 20 to 100 and the noise was kept lower to 1.0 ; the speed 

parameter was also decreased from 1 to 0.5 in this investigation of the system and the 

simulation results are shown in figure 5.21, demonstrating a second order phase 

transition.  
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Figure 0.21Figure 5.22  First order phase transitions at 

Figure 5.22  First order phase transitions at ,100L ,1ov ,3000N ,3000t ,1.0

0.1r  

 

 

Figure 0.22Figure 5.23  First order phase transitions at 

Figure 5.23  First order phase transitions at ,100L ,1ov ,3000N ,3000t ,1.0
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Figure 5.24  First order phase transitions at ,100L ,5.1ov ,3000N ,3000t ,1.0

0.1r  

 

 

The first order phase transition is demonstrated in figures 5.22 to 5.24 and the curve has 

more than one hump; due to the nature of the curve, the system is said to have first order 

phase transition.  Figure 5.22 shows a density of 003.0  and it can be clearly seen that, 

at this smaller density of the particles, first order phase transition takes place. Here, two 

large humps occur in the curve. The interaction radius was changed from 1 to 1.5, the 

result showing first order phase transition. This result is given in figure 5.23. Moreover, 

by keeping the particle density fixed to 003.0 and the interaction radius to 1r and 

by changing only speed parameter from 1 to 1.5, the system exhibited first order phase 

transition, as shown in figure 5.24.  

5.2.6 Collective motion as a function of time 

The order parameter as a function of time was investigated. The noise level and the 

density of the particles were varied and the curve shows the evolution of collective motion 

with time. The speed of the particles was 1, time steps were 3000, and the box length was 

equal to 20.  In the first four figures the number of particles was N = 3000 and in the next 
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two figures the density of the particles was varied to investigate the effect on the collective 

motion.   

 

                                   (a) 𝜂 = 0                                                      (b) 𝜂 = 0.4 

Figure 5.25  Collective motion as a function of time at different noise values 

Figure 0.24Figure 5.25  Collective motion as a function of time at different noise values 

 

                            (a)  𝜂 = 0.8                                                    (b) 𝜂 = 1.0 

Figure 5.26  Collective motion as a function of time for strong noise values 

Figure 0.25Figure 5.26  Collective motion as a function of time for strong noise values 
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Collective behaviour is plotted as a function of time for different noise values at 𝜂 =

0.0, 0.4, 0.8, and 1.2 (figures 5.25 to 5.26). At the initial time steps, the particles had 

random direction and positions but after several time steps they began to align with each 

other.  At  𝜂 = 0, the particles showed very smoothing behaviour, see figure 5.25(a).  The 

value of the order parameter was consistent and remained approximately equal to 1, 

suggesting that there was a higher alignment in the direction of the particles. At 𝜂 = 0.4, 

the value of the order parameter decreased. The curve showed smaller fluctuations, see 

figure 5.25(b). Most of the time, the value of the order parameter remained between 0.8 

and 0.9. The noise value increased from 0.4 to 0.8. There was greater impact of this value 

on the collective motion of the particles. There were more fluctuations in the collective 

motion than in the two previous cases of noise, see figure 5.26(a). The value of the order 

parameter remained between 0.5 and 0.6 and this value suggested that collective motion 

of the particles existed but on a smaller scale. The noise was further increased to 1.0. 

There was a huge disturbance in the direction of the particles due to the stronger noise in 

the system. The impact of this noise can be seen in Figure 5.26(b). The system was in a 

complete state of disorder.           
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                             (a)  𝑁 = 200                                                 (b) 𝑁 = 4000 

Figure 5.27  Collective motion as a function of time for 200 and 4000 particles 

Figure 0.26Figure 5.27  Collective motion as a function of time for 200 and 4000 particles 

Particle density was varied in the system and the results are shown in figure 5.27. Noise 

was fixed to 0.1 while other parameter values were the same as had been used in other 

results of this section. It can be clearly seen in figure 5.27(a) that the order parameter at 

the initial time step was smaller, but after some time steps it increased. There were also 

fluctuations in the system due to the smaller number of particles. The number of particles 

was  further increased from 200 to 4000. This is a very large number and the results of 

this simulation are shown in Figure 5.27(b) with a smooth curve. The larger number of 

particles thus exhibited more collective motion than the smaller number of particles. 
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5.3 Conclusions  

The three-dimensional self-propelled particles model was studied in detail and the effects 

of the different parameters investigated. These are: speed, interaction radius, noise, and 

the density of the particles, and it was observed that at the first time step the order 

parameter obtained a value approximately equal to zero and the particles showed 

randomness. Similar behaviour was also observed in the case of higher noise when the 

density of the particles was equal to 0.87.  

 Particles had a loss of cohesion with a small particle density of 0.019.  At a lower noise 

level of 0.1 and a higher density of 2.87, the particles showed ordered motion. . For a 

larger number of particles such as 3800N , along with lower noise of  ,1.0  particles 

showed alignment in the direction of the particles. In the case of 5.0r and in the absence 

of noise, however, where there were 3000 particles simulated, the results showed group 

formation in the system which was due to the smaller radius.   

 It was observed that with an increase in speed the collective motion of the particles 

increased. The effect of the interaction radius was also investigated, showing that at ,0r  

the system was in a complete state of disorder; the increment in the value of the radius 

parameter brought the collective motion to a larger scale.  Variations in the noise 

parameter had a significant effect on the collective motion of the particles. At zero noise, 

collective motion was higher and with a gradual increase in the noise, collective motion 

started decreasing; at ,0.2 collective motion did not exist.  The order of phase 

transition was also investigated, and with noise level 0.1 , the system showed second 

order phase transition.  
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Furthermore, for a density of 003.0  along with a speed  of 5.0ov , the simulation 

results showed second order phase transition. For density  003.0 and by using 

,0.1ov  1.5 and ,0.1r 1.5, the curve showed more than one hump which suggested that 

there was first order phase transition in the system. For collective motion as a function of 

time at various noise values and particles it was observed that for zero noise and a large 

number of particles, collective motion was higher; whereas for higher noise levels, 

collective motion was decreased.    

The main difference seen in 3D compared to 2D is that in 3D there is a better view of the 

particle. 2D is flat and has only two dimensions, while 3D has depth and rotation. The 3D 

model exhibits a more realistic collective dynamic. In 3D more time steps are required 

for the particles to interact with each other; particles show less collective motion than in 

2D. In 3D, more smoothness appears in the noise graphs compared to 2D. In 3D there is 

less collective motion observed than in the 2D, which can be seen in Figures 5.1-5.4. 

At the initial time step in both cases the particles showed random motion. In the 2D for 

25L  , and N = 300, there was group formation, but in 3D for the same parameter values, 

no group formation occurred; an example can be seen in figures 4.2 and 5.2. At L = 5, 

1.0 ,  and 300N , there was perfect alignment in the particles in the 2D system, 

whereas in 3D there was alignment but it was not as high as it was in 2D. 

There was another difference which appeared in the 3D compared to 2D, that in the 3D 

second order phase, transitions existed for noise 0.1 , whereas in the case of 2D, first 

order phase transition existed in the system for 0.1 . 
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CHAPTER  6 
 

 

Simulations using new Obstacle Avoidance Model 
 

6.1 Introduction 

This chapter focuses on the model that has been developed in this study. As mentioned 

earlier, this model is termed the obstacle avoidance model (OAM). Even though the 

collective behaviour of particles has been investigated using previous models, no work 

has been carried out on investigating collective motion with the presence of a variety of 

obstacles along with various parameters. There are many examples available in the 

environment where the dynamics of particles is given in the presence of obstacles. 

Bacteria show complex collective behaviours, for example, swarming in a heterogeneous 

environment such as soil, or highly complex tissues in a gastrointestinal tract; herds of 

mammals travel long distances crossing rivers and forests [115]. 

The results obtained from the obstacle avoidance model are discussed in this chapter. 

Particles move in the presence of static obstacles. First of all, the simulation results are 

presented for various system sizes. Collective motion was plotted as a function of time. 

The effects of interaction radius, noise and speed on the collective motion of the particles 

was also investigated in both homogeneous and heterogeneous media. The order of phase 

transition was also investigated for large numbers of particles. 
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6.2 Parameter table             

The key parameters used in this model for simulation studies are summarised in Table 

6.1. These were discussed in Chapter 3 (see the equations developed for the obstacle 

avoidance model). 

Table 6.1  Parameters used in the simulation 

 
                           Table 9Table 6.1  Parameters used in the simulation 

Symbol Description 

L  Length of box 

bN  Number of particles  

oN  Number of obstacles 

t  Time step 

  Noise amplitude 

oR  Interaction radius between the particle and the 

obstacles 

r  Interaction radius between the particles 

ov  Absolute velocity 

o  Particle’s turning speed when it interacts with 

obstacle 

t  Time interval 

w  Collective motion parameter (order parameter) 
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6.3 Comparison of simulation results and manual calculation results 

The tables below describe the simulation results and manual calculation results for three 

particles and one obstacle. Initially, the positions and the velocity directions of three 

particles and one obstacle were selected. These values were then put in the obstacle 

avoidance model. For this calculation, the length of the box was 5L , the interaction 

radius between the particle and the obstacle was 8.3oR , the radius between the particles 

was 2r , the absolute velocity was 1ov , and the noise was 01.0 . The calculation 

was undertaken for two time steps. 

Table 6.2  Initial positions and velocity directions of three particles 
 

Table 10Table 6.2  Initial positions and velocity directions of three particles 

Particle serial 

No. 

                        Position Velocity direction 

x                  Y X Y 

1 0.000001 0.127402 -0.060050 0.079962 

2 3.334572 4.815278 0.052671 -0.085004 

3 1.676775 4.576636 0.028419 -0.095876 

 

Table 6.3  Initial positions and velocity directions for one obstacle 
Table 11Table 6.3  Initial positions and velocity directions for one obstacle 

 

Obstacle serial 

No. 

                        Position Velocity direction 

x                  Y X Y 

1 4.163465 1.725213 0.689950 -0.723856 
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Table 6.4  Manual calculation of three particles at first time steps 
 

Table 12Table 6.4  Manual calculation of three particles at first time steps 

                                                                             First time step 

Particle serial 

No. 

                        Position Velocity direction 

x                  Y X Y 

1 4.942032 0.208885 -0.579701 0.814829 

2 3.434565 4.816496  0.999925 0.012183 

3 1.697530 4.674459  0.207544 0.978225 

 

Table 6.5 Manual calculation of three particles at second time step 
Table 13Table 6.5 Manual calculation of three particles at second time step 

 

Second time step 

Particle serial 

No. 

                        Position Velocity direction 

x                  Y X Y 

1 4.914804 0.305107 -0.272275 0.962219 

2 3.362638 4.885970 -0.719264 0.694736 

3 1.776611 4.735665  0.7908094 0.612062 

 

Table 6.6  Program values of three particles at first time steps 
Table 14Table 6.6  Program values of three particles at first time steps 

 

                                                                             First time step 

Particle serial 

No. 

                        Position Velocity direction 

x                  Y X Y 

1 4.942032 0.208885 -0.579701 0.814829 

2 3.434565 4.816496  0.999925 0.012183 

3 1.697530 4.674459  0.207544 0.978225 
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Table 6.7  Program values of three particles at second time step 
Table 15Table 6.7  Program values of three particles at second time step 

 

Second time step 

Particle serial 

No. 

                        Position Velocity direction 

x                  Y X Y 

1 4.914804 0.305107 -0.272275 0.962219 

2 3.362638 4.885970 -0.719264 0.694736 

3 1.776611 4.735665 0.7908094 0.612062 

 

Tables 6.4-6.7 demonstrate manual calculations and the simulation results of the obstacle 

avoidance model. It was observed that there was consistency in the values of the positions 

and directions of the particles.  

Tables 6.4 and 6.6 have consistency up to 6 decimal places. These two tables are given 

for the first time step. There is also a consistency up to 6 decimal places between Tables 

6.5 and Table 6.7.  These two tables show results for the second time step. 

