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Abstract

The research aims to develop means to increase the accuracy of radiation
therapy treatment. Radiation therapy is planned based on radiation ther-
apy planning computed tomography (RTPCT) and often validated using
cone beam computed tomography (CBCT) images. The RTPCT image of a
patient is used to outline a tumour that is to be irradiated. Before each radi-
ation session the body is positioned on the treatment machine to match the
geometry of the delivered beams with the planned treatment. The CBCT
images are taken just before or after the treatment session to check if the
patient position and internal anatomy is in agreement with the treatment
plan. Registration of current CBCT to reference RTPCT image is required
to visualise the effect of irradiation. Such registration allows effective irra-
diation according to the planned treatment. A particular goal is to develop
algorithms for non-rigid image registration.

Intensity based image registration has been investigated because it is
automatic and works without human expert interaction. Such an algorithm
optimises an intensity based similarity measure between images to be reg-
istered with respect to spatial transformation. The similarity measure is a
cost function which reaches maximum when images are aligned. This cost
function is based on the average difference between intensity values of corre-
sponding pixels. Contrary to a landmark based similarity measure, it does
not depend on the choice of characteristic points. If images to be regis-
tered are very similar in terms of intensity values and differ only in spatial
transformation, then sum of squared differences (SSD) can be chosen as a
similarity measure. Choice of similarity measure is difficult in the case of
multi-modal images. There are multi-modal similarity measures but they
work properly only for some specific classes of images. To avoid using multi-
modal similarity measures, the author decided to include intensity correction
in the registration algorithm. The algorithm optimises SSD with respect to
spatial transformation and intensity correction simultaneously. As a result
the problem was shifted from choice of similarity measure to choice of model
for intensity correction. In fact each multi-modal similarity measure con-
tains implicit estimation of intensity mapping. However, the model of the
mapping is fixed and may not fit to the class of images to be registered.

An image registration algorithm with intensity correction was developed.
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The algorithm utilises common Levenberg-Marquardt optimisation. The au-
thor has chosen two dimensional affine and one dimensional B-Spline model
as spatial transformation, as well as intensity correction models specific to
CT images. They are global non-linear mapping and smooth local affine
correction. The algorithm was tested experimentally using a wide class of
simulated images and a limited class of medical images. Affine registra-
tion works properly even for deformations which exceed typical deformation
encountered in medical practice. B-Spline registration works properly for
small deformations and requires further development to increase capture
range. Although there is a limitation in lack of discontinuity in intensity
correction models, it can be overcome by implementing segmentation based
intensity correction.

The idea of separating intensity correction mapping from similarity mea-
sure is shown to have advantages. Choosing intensity correction model can
make the registration algorithm specific to the image class of interest.
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Notations

CT,RTPCT,CBCT - computed tomography image, radiotherapy planning
computed tomography image, cone beam computed tomography image

MRI - magnetic resonance image

(x, y) - coordinates of pixel in 2-d image

L - 2-d grid of pixel positions of image L = {1, 2, . . . , w} × {1, 2, . . . , h}
where w and h are width and height of image

Lc - 2-d continuous region Lc = [1, w]× [1, h] containing pixel grid L

u - reference image, the image which is the target for registration

v - source image, the image which during registration is to be transformed
to match reference image u

Iv - interpolation function which agree with image v at grid points and
extends v to whole Lc

Id - identity function

bxc, dxe , [x]- the biggest integer which is ≤ x, the smallest integer which
is ≥ x, the closest integer value to x

T (x, y) = (T x(x, y), T y(x, y)) = (x′, y′) - spatial transformation T : R2 →
R2

vT , T ◦ v - superposition v(T (x, y)) of spatial transformation T and image
v

TP - spatial transformation parametrised by vector p

TA, TB - affine spatial transformation, B-Spline spatial transformation
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u - this subscript denotes simulated spatial tranformation (e.g. Tu) or in-
tensity distortion (e.g. Fu) in order to transform source image v to
reference image u for experimental purposes

v - spatial tranformation (e.g. Tv) or intensity distortion (e.g. Fv) which
is estimated during registration to recover simulated one (simulated is
denoted by index u)

F - non-linear intensity distortion

A(x, y) - 2-d additive inhomogeneity distortion

A(x) - multiplicative part of 1-d affine inhomogeneity distortion

B(x) - additive part of 1-d affine inhomogeneity distortion

bl(xh − i) - value of i− th B-Spline basis function at x, the basis function is
of l − th degree and has h scaling factor

ci - value of i− th B-Spline control point

TB(x) = bT (x) · c - inner product form of B-Spline function

p = [p1, p2, . . . , pn]T - vector of parameters

f(p) - usually denotes the cost function in the least-square optimisation

r(p) = [r1(p), r2(p), . . . , rm(p)]T - residual vector in the least-square cost
function where m = |L| is the number of pixels in image

∇f(x, y) =
[
∂f(x,y)
∂x , ∂f(x,y)∂x

]T
- gradient of f(x, y) with respect to (x, y)

∇pf(p) =
[
∂f(p)
∂p1

, ∂f(p)∂p2
, . . . , ∂f(p)∂pn

]T
- gradient of f(p) with respect to p

Jr(p) = J(p) =
[
∂ri(p)
∂pj

]
i=1,...,m, j=1,...,n

- Jacobian of r(p) with respect to
p

SSD,NCC,CR,MI,NMI - similarity measures: sum of square differences,
normalised cross-correlation coeficient, correlation ratio, mutual infor-
mation, normalised mutual information

DSSD(u, v) - sum of square differences between images u and v which is
used as a cost function for image registration
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u, U - image u is treated as an instance of the random variable U

p(u), p(u, v), p(v|u) - probability mass function, joint probability mass func-
tion, conditional probability mass function of image intensity

E(X), V ar(X), H(X) - expected value, variance and entropy of random
variable X

h(u), hu(ui) - intensity histogram of image u (ui is i-th intensity level of u)

H(u), Hu(ui) - cumulative histogram of image u (integral of h(u))

h(u, v) - joint intensity histogram (JIH) of two images u and v

f(u) - non-linear intesity mapping of image u

f(u, θ) - non-linear intensity mapping of image u parametrised by vector θ

fε(u), ε = 1, 2 - non-linear intensity mapping of image u parameterised by
vector θ (when ε = 1) or vector ψ (when ε = 2)

N(µ, σ) - Normal distribution with µ mean and σ standard deviation

Gσ(·) - Gaussian function with σ standard deviation and 0 mean
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Chapter 1

Introduction

1.1 Background

A typical radiotherapy treatment is carried out based on one radiation ther-
apy planning computed tomography (RTPCT) [1] which provides a high
quality 3-d image of the patient. Usually this data is captured for each
patient before the treatment starts. The RTPCT image of the patient is
used to outline the tumour that is to be irradiated. The radiation therapy
treatment is planned on the basis of the outlined image, whereby the patient
body is exposed to radiation according to a prescribed plan that can consist
of many radiation sessions and can last for a few days. Before each radiation
session the body is positioned in the treatment machine using point source
markers. However, the positioning itself is not repeatable and also internal
organs can deform during the treatment (for example bladder can have dif-
ferent volume each day). Therefore the radiation can be incorrect and can
accidentally damage healthy tissue instead of irradiating the tumour.

To improve the accuracy of radiotherapy, additional computed tomogra-
phy (CT) [1] images can be taken before or after radiation to give the most
up-to-date information about current body shape and position. Contrary to
RTPCT only cone beam computed tomography (CBCT) [1] capturing de-
vice can be installed on a treatment machine. Having radiation treatment
and image capture units in the same machine, CBCT images can be taken
directly before or after each radiation, thereby allowing interleave of imaging
and radiation. Although RTPCT and CBCT images are of the same modal-
ity, they have different resolution, different noise ingredient, and different
intensity mapping. They are also spatially deformed. To compare them
efficiently they should be put in spatial correspondence so that the same
positions on both images correspond to the same locations of the physical
object. The process of aligning two images of the same object is called image
registration.
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1.2 Image registration

In biomedical domain there is a frequent need to compare images for di-
agnosis and analysis purposes. However, before comparison they should be
registered. The images usually represent the same object (or objects of the
same type) taken at different times, or by different devices. Object variabil-
ity in time and different imaging devices introduce geometrical deformations
that make comparison difficult. If in addition images are of different modal-
ity (they have different intensity mappings), then comparison is even more
difficult. Image registration is a process of finding geometrical transforma-
tion that maps points from one image to points of another image so that
the same features of the object match on both images.