6.4 Simulation results 

The motion of the 
bN  self-propelled particles was in two-dimensional space with periodic 

boundary conditions of size L , where L  denotes the box length in which the simulations 

were carried out. In this model, the particles moved collectively in the presence of fixed 

obstacles. These obstacles were randomly distributed in the system. The interaction of the 

particles among themselves was same as in the Vicsek model [28] where the particle 

assumes the average direction of the neighbours in its interaction radius r . 

Following a sequence of snapshot displays, the interaction of the three particles and one 

obstacle was observed at different time steps. These snapshots were taken from the video 
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simulation of obstacle avoidance model through Opendx. Here, parameter values were 

,50L  ,3bN ,1oN  ,2oR  ,1r  ,1000,01.0  t  .1.0,5,1  tv oo   

          

             (a)  t = 348        (b) t  = 378      

           

     

                               (c) t  = 380                                          (d) t = 385 
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                                  (e) t = 404                                      (f) t  = 452 

Figure 6.1  Avoidance of particles from the obstacles is displayed in the sequence of 

snapshots from the video from (a) to (f) 
Figure 0.1Figure 6.1  Avoidance of particles from the obstacles is displayed in the sequence of snapshots from the 
video from (a) to (f) 

In Figure 6.1 from (a) to (f), the sequence of snapshots displayed the avoidance of the 

particles from the obstacle. The particles are shown in red and the obstacle is represented 

in blue. The green circle shows the interaction radius between the particles and the 

obstacle. When a particle reached the green circle, it attempted to turn away from the 

obstacle. In snapshot (a) at the 348th time step, one particle moved towards the obstacle 

and the other was going away from the obstacle; in (b) at the 378th time step the particle 

touched the interaction radius range. Subsequently, it started to move away from the 

obstacle. This avoidance can be seen in the snapshots from (c) to (f). In (c) at the 380th 

time step it started to turn away from the obstacle and in (f) at the 452th time step the 

particles were distant from the obstacle. 

Figure 6.2 displays static images for the same time steps at which snapshots were taken 

(figure 6.1). These static images were obtained through the GNUPLOT. All parameters 

were kept constant. 
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                          (a) t = 348                            (b) t = 378 

   

                             (c) t = 380         (d) t = 385 
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                           (e) t = 404                                      (f) t = 452 

Figure 6.2  Static images from (a) to (f) for the same time steps at which snapshots of 

the video were taken which are shown in figure 6.1 
Figure 0.2Figure 6.2  Static images fro 
 
m (a) to (f) for the same time steps at which snapshots of the video were taken which are shown in figure 6.1 

In figure 6.2 the particles are represented by arrows and the obstacle is represented by a 

point and it is in green. The blue circle represents the interaction radius range of the 

obstacle at which the particles interacted with the obstacles. The particles started avoiding 

the obstacle when they touched the circle. In (a) at the 348th time step, one particle moved 

towards the obstacle because at this time step the particle was not in the interaction radius 

range of the obstacle; in (b) at the 378th time step, one particle touched the circle, whereas 

the other two particles were away from the obstacle; in (c) at the 380th time step, the 

particle changed its direction and moved away from the obstacle; in (d) at the 385th time 

step, it can be clearly seen that the particle travelled in the opposite direction to the 

obstacle, which showed the avoidance of the particles from the obstacle; in (e) and (f) the 

particle showed avoidance behaviour. 
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Table 6.8  Distance between 3 particles and 1 obstacle 

 

Table 16Table 6.8  Distance between 3 particles and 1 obstacle 

Time steps    

(t) 

  t = 348 t = 378 t = 380 t = 385 t = 404 t = 452 

Distance 

between 

particles 

and 

obstacle 

19.907123 22.895081 23.095054 23.594984 25.483352 30.242180 

7.572995 41.666076 41.636233 41.555266 41.227371 41.505400 

4.997251 1.999359 2.015389 2.259693 3.756319 8.382383 

 

Table 6.8 shows the distance between the particles and the obstacle at the same time steps 

as were used for snapshots in figure 6.2. 

6.4.1 Simulation results for 10000 particles 

Simulations of 10000 particles in the presence of 26 obstacles were carried out. Only the 

noise value was varied in each result of this section, while all the other parameters were 

the same.  The density of the particles was set to 1 and the density of the obstacles was 

0.0026.  The time steps start from zero and run to 10000. The following figure shows the 

movement of the particles at the initial time step.   

The parameter values were as follows:  box length 100L , time ,10000t  particles 

,10000bN  obstacles ,26oN  interaction radius ,1r  avoidance radius ,1oR  

speed ,1ov   particle’s turning speed 1o , time interval 1.0t .  
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Figure 6.3  Random distribution of particles at initial time step ( 01.0 ) 
Figure 0.3Figure 6.3  Random distribution of particles at initial time step ( ) 

 

In the above figure 6.3, circles represent the obstacles and arrows represent the particles. 

This figure demonstrates the initial movement of the particles. The particles and the 

obstacles were randomly distributed and scattered in the box with random directions. 

During the initial stage, the particles had no contact with each other and did not have the 

ability to give a response to noise. They were in a complete state of disorder since the 

value of the order parameter obtained at the first time step was approximately equal to 

zero. The particles did not recognise the obstacles. However, as the time steps increased, 

the particles’ ability to respond to obstacles, noise and interaction with neighbouring 

particles also increased (figure 6.4)  
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Figure 0.4Figure 6.4  Collective motion of the particles in groups at the 10000th time step for 

Figure 6.4  Collective motion of the particles in groups at the 10000th time step for 
01.0  

 

 

 

                                 (a)                                                                      (b) 
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                                   (c)                                                             (d) 

Figure 6.5  Small rectangular boxes in (a) and (c) show particles and obstacles viewed 

from close range; these can be seen in (b) and (d). These are taken from Figure 6.4 
Figure 0.5Figure 6.5  Small rectangular boxes in (a) and (c) show particles and obstacles viewed from close range; 
these can be seen in (b) and (d). These are taken from Figure 6.4 

 

Initially every particle moved randomly, but after some time they started to move 

collectively. The above result is for the 10000th time-step (figure 6.4). It can be clearly 

seen that the particles were grouped together and each group moved randomly. When 

these got closer to the obstacle they turned away from the obstacle as there was a very 

small noise value )01.0(   used and as a result the particles became clusters. In these 

clusters the particles were very close to each other. The particles had a greater ability to 

come in contact with each other and align with each other due to the interaction radius. 

The particles followed the average direction of their neighbours and the value of the order 

parameter at the 10000th time step was equal to 0.63.   
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Figure 0.6Figure 6.6  Group formation in the system at noise 

Figure 6.6  Group formation in the system at noise 03.0  

 

 

The noise was increased from 0.01 to 0.03 and its effect is shown in figure 6.6. It can be 

clearly seen that bands were formed and some individual movement appeared in the 

particles. Most of the time they remained connected with each other in the form of groups. 

Band formation occurred when the particles were distant from the obstacles. The particles 

scattered when they came near to the obstacles. The value of the order parameter was 

equal to 0.45, which is smaller than in the previous case of noise. This value of the order 

parameter suggested that with increasing noise there was a decline in the value of the 

order parameter. It was also observed that at the last time step each group moved a 

different direction.  
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Figure 0.7Figure 6.7  Collective motion of the particles at noise
 

Figure 6.7  Collective motion of the particles at noise 06.0  

 

 

Noise was further increased to 0.06 and the effect is shown in figure 6.7. Due to this noise 

value, the particles exhibited a fascinating behaviour. The value of the order parameter at 

the last time step was equal to 0.82. This value of the order parameter suggested that there 

was higher collective motion than in the previous two cases. With increasing noise there 

was increasing collective motion in the system. This did not happen in the homogeneous 

systems because there was a continuous decline in the value of the order parameter with 

increasing noise. The behaviour shown by the particles was due to the random distribution 

of the obstacles. 
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Figure 0.8Figure 6.8  Collective motion of the particles at noise 

Figure 6.8  Collective motion of the particles at noise 1.0  

 

 

Figure 6.8 shows that the particles have formed a big group with some particles moving 

individually. At some initial time steps, the particles had very low collective motion and 

at a higher time their collective motion was increased. At the last time step the order 

parameter value was equal to 0.79, which is higher than the results shown in figures 6.5 

and 6.6.  This value is less than the result given in figure 6.7. From the above four results 

it was observed that at 06.0 the collective motion was higher. Hence, there was an 

optimal noise which maximised the collective motion of the self-propelled particles. 
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Figure 0.9Figure 6.9  Decline in the collective motion of the particles at noise 

Figure 6.9  Decline in the collective motion of the particles at noise 3.0  

 

 

The impact of higher noise 3.0 is demonstrated in figure 6.9 and it can be seen that 

the particles are scattered. The system showed little collective motion and little alignment 

and group formation. The order parameter value was equal to 0.2. This order parameter 

value suggested that there was less collective motion. This value was less than the 

previous values of the order parameters obtained in figures 6.4 to 6.8. Due to this noise 

value ( 3.0 ), their interaction was also distributed between the obstacles. The particles 

faced greater disturbance from the noise in the system. 
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Figure 0.10Figure 6.10  Randomness in the direction of the particles at noise 

Figure 6.10  Randomness in the direction of the particles at noise 6.0  

 

 

Figure 6.10 shows that the system is completely disordered and the self-propelled 

particles are completely scattered. This behaviour of the particles was due to the larger 

value of the noise ( 6.0 ). The particles took random directions with no group 

formation occurring in the system. The value of the order parameter was equal to 0.01, 

suggesting that there was disorder in the self-propelled particles model. The particles 

showed that the collective behaviour at each time step was approximately equal to zero. 

In this result, the order parameter has the lowest value compared to the other results 

shown in figures 6.4 to 6.9. The effect of noise was so high that the particles could not 

move or recognise the obstacles in the system. By providing further higher noise value, 

the particles showed similar behaviour of disorder and the motion of the particles froze. 
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6.4.2 Simulation results for 19600 particles  

The simulation study results are described for 19600 particles and 49 obstacles in this 

section. The box length was equal to 140, the density of the particles was equal to 1, and 

the density of the obstacles was 0.0025.  The number of the particles and obstacles were 

increased to test the model in larger system sizes using the same noise values as those in 

figures 6.4 to 6.10.  In this section the results were also compared with the results in the 

study carried out in reference [115].  

In the first case, the noise was 01.0  and it was observed that at this lower noise level 

the particles formed groups with a strong coordination in the particles, as shown in the 

figure 6.11. The parameter values were: box length 140L , time ,10000t  particles 

,19600bN  obstacles ,49oN  interaction radius ,1r avoidance radius ,1oR  speed 

,1ov  particle’s turning speed 1o , and time interval 1.0t .   

 
Figure 0.11Figure 6.11  Collective motion of the particles in groups at noise amplitude 

Figure 6.11  Collective motion of the particles in groups at noise amplitude 01.0  
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The particles exhibited a clustered phase as a result of the smaller noise value applied in 

this model. This result is shown in figure 6.11 and it can be clearly seen that most of the 

group formed by the particles occurred when they were distant from the obstacles. This 

type of behavior was also shown by the model when there were 10000 particles (figure 

6.4).  For closer obstacles, their collective motion was disturbed. The order parameter 

value at the 10000th time step was equal to 0.65, which was higher than for 10000 

particles.  

In figure 3.3 (left), Chepizhko et al. [115] used the same values for parameters and found 

that clusters were formed and the collective motion value was 0.58. In figure 6.11, the 

simulation result showed a similar behaviour of cluster formation. Furthermore, the value 

of the collective motion was 65.0w . This indicated that in the developed model 

(OAM), collective motion was higher.  

 
Figure 0.12Figure 6.12  Group for motion in the system by the particles at 

Figure 6.12  Group for motion in the system by the particles at 03.0  

 

 

Figure 6.12 shows the impact of the noise at 03.0  on the collective motion of self-

propelled particles.  There was evidently group formation in the system when the value 
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of the order parameter was equal to 0.84. It was also noticed that some smaller groups 

were formed by these particles which were greater than in the previous case where noise 

was 0.01 (figure 6.11). Comparing this result with the previous result at 01.0  

indicated a higher collective motion despite the increased noise. This result suggested 

optimality in the system. Furthermore, the order parameter was higher than that shown in 

figure 6.6 where it was equal to 0.45.  

 

Figure 0.13Figure 6.13  Collective motion of the particles at
 

Figure 6.13  Collective motion of the particles at 06.0  

 

 

The noise was further increased to 0.06 and the effect is demonstrated in figure 6.13 with 

the particles being more scattered. They showed greater disturbances in direction and 

lower alignment compared to those shown in the previous figure (6.12). However, the 

particles had more collective motion than in the result shown in figure 6.11 due to the 

value of the order parameter which was 0.66. Furthermore, the same noise value was 

applied for 10000 particles (figure 6.7). It was observed that the value of collective motion 

for 10000 particles was higher than in the case in which 19600 particles were used. This 

decline in the collective motion was due to the presence of 49 obstacles. This showed that 
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there was no consistency in the collective motion of the particles because of the random 

distribution of the obstacles. 

 
Figure 0.14Figure 6.14  Higher alignment in the direction of the particles at 

Figure 6.14  Higher alignment in the direction of the particles at 1.0  

 

 

In figure 6.14 the effect for 1.0 is demonstrated at the 10000th time step. It was 

observed from this result that the particles were scattered.  The value of the order 

parameter was equal to 0.85 which suggested that there was alignment in the direction of 

the particles. From this result it was evident that due to the increased value of noise (

1.0 ) there was a rise in the collective motion of the particles with the value of the 

order parameter being higher than in all the previous cases (figures 6.11 to 6.13). Hence, 

there existed an optimal noise value which maximised the collective motion. 
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Figure 0.15Figure 6.15  Decline in the collective motion of the particles at 
Figure 6.15  Decline in the collective motion of the particles at 3.0  

 

There was a decline in the collective motion of the self-propelled particles due to a higher 

noise value 3.0 .  Figure 6.15 shows the particles had more disturbance in their 

directions. The value of the order parameter at the 10000th time step was equal to 0.25. 

This suggested a decline in the collective motion of the particles. This was the lowest 

value of the order parameter (figures 6.11 to 6.14). Furthermore, by comparing this result 

with the result given in figure 6.9, where same value for noise was used but there were 

10000 particles, it showed that the particles have similar behaviour.   

In figure 3.3 (centre), Chepizhko et al. [115]  demonstrated the effect of the same noise 

value  ( 3.0 ) when keeping the other parameters the same as in figure 6.15.  Despite 

a higher noise level, there was very little impact on the value of the order parameter. The 

value of the order parameter was equal to 0.97, which suggested higher collective motion. 

This value was much higher, whereas in our case, the value of the order parameter was 

0.25 which was very low.  There is a known fact that there should be a decrease in the 



129 
 

collective motion of the particles when there is strong noise in the system; this happened 

in the developed model (OAM) because here, the order parameter had a lower value than 

in the previous case. 

 
 Figure 0.16Figure 6.16  Disordered motion of the particles at  

Figure 6.16  Disordered motion of the particles at 6.0  

 

 

There was a further increase in the value of the noise amplitude, 6.0 , and its impact 

on the system can be seen in figure 6.16. The value of the order parameter was equal to 

0.02 which suggested that the system was completely disordered and there was no 

collective motion.   The particles could not move properly and their directions were highly 

disturbed; they did not align in similar directions. If we compare this result with other 

results shown in figures 6.11 - 6.15, it can be observed that the system had no collective 

motion. The behaviour of the system for each time step can be seen in the figure 6.22, 

where the order parameter was plotted against each time step.  Furthermore, if the higher 

noise ( 6.0 ) was applied to the system, it would show similar behaviour.    

In figure 3.3 (right), Chepizhko et al.[115] showed results for 6.0 . The system 

exhibited band phase. The particles moved in different directions. The value of the order 
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parameter was 0.73, whereas in the developed model order the parameter had a value 

0.02. This shows that the proposed model (OAM) had less collective motion for 6.0

. In the model developed, it was observed that the particles had a loss of cohesion where 

there was higher noise ( 6.0 ).        

6.4.3 Comparison of 1000 and 10000 particles  

Figures 6.3-6.10 show simulation results for 10000 particles with 26 obstacles, whereas 

in figures 6.11-6.16, the simulation results were given for 19600 particles with 49 

obstacles. A similar kind of behaviour was observed up to a noise value of 0.1. With lower 

noise in the system, the particles formed bands and moved in a group, whereas in the case 

of higher noise they had a disordered motion. This can be seen in the cases of 01.0  

and 6.0 , where the collective motion of the particles was increased when   varied 

from 0.01 to 0.1. This behaviour suggested that there was an optimal noise level which 

maximised the collective motion.  In the case of 10000 particles, optimal noise was at 

06.0 , whereas for 19600 particles, optimal noise was at 1.0 , since the order 

parameter had a higher value at these noise values. This behaviour was due to the random 

distribution of the obstacles in the system.  At 3.0  the particles showed less collective 

motion in both cases, whereas at 6.0  the system was in a state of complete disorder. 

This suggested that a higher noise system results in a state of disorder. 
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6.4.4 Collective motion as a function of time  

The collective motion was plotted as a function of time for different noise values, such as 

,3.0,1.0,06.0,03.0,01.0  and 0.6. The simulation ranged from zero time steps to 

10000 time steps. Time played an important role in the collective motion of the self-

propelled particles. With increasing time, their coordination with each other started 

increasing and the particles reacted in a better way to the situations than when lower noise 

was applied to the system. 

The parameters values used were:  box length 140L , time ,10000t  particles 

,19600bN  obstacles ,49oN  interaction radius ,1r avoidance radius ,1oR  speed 

,1ov  particle’s turning speed 1o  and the time interval was  1.0t .   

 
 Figure 0.17Figure 6.17  Collective motion as a function of time at  

Figure 6.17  Collective motion as a function of time at 01.0  
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Figure 0.18Figure 6.18  Collective motion as a function of time at 

Figure 6.18  Collective motion as a function of time at 03.0  

 

 

 
Figure 0.19Figure 6.19  Collective motion as a function of time at 

Figure 6.19  Collective motion as a function of time at 06.0  

 

 

In figures 6.17 to 6.19, the impact of the lower noise is demonstrated. It can be seen that 

for 01.0  at the initial time the value of the order parameter was 0.009, which 

suggested that the particles were in a state of disorder since there was no collective 

motion. With increasing time, the collective motion also increased. This growth in the 
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value of collective motion continued up to t = 521 where the order parameter had a value 

of 0.20. Subsequently, there appeared to be a decline in the order parameter but it again 

rose at  t = 2855 since the order parameter value at this point was 0.55. After this time 

step, the collective motion again decreased and then increased.  This fluctuating 

behaviour continued up to the final time step (t = 10000),  at this point the order parameter 

was equal to 0.65. 

Due to the random distribution of the particles, fluctuations appeared in the system.  For 

03.0  the result was different to that in the previous case of noise (figure 6.18), since 

most of the time the collective motion of the particles remained higher. There appeared 

to be a decline in the collective motion which started from t = 7102, where the order 

parameter was 0.89 and went to t = 7711 where the order parameter was 0.49.  

Subsequently, the collective motion again grew but with smaller fluctuations. This 

fluctuating behaviour continued to the final time step of  t = 10000, with the value of the 

order parameter was 0.84, which suggested that there was alignment in the direction of 

the particles. For 06.0 , the curve also showed fluctuations (figure 6.19). With the 

increasing time there was an increase in the value of the order parameter and most of the 

time the collective motion of the particles remained higher in the system. At t = 2000, the 

order parameter had a higher value than the result in figure 6.17. Furthermore, at t = 

10000, the value of the order parameter was equal to 0.66, which was higher than the 

results for 01.0  and lower than in the case of 03.0 .   
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Figure 0.20Figure 6.20  Collective motion as a function of time at 

Figure 6.20  Collective motion as a function of time at 1.0  

 

 

Figure 6.20 plots the order parameter at each time step for 1.0 . At the initial time step 

the order parameter had the smallest value, which was equal to 0.008. Subsequently, the 

value of the order parameter increased with some fluctuations. These fluctuations were 

smaller than in the three previous noise cases (figures 6.17-6.19). Most of the time value 

of the order parameter remained higher in the system suggesting that there was higher 

alignment in the direction of the particles.  At the final time step the value of the order 

parameter was 0.85. This value was greater than in all the other cases of noise.     
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 Figure 0.21Figure 6.21  Collective motion as a function of time at  

Figure 6.21  Collective motion as a function of time at 3.0   

 

 

 
Figure 0.22Figure 6.22  Collective motion as a function of time at 

Figure 6.22  Collective motion as a function of time at 6.0  

 

  

The effect of higher noise is exhibited in figures 6.21 to 6.22. It can be clearly seen that 

for 3.0  the system showed a decline in the collective motion compared to the case in 

which 1.0 . In figure 6.21, it was shown that most of the time collective motion did 
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not rise to a higher level as in the previous cases of noise, since the value of the collective 

motion remained lower than 0. 3. At the final time step the value of the order parameter 

was equal to 0.25. This indicated that collective motion existed, but it did not exist at a 

high level in the system.  

The impact of higher noise ( 6.0 ) is demonstrated in figure 6.22. Due to this noise 

value there was a lot of disturbance in the motion of the particles. The value of the order 

parameter was approximately zero at all time steps. The effect of this noise value was so 

high that the particles could not move properly in the system. This result showed that if 

stronger noise value was used then there would be similar behaviour, and the particles 

would show a state of disorder in the system. The value of the order parameter at the final 

time step was 0.01. This value was the smallest value compared to in the previous cases 

of noise.  

6.4.5 Effect of the interaction radius 

The interaction radius is the distance at which particles contact each other. Each particle 

had the same interaction radius and the effect of the interaction radius was investigated 

for 1000bN and 10000. The main reason for doing this was to see how the particles 

behaved when they were in large numbers. Figure 6.23 shows collective motion as a 

function of the interaction radius with the obstacle density, 0o (circles) and 

0125.0o (triangles). 

The parameters used were:  box length 40L , time ,2000t obstacles ,20oN  

interaction radius ,1r avoidance radius ,1oR  speed ,1ov  particle’s turning speed 

10o , time interval 1.0t , noise 0.0 . 



137 
 

 
Figure 0.23Figure 6.23  Collective motion as a function of the interaction radius   for 

Figure 6.23  Collective motion as a function of the interaction radius r  for 1000bN  

 

 

The interaction radius was varied from 0 to 10 at an interval of 0.5. It was observed that 

the particles showed higher coordination with each other when the radius increased. The 

coordination among the particles made the system stable. For 0o , at the value of r  

equal to zero, the system was in a completely disordered state; there was no emergence 

of the collective motion of the particles in the system. Increasing the radius of the particles 

made the system more consistent because the particles moved collectively with proper 

coordination without any hindrance. From 2r , the order parameter gained a very 

consistent value which was equal to 0.99; this value is the evidence of the stable system.  

In the presence of obstacles, at ,0125.0o the collective motion was smaller than in the 

previous case of 0o . Despite the obstacle’s existence, the particles showed collective 

motion and it never dropped to zero. The fluctuation of the collective motion as a function 

of the interaction radius was due to the number of the particles used in the calculation 

being not so large. In the following results, a large number of particles was used for the 

purpose of investigating the effect on the system.  
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Figure 0.24Figure 6.24  Collective motion as function of   for 

Figure 6.24  Collective motion as function of r  for 10000bN  

 
 

In figure 6.24, the effect of the interaction radius is demonstrated for 10000 particles. For

0o , there was consistency in the collective motion of the self-propelled particles. The 

smooth curve showed that there was higher alignment in the direction of the particles, 

which exhibited similar behaviour as they showed for 0o  in figure 6.23.  At 

0125.0o , it can be observed that there was no consistency in the collective motion of 

the particles. There appeared to be fluctuations in the curve. This was due to the random 

distribution of the obstacles in the system. It can be clearly seen that, at the same obstacle 

density in the case of 1000 particles, the system showed fluctuations (see figure 6.23). So 

it can be said that if we use more particles in the system then there will be similar 

behaviour by the particles.  
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6.4.6 Effect of noise 

Noise effect was investigated for both homogeneous and heterogeneous systems. The 

order parameter (w) was plotted against noise values in the homogeneous medium where 

the obstacle density was 0o  and in the heterogeneous medium where the obstacle 

density was 0125.0o . The noise value was chosen from the range   ,  by using 

uniform probability distribution. 