Registration is frequently used to compare medical images of human in-
ternal body parts. Different acquisition techniques allow different physical
properties to be measured. While computed tomography (CT) and mag-
netic resonance imaging (MRI) [3] are complementary techniques designed
to see internal anatomy, positron emission tomography (PET) [3] shows the
activity of internal structures.

1.2.1 Single and multi-modal images

Capturing devices can use different ways of imaging techniques like different
frequency bands of electromagnetic waves (X-ray and optical cameras). In
that case they produce images that have significantly different intensity map-
pings. Usually they provide complementary information about an object.
Images taken by different imaging techniques and which significantly differ
in intensity mapping are called multi-modal images. Figure 1.1 shows two
colour components of the same RGB image which are multi-modal. They
are spatially identical but differ in intensity mapping. Both of them provide
complementary information about objects.

Images taken by the same imaging technique are called single-modal
images. Intensity mappings of such images are approximately the same.
Figure 1.2 shows two slices of a skull taken by RTPCT and CBCT imaging
devices, respectively. They are single-modal. They differ in resolution, noise
ingredient and are slightly deformed. For these two images the difference
between their intensity mappings is minor.

1.2.2 Examples of image registration

Considering two images of the same object, taken by different capturing
devices or at different times, although both images should be identical, they
usually differ. The object can be spatially deformed due to object variation
in time, position change of the image capturing device or difference in the
capturing devices used. Apart from spatial deformation they can differ in
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(a) green component (b) red component

Figure 1.1: Example of multi-modal images - two colour components of the
same RGB image

intensity mapping.
In practice there is often need to compare different images of the same

object. Apart from medical images, satelite images of the same region form
a good example. They can be taken by different imaging techniques and
at different times. To compare them and catch significant changes, they
have to be overlapped and aligned to match the geometrical position of real
objects. This requires estimation of unknown geometrical transformation
and applying this transformation to one of them.

Figure 1.3 shows an example of rigid images registration, based on ge-
ometrical transformation, where images (a) and (b) represent two satelite
images of the same region taken at different times. After image registration
with affine geometrical transformation, it is seen from image (c) that salient
features like roads and buildings in the two images match each other.

Figure 1.4 shows another example of deformable image registration based
on spatial transformation, where image (a) and image (b) differ only in spa-
tial deformation. They are identical as far as intensity mapping is concerned.
In this case registration consists of identifying unknown spatial transforma-
tion that can be applied to image (a) to make it same as image (b).

Registration of multi-modal images contains implicit estimation of inten-
sity mapping. This makes registration process more difficult and requires
statistical analysis of coincidence between intensities of the same pixel po-
sitions.

1.3 Similarity measure and intensity mapping

An essential component of intensity based registration is similarity measure.
Sum of squared differences (SSD) [4],[5] is a common choice. It is simple
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(a) RTPCT slice (b) CBCT slice

Figure 1.2: Example of single-modal images - slice of skull taken by different
imaging devices using the same imaging technique

and fast. However it can be applied only to registration of single-modal
images. For general SSD based registration, intensity correction is required,
and it can be done by application of position dependent non-linear intensity
mapping.

However, images can be registered without explicit intensity correction.
Instead of SSD other similarity measures can be used.

Normalised cross-correlation coefficient (NCC) [6] can be applied to im-
ages for which one has intensity linearly distorted with respect to the other.

Normalised mutual information (NMI) [8], [9], [5] and correlation ratio
(CR) [11] are most popular multi-modal similarity measures. NMI is more
robust than SSD but it treats intensity values in a pure qualitative way [11].
There is no optimal choice of similarity measure because each similarity
measure can outperform others on a specific class of images.

12



(a) (b)

(c)

Figure 1.3: Example of rigid image registration, (a) (b) - two satelite images
of the same region, (c) - both images overlapped with image (b) matched to
image (a) by affine geometrical transformation (Source of images: Matlab
Image Processing Toolbox).
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(a) original image (b) deformed image

Figure 1.4: Example of deformable image registration that consists of finding
unknown spatial transformation to map image (a) to match image (b)
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1.4 Aims of the research

CR and NMI contain implicit estimation of intensity mapping. The research
question is if SSD together with intensity correction can be applied to multi-
modal images as well.

The main goal of the research is to check how estimation of intensity
mapping influences image registration, and this involves

• Review of registration methods.

• Review of different similarity measures and their robustness to differ-
ences of image intensity mapping.

• Examination of the sensitivity of the existing registration methods
with respect to distortion of intensity mappings.

• Investigation of intensity correction methods.

• Investigation of influence of intensity correction on image registration.

15



Chapter 2

Investigation of image
registration

2.1 Intensity and landmark based registration

Registration techniques can be divided into two general categories [5]: fea-
ture based registration and intensity based registration.

The first category relies on landmark or feature selection which is a
process difficult to automate [4], and is normally implemented as a semi-
automatic procedure supported by human expert interaction when neces-
sary. During registration pairs of corresponding landmarks (or features)
are selected. Then the displacement field is approximated by minimising
sum of squared distances between corresponding landmarks. An additional
regularisation term is added to cost function to make displacement smooth.

Intensity based registration depends on averaged similarity between pixel
intensities instead of features which are difficult to select [4], [7]. Differences
of intensity values of corresponding pixels are taken into account instead
of distances between corresponding landmarks. It is based on optimising
a cost function but the cost function renders the difference between pixel
intensities. The method is sensitive to image contents and can fail for some
specific images. However, in most practical cases, it works properly and is
easy to automate.

The intensity based registration can be combined with feature based
registration. This is usually achieved by using a more complex cost function
[4]. Such blend gives a more reliable solution. The work focuses on intensity
based registration.

2.2 Definitions

Definitions of grid, image, interpolation, spatial transformation and similar-
ity measure are given in this section. Since all definitions and algorithms
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can be generalised to 3-dimensional (3-d) images, only 2-dimensional (2-d)
images are considered for simplicity.

2.2.1 Image and grid

A set denoted by L = {1, 2, . . . , w} × {1, 2, . . . , h} is called a 2-d grid, and
a function denoted by v : L → R is called a 2-d image [4]. Grid L is a
finite set of points uniformly distributed over a rectangle of size w× h with
an incremental step of 1. Each element of L is represented by 2-dimensional
coordinates (x, y) of some pixel, which has an intensity value v(x, y). In
other words, an image consists of w × h discrete pixels with coordinates
(x, y) and intensity values v(x, y). In practice image intensity values are
limited to the range and precision of computer representation.

2.2.2 Interpolation

Image v is determined on a discrete grid from L. During spatial trans-
formations grid positions of an image are mapped onto non-grid positions.
To recover pixel values in non-grid positions interpolation function is in-
troduced [4]. Interpolation function extends image domain from a discrete
lattice L = {1, 2, . . . , w} × {1, 2, . . . , h} to a continuous rectangular 2-d re-
gion Lc = [1, w]× [1, h].

Function Iv : Lc → R which assigns a value to each point (x, y) ∈ Lc,
and agrees with v in grid points (x, y) ∈ L ⇒ v(x, y) = Iv(x, y) is called
interpolation function. If image v(x, y) is assumed to be a sampled version of
a continuous image, then interpolation should recover the original continuous
image. It is possible that the original image is bandlimited to frequency
2/Tgrid, where Tgrid is the distance between grid points (Nyquist-Shanon
theorem [40]). There are several ways to approximate interpolation functions
[15].

The simplest example of a discontinuous interpolation function is nearest
neighbour interpolation: Iv(x, y) = v([x], [y]), where [x] denotes the closest
integer to x. Another example is bilinear interpolation which is continuous
but not continuously differentiable:

Iv(x, y) = v(bxc, byc) · (1− s) · (1− t) + v(bxc+ 1, byc) · s · (1− t)+
v(bxc, byc+ 1) · (1− s) · t+ v(bxc+ 1, byc+ 1) · s · t

(2.1)
where s = x − bxc, t = y − byc and bxc means the biggest integer not
greater than x.