The parameter values used were:  box length 40L , time ,2000t  particles 

,1000bN  obstacles ,20oN  interaction radius ,1r avoidance radius ,1oR  speed 

,1ov  particle’s turning speed 10o , and time interval 1.0t .   

 
Figure 0.25Figure 6.25  Collective motion as a function of the noise for two values of obstacle density,  and 

Figure 6.25  Collective motion as a function of the noise for two values of obstacle 

density, 0o  and 0125.0o  

 
 

Figure 6.25 shows the effect of noise on the collective motion of the self-propelled 

particles. Noise was varied from  0 to 1 with an interval length of 0.04. In the first case, 

where 0o (circles line), there appeared to be randomness in the system with the higher 
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values of the noise order parmeter w reaching zero. At lower noise values the system was 

in a state of order because the collective motion had a value near to 1. With the increasing 

noise, the system showed a disordered phase. At a noise level of 0.48, collective motion 

approached zero. 

For 0125.0o (triangle line), at noise value 0.16, the order parameter reached a 

maximum. At a starting value of noise such as 0  the collective motion had a smaller 

value than at 16.0 . Due to the random distribution of the obstacles, there existed an 

optimal noise level which maximised the collective motion of the self-propelled particles. 

Such type of behaviour did not exist in the homogeneous medium. It was also observed 

that with the increase in the noise, there was a decrease in the order parameter. The system 

was in a complete state of disorder when the noise was larger than 0.4. 

6.4.7. Effect of the speed 

In the model each particle carried a constant speed ( ov ). The speed parameter had a 

significant effect on the collective behaviour of the particles. Figure 6.26 demonstrates 

the collective motion as a function of speed for obstacle density, 0o (circles) and 

0125.0o (triangles).  

The parameter values used were: box length 40L , time ,2000t  particles ,1000bN  

obstacles ,20oN  interaction radius ,1r  avoidance radius ,1oR  noise amplitude 

,0.0  particle’s turning speed 10o , and time interval 1.0t .   
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Figure 0.26Figure 6.26  Collective motion as a function of the speed for obstacle density, for   and  (20 obstacles) 

Figure 6.26  Collective motion as a function of the speed for obstacle density, for 

0o  and 0125.0o (20 obstacles) 

 

 

Figure 6.26 shows a smooth curve for zero obstacle density 0o (circles). At the initial 

value of ov , the system showed some fluctuations; from 3ov  the collective motion had 

a consistent value which remained near to 1.  By increasing the speed, the system showed 

the long range order and particles gained more coordination quickly and as a result the 

system became stable.  There was no hindrance to the movement of the particles because 

there was no obstacle present in the system. In the absence of both noise and obstacles, 

the particles moved freely and they showed an ordered phase. In the case of  𝜌𝑜 = 0.0125,  

the order parameter showed a non-monotonic behaviour because large fluctuations 

appeared due to the obstacles being randomly distributed. The collective motion of the 

self-propelled particles was widely distributed and the system was in a completely 

disordered state.  
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As the system consists of self-propelled particles where each particle assumes the average 

direction of the neighbouring particles along with some random perturbation, due to the 

self-propelling nature of the particles, alignment in the system takes place. Increasing the 

speed of the particles does not affect the stability of the system because of the self-

propelling nature of the particles where the system can be only disturbed when higher 

noise is applied. The increasing velocity of the particles makes the system more stable by 

making the higher number of particles come closer to the interaction radius of each other. 

There is no repelling force provided to the particles; they can only be aligned and pursue 

the same direction when they are within the interaction range of each other; therefore, 

increasing velocity makes the system more stable. The particles gained coordination more 

quickly. There is also an absence of obstacles which also helps the particles in their free 

movement in the system 

Peruani and Morelli [126] studied self-propelled particles in the context of fluctuating 

speed and the direction of the particles. They studied the case in which fluctuations in the 

speed are not correlated to the direction of the particles. 

6.4.8 Order of phase transition  

In this section the order of phase transition is investigated. The probability density 

function was plotted against the order parameter ( w ) for different noise values with a 

higher number of particles used. If the curve has one hump then it is known as the second 

order phase transition; if the curve has more than one hump then it is known as the first 

order phase transition [5]. Here, the time for simulation started from 0 to 10000 particles. 

The noise parameter was varied while all other parameters were kept constant. These are 

defined as:  
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Box length 140L , time ,10000t  particles ,19600bN  obstacles ,49oN  

interaction radius ,1r avoidance radius ,1oR  speed ,1ov  particle’s turning speed 

1o , time interval 1.0t . 

 
Figure 0.27Figure 6.27 Second order phase transition at 

Figure 6.27 Second order phase transition at 01.0  

 

 

In Figure 6.27, the second order phase transition was demonstrated for 01.0 .  The 

curve showed one big hump and the lower noise created a group formation. Due to the 

obstacles there was disturbance in the direction of the particles. At 1.0w , the PDF had 

a value of 0.135, which gradually increased and it rose to a maximum of 5.0w . At this 

point, the PDF was equal to 3.551.  At a value of order parameter 0.5, the curve reached 

its highest value.  On the left side of this there is a decline in the PDF, whereas on the 

right side there is a continuous decrease in the value of the PDF. This behaviour suggests 

continuous phase transition in the system. 
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  Figure 0.28Figure 6.28  First order phase transition at 

Figure 6.28  First order phase transition at 03.0  

 

 

 

Figure 0.29Figure 6.29  First order phase transition at 

Figure 6.29  First order phase transition at 06.0  

-1

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2

P
D

F

Order parameter

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1 1.2

P
D

F

Order parameter



145 
 

 
Figure 0.30Figure 6.30  First order phase transition at 

 

Figure 6.30  First order phase transition at 1.0  

 
 

Figures 6.28-6.30 show a first order phase transition. At a noise level of ,03.0  the 

order parameter showed variations because of the random distribution of the obstacles. 

The curve exhibited two humps, which suggested its first order phase transition nature. 

From 0.1 the value of the PDF was increasing which was equal to 0.124, but at 0.3 the 

value of the PDF was equal to 0.122 which showed a decline in the value. Subsequently, 

the PDF again started increasing but at 0.7 there was again a decline. This behaviour 

showed that there was no continuity.  Similar behaviour was also observed in the case of 

06.0  and 0.1. Figure 6.29 shows that at 1.0w , the PDF had a value equal to 0.296. 

This value decreased continuously and then started increasing from 0.5 and at 0.1w  it 

dropped to zero. Figure 6.30 demonstrates the result for the noise at 1.0 , showing a 

first order phase transition.    
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Figure 0.31Figure 6.31  Second order phase transition at 

Figure 6.31  Second order phase transition at 3.0  

 

 

 

Figure 0.32Figure 6.32  Second order phase transition at 

Figure 6.32  Second order phase transition at 6.0  

 

 

The effect of higher noise on the system is demonstrated in figures 6.31-6.32. At noise 

level ,3.0 the curve showed only one big hump which suggested a second order phase 

transition. The curve had the highest value at 0.3 which was equal to 6.127.  At ,6.0

the system had also shown first order phase transition. At this value of noise, the particles 
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took random directions and they could not move properly. Due to this behaviour the value 

of the order parameter remained between 0 and 0.1.   

6.5 Conclusions 

The collective behaviour of the self-propelled particles was investigated in both 

heterogeneous and homogeneous media. Six noise amplitudes were applied to the system. 

These noise values were used for ,10000bN  and 19600bN . The particles exhibited a 

similar behaviour up to a noise value equal to 0.1. For lower noise 01.0 , the particles 

formed bands and they moved in the group. In case of higher noise 6.0 , the particles 

showed disordered motion and for 01.0  to 1.0  the collective motion of the 

particles increased despite the increase in the noise. This behaviour suggested that there 

was an optimal noise level which maximised the collective motion. In the case of 10000 

particles, optimal noise was at 06.0 , whereas in the case of 19600 particles, optimal 

noise was at 1.0 . At 3.0  the particles showed less collective motion in both cases, 

whereas at 6.0  the system was completely disordered. This suggested that with higher 

noise the system achieves a state of disorder.  Furthermore, the results were compared 

with the results of Chepizhko et al.[115]. It observed that in this project, for 01.0 , 

collective motion was higher than it had been in their work. For 3.0  and 0.6, collective 

motion was smaller than in their work. The collective motion of the particles was also 

plotted against each time step. From the results, fluctuations were observed. There was 

no consistency in the value of the order parameter. Collective motion was also plotted as 

a function with three parameters. These parameters were: interaction radius, noise and 

speed. It was shown that in the homogeneous medium, the order parameter gained a larger 

value when the values of the interaction radius and speed were increased, whereas in the 

case of noise there was a decline in the value of the order parameter. In the case of the 



148 
 

heterogeneous medium, large fluctuations took place, even in the case of the interaction 

radius of the particles. When we increased the number of particles, the system showed 

similar behaviour in which inconsistency was observed in the value of the order 

parameter. The fluctuations in the system were due to the random distributions of the 

obstacles. The order of phase transition was also investigated. For lower noise levels, 

there existed first order phase transition; for higher noise levels, there was second order 

phase transition.  

. 
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CHAPTER  7 

 

Collective Behaviour of Self-Propelled Particles  

in the Presence of Moving Obstacles 

 

7.1 Introduction 

The collective behaviour of particles is presented in the presence of moving obstacles in 

this chapter. Self-propelled particles show important non-equilibrium behaviour and 

interaction with moving obstacles that has remained the subject of academic debate [126]. 

The presence of the moving obstacles has a significant impact on the collective motion 

of the self- propelled particles.  

The obstacles were moved in a two-dimensional coordinate system having a square-

shaped box 𝐿 × 𝐿. Each particle followed the average direction of the particles present in 

its neighbourhood. There was random perturbation added to their direction. When the 

particles came close to the obstacles, their collective motion was disturbed and when the 

obstacles were further away, they again tried to move together. The simulation results are 

presented for different numbers of particles to investigate their behaviour in the presence 

of diffusive obstacles. 

The effects of noise, avoidance radius and obstacle density on the collective motion of 

the particles was investigated. The order parameter was plotted against time to see the 

movement of the particles at each time step. The order of phase transition was also 

investigated. 
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      Table 7.1 – Symbols are defined which are used in figure captions 
 

Table 17Table 7.1 – Symbols are defined which are used in figure captions 

Symbol Description 

L  Length of box 

bN  Number of particles  

oN  Number of obstacles 

t  Time step 

  Noise  

oR  Interaction radius between the particle and the obstacles (avoidance radius) 

r  Interaction radius between the particles 

ov  Speed for particles 

o  Particle’s turning speed when it interacts with obstacle 

t  Time interval  

yv  Speed for moving obstacles   

w  Order parameter for measuring collective motion. 

 

7.2 Simulation results 

First of all, the simulation results are shown for zero time steps to show their movement 

at the initial stage; later time steps extend to 10000 time steps. 

The effect of noise on the system was investigated. The position of the obstacle is defined 

by Equation 3.15 in chapter 3. The obstacle had a random direction and moved from one 

point to another point with a time interval of 0.0021.     

The parameters used in the results shown in figures 7.1 to 7.8 have the following values:  

box length 100L , particles ,10000bN  obstacles ,26oN  interaction radius ,1r
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avoidance radius ,1oR  speed ,1ov  particle’s turning speed 1o , time interval 

1.0t , speed of obstacle 1yv . The value for time t  and noise amplitude   are 

defined in the captions of the figures.  