Commonly applied is basis function interpolation [15],[36],[18] which is
continuously differentiable to certain degree:

Iv(x, y) =
∑
i,j

bi,j(x, y) · ci,j (2.2)
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where bi,j are basis functions and ci,j constant coefficients. If basis function is
sinc(x) = sin(π·x)/π·x, then ci,j = v(xi, yj). Otherwise ci,j can be obtained
by solving equation (2.2) for grid points (x, y) ∈ L, [15]. Differentiability of
Iv depends on the choice of basis functions.

For notational simplicity, v and Iv are not distingushed later on. v
is often used as if it was extended to continuous domain by Iv and was
determined for each (x, y) ∈ Lc.

2.2.3 Spatial transformation with reverse mapping

Spatial transformation T : R2 → R2 is a function which transforms coordi-
nates of image pixels and is denoted as follows:

T (x, y) = (T x(x, y), T y(x, y)) = (x′, y′) (2.3)

Application of transformation T to grid points (x, y) ∈ L usually gives non-
grid points T (x, y) 6∈ L. In new image vT = v(T ) = T ◦ v, transformed grid
points of v do not correspond to grid points of vT .

To deal with this problem, reverse mapping and interpolation function
Iv are applied as ilustrated in Figure 2.1 [4]. Grid positions of vT can be
transformed to source image v with T−1. This procedure gives non-grid
points in v. Then interpolation function Iv is used to find intensity values
of these points.
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Figure 2.1: Spatial transformation T of image v onto vT
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Spatial transformation T can be decomposed as T = Id+DF where Id
is the identity function and DF = T − Id is called the displacement field [4].

2.2.4 Image registration and similarity measure

A registration problem occurs when it is required to match two images con-
taining the same object (or objects of the same type). Although object is the
same, it can be spatially deformed. Registration consists of finding a suitable
spatial transformation that makes two images more similar. Assuming two
single-modal images with one called reference u and the second called source
v, the registration algorithm look for spatial transformation T : R2 → R2

which is applied to source image v to give registered image vT = T ◦ v, and
which together with reference u form a pair of similar images. To formalise
the notion of similarity, sum of squared differences (SSD), DSSD(u, vT ), is
introduced as the similarity measure between the two images:

DSSD(u, vT ) =
∑

(x,y)∈L
(u(x, y)− vT (x, y))2 = ‖u− vT ‖2 (2.4)

Now the registration problem can be formalised: given the similarity
measure DSSD, find spatial transformation T̂ : R2 → R2 that minimises the
similarity measure between the images, DSSD(u, vT ).

DSSD is used as a cost function f(T ) = DSSD(u, vT ) for optimisation
during registration and represents the distance between two images. If both
images u and vT are identical, then DSSD(u, vT ) = 0 . If they differ, then
DSSD(u, vT ) > 0. The smaller the distance DSSD(u, vT ), the more similar
are the images. For single-modal images, SSD is a good similarity measure,
and also has the advantage of being very fast.

Usually registration algorithms consist of two stages, global and local. In
the first stage global registration is applied to find the overall image position
and orientation. Then local registration is applied as the second stage to
refine final transformation. Both stages usually work in a multi-resolution
framework.

2.3 Parametric registration

2.3.1 General algorithm

The name, parametric registration, is taken from the parametric nature
of spatial transformation TP . No matter the transformation is global or
local, it is controlled by a vector of a limited number of parameters p =
[p1, p2, . . . , pn]. At the input there are two images, reference image u and
source image v. During registration source image v is transformed to vTP =
TP ◦ v known as the registered image. Parametric registration consists of
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finding vector p̂ which minimises similarity measure DSSD(u, vTP ) [20], [21],
[22].

Parametric registration can be decomposed into four separate compo-
nents. They are: similarity measure or cost function (assume DSSD for
simplicity), interpolation IvTP , spatial transformation model TP and opti-
misation procedure. All these components are implemented separately but
they are interleaved as shown in Figure 2.2. Reference and source images
represent the same object but differ in some spatial deformation T?. The
registration can be seen as estimation of unknown deformation TP ≈ T?
that transforms the source image to the reference one. The algorithm starts
with identity transformation TP = I and iterates in the loop. Each iteration
makes transformation closer to the target deformation.
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Figure 2.2: Intensity based registration algorithm

Registered and reference image are compared in the similarity measure
block. As a result cost value DSSD(u, vTP ) is obtained that represents sim-
ilarity between compared images. On the basis of the cost value and trans-
formation model, optimiser calculates a new version of parameter vector p.
New pixel positions of the registered image are calculated. Since they are at
non-grid positions, interpolation block IvTP is required to obtain the image
at grid points. New registered image vTP is then compared to reference image
u in the similarity measure block and gives smaller cost value DSSD(u, vTP ).
Based on the new cost value and deformation model, optimiser calculates
new transformation parameters p and the whole procedure iterates again.
When the end condition is met (e.g. insufficient improvement of cost value),
the algorithm stops and the last found parameter values p̂ are taken as the
solution.

The algorithm is applied few times for different resolutions of the input
images. It starts from the lowest resolution and proceeds to the highest one.
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This is called multi-resolution and is applied to recover bigger deformations.

2.3.2 Multi-resolution

The use of multi-resolution approaches is to accelerate registration and in-
crease the capture range [3], [4], [14]. Increased capture range means that
the registration algorithm is able to register significantly bigger deformation
than those without using multi-resolution.

A registration algorithm minimises similarity measure between images
and an optimisation procedure usually searches for the closest local mini-
mum. As a result it can get stuck in some unwanted local minima. The
higher the frequency components of image the higher the probability of get-
ting stuck in a local minimum, which can be far from the global one. This
significantly decreases the capture range of registration.

Maximum displacement possible for correct registration is limited by
the half-period of the highest frequency component in the image. As it is
shown in Figure 2.3, if two waves of the same frequency are to be registered,
then the highest diplacement possible for correct registration is exactly half-
period of the wave frequency. It is called the displacement limit between
two images. Applying a low-pass filter to images allows to recover a bigger
displacement but at the expense of reduced accuracy. According to the
Nyquist-Shanon theorem [40] low-pass filtering of an image can be followed
by resampling at a frequency twice higher than the highest frequency in the
filtered image. Such resampling reduces resolution which accelerates image
processing.

Registration with multi-resolution consists of applying a typical regis-
tration algorithm to images at reduced resolution. The algorithm starts by
registering images of lowest resolution and each next stage consists of regis-
tering images with doubled resolution. So registration is applied to images
with gradually increasing resolution, until the highest - original resolution
is reached. The results of registration from every stage is passed on as the
initialization of the next stage. So in the first stage transformation is esti-
mated roughly to register images with big displacements and then gradually
stage by stage registration accuracy is increased together with the decreas-
ing range of displacements. Pyramid is normally built based on images with
resolutions reduced by powers of 2 and registration is applied in reverse or-
der from the lowest resolution to the highest. Reducing image resolution by
2 means that every square has twice less pixels in each direction. Figure 2.4
shows an example of such a pyramid.

In the case of B-spline registration multi-resolution is more complicated
[20]. Spatial transformation is determined by a grid of control points. There
is no need to have a dense grid of control points for images with low res-
olution. So the number of pixels between two control points can be kept
approximately constant for every image in multi-resolution pyramid.
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Figure 2.3: Two waves of the same frequency, where the green one is shifted
by displacement with respect to the blue one. If displacement is less than
the half period of the wave then it is possible to uniquely find the correct
displacement. Otherwise the displacement error can be equal to the integer
multiples of the period.

2.3.3 Deformation models

Spatial transformation is a significant part of the general image registration
algorithm (Figure 2.2). The transformation model should be able to cover
the considered class of geometrical deformations. The deformation can be
classified with respect to range as global or local [5].

Global deformation models are parametric in nature, for example rigid,
affine and projective transformations [13]. They deform whole image using a
warping function controlled by a few parameters. The rigid and affine model
is most commonly applied for medical image registration. The projective
model is more general among linear models, but due to singularities, it is
more difficult to implement and not justified in the case of medical images.

Local models can be divided into the following categories [19]:

• physical non-parametric models based on partial differential equations
[28]

– linear elasticity [4]

– viscous fluid flow [4], [23]

– optical flow [24], [25], [26], [27]

• basis function parametric models

– B-Spline [17],[20],[21],[22]

– radial basis functions [4], [19]
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(a) original image (b) 2x - reduction

(c) 3x - reduction (d) 4x - reduction

Figure 2.4: Example of 3 level multi-resolution pyramid. (a) - original image,
(b),(c),(d) - images with reduced resolution
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– wavelets [19]

Local deformation models can change a small part of an image almost
without influencing the remaining parts in the image. If they are parametric,
then one parameter can influence only a local region. As a result there are
more parameters than those in the global models.

Physical models usually act directly on the displacement field. In phys-
ical models it is common to impose a regularisation constraint to make the
displacement field smooth.

B-Spline models are an attractive choice for medical image registration
[17], [20], [21], [22]. In the case of smooth functions it has good approx-
imation capabilities and is computationally efficient. Affine and B-Spline
deformation models are described in the following Sections.

2.3.4 Affine transformation

An affine transformation expressed by TA = A ◦ TR is a superposition of
linear transformation A and translation TR. In 2-d this is described by the
following equation:

TA(x, y) = A ·
[
x
y

]
+ TR (2.5)

where

A =

[
a1,1 a1,2
a2,1 a2,2

]
, TR =

[
tx
ty

]
(2.6)

There are 6 parameters that uniquely describe TA. Figure 2.5 shows an
example of 2-d affine transformation of an image. In 3-d, matrix A has size
3× 3 and vector TR has size 3× 1. The main equation is unchanged.

The linear part of affine transformation can be decomposed as follows:

A = R(θ) ·R(−φ) ·D(λx, λy) ·R(φ) (2.7)

where

R(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
(2.8)

is rotation by α angle, and

D(λx, λy) =

[
λx 0
0 λy

]
(2.9)

is a diagonal matrix of anisotropic scaling by factors λx and λy. Matrices
R(·) and D(·, ·) can be found by singular value decomposition (SVD):

A = U ·D · V T = (U · V T ) · (V ·D · V T )

= R(θ) ·R(−φ) ·D(λ1, λ2) ·R(φ) (2.10)
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where V and U are orthogonal matrices of rotations.

(a) original image (b) transformed image

Figure 2.5: Example of 2-d affine transformation. (a) - original image, (b) -
transformed image

2.3.5 B-Spline transformation

B-spline models are a good choice for deformable transformation [17], [18].
It is a special case of the basis function model and has good approximation -
interpolation capabilities. Figure 1.4 shows an example of B-Spline transfor-
mation applied to deform an image. A common basis function is the cubic
B-Spline. Finite support of B-Spline basis functions makes computation
fast.

Spline model TP (x) is the way to approximate function f(x) as a piece-
wise polynomial. If function f(x) is to be approximated on interval [a, b],
then it is divided into a sufficient number of small intervals [xi, xi+1] with
a = x0 ≤ x1 ≤ · · · ≤ xk = b. Border points of the intervals are called knots.
Polynomial pieces of degree l are defined on each interval to approximate
f(x) in each interval:

TP (x) =
l∑

i=1

xi−1 · ci,j , x ∈ [xj , xj+1] (2.11)

Sum of all pieces forms the approximation function

f(x) ≈ TP (x) =
k∑
j=1

l∑
i=1

xi−1 · ci,j (2.12)
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Coefficients ci,j of the polynomial pieces are chosen to keep TP (x) con-
tinuous and l − 1 differentiable at break points.

B-Spline models are equivalent to piecewise polynomials. A B-Spline
curve is a linear combination of polynomial basis functions with one basis
function spreading over few consecutive intervals. A B-Spline basis function
is defined in terms of knots. Knots can overlap and overlaping knots are
called multiple knots. Multiple knots reduce smoothness of the basis func-
tion and consequently the B-Spline curves. Multiple knots (except border
points) are not taken into account because only smooth curves are consid-
ered. Knots and degree uniquely determine the basis function. For knots
0, 1, 2, 3, 4 the following 4-th degree (cubic) basis function b3(x) (Figure 2.6a)
[17] is defined as follows:

b3(x) =


(1− x)3/6 x ∈ [0, 1)

(3x3 − 6x2 + 4)/6 x ∈ [1, 2)
(−3x3 + 3x2 + 3x+ 1)/6 x ∈ [2, 3)

(x3)/6 x ∈ [3, 4)

(2.13)

The B-Spline curve or function TB(x) is a linear combination of basis
functions bl with coefficients ci:

TB =
∑
i

bl
(
x

h
− i
)
· ci (2.14)

where bl(x) denotes the l-th degree B-Spline basis function, ci are weights
which are called control points, and h is a scaling factor which controls
resolution of TB. Coefficients ci of TB are not the same coefficients as in the
case of TP . They are weights for linear combination of basis functions.

Equation (2.14) can be rewritten in scalar product form:

TB(x) = bT (x) · c (2.15)

where b(x) is the vector of B-Spline basis functions given by

b(x) = [b1(x), b2(x), . . . , bn(x)]T , bi(x) = bl
(
x

h
− i
)

(2.16)

and c is the vector of control points given by

c = [c1, c2, . . . , cn]T (2.17)

Coefficients ci are called control points because they describe the shape
of curve TB. As shown in Figure 2.7b, the curve smoothly follows the control
points. When all control points are identical and equal to 1, curve TB is
a constant, equal to 1. In this case TB fulfills partition of unity TB =∑
i b
i(x − i) = 1 as shown in Figure 2.7a. Although knots are uniformly

distributed, there are 2 multiple knots 0 and 1. All basis function which are
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Figure 2.6: B-Spline cubic basis function β3(x) with knots 0, 1, 2, 3, 4, which
are uniformly distributed along [0, 4].

spanned over multiple knots are different than the others. In Figure 2.7a,
there are 6 such basis functions and they adjoin the border points of the
range [0, 1].

B-spline basis functions are separable so in 2-d they are products of 1-d
basis functions with bl(x, y) = bl(x) · bl(y). 2-d cubic basis function b3(x, y)
is shown in Figure 2.8.

Equation (2.14) in 2-d can be rewritten as follows:

TB(x, y) =
∑
i,j

bl
(
x

hx
− i
)
· bl
(
y

hy
− j

)
· ci,j (2.18)

TB(x, y) = bT (x, y) · c (2.19)

where the vector of B-Spline basis function is

bT (x, y) = [b1,1(x, y), b1,2(x, y), . . . , bm,n(x, y)] (2.20)

bi,j(x, y) = bl
(
x

hx
− i
)
· bl
(
y

hy
− j

)
(2.21)

where the vector of control points is

cT = [c1,1, c1,2, . . . , cm,n] (2.22)

Components of vector b and c are sorted according to lexicographical
order. Figure 2.9 shows an example of a B-Spline surface determined by
control points.

27



(a) constant line and its basis functions

(b) curve and its basis functions

Figure 2.7: Examples of curves which are formed as a linear combination of
basis functions. Knots are uniformly distributed except borders. Each basis
function is vertically scalled by its control point. In (a) all control points
are equal to 1, and in (b) control points correspond to curve.
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During image registration deformable transformation is represented as
two B-spline components for each axis:

TB(x, y) = (T xB(x, y), T yB(x, y)) (2.23)

The transformation is implemented as additive displacement field T =
Id+ TB. All considerations can be generalised to 3-d.

Figure 2.8: 2-d cubic B-Spline basis function b3(x, y) = b3(x) · b3(y).

Figure 2.9: B-Spline surface and its control points (green bars).
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(a) original RGB image (b) test configuration

Figure 2.10: Images used in similarity measures experiment. (a) - original
RGB image whose components were used for tests, (b) - small rectangular
piece of red component translated over the background of blue component

2.3.6 Similarity measure

In Section 2.2.4 and Section 2.3.1 definitions and function of similarity mea-
sures were presented. If images to be registered have very similar intensities
for corresponding pixels, then SSD is a good choice. There are various
possibilities to choose a similarity measure. If intensity mapping between
images is linear, the normalised cross-correlation coefficient (NCC) [6] can
be applied. If intensity mapping is non-linear, then a suitable choice is the
correlation ratio (CR) [11]. Finally the most general one is the normalised
mutual information (NMI) [8], [9]. NMI exploits the entropy notion to mea-
sure statistical dependence between intensities of corresponding pixels.