 
Figure 0.1Figure 7.1  Randomness in the motion of the particles at initial time   for 

Figure 7.1  Randomness in the motion of the particles at initial time 0t  for 01.0  

 

  

Figure 7.1 shows the results at the first time step. The red arrows represent the particles 

and the green arrows represent the obstacles. Particles were scattered across the whole 

box with each particle having a random direction. The order parameter was approximately 

equal to zero. There were 26 obstacles introduced into the system with random motion. 

At the first time step, the particles showed their self-propelling nature. At the second time 

step, the particles adopted the average direction of their neighbours. Furthermore, they 

started their interaction with the obstacles. The particles tried to escape from the obstacles 

when they were within the interaction range of the obstacles. The noise factor also 

disturbed the collective motion. In weaker noise, the particles exhibited cohesive motion, 

whereas in stronger noise a loss of cohesion occurred.     
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Figure 0.2Figure 7.2  Cluster formation by particles in presence of moving obstacles at  for  

Figure 7.2  Cluster formation by particles in presence of moving obstacles at 4000t

for 01.0  

 

 
Figure 0.3Figure 7.3  Group formation by the particles at   for 

Figure 7.3  Group formation by the particles at 7000t  for 01.0    
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 Figure 0.4Figure 7.4  Cohesive behaviour of the particles at   for  

Figure 7.4  Cohesive behaviour of the particles at 10000t  for 01.0  

 

 

The impact of lower noise is shown in figures 7.2 to 7.4 at various time steps. It can be 

clearly seen that due to the lower value of noise 01.0 , there appeared to be cluster 

formation. Figure 7.2 demonstrates the results for 4000t , with movement of the 

particles becoming groups. Few particles moved individually due to the noise and the 

random movement, with the order parameter being 0.97. Figure 7.3 shows the results for 

7000t . There was group formation and also alignment in the direction of the particles. 

The order parameter had a value of 0.98.  Figure 7.4 exhibits the results at 10000t  

showing two large groups being formed, while other groups were smaller and contained 

fewer particles. In this result, the particles were more scattered than in the previous cases 

due to the random movement of the obstacles. The order parameter was equal to 0.98, 

suggesting that the collective motion of the particles was higher. From these results it was 

observed that the particles exhibited similar behaviour at 01.0  for higher time steps.  
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Figure 0.5Figure 7.5  Decline in the collective motion of the particles at   and 

Figure 7.5  Decline in the collective motion of the particles at 10000t  and 3.0  

 
 

The effect of the increased noise value is shown in figure 7.5 at 3.0 . Due to this noise 

value, the motion of the particles was disturbed because there was random motion. The 

collective motion of the self-propelled particles was 0.27, whereas in the results in figure 

7.4, it was equal to 0.98. In figure 7.5, the particles were more scattered than in the result 

in figure 7.4. These values suggest that noise had a huge impact on the system. The noise 

parameter had become more dominant than the other parameters; for example the 

interaction radius was introduced, which was equal to 1. Despite this value, the particles 

were unable to follow the direction of their neighbours properly, facing difficulty in 

dealing with the obstacles. This behaviour of the particles remained for all the time steps 

in the system (figure 7.12).  
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 Figure 0.6Figure 7.6  Randomness in the direction of the particles due to   at  

Figure 7.6  Randomness in the direction of the particles due to 6.0  at 10000t  

 
 

The system seemed to be in a state of disorder because at 6.0  there was a great deal 

of randomness, as shown in figure 7.6, with particles being scattered. There was no cluster 

formation and there was a loss of cohesion. Compared to the previous results, collective 

motion did not exist. This was evident from the order parameter that was equal to 0.017, 

which was a very small value. This value indicated no alignment with the particles, which 

did not follow the direction of their neighbouring particles. 
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Figure 0.7Figure 7.7  Loss of cohesion in the system at   for 

Figure 7.7  Loss of cohesion in the system at 10000t  for 0.1  

 

 

The noise level changed from 0.6 to 1.0 (figure 7.7). It can be clearly seen that there was 

major randomness and the particles were scattered across the whole box. The order 

parameter had a value of 0.013, suggesting a complete loss of cohesion and zero 

alignment with the particles. From the first time step to the 1000th step there was 

completely disordered motion. The particles did not move properly and did not make 

contact with each other due to the noise chosen from the interval ],[   . It was 

anticipated that the particles would show similar behaviour if more time steps were used. 

The model involving moving obstacles is similar to the predator model because of the 

escaping behaviour of the self-propelled particles in response to the interaction of the 

obstacles with the particles. There is alignment in the direction of the particles when there 

is no interaction between the particles and the obstacles. The obstacles have random 

motion and they cannot detect the particles; the obstacles have no contact among 

themselves. It is the duty of the particles to detect the obstacles and to avoid the obstacles. 

So here the particles can be considered to be the clever prey and the obstacles as the 
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predators which are not clever enough because they cannot see the particles. For this 

purpose we can see Lee’s model, which investigated the escaping behaviour of the prey 

flock in response to the predator’s attack [118]. In Lee’s model, the behaviour of 

individuals in a school without a predator involved regions of repulsions, orientation and 

attraction. The predator’s behaviour aligned its velocity to the centre of the prey. The 

Zheng model involved collective evasion from predation in schools of fish. This model 

also included zones, but in this case the prey behaved in a manner to confuse the predator 

as it made a strike. Individual prey components focus on the behavioural rules depending 

on the three zones: a selfish zone where prey orient to repulse the predator; a zone of 

decision to behave selfishly; and a no detection zone, where schooling motion takes place. 

In this model the predator selects its prey at random at every time step [128].  

 
Figure 0.8Figure 7.8  System in state of disorder for noise   

Figure 7.8  System in state of disorder for noise 5.1 , 10000t  

 
 

The noise level in the system was changed from 1 to 1.5 and, as can be seen from figure 

7.8, the movement of the particles at the 10000th time step was almost similar to that in 

the previous case. The system was completely disordered. The impact of 5.1 was so 
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high that the particles could not move and had no alignment; they did not interact properly 

with the obstacles. This behaviour was exhibited by the particles at each time step (figure 

7.15). It is believed that for 5.1 , particles would show a similar kind of  behaviour in 

which there is a complete loss of cohesion. This was confirmed by the order parameter 

being zero. 

7.2.1. Effect of avoidance radius 

The effect of the avoidance radius ( oR ) was investigated. The avoidance radius is a 

distance at which the particles sense the obstacles. The value of oR was varied from 0 to 

10 with an interval length of 0.5. The only variation was in the avoidance radius, while 

the rest of the parameters were kept constant. 

The parameters used in the result, as shown in figure 7.9 have following values, box 

length 20L , particles ,3000bN  obstacles ,15oN  interaction radius ,1r  speed of 

particle ,1ov  particle’s turning speed 1o , time interval 1.0t , speed of obstacle

1yv , time 3000t , and noise amplitude 0.0 . 
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Figure 0.9Figure 7.9  Collective motion as a function of the avoidance radius 

Figure 7.9  Collective motion as a function of the avoidance radius  

 

 

Figure 7.9 shows the collective motion of the self-propelled particles plotted against the 

avoidance radius. When the avoidance radius was zero, collective motion took place on 

a larger scale since the particles had no interaction with the obstacles. In essence they 

moved freely and did not contact any obstacle. When 0oR , fluctuations occurred in the 

order parameter; there was disturbance in the motion of the particles due to the obstacles. 

With the increase in the avoidance radius, there were more fluctuations in the collective 

motion and trapping of the particles occurred. 

7.2.2. Effect of obstacle density 

The effect of obstacle density was investigated with the other parameters being kept 

constant with only the number of obstacles being varied from 0 to 200 with an interval 

length of 10.  The obstacles were randomly distributed and the movement of the obstacles 

was slower than the particles. The time taken by the obstacle to move from one point to 

another was 0.0021.   
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The parameters that were used in the result shown in figure 7.10 had the following values: 

box length 20L , particles ,3000bN  interaction radius ,1r avoidance radius 

,1oR  speed of particle ,1ov  particle’s turning speed 1o , time interval 1.0t , 

speed of obstacle 1yv , time 3000t  and noise amplitude 0.0 . 

 
  Figure 0.10Figure 7.10  Collective motion as a function of the obstacle density 

Figure 7.10  Collective motion as a function of the obstacle density  

 
 

Figure 7.10 demonstrates the results of increasing the obstacle density. There was non-

monotonic behaviour when the obstacle density was greater than zero and the order 

parameter had a maximum value of zero obstacle density. This value of order was equal 

to 0.99, which suggested a higher alignment in the direction of the particles; whereas for 

130 obstacles the order parameter had a minimum value of 0.37. The next minimum value 

was at 50 obstacles where the value was 0.43. For 200 obstacles the order parameter was 

0.81. These values suggest that there were larger fluctuations. There was a rise and fall in 

the collective motion due to the continuous movement of the obstacles. 
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7.2.3 Collective motion as a function of time 

The collective motion was plotted against each time step for different noise values. Time 

started from the zero time step to the 10000th time step. The order parameter ( w ) was 

actually average normalized velocity of the particles by which the magnitude of the 

collective motion was measured.  The parameter values used in the simulation were: 

,100L ,10000bN ,26oN ,1r ,1oR  1,1.0,1,1,10000  yoo vtvt  .  

 
 Figure 0.11Figure 7.11  Collective motion as a function of time at  

Figure 7.11  Collective motion as a function of time at 01.0  

 

 

At 01.0 , the particles showed fascinating behaviour, as seen in figure 7.11. At the 

initial time, the order parameter was approximately zero. After some time steps the value 

of the order parameter was approximately equal to 1. This value remained up to the final 

time steps. At 10000t the value was 0.98.  From this behaviour it was observed that 

there was higher alignment with the particles; they had higher coordination with each 

other. This result suggested that in the presence of moving obstacles, the particles showed 

more collective motion than in the cases where fixed obstacles existed.       
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Figure 0.12Figure 7.12  Collective motion as a function of the time at 

Figure 7.12  Collective motion as a function of the time at 3.0  

 

 

The collective motion of the self-propelled particles decreased when the value of   varied 

from 0.01 to 0.03 with a greater impact on the system (figure 7.12). It was observed that 

the particles showed different behaviour than in the previous result since the system had 

shown more fluctuations. It can be clearly seen that the order parameter had a lower value 

than previously in the case of noise ( 01.0 ). The particles had a loss of cohesion and 

there was little alignment with the particles. The value of the order parameter at the final 

time step was 0.27, which was greater than the fixed obstacles where the same parameters 

were applied (figure 6.15).  
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Figure 0.13Figure 6.13  Collective motion as a function of  time at 

Figure 7.13  Collective motion as a function of  time at 6.0  

 

 

 

Figure 7.14  Collective motion as a function of  time; here 0.1  
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Figure 0.14Figure 7.15  Collective motion as a function of time at 

Figure 7.15  Collective motion as a function of time at 5.1  

 

 

A higher noise level ( 6.0 ) had a major impact on the system. It was observed that the 

particles had a loss of cohesion in the presence of moving obstacles. The order parameter 

was near zero at all the time steps (see figures 7.13 to 7.15). The effect of noise was so 

high that the particles could not move properly and could not escape from the interaction 

zone of the obstacles. There was no alignment in their direction. For 6.0 , in the case 

of the fixed obstacles, the particles showed a similar b 
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(a) Fixed obstacles at 01.0    (d) Moving obstacles at 01.0  

 

(b) Fixed obstacles at 3.0    (e) Moving obstacles at 3.0  
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(c) Fixed obstacles at 6.0    (f) Moving obstacles at 6.0  

Figure 7.16  Comparison of collective motion for fixed and moving obstacles at 

different noise values 
Figure 0.15Figure 7.16  Comparison of collective motion for fixed and moving obstacles at different noise values 
 

Collective motion as a function of time was plotted at different noise values for the fixed 

obstacles and the moving obstacles with the same parameters applied in both cases. It can 

be clearly seen from figure 7.16 that at 01.0 , for moving obstacles the curve was 

smoother than for the fixed obstacles. At 3.0 , fluctuations were observed in both 

cases. Collective motion did not exist at the larger scale. At 6.0 , the particles showed 

similar behaviour in the case of both static and moving obstacles. The system was 

completely disordered with the order parameter being approximately zero.     