Similarity measure and modality of images

In this Section different similarity measures are presented to demonstrate
their properties using a simple experiment. The experiment consists of trans-
lating a small rectangular image vT over bigger background image u and
comparing their similarity. The translation is inside the image so that the
area of ovarlap is constant. The test images are based on the blue and red
components of the same RGB image (Figure 2.10). The blue component
was used as the background image. Plots of each similarity measure ver-
sus translation are presented for each similarity measure. In the case of
the single-modality experiment the small rectangular image was cut out of
the blue component and in the case of multi-modality experiment the small
rectangular image was cut out of the red component.
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Sum of squared differences (SSD) SSD is an intensity based similarity
measure which means that it is based on the average difference between
intensities of corresponding pixels. Contrary to a landmark based similarity
measure, it does not depend on the choice of characteristic points so it is
easy to automate. SSD is sensitive to image contents, but it works in most
practical cases for single-modal images. The definition is presented below:

SSD(u, vT ) =
∑

(x,y)∈L
(u(x, y)− vT (x, y))2 = ‖u− vT ‖2 (2.24)

In (2.24) (x, y) denotes pixel position and L denotes the set of all pixels.
On the plot shown in Figure 2.11, it is shown that SSD fails to give minimum
difference at zero translation in the case of multi-modal images.

Normalised cross-correlation coefficient (NCC) NCC is insensitive
to changes of brightness and contrast [6] and is defined as follows:

NCC(u, vT ) =
Cov(u, vT )2

V ar(u) · V ar(vT )
(2.25)

NCC is unsuitable to compare multi-modal images as shown in Fig-
ure 2.12.
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SSD

(a) single-modal images

Tx

Ty

SSD

(b) multi-modal images

Figure 2.11: Sum of squared differences (SSD) versus translation. The
smaller the value of SSD, the more similar are the images. In the case
of single-modal images shown in (a) SSD attains minimum at (0,0) transla-
tion, but in the case of multi-modal images shown in (b) SSD does not have
minimum at (0,0) translation, which is incorrect.
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Image as random variable Before describing the next similarity mea-
sure, stochastic interpretation of images is presented, whereby pixel inten-
sities of images u and v are assumed to be instances of random variables
U and V . Probability mass functions p(u), p(v) and p(u, v) are calculated
from intensity histograms h(u), h(v) and joint intensity histogram h(u, v),
respectively. Intensity levels are enumerated by integer index i = 1, 2, . . . , l
where l is the number of intensity levels and ui denotes the i-th intensity
level.

Given image u or v, probability p(ui) or p(vi) are computed by normal-
ising the corresponding intensity histogram:

p(ui) =
h(ui)∑
j h(uj)

, p(vi) =
h(vi)∑
j h(vj)

(2.26)

Given images u and v, joint probability p(ui, vj) is given by normalising
the joint intensity histogram:

p(ui, vj) =
h(ui, vj)∑
j,k h(uj , vk)

(2.27)

Correlation ratio (CR) If intensities between registered images are map-
ped by a global non-linear function, then the correlation ratio (CR) is a good
choice for similarity measurement [11]. Contrary to SSD and NCC, it can be
applied to a wide class of multi-modal images. Figure 2.13 shows examples
of correct similarity measure plots for both single and multi-modal images.
The maximum is at (0, 0) translation and comparing to Figure 2.11 and
Figure 2.12 the CR plots have better shapes with less local extremes which
makes optimisation easier.

The CR definition is based on the assumption that when images are
registered intensity mapping between corresponding pixels of both images
is predictable and independent of coordinates. This mapping function is
denoted by F , and the average dispersion around mean value V ar(V −F (U))
is chosen as a measure of similarity between V and F (U). However, function
F is unknown and has to be estimated by minimisation

F = arg min
f
V ar(V − f(U)) (2.28)

(2.28) is an unconstrained regression problem [36] which has the following
solution:

F (U) = E(V |U), F (u) =
∑
v

v · p(v|u) (2.29)

V ar(V ) can be decomposed according to the orthogonality principle [12]:

V ar(V ) = V ar[E(V |U)] + V ar[V − E(V |U)] (2.30)
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Ty

NCC

(a) single-modal images

Tx

Ty

NCC

(b) multi-modal images

Figure 2.12: Normalised cross-correlation coefficient (NCC) versus transla-
tion. The higher the value of NCC, the more similar are the images. In the
case of single-modal images shown in (a) NCC attains maximum at (0,0)
translation, but in the case of multi-modal images shown in (b) NCC does
not have maximum at (0,0) translation, which is incorrect.
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(a) single-modal images

Tx

Ty

CR

(b) multi-modal images

Figure 2.13: Correlation ratio (CR) versus translation. The higher the value
of CR, the more similar are the images. CR attains maximum for (0,0)
translation in both cases of single and multi-modal images. CR function
has a better shape than SSD (Figure 2.11) and NCC (Figure 2.12) because
it has less local extremes.
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(a) aligned images (b) translated images

Figure 2.14: Joint intensity histogram (JIH) of aligned and misaligned multi-
modal images. For aligned images shown in (a) JIH is sharp which means
that they are correlated. For misaligned images shown in (b) JIH is blurred
which means that they are less correlated.

With the components of summation being orthogonal, the first term
V ar[E(V |U)] measures how much V is predicted by U , and the second term
V ar[V − E(V |U)] measures functional independence of V from U . Having
in mind (2.30) and the above interpretation, the authors of [11] defined the
following similarity measure:

CR(V |U) =
V ar[E(V |U)]

V ar(V )
= 1− V ar[V − E(V |U)]

V ar(V )
(2.31)

Denominator V ar(V ) was introduced to normalise the CR value. The
CR similarity measure is asymmetric. Practical experiments [11] showed
that CR can be applied to a wide class of multi-modal images.

Mutual information (MI) While CR assumes that intensities between
images to be registered are related by function, the definition of mutual
information (MI) uses a more general assumption. To assess the similarity
between images, the authors of [8], [9] estimated the joint intensity histogram
(JIH) instead of mapping function. JIH is more general because it represents
a relation which is not restricted to function. Figure 2.14 shows JIH for
aligned and misaligned images. Misalignment disperses JIH and makes it
less sharp. Less sharp JIH means that images are less correlated. As a result
level of dependency between images can be deduced from their JIH.

It is assumed that intensities of images u and v are instances of random
variables U and V . Probabilities p(u), p(v), p(u, v) are calculated from JIH.
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Relative entropy or the Kullback-Leibler distance between p(u) and q(u)
is defined as follows [40]:

D(p‖q) =
∑
u

p(u) log
p(u)

q(u)
(2.32)

The relative entropy, D(p‖q), is a measure of the inefficiency, assuming
that the distribution is p when the true distribution is q. Mutual information
MI(u, v) is the Kullback-Liebler distance between joint probability p(u, v)
and probability p(u) · p(v) which assumes that U and V are independent
random variables:

MI(u, v) = D(p(u, v)‖p(u) · p(v)) =
∑
u,v

p(u, v) · log
p(u, v)

p(u) · p(v)
(2.33)

Mutual information is a robust similarity measure which can be applied
to a wide class of multi-modal images. In Figure 2.15 the plot of MI versus
translation is presented. The plot has maximum at (0, 0) translation and a
better shape than SSD and NCC.

However, MI depends on area of overlap. The author of [10] introduced
normalised mutual information (NMI). NMI is less sensitive to overlap than
MI. To demonstrate this sensitivity, a simple experiment was conducted.
Red and green components of RGB image (shown in Figure 2.10a) was
translated by 4 pixels with respect to each other. Then the vertical stripe
positioned at the centre of the horizontal coordinate was cut out of both im-
ages and compared using MI and NMI. The width of the stripe was varied
and dependence of MI and NMI versus area of overlap is shown in Fig-
ure 2.16.

In order to define NMI, the entropy notion is introduced [40]. Given
random variable X, the entropy of the variable is defined as:

H(X) = −
∑
x

p(x) · log p(x) (2.34)

Entropy measures the uncertainty of a random variable. The greater
the entropy, the more unpredictable is the random variable. A more unpre-
dictable variable can convey more information. Shannon showed that it is
possible to construct a code for X that will take H(X) bits on the average
[40]. Joint Entropy H(X,Y ) is defined as follows:

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y) (2.35)

Now the definition of mutual information can be reformulated as:

MI(u, v) = H(U) +H(V )−H(U, V ) (2.36)
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(a) single-modal images
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(b) multi-modal images

Figure 2.15: Mutual information (MI) versus translation. The higher the
value of MI, the more similar are the images. For both cases (a) and (b)
maximum is at (0,0) translation.
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Figure 2.16: Dependence of MI (blue) and NMI (green) on overlap.

The author of [10] discovered that the following similarity measure is less
sensitive to area of the overlap:

NMI(U, V ) =
H(U) +H(V )

H(U, V )
(2.37)

The measure is called normalised mutual information (NMI).

Interpolation and similarity measure During registration, one of the
images is spatially transformed (Section 2.2.3). For the transformed image,
its pixel values have to be interpolated (Section 2.2.2). There are many
interpolation methods but most of them are sources of grid artefacts for
similarity measures.

Grid artefacts make optimisation difficult. To avoid grid artefacts ran-
dom sampling was introduced [16]. Normally only the transformed image
has to be interpolated. When random sampling is used both images are in-
terpolated. Intensity values which are taken to estimate JIH are interpolated
at random positions which are independent of image grid. More samples can
be taken than pixels to avoid grid artefacts and increase resolution.

To show the influence of random sampling on NMI, a simple experiment
was conducted. Figure 2.17 shows images used in the experiment. A small
square image was extracted from one of them and translated over the other
to compare similarity. Graphs of NMI versus translation for different num-
ber of samples are presented in Figure 2.18. Comparison of Figure 2.18a
and Figure 2.18d shows that random sampling can remove grid artefacts.
Comparison of Figure 2.18b,c and Figure 2.18d shows that random sampling
can increase resolution of NMI.
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(a) (b)

Figure 2.17: Images used for sampling experiment. Small rectangle shown
in (a) is translated over (b) as a background. The results are presented in
Figure 2.18.
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(a) grid artefacts for linear interpolation (b) 1 sample per pixel

(c) 4 samples per pixel (d) 32 samples per pixel

Figure 2.18: Influence of random sampling on NMI. (a) - linear interpolation
causes grid artefacts, (b),(c),(d) - increasing number of random samples
removes grid artefacts, makes graph smoother and increases resolution.
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Comparison of NMI and CR Each similarity measure is suitable for
some classes of images and can be outperformed by other similarity measures
on a different class of images [11]. Although NMI appears to be the most
general similarity measure, it does not work for all images as shown in the
following example.

Two similar images are shown at the top of Figure 2.19. Although they
represent the same pattern: three sectors with a light area sandwiched be-
tween two dark areas, the second image in the middle of Figure 2.19 is
modulated by 10 pixel wide vertical stripes with each having a constant in-
tensity. As shown in the intensity graph of both images along the horizontal
direction at the bottom of Figure 2.19, the intensities of 10 pixel wide ver-
tical stripes in the second image change monotonously within each section.
Since the pattern of both images roughly agree, they should have a unique
matching point.

Figure 2.20 shows graphs of NMI, CR and SSD versus translation for
images shown in Figure 2.19. Although NMI is more robust than CR and
SSD, it treats intensity values in a pure qualitative way [11]. As a results
NMI fails to register the images compared with CR and SSD which have a
unique extremum for the matching point.
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Figure 2.19: Comparison of CR and NMI. Vertical grey stripe from the top
image is translated horizontally and compared to middle image. Graphs
of NMI, CR and SSD versus translation are presented in Figure 2.20. Top
image shows a gray vertical stripe on black background. Middle image is
similar to top one but consists of 10 pixel wide vertical stripes. Every
stripe has a unique intensity. Intensity of stripes are modulated so that
middle image resembles top one. Graph of intensity of both images versus
horizontal coordinate i presented at the bottom with green line showing the
intensity profile of the top image, and blue line showing the intensity profile
of the middle image.
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Figure 2.20: Graphs of NMI, CR and SSD versus translation for experiment
based on images from Figure 2.19. NMI is periodic and does not render
intensity pattern of compared images. On the other hand CR and SSD have
an extremum for the matching point.
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2.3.7 Image registration and optimisation

Intensity based image registration of two images u and v consists of minimis-
ing cost functionDSSD(u, vT ) where registered image vT (x, y) = v(T (x, y)) =
v(x′, y′) is a transformed version of source image v(x, y). By assuming that
T is parameterised by vector of parameters p = [p1, p2, . . . , pk]

T , the trans-
formation is denoted as TP (x, y) = T (p, x, y) = (x′, y′). As a result cost
function DSSD(u, vTP ) is also parameterised:

f(p) = DSSD(u, vTP ) =
∑

(x,y)∈L
(u(x, y)− vTP (x, y))2 = ‖u− vTP ‖

2 (2.38)

Pixels can be ordered so that their positions (xi, yi) can be replaced by
their integer index i. To simplify notation subsitutiong ri(p) = v(xi, yi) −
vTP (xi, yi) yields the cost function in the form f(p) =

∑
i r

2
i (p). After

changing notation the cost function is given in the form of sum of squares:

f(p) =
1

2

m∑
i

r2i (p) (2.39)

where m is the number of pixels in the image. As a result intensity based
registration becomes a least squares optimisation problem [29], [31].

Least squares optimisation

Least squares minimisation is a task of finding a local minimum of cost
function f which has the form:

f(p) =
1

2

m∑
i=1

r2i (p) =
1

2
‖r(p)‖2 (2.40)

where p = [x1, x2, . . . , xn]T is a vector, and r = [r1, r2, . . . , rm]T is a valued
function r : Rn → Rm. The values of ri are called residuals. Gradient based
minimisation is considered. The optimization starts with some arbitrary
location p0 and searches for the closest local minimum.

Usually minimisation is an iterative algorithm which produces a series
of points p1,p2, . . . ,pt such that f(p1) ≥ f(p2) ≥ · · · ≥ f(pt) which are
convergent to local minimum p̂ of objective function f . The series is built by
taking steps in descent direction h such that f(pt+1) = f(pt+λ ·h) < f(pt)
where λ is step length. In gradient based algorithms descend direction is
chosen so that h ·∇f(p) < 0. Local minimum p̂ of function f is a stationary
point.

If f has continuous second order derivative then at the local minimum
the first order derivative is equal to zero ∇f(p̂) = 0 and the second order
derivative ∇2f(p̂) is positive definite. Since function f is in a special form,
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calculation of ∇f and ∇2f is simplified. To calculate both derivatives it is
enough to have Jacobian of r. The Jacobian matrix J of r with respect to
p is defined as:

J(p) =

[
∂ri(p)

∂xj

]
i=1,...,m, j=1,...,n

(2.41)

Knowing the Jacobian J it is possible to calculate gradient ∇f and
Hessian ∇2f as follows:

∇f(p) =
m∑
i=1

ri(p) · ∇ri(p) = JT (p) · r(p) (2.42)

∇2f(p) =
m∑
i=1

∇rj(p) · ∇ri(p) +
m∑
i=1

ri(p) · ∇2ri(p)

= JT (p) · J(p) +
m∑
i=1

ri(p) · ∇2ri(p) (2.43)

If point x is close to local minimum x̂, then the term
∑m
i=1 ri(p) ·∇2ri(p)

in (2.43) is small and Hessian can be approximated in the following way:

∇2f(p) ≈ JT (p) · J(p) (2.44)

Gradient descent minimisation

Gradient descent is a simple and intuitive iterative minimisation method.
The parameter update is performed according to the negative gradient di-
rection:

pt+1 = pt − λ · ∇f(p) (2.45)

where λ is an adaptable scaling parameter. λ is increased when update is
successful and decreased in the case of failure which is described in Algo-
rithm 2.3.1.