The results in figures 7.16(a) and 7.16(d) have no similarity except that the same noise 

value was applied. It can be clearly seen in figure 7.16(a) that more disturbance existed 

in the system throughout the simulation time, whereas in figure 7.16(b) we see that a 

smooth curve is observed, which means there was a higher alignment in the direction of 

the particles because of the moving obstacles. The obstacles moved inside the system and 

provided less disturbance to the particles; when they came near to the particles, the 

particles started avoiding the obstacles and as a result they could not be fully trapped and 
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disturbed. It can be clearly seen that from 2000t , the curve is more smooth because the 

value of the order parameter remained approximately 1 up to the 10000th time step.  

In the static obstacles model, the system demonstrated more disturbances because it was 

only the particle that decided the avoidance force; but in the case of the moving obstacles 

model, not only the particles avoided the obstacles, but also the obstacles provided 

movement which was helpful in aligning the particles.  

Some similarity appeared in figures 7.16(b) and 7.16(e). This similarity appeared in terms 

of the value of the order parameter. In both cases, the value of the order parameter 

remained less than 0.5; it is not much higher because the value of the noise was 0.3. Due 

to this noise value, the system was not in a full state of order position. Less collective 

motion was exhibited by the particles. Figure (b) demonstrates that a higher value of order 

parameter was 0.37 at the time t = 6422, whereas the figure (d) showed the highest value 

of the order parameter was 0.46 at time t = 8697. This behaviour of similarity in the graphs 

is due to the noise. The impact of noise was so high that the particles could not move 

properly and detected obstacles.  

Figures 7.16 (c) and (f) demonstrate the impact of higher noise in the system. This noise 

value is equal to 6.0 . These two figures tell us that the system is completely in a state 

of disorder. Furthermore, the impact of the noise is so high that the particles cannot move 

properly. Particles lost the capability of avoiding from the obstacles. There is no 

alignment in the direction of the particles.  

We read the above graphs (figure 7.16 (c) and 7.16(f)) in the context of the value of the 

order parameter with respect to time. It was observed from these graphs that at each time 

step the value of the order parameter was near to zero which suggested that there was no 

collective motion exist in the system throughout the simulation time.  
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7.2.4. Order of phase transition 

The noise level was varied to investigate the order of phase transition. If the curve showed 

one hump then it was second order phase transition; if there was more than one hump 

then it was first order phase transition. The probability density function (PDF) was plotted 

against the order parameter ( w ). This technique of finding the order of phase transition 

had been undertaken previously [5].  

The parameter values used in the simulations were: ,100L ,10000bN ,26oN  ,1r

,1oR  ,10000t  ,1ov   ,1o ,1.0t  1yv .  

 

Figure 0.16Figure 7.17  First order phase transition at 

Figure 7.17  First order phase transition at 01.0  

 

 

For weaker noise, the system showed discontinuity in the collective motion of the 

particles which moved in groups. When the particles interacted with the obstacles their 

collective movement broke up, hence discontinuity took place. Figure 7.17 demonstrates 

a first order phase transition with the curve having more than one hump.  At 1.0w , the 

value of the PDF was 0.095; this value decreased to 0.026 at .3.0w  Subsequently there 

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2

P
D

F

Order parameter



169 
 

was growth in the PDF. The shape of the curve suggested that there was discontinuity in 

the system when less noise was applied to the system.    

 

Figure 7.18  Second order phase transition at 3.0  

The effect of 3.0  on the system can be seen in figure 7.18, showing a second order 

phase transition nature. This is also called a continuous phase transition. At 1.0w , the 

PDF had a value equal to 0.24 showing a continuous growth in the PDF. The value went 

to a maximum at 3.0w  and then there was a continuous decline in the PDF, reaching 

zero at 6.0w .      
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Figure 0.17Figure 7.19  Second order phase transition at 

Figure 7.19  Second order phase transition at 6.0  

 

When the noise value was changed from 0.3 to 0.6, the results showed second order phase 

transitions with the curve showing one big hump. At 1.0w , the value of the PDF was 

10.  The order parameter remained approximately equally to zero (figure 7.19). At 

6.0 , the particles had a loss of cohesion with no alignment in the direction of the 

particles. It is believed that if higher values of noise were applied, there would be 

continuous phase transitions in the system.  

7.3. Comparison between obstacle avoidance model and the physical 

system from the literature 

Carrer et al. [12] worked on the heterogeneous medium, where they investigated the 

variation in the flocking behaviour of starlings under a different predation risk; they tested 

the hypothesis that variation in aerial flocking was linked to predation risk. They 

described and quantified the flocking patterns of the starlings, approaching two urban 

roosts which had a different predation pressure. It was predicted that higher predation 

pressure in a roost would produce larger and more compact flocks, as it was thought that 
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larger flocks were less vulnerable to predation than small flocks. Observation was 

undertaken for 53 days for incoming flocks which were not under direct attack from 

predators. There were 12 flocking shapes observed, and it was seen that larger and 

compact flocks took place frequently at the roost when there was higher predation 

pressure. Furthermore, small flocks and singletons were observed at the roost when there 

was lower predation pressure. Similar patterns were witnessed when other flocks showed 

antipredator behaviour, even when flocks were far away and not in the existence of the 

predator at the focal roost. This may show that social information shared between the 

flocks affects flocking decisions. Success of predation was high at the roost with low 

predation pressure. These results propose that predation risk affects aerial flocking 

patterns. Furthermore, these flocking patterns can also be affected by the behaviour of 

other flocks in response to direct attack.    

A new model that is introduced in this thesis is termed the ‘obstacle avoidance model’ 

(OAM). This model investigates the collective behaviour of self-propelled particles in the 

presence of fixed and moving obstacles. The OAM and the study undertaken by Carrer et 

al. [120] have similarity, because work done by them was studied in the context of a 

heterogeneous medium where particles have to face obstacles. In their work, obstacles 

were considered to be the predators (peregrine falcons) which disturbed the flocking 

behaviours. They carried out a qualitative and quantitative study of the flocking patterns.     

 As in the OAM, it was observed that when particles came close to the obstacles they 

turned away from the obstacles and also split into groups, and they again aligned when 

the obstacles were not close to them. An example of this can be seen in figures 6.4, 6.6, 

and 6.7. In figure 6.7 it can be clearly seen that when the particles are near to the obstacles 

they are more disturbed, but they are more aligned when they are bit far from the 

obstacles. The collective motion observed was equal to 0.82, which suggested higher 
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alignment in the direction of the particles. Furthermore, in figure 6.11 we can see group 

formation in the presence of 49 obstacles; this number of obstacles was higher than the 

number of obstacles used in the results in figures 6.4-6.7, so this indicates that even in 

higher obstacle densities, particles exhibited collective motion because of the occurrence 

of the group formation in the system due to the obstacles. There was also flock formation 

which occurred in the presence of moving obstacles, where particles collectively moved 

in the presence of diffusive obstacles. The moving obstacle case is more close to the 

predator prey model, where obstacles can be considered to be the predators and the 

particles can be considered to be the prey. From figures 7.2 to 7.4, it can be clearly seen 

that particles form groups because of the obstacles and these groups are considered to be 

the flocks of birds which are formed in response to avoid the obstacles. When these 

groups come close to the obstacles they split and again merge when the obstacles go away 

from the particles.  The value of the order parameter in the results in figures 7.2 to 7.4 is 

approximately equal to 1, which suggests higher alignment in the direction of the 

particles. The same kind of behaviour was observed by Carrer et al. [120] in their study, 

they found that when there was higher predation pressure at the roost, larger flock 

formation took place and also two kinds of behaviour appeared: (1) splitting displays, and 

(2) agitation waves. ‘Splitting displays’ took place when the flocks under the predator 

attack split into two or more parts and these parts merged again. ‘Agitation waves’ took 

place when there were changes in the density; these waves propagated from one side of 

the flocks of thousands of birds to the other. They also found that wind intensity became 

a source affecting flocking patterns. In our model OAM, noise created the disturbance in 

the formation of groups, and the direction of the particles was totally disturbed. Noise can 

be also considered as the wind because it provides disturbance to the flocking patterns, 

so this is another similarity between the OAM and the work of Carrer et al. [120]. 
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Figure 7.20 Flock formation in starlings [120] Figure 7.21 Group formation in particles                                                                                     

 

It can be clearly seen in figure 7.20 that different types of flocks were formed. This flock 

formation took place due to the predation pressure at the roost. Figure 7.21 demonstrates 

the result of the obstacle avoidance model. This figure also shows flock formation in the 

self-propelled particles, where the particles formed groups in the presence of the moving 

obstacles. The particles had a tendency to align with each other when the obstacles were 

away from them and these particles split into smaller groups or showed individual 

movement when the obstacles were near to them.  In figure 7.20, IND shows an indefinite, 

disorganized shape; this behaviour is also shown in figure 7.21 on the top left hand side. 
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In figure 7.20 there are some other shapes demonstrated which are also found in the 

results of OAM.  

- GLO: globular shape, this shape contains 6-50 birds;  

- ML: mini flocks of two to five birds;  

- OVO: Ovoidal or eclipse-like shape, this contains hundreds to thousands of 

birds;  

- SIN: singletons;  

- SPH: spherical shape.  

Some of these shapes can be seen in figure 7.21 and others can be seen in figures 6.4 to 

6.7 and figures 7.2 to 7.4. In figure 2, a singleton movement can also be seen on the top 

right side where a few particles showed individual movement. On the bottom left side of 

figure 7.21, a large and compact flock formed. Furthermore, similar kinds of flock also 

formed on the bottom right side of figure 7.21. These results show that the same kinds of 

particles form groups in a heterogeneous environment in response to the presence of 

obstacles in their way.  
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7.4. Conclusions 

It was observed that at lower noise values the particles showed a higher collective motion. 

At higher noise values the motion of the particles was very small. The effect of the 

avoidance radius was also investigated. The results showed no consistency in the order 

parameter, which suggested that due to the movement of the obstacles there was 

disturbance in the collective motion of the particles. The obstacle density parameter was 

also varied and the results showed similar fluctuating behaviour. The curve of the 

collective motion became non-monotonic. In the presence of moving obstacles, the 

particles had first order phase transition when 01.0 .  The particles showed second 

order phase transition when 3.0 . 

Differences appeared in the results between static and moving obstacles. In the case of 

moving obstacles, the particles showed more collective motion than the results in which 

static obstacles were involved. For a noise value 01.0  and 0.3, the system showed 

more alignment in the direction of the particles in the case of the moving obstacles, 

whereas in the case of fixed obstacles, randomness was observed. For a higher noise 

value, such as 6.0  , the system exhibited behaviour of higher randomness in both 

cases (static and moving obstacles).  In the presence of moving obstacles, the particles 

exhibited first order phase transition for 01.0  , whereas in the case of static obstacles, 

it was second order phase transition. In the context of the time graph, the curve of the 

order parameter was smoother for moving obstacles than for fixed obstacles. 

Furthermore, the model for the moving obstacles is more close to nature and it can be 

extended to the predator and prey model, where particles can be considered to be the prey 

and the obstacles can be considered to be the predators. So we can say that the moving 

obstacle model is much better than the fixed obstacle model. 
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CHAPTER 8 

Conclusions and Future work 

8.1 Summary  

Collective behaviour of self-propelled particles was studied computationally in 

homogeneous and heterogeneous systems. The exciting collective behaviour of particles 

is analogous to real applications, such as in the movement of crowds, the flight of birds, 

the movement of bacteria and the migration of wildebeest. In the homogeneous medium, 

the collective behaviour of  self-propelled particles was investigated using Vicsek 2D and 

3D models.  

In homogeneous systems using the Vicsek 2D model there was good alignment in the 

directions of the particles when high particle density ( 12 ) and small noise ( 1.0 ) 

were applied. In the case of smaller density ( )48.0  and smaller noise ( 1.0 ), group 

formation was observed in the system. There was a good correlation when smaller noise 

( 1.0 ) and the particle density ( 48.0 ) were used between the model and theory. 

For larger system sizes, the particles also showed similar behaviour in terms of alignment, 

group formation and correlation. By varying the particle density at constant noise there 

was an increase in the value of the order parameter; this was attributed to higher collective 

motion with increasing particle density. There were fluctuations in the collective motion 

at a smaller time step when the speed was varied, whereas at higher time steps there was 

consistency in the collective motion. Higher collective motion was observed with 

increasing interaction between the particles; the first order phase transition appeared at 

lower noise ( 198.0 ), whereas for larger noise ( 0.2 ), a second order phase 

transition was exhibited. 
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In the Vicsek 3D model, the particles exhibited similar behaviour to that of the 2D model. 

There was alignment in the direction of the particles when smaller noise and higher 

density was used. The particles required more time steps to follow the directions of the 

neighbouring particles and cluster formation was evident in the system. With a higher 

interaction radius, speed and particle density, there was higher collective motion, which 

was approximately 1. There was a decline in the collective motion due to increasing noise 

and at higher noise the system was completely disordered. 

In heterogeneous mediums the collective motion of the self-propelled particles in the 

presence of fixed obstacles showed inconsistency due to the random distribution of the 

obstacles in the system. The particles showed a disordered phase at the initial time step, 

whereas at higher time steps, along with smaller noise, the particles formed groups. At 

higher noise ( 6.0 ), cohesion was lost and no group formation occurred. Collective 

motion was compared in homogeneous and heterogeneous systems by varying the 

interaction radius, speed and noise. A smooth curve was obtained for collective motion 

for homogeneous mediums, whereas in the case of a heterogeneous medium, non-

monotonic behaviour was observed. Collective motion of the particles was increased 

when   varied from 0.01 to 0.1; this behaviour suggested that due to the random 

distribution of obstacles there existed an optimal noise which maximised the collective 

motion.  

The particles exhibited fluctuating behaviour in the presence of moving obstacles. At 

weaker noise there was higher collective motion and at stronger noise there was smaller 

collective motion. At 01.0 , for moving obstacles the curve of the order parameter was 

smoother than for fixed obstacles. This suggested that particles behave more efficiently 

in the case of moving obstacles. 
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Work done by  Carrer et al. [120] has a similarity with the obstacle avoidance model 

(OAM) because they studied the flocking behaviour in the heterogeneous medium where 

particles have to face the obstacles. In their work, obstacles were considered to be the 

predators (peregrine falcons) which disturbed the flocking behaviour. In OAM it was 

found that when particles came near the obstacles, they turned away from the obstacles 

and also the particles split into groups and they again aligned when there were no 

obstacles in the interaction range of the particles. This split and alignment behaviour was 

also found in the study of Carrer et al. [120]. In the results of OAM, it was also found 

that large and compact group formation occurred in the presence of obstacles; similar 

behaviour was also observed in their work. In OAM there was group formation by the 

particles, even in the case of increased obstacle density, and these groups were more 

compact. In their work, the starlings formed compact flocks when there was a higher 

predation risk, and they found that wind energy could also affect the flocking patterns. In 

OAM, noise also created disturbance in the direction of the self-propelled particles.  

8.2 Findings and main contributions 

The major contribution in the field is the development of a new model which is termed  

the obstacle avoidance model, which investigates the collective behaviour of self-

propelled particles in the presence of static and moving obstacles. This model will be 

helpful in developing navigation strategies, understanding the pedestrian flow in large 

crowded places, and investigation of the motion of flocks of birds when they face 

obstacles. The model shows better collective motion than the previously developed 

model, and has a capability of extension to a three-dimensional coordinate system. This 

model possesses optimal noise value in the presence of the static obstacle. At this noise 

value, collective motion of the particles is maximum. This model is easy to simulate and 

contains fewer terms; it is closer to nature; it can be extended to the predator prey model; 
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and it can be applied to biological systems to understand their collective motion, such as 

bacteria, cells, algae and other micro-organisms. Furthermore, there is possible 

application of this model to artificial systems such as robots, swimming janus colloids, 

nanomotors, walking gains and others.  

The conclusion drawn from the simulation results of the homogeneous medium suggests 

that higher particle density along with smaller noise gives rise to alignment behaviour in 

the direction of particles, whereas in the case of smaller particle densities, group 

formation in the system will take place. Noise has a very significant impact on the system 

because smaller noise is proof of fewer disturbances to the motion of the particles, 

whereas higher noise becomes a source of the total chaos in the system because particles 

do not have the ability to move properly. The simulation time plays an important role in 

the system of self-propelled particles. A large number of time steps provides an 

opportunity to the particles to come close to each other and to make the system more 

stable by showing a higher alignment in the direction of the particles. The effect of larger 

time steps can be seen in the case of the variation in speed parameter; when time was 

smaller, such as t = 200, there was fluctuation in the system, and when time steps were 

higher, such as t = 500, consistency was observed.  

In the heterogeneous medium, the collective motion of self-propelled particles does not 

remain consistent because of the random distribution of the obstacles. Due to this 

heterogeneity there is always non-monotonic behaviour exhibited by the curve of 

collective motion. Furthermore, optimal noise always exists in the system, which 

maximises collective motion. The conclusion drawn from the comparison of static and 

moving obstacles suggests that in the case of static obstacles, collective motion is more 

disturbed than moving obstacles. Self-propelled particles behave more efficiently in the 

presence of moving obstacles. 
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8.3 How objects were met? 

A detailed literature review was undertaken for the purpose of finding the research 

problem and understanding the current state of research. 

FORTRAN programming language was used for simulation purposes. FORTRAN codes 

were developed and simulated through linux operating system. For the visualization of 

the simulation results, GNUPLOT and opendx were used.  

The collective motion of self-propelled particles was investigated in a homogeneous 

medium using 2D and 3D Vicsek models. An order parameter was used to characterise 

the collective motion of the particles. The effect of different parameters was investigated 

by varying their values. These parameters were noise, interaction radius, speed, and 

particle density. A probability density function was used to investigate the order 

parameter. 

In order to investigate the collective behaviour of self-propelled particles in the 

heterogeneous medium, obstacles were introduced into the system. This heterogeneity 

was introduced by using an obstacle interaction function. The collective behaviour of the 

particles was characterised through the order parameter. The effect of different 

parameters was investigated to check the impact of static and diffusive obstacles on the 

collective motion of the particles. These parameters were noise, speed, particle density, 

obstacle density and avoidance radius.   
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8.4 Future work 

This study opens avenues for an exciting set of studies that can be performed in the future 

by researchers study collective motion of particles. 

 The obstacle avoidance model can be extended to the three dimensional 

coordinate system providing new insights into collective behaviour.  

 The behaviour of the moving obstacles will be investigated can be extended in 3D 

revealing further details information about particle behaviour in heterogeneous 

systems. 

 In this study the collective motion of spherical particles was investigated in 

homogeneous and heterogeneous systems in both 2D and 3D. However, in reality 

the shape of the particles will have a significant impact on the collective motion. 

Hence, a study of the influence of particle shape on the collective motion will be 

highly informative and applied to greater number of real applications.  

 The current study investigated static and dynamic obstacles reveal some useful 

insights. In real systems both static and dynamic obstacles coexist in a system. 

Therefore, a study of the static and moving obstacles combined in the box will 

prove to be highly interesting and would mimic real systems more closely. It will 

no doubt be more complex and challenging, nevertheless very exciting for 

researchers in this field of endeavour.  
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Appendix 
 

Collective motion of self-propelled particles in homogeneous and 

heterogeneous medium 

 
Israr Ahmed1, Waqar Ahmed2, Dung Q. Ly*1,3 

1School of Physical Sciences and Computing, University of Central Lancashire, 

Preston, United Kingdom. 
2School of Medicine and Dentistry, University of Central Lancashire, Preston, 
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3School of Engineering and Design, Brunel University London, London, United 

Kingdom.  
 
Abstract: The concept of self-propelled particles is used to study the collective motion of 

different organisms such as flocking of birds, swimming of schools of fish or migrating 

of bacteria. The collective motion of self-propelled particles is investigated in the 

presence of obstacles and without obstacles. A comparison of the effects of interaction 

radius, speed and noise on the collective motion of self-propelled particles is conducted. 

It is found that in the presence of obstacles, mean square displacement of the particles 

shows large fluctuation, whereas without obstacles fluctuation is less. It is also shown 

that in the presence of the obstacles, an optimal noise, which maximises the collective 

motion of the particles, exists. 

Key words: Self-propelled particles, Collective motion, Obstacles. 
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1. Introduction 

 
Movements in dynamic and complex environments are an integral part of the daily life activities; 

this includes walking in crowded spaces, playing sports, etc. Many of these tasks that human 

performs in such environments involve interactions with stationary or moving obstacles. There is 

always a need to coordinate the information with other individuals to deal with the obstacles [1]. 

This movement is also applied to other living things such as flocks of birds which are facing 

obstacles while moving collectively. Understanding the detection and avoidance from the 

obstacles when there is noise in the system is of extreme importance. Many works have focused 

on interaction of individuals with obstacles from different perspectives. For example, in computer 

science field lots of works have been carried out where robots interact with obstacles [2-4]. 

However there are limited works done where natural systems involving with obstacles. There are 

many examples available in the environment where dynamics of the particles is given in the 

presence of obstacles. Bacteria show complex collective behaviours, for example swarming in 

heterogeneous environment such as soil or highly complex tissues in a gastrointestinal tract. Herds 

of mammal travel long distances crossing rivers and forests [5]. Despite these facts, so far there 

have been little works both on experimental and theoretical levels about the impacts of 

heterogeneous medium on the collective motion [6]. Croft et al [7] have simulated particle’s 

avoidance behaviour. In their work individual based modelling approach was investigated which 

defined group interactions with obstacles. Moreover effect was measured on group size when 

there is probability of single particle colliding with fixed obstacle. They proved that when huge 

model suppositions and large values of parameters occur, social interactions have high chances 

of colliding with obstacles. Furthermore, the motion created due to social interactions can have 

important effects on the metrics used to inform management and policy decisions. Mecholsky et 

al [8] considered a continuum model which involved flocks. Linearized interaction of flocks to 

an obstacle was studied.  Flock behaviour after interacting with obstacles was shown by density 

disturbances. This disturbance is like Mach cones, in which the order is expressed by anistropic 

spread of waves of flocking. Chepizkho et al [9] studied the movement of self-propelled particles 

in the heterogeneous environment where obstacles were randomly placed in the two dimensional 

spaces. In their model particles avoid the obstacles, and particle’s avoidance was determined by 

the turning speed,  . The mean square displacement of individuals gives two regimes as a 

function of the obstacle density o  and  . In the first regime it was observed that when there is a 

smaller value of  , movement  of particles is diffusive and defined by diffusion coefficient which 

shows a minimum at an intermediate densities of obstacles o . In the second regime it was 

observed that for high obstacle densities o and for large values of  , spontaneous trapping of 

particles takes place. They also showed that the existence of obstacles, which could be static or 

mobile, can change the dynamics of collective motion. Furthermore optimal noise amplitude 
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maximizes the collective motion while in a homogeneous medium this type of optimal does not 

exist. When a small obstacles density exists in the system collective motion shows a unique 

critical point, below which the system shows long range order, similar in homogeneous media. 

When there exists a high obstacle density in the system, two critical points appear which make 

the system disordered at both low and large noise amplitudes and show only quasi long range 

order in between these critical points [5].  

In this work we present the computer simulation of the self-propelled particles in heterogeneous 

and homogeneous medium. We study the collective motion of self-propelled particles in the 

presence of obstacles and without obstacles. We compare the effects of the interaction radius, 

speed and noise on the collective motion of self-propelled particles with and without obstacles. 

We have found that in the presence of obstacles, mean square displacement of the particle show 

large fluctuations in the system, whereas without obstacle density mean square displacement of 

the particle shows very less fluctuations. It is also shown that in the presence of the obstacles, 

optimal noise exists which maximises the collective motion of the particles. Optimal noise that 

increases the collective motion is helpful in developing and understanding migration and 

navigation strategies in moveable or non-moveable heterogeneous media, which help to 

understand evolution and adaptation of stochastic components in natural systems which show 

collective motion.  