Algorithm 2.3.1: Gradient descent minimisation(f,p0, ε)

t← 0, pt ← p0

while
∥∥∇f(pt)

∥∥ > ε

do



pt+1 ← pt − λ · ∇f(pt)
if f(pt+1) < f(pt)

then

{
t← t+ 1
λ← 2 · λ

else
{
λ← λ

2
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The problem is that the search step should be longer if gradient is small
and shorter when gradient is high which is opposite to (2.45). Another issue
is that curvature of f might be different in different directions so search
step should be different in different directions. As a result gradient descent
optimisation is relatively slow (linear convergence) but robust.

Adaptation of λ can be replaced by linear search. In linear search [29]
vector −∇f is treated as a search direction and in each step the algorithm
searches 1-d function f(pt − λ · ∇f(pt)) of λ for minimum. However, opti-
misation of 1-d function is time consuming.

Gauss-Newton minimisation

Disadvantages of the gradient descent algorithm are partially improved in
the Newton algorithm. The algorithm models f around p0 as a quadratic
function according to the Taylor expansion:

f(p) = f(p0) + (p− p0)
T · ∇f(p0) +

1

2
· (p− p0)

T · ∇2f(p0) · (p− p0) +

+o(‖p− p0‖3) (2.46)

After leaving out the last term, replacing p0 by pt and p by pt+1 the
quadratic model is obtained:

f(pt+1) ≈ q(pt+1) = f(pt) + (pt+1 − pt)T · ∇f(pt) +

+
1

2
· (pt+1 − pt)T · ∇2f(pt) · (pt+1 − pt)

(2.47)

To minimise (2.47) it is set ∇q(pt+1) = 0:

∇f(pt) +∇2f(pt) · (pt+1 − pt) = 0 (2.48)

and solve (2.48) for pt+1 to obtain the Newton updating rule:

pt+1 = pt − (∇2f(pt))−1 · ∇f(pt) (2.49)

After replacing (2.45) by (2.49) and setting λ = 1 in Algorithm 2.3.1 the
Newton algorithm (Algorithm 2.3.2) is obtained.

Algorithm 2.3.2: Newton minimisation(f,p0, ε)

t← 0, pt ← p0

pt+1 = pt − (∇2f(pt))−1 · ∇f(pt)
while f(pt)− f(pt+1) ≥ ε

do
{
pt+1 = pt − (∇2f(pt))−1 · ∇f(pt)
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The algorithm can be applied only when Hessian H = ∇2f(pt) has
full rank. In least square optimisation Hessian can be approximated by
JT (p) · J(p) according to (2.44). Such approximation saves significantly
computation time but is possible only for p which is close to local mini-
mum p̂ because for such p function f can be approximated by the quadratic
model (2.47). Newton least square optimisation together with Hessian ap-
proximation (2.44) is called the Gauss-Newton algorithm. For p close to p̂,
the Gauss-Newton algorithm has quadratic convergence [29].

Levenberg-Marquardt algorithm

While the gradient descent algorithm is robust with linear convergence, the
Gauss-Newton algorithm is faster (quadratic convergence) with less robust-
ness. The Levenberg-Marquardt (LM) algorithm [29], [30] is a blend of the
gradient descent and Gauss-Newton optimisation algorithms. It is a heuris-
tic algorithm which works like gradient descent for points far from minimum
and works like the Gauss-Newton algorithm for points close to minimum.
The LM update step [29], [30] is a mixture of the gradient descent step and
Gauss-Newton step which is controlled by damping parameter µ:

pt+1 ← pt − (∇2f(pt) + µ · I)−1 · ∇f(pt) (2.50)

According to (2.42) and (2.44) calculation of gradient ∇f(pt) = JT (pt) ·
r(pt) and Hessian ∇2f(pt) = JT (pt) ·J(pt) is simplified. If µ = 0, then LM
update is equivalent to Gauss-Newton update (2.49). On the other hand, if
µ is big, then LM update is close to gradient descent update (2.45). Rank
deficiency of Hessian is compensated by the term µ · I.

µ is an adaptable parameter whose adaptation is controlled by factor
ρ = (f(pt+1) − f(pt))/(q(pt+1) − q(pt)). ρ ≈ 1 shows high accordance
of f with quadratic model q at pt. High value of ρ means that µ can
be decreased to move the algorithm towards Gauss-Newton step. On the
other hand, small value of ρ means that µ should be increased to move the
algorithm towards gradient descent step.
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Algorithm 2.3.3: Levenberg-Marquardt minimiz.(f,p0, ε)

t← 0, ν ← 2, p← p0

A← ∇2f(pt), µ← max{aii}
while

∥∥∇f(pt)
∥∥ > ε

do



pt+1 ← pt − (∇2f(pt) + µ · I)−1 · ∇f(pt)

ρ← f(pt+1)−f(pt)
q(pt+1)−q(pt)

if ρ > 0

then


t← t+ 1
µ← µ ·max{13 , 1− (2 · ρ− 1)3}
ν ← 2

else

{
µ← µ · ν
ν ← 2 · ν

If the value of µ is high, then Hessian is not used and the LM algorithm
is equivalent to gradient descent. Replacing I by diag(H) make scaling
proportional to the curvature of f . The following update proposed by Mar-
quardt

pt+1 ← pt − (∇2f(pt) + µ · diag(∇2f(pt))−1 · ∇f(pt) (2.51)

results in a larger step along the direction for which gradient is smaller.

Approximation of Jacobian

Objective function (2.38) is optimized with respect to vector of parameters
p:

f(p) =
m∑
i=1

r2i (p) =
∑

(x,y)∈L
(u(x, y)− vTP (x, y))2 (2.52)

where:

vTP (x, y) = v(TP (x, y)) = v(T xP (xi, yi), T
y
P (xi, yi)) = v(x′, y′) (2.53)

Jacobian of r(p) is defined as:

J(p) =

[
∂ri(p)

∂pj

]
i=1,...,m, j=1,...,n

(2.54)

where:

∂ri(p)

∂pj
=

∂(u(xi, yi)− vTP (xi, yi))

∂pj
= −∂v(T xP (xi, yi), T

y
P (xi, yi))

∂pj

= −
(
∂v(x′, y′)

∂x
· ∂T

x
P (xi, yi)

∂pj
+
∂v(x′, y′)

∂y
· ∂T

y
P (xi, yi)

∂pj

)
(2.55)
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Image derivatives at any point can be approximated by central difference:

∂v(x, y)

∂x
=
v(x+ ∆x, y)− v(x−∆x, y)

2 ·∆x
(2.56)

If the distance between neighbouring pixels is equal to 1, then (2.56) can be
simplified to:

∂v(x, y)

∂x
=

1

2
(v(x+ 1, y)− v(x− 1, y)) (2.57)

2.4 Affine 2-d registration

2.4.1 The algorithm implemented

Affine registration works according to the general algorithm described in
Section 2.3.1 and was implemented based on the following components:

• affine transformation TA (Section 2.2.3, Section 2.3.4)

• similarity measure DSSD (Section 2.2.4)

• Levenberg-Marquardt minimisation (Section 2.3.7)

• multi resolution procedure (Section 2.3.2)

The algorithm implemented assumes that images u and v to be reg-
istered are single-modal so that DSSD can be used as similarity measure.
The algorithm minimises DSSD(u, vTP ) with respect to affine transformation
TA = TP which is parameterised by vector p. The algorithm implementation
is presented in terms of the 3 main components of registration, the essential
parts are cost function and calculation of Jacobian which are input data to
the Levenber-Marquardt algorithm (Section 2.3.7).

Transformation Affine transformation TP (x, y) is defined as follows:

TP (x, y) = (I +A) ·
[
x
y

]
+

[
tx
ty

]
= (x′, y′)

A =

[
a1,1 a1,2
a2,1 a2,2

]
(2.58)

Identity matrix I was introduced to show that only displacement field is
parameterised by a vector of 6 parameters:

p = [p1, p2, . . . p6] = [a1,1, a1,2, tx, a2,1, a2,2, ty] (2.59)

Using p (2.58) can be rewritten as
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x′ = x+ a1,1 · x+ a1,2 · y + tx = x+ p1 · x+ p2 · y + p3

y′ = y + a2,1 · x+ a2,2 · y + ty = y + p4 · x+ p5 · y + p6

(2.60)

Cost function The cost function is defined as follows:

f(p) =
∑

(x,y)∈L
(u(x, y)− vTP (x, y))2

=
∑

(x,y)∈L

(
u(x, y)− v(x′, y′)

)2
=

∑
(x,y)∈L

r2(p, x, y)

(2.61)

where:

r(p, x, y) = u(x, y)− v(x′, y′)

= u(x, y)− v(x+ p1 · x+ p2 · y + p3, y + p4 · x+ p5 · y + p6)

Since pixels (x, y) are at grid positions, they can be sorted and enumerated,
thereby enabling summation over (x, y) ∈ L in (2.61) to be replaced by
summation over integer index i = 1, 2, · · · ,m where m = |L| is number of
pixels.

f(p) =
∑

(x,y)∈L
r2(p, x, y) =

m∑
i=1

r2(p, xi, yi) =
m∑
i=1

r2i (p) = ‖r(p)‖2 (2.62)

Jacobian Jacobian of r(p) is defined as:

J(p) =

[
∂ri(p)

∂pj

]
i=1,...,m, j=1,...,6

(2.63)

The i-th row of Jacobian can be calculated according to:

(∇pri(p))T = (∇p[u(xi, yi)− v(x′i, y
′
i)])

T =

= −(∇pv(xi + p1 · xi + p2 · yi + p3, yi + p4 · xi + p5 · y + p6))
T

= −[vx · xi, vx · yi, vx, vy · xi, vy · yi, vy] (2.64)
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where:

vx = vx(x′i, y
′
i) =

∂v(x′i, y
′
i)

∂x

vy = vy(x
′
i, y
′
i) =

∂v(x′i, y
′
i)

∂y
(2.65)

and ∇p stands for gradient with respect to p.
Jacobian J(p) and vector r(p) are necessary data for the Levenberg-

Marquardt algorithm.

2.4.2 Experimental results

Figure 2.21 shows examples of 2-d affine registration. Slices of RTPCT and
CBCT of size 226x282 pixels were chosen as test images. In the beginning
both slices were manually registered. Then the CBCT image was deformed
by affine deformation with randomly chosen parameters. Deformed CBCT
images were used as reference images and RTPCT images were used as
source images. The maximal value of the displacement field of simulated
deformation was 46 pixels. After registration average discrepancy between
simulated and registered displacement fields was below 1.25 pixel. Differ-
ence between registered and reference images and their contours was also
displayed to demonstrate the quality of registration. To obtain contours,
Canny edge detector was used.

Figure 2.22 and Figure 2.23 show results of similar registration with in-
tensity distortion added (global non-linear intensity mapping in Figure 2.22,
and smooth additive distortion in Figure 2.23). In both cases simulated spa-
tial deformation was the same as the deformation shown in Figure 2.21b.
The intensity distortion is shown in Figure 2.22b and Figure 2.23b. In the
case of non-linear mapping, the quality of registration was found to deteri-
orate; and in the case of additive distortion, registration was found to fail.
Figure 2.24 ilustrates discrepancy between two displacement fields: correct
registration (shown in Figure 2.21) and failed registration (shown in Fig-
ure 2.23).

Figure 2.25 shows the graph of the maximum value in the simulated
displacement field versus the maximum value in the displacement field af-
ter registration. The displacement field was simulated by random choice
of affine parameters with uniform distribution. In the beginning the dis-
placement field was small and was gradually increased by multiplying the
same affine parameters by a gradually increasing value. The plot of dif-
ference between the simulated and registered displacement fields versus the
maximum value of the simulated displacement field is shown in Figure 2.25.
The displacement field after registration is small and almost constant until
simulated deformation reaches the displacement limit of the image (Sec-
tion 2.3.2). When initial deformation exceeds the displacement limit, the
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value of the difference significantly increases showing failed affine registra-
tion. The displacement limit of the image is much bigger than those typical
encountered in medical practice. The biggest deformation which can still be
recovered based on the graph shown in Figure 2.25 is shown in Figure 2.26.

Figure 2.27 and Figure 2.28 show examples of 3-d affine registration
which are similar to 2-d registration shown in Figure 2.21. RTPCT and
CBCT volumes were used as source images. 3-d volumes were represented as
isosurface generated by suitable threshold selection. Cross section slice was
used to visualise the results as an alternative representation to the isosurface.
One slice shows edges of images and the other the difference between images.
Average discrepancy between simulated and registered displacement fields
was below 3 pixels.

2.4.3 Concluding remarks

• Sum of squared differences SSD is a suitable cost function for affine
registration. Minimisation of SSD by Levenberg-Marquardt optimi-
sation gives an efficient registration algorithm. It is able to recover
much bigger deformations than those encountered in medical practice.
Since affine registration is fast and robust, it is frequently applied as
a normalisation step before deformable registration.

• SSD based affine registration is sensitive to intensity distortion. In-
tensity distortions simulated in experiments were similar to those en-
countered in medical practice. The algorithm often fails when inten-
sity distortion is introduced so SSD based affine registration should
be supplemented by intensity correction.

• The algorithm can be easily generalised to register 3-d volumes.
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(a) source image (b) reference image

(c) difference between reference and regis-
tered

(d) registered image

(e) contours before registration (f) contours after registration

Figure 2.21: 2-d affine registration of RTPCT and CBCT slices of size
226x282 pixels. Reference image is an affine transformed version of CBCT
slice. The deformation was known before registration and maximum value
of displacement field of this deformation was 46 pixels. Registration reduced
maximum discrepancy between simulated and registered displacement fields
to 1.25 pixels.
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(a) source image (b) target image

(c) difference between target and regis-
tered

(d) registered image

(e) contours before registration (f) contours after registration

Figure 2.22: 2-d affine registration of RTPCT and CBCT slices of size
226x282 pixels with non-linear intensity distortion. Reference image is an
affine transformed version of CBCT slice. Spatial deformation was known
before registration and it was the same as in Figure 2.21. Maximum value of
displacement field of this deformation was 46 pixels. Before spatial transfor-
mation non-linear intensity distortion was applied to reference image. It was
low quality registration because maximum discrepancy between simulated
and registered displacement fields was 9 pixels.
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(a) source image (b) reference image

(c) difference between reference and regis-
tered

(d) registered image

(e) contours before registration (f) contours after registration

Figure 2.23: 2-d affine registration of RTPCT and CBCT slices of size
226x282 pixels with smooth intensity distortion. Reference image is an affine
transformed version of CBCT slice. Spatial deformation was known before
registration and it was the same as in Figure 2.21. Maximum value of dis-
placement field of this deformation was 46 pixels. Before spatial transforma-
tion smooth intensity distortion was added to reference image. Registration
failed because maximum discrepancy between simulated and registered dis-
placement fields was 58 pixels.
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(a) registration without intensity distortion

(b) registration with intensity distortion

Figure 2.24: Displacement fields after registration of images in Figure 2.21
and Figure 2.23. Blue colour - simulated displacement field, red colour
- estimated displacement field. In case of registration without intensity
distortion both displacement fields are equal (they overlap) as shown in
(a). In case of registration with intensity distortion displacement fields are
different as shown in (b).
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Figure 2.25: Maximum difference between simulated and estimated displace-
ment fields versus maximum value of simulated displacement field. Affine
coefficient were randomly generated and then multiplied by a gradually in-
creasing factor. When maximum value of displacement field of simulated
deformation exceeds 195 pixels registration fails.

(a) source image (b) maximal deformation that was still
properly registered

Figure 2.26: Illustration of maximaly deformed image for which deformation
field can still be recovered. It is a demonstration of displacement limit of
image shown in Figure 2.25. (a) source image, (b) maximal deformation of
reference image which was properly registered.
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(a) source and reference (isosurface) (b) source - reference (isosurface)

(c) source and reference (slice - edges) (d) source - reference (slice)

Figure 2.27: RTPCT and CBCT volumes before registration. Reference
image is an affine transformed version of CBCT volume. (a) yellow - source
(RTPCT) and red - reference (CBCT) images displayed as isosurface, (b) -
difference between images displayed as isosurface. (c) - one slice of volume