2. Methodology 

A continuum time and two dimensional model is considered for bN  self-propelled particles 

(SPPs).   This model investigates the effects of different parameters on collective motion of the 

self-propelled particles. The motion of bN  self-propelled particles confined in two-dimensional 

box L with a periodic boundary applied.  Interaction of the particles among themselves is treated 

the same way as in Vicsek et al [10] where particle assumes the average direction of its neighbours 

that are in its interaction radius, r . Spatial heterogeneity is given by the presence of the oN  fixed 

obstacles. The new element in the equation of motion of self-propelled particles is introduced by 

the obstacle avoidance interaction as it is given in Ref. [5]. Obstacles are randomly distributed in 

the system. Noise parameter is also introduced in the system, which is randomly given and has 

values between   , . At the initial time-step each particle has a random position and a random 

direction. Particles update their positions as follows:    

                       ,)()()( ttttt iii  vxx                                         (1) 

and direction of the particle is given by the following equation: 

                         )()()( iri httt x .                            (2) 
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In equation 1, ix  represents the position of ith particle, )(tiv  is the velocity of the particle with 

absolute velocity ov . t  is the time interval that particles take to move from one point to another. 

In equation 2, i  represents the direction of the particle and   is the random fluctuation in the 

system, which is created by noise and has value in the range of   , .   is the noise amplitude. 

r
t)(  represents the average direction of the particles which is within the interaction radius r , 

where r  is the radius of interaction between the self-propelled particles. 
r

t)( is given in the 

following equation: 

      
rrr

t  cossinarctan  .                                            (3) 

 The function )( ih x  in equation 2 defines the interaction of particle with obstacles. Through this 

function particles avoid the obstacles that are located in its neighbourhood: 
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Here ix is the position of ith particle, and ky is the position of kth obstacle. oR  is known as the 

interaction radius between particle and obstacle. )( ion x  represents the number of the obstacles 

located at the distance less than oR  from ix . In the above equation two conditions are given. 

Firstly, if  )( ion x  is greater than zero, )( ih x  will show interaction with obstacles, secondly, if 

)( ion x  is equal to zero, )( ih x  will be zero. In equation 4, the term oki R || yx , means that if 

the distance between the obstacle and particle is less than the interaction radius oR , then the 

summation of sine     iik  ,sin  will take place. Number of sine values that will be summed, 

depends on the number of obstacles )( ion x  that are located in the interaction radius range of the 

particle ix . The term ik ,  shows the angle in polar coordinates of the vector ki yx  . Also the 

parameter o which is for interaction purpose, known as the particle’s turning speed when it 

interacts with obstacle. 
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2.1. Order parameter 

The order parameter, ,w  is used to characterise the macroscopic collective movement of the 

particles [5].             
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Here  represents temporal average. This term is represented by a complex number. This 

complex number is a particle whose direction is determined after interacting with obstacles. In 

this equation modulus of complex numbers is determined and then divided by total number of 

particles. Equation 5 determines the average collective motion of the particles.    

The obstacle density
o can be interpreted by using the following equation: 

                                  ,/ 2LNoo                                                                                 (6)  

here oN  is the number of obstacles, and L is the box length. 
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Symbol Description 

L  Length of box 

bN  Number of particles  

oN  Number of obstacles 

t  Time step 

  Noise amplitude 

oR  Interaction radius between the particle and the obstacles 

r  Interaction radius between the particles 

ov  Absolute velocity 

o  Particle’s turning speed when it interact with obstacle 

t  Time interval 

w  Collective motion parameter 

                           

Table 1: Parameters used in the simulation. 

3. Results and Discussion 

 Simulation is performed in a square box of length L. We first consider the case in which noise, 

01.0 . At initial time steps particles move randomly with constant speed. After that each 

particle adopts an average direction of the particles which is in its neighbourhood. Particles 

interact with the obstacles and they turn away from the obstacles when they come closer to 

obstacle. It was observed that at lower noise particles make groups. There is strong coordination 

in the particles as shown in the Figure 1. Strong coordination means particles have higher 

interaction with each other. Phase exhibited by the system is known as the clustered phase. At the 

same noise value, clustered phase was also observed in other work [5]. If we compare the order 

parameter in our model and in Ref [5] we found that our model exhibits more collective motion.   
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Figure 1: Collective motion of the particles in groups. Box length 100L , noise 

amplitude ,01.0  time ,10000t  particles ,10000bN  obstacles ,26oN  

interaction radius ,1r  avoidance radius ,1oR  speed ,1ov  particle’s turning 

speed 1o , time interval 1.0t . The crops of areas “a” and “b” are shown in the 

Figure 2. 

                                                                                                                                                                    

Figure 2: Close-up from areas “a” and “b” in the Figure 1. 
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In the Figure 1 green circles show obstacles, whereas red arrows represent particles.  Collective 

motion exhibited by the particles is calculated to be 0.65. This figure shows the result of the 

movement of the particles at 10000th time step. In the system dense clusters are formed. We can 

see that when particles move closer to the obstacles they try to avoid from the obstacle. At initial 

time steps particles have random motion, after some time-steps they start developing coordination 

with each other. When particles collide or near to the obstacles they scatter and their collective 

motion is disturbed. After the scattering they again try to move together. Interaction between the 

particles follows the rule of interaction as shown in the Vicsek model [10] where velocities of the 

particles are summed when they are in the interaction radius. 

 

Figure 3: Increasing noise from 0.01 to 0.3. ,100L

,26,10000,10000  ob NNt .1.0,1,1,1,1  tvRr ooo 
 

The Figure 3 demonstrates the effect of noise when it is increased from 0.01 to 0.3. It is observed 

that there appears a slight randomness in the orientation.  It can be clearly seen that particles have 

formed some smaller clusters which are the result of the increase in the noise. Here each cluster 

has different direction and the collective motion of the particles is decreased, which shows that 

there is an effect of the noise on the system. This can be easily seen by comparing the Figures 1 

and 3. It was obtained that the value of average velocity is w = 0.65 for 01.0  while it is w = 

0.22 for 3.0 . 
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Figure 4: Segregation of the particles. ,10000,100,6.0  tL  ,1r  

,10000bN  .1.0,1,1,1,26  tvRN oooo 
 

By increasing the noise to 0.6, Figure 4, it shows that particles are scattered at larger scale. There 

are more cluster forming. By applying higher noise the system shows an interesting behaviour as 

the collective motion reaches to w = 0.77, which is higher than the result of the previous two 

noise values. This higher value is attributed to the random distribution of the obstacles.  This is 

contradictory to the fact when particles move in the homogeneous medium where increasing in 

noise results in declining in collective motion of the particles [6]. It is in good agreement with the 

results obtained in Ref. [5]. 

3.1. Effect of parameters 

Now we show results that demonstrate the effects of different parameters on the collective motion. 

These parameters represent the interaction radius r , speed of the particles ov  and noise  .   These 

parameters are summarised as in the Table 2.  
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Parameter Value 

L  40 

bN  1000 

oN  20 

t  2000 

  0  

oR  1 

r  1 

ov  1 

o  10 

t  0.1 

 

Table 2: Parameters values used in the calculation. 

3.1.1. Effect of the Interaction radius 

The interaction radius is the distance at which particles contact with each other. Each particle in 

the system has the same interaction radius. The larger value of the interaction radius encourages 

the collective motion in the system. In Figure 5 the collective motion as a function of interaction 

radius is plotted for the system where obstacle density 0o (circles) and 0125.0o

(triangles). 
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Figure 5: Collective motion as a function of the interaction radius r. 

 The interaction radius is varied from 0 to 10 with an interval of 0.5. It is observed that particles 

show higher coordination with each other when radius increases. This coordination among 

particles makes the system stable. For 0o , it can be clearly seen that at the value of r  equal 

to zero, the system is completely in disordered state, there is no emergence of the collective 

motion of the particles in the system. Increasing the radius of the particles makes the system more 

stable, because particles move collectively with proper coordination without any hindrance. From

2r , order parameter has gained a very consistent value which is equal to 0.99. This value is 

the evidence of the stable system.  When there is a presence of obstacles in the system, at 

,0125.0o the collective motion is smaller than the previous case of 0o . Despite of the 

obstacle’s existence, particles show collective motion and it never goes to zero. Fluctuation of the 

collective motion as a function of interaction radius is due to the number of the particles used in 

the calculation is not so large. We believe that if we increase the number of particles in the system, 

fluctuation will occur at smaller scale.   

3.1.2. Effect of the speed 

In the model each particle carries a constant speed. Speed parameter has a significant effect on 

the collective behaviour of the particles. The Figure 6 demonstrates the collective motion as a 

function of speed for obstacle density 0o (circles) and 0125.0o (triangles).  
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Figure 6: Collective motion as a function of the speed for obstacle density, for 

0o and 0125.0o (20 obstacles). 

In the Figure 6 for 0o (circles) line which demonstrates the results for zero obstacle density. 

With the higher value of the speed parameter particles move faster.  At initial values of ov , system 

shows some fluctuations, from 3ov  collective motion has consistent value which remains near 

to 1. It can be clearly seen that by increasing the speed parameter the system show long range 

order, particles gain more coordination quickly in time, as a result the system becomes stable.  

There is no any hindrance in the movement of the particles because there is no any obstacle 

present in the system. In the absence of noise and obstacles, particles move freely and they show 

ordered phase. In the case of 𝜌𝑜 = 0.0125  order parameter, w, shows a non-monotonic behaviour 

because there appears large fluctuations in the system. This happens because obstacles are 

randomly distributed in the system. Collective motion of the self-propelled particles is hugely 

distributed and the system is completely in a disordered state.  

3.1.3. Effect of noise 

Noise effect is investigated for both homogeneous and heterogeneous systems. Order parameter, 

w is plotted against noise values in the homogeneous medium where obstacle density is 0o  

and in heterogeneous medium where obstacle density is 0125.0o . Noise value is chosen from 

the range   , , by using uniform probability distribution. 
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Figure 7: Collective motion as a function of the noise for two values of obstacle 

density, 0o and 0125.0o . 

The Figure 7 demonstrates the effect of the noise on the collective motion of the self-propelled 

particels. Noise amplitude has been varied from the 0 to 1 with an interval length of 0.04. In the 

first case where 0o (circles line) we see there appears huge randomness in the system. With 

higher values of the noise order parmeter w reaches to zero. From the above result we see that at 

lower nosie values system is in a state of order because collective motion has value near to 1. 

When the noise is increasing, the system starts to show disordered phase. It can be clearly seen 

that when the noise is from 0.48,  system shows collective motion approaches to zero. 

In the case of 0125.0o (triangle line), it can be clearly seen that at the noise value 0.16, order 

parameter w has reached to the maximum. At the starting value of the noise such as 0   

collective motion has smaller value than at 16.0 . Due to the random distribution of the 

obstacles, there exists an optimal noise which maximises the collective motion of the self-

propelled particles. Such type of behaviour does not exist in the homogeneous medium. It is also 

observed that with the increase of the noise, there is decrease in order parameter. System is 

completely in the state of disorder when noise is larger than 0.4.  
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4. Conclusions  

Collective behaviour of self-propelled particles was investigated for both heterogeneous 

and homogeneous medium. We investigated the effects of the interaction radius, speed 

and noise on the collective motion of the self-propelled particles. It was shown that in the 

homogeneous medium the order parameter gains larger values when the interaction radius 

and speed are increased, whereas in the case of noise we found that noise has caused 

fluctuations in the order parameter. In the case of heterogeneous medium large 

fluctuations take place when the interaction radius of the particles is small. By increasing 

the interaction radius the fluctuation is getting smaller. Furthermore, in heterogeneous 

medium, the variation of noise causes the collective motion to behave in a non-monotonic 

manner. This is because of the randomly distribution of the obstacles in the system. It is 

observed that the collective motion is always less in the case of the presence of obstacles. 

It is also observed that there exists an optimal noise which maximises the collective 

motion of the self-propelled particles. At noise = 0.16, the order parameter has reached 

its maximum value.  
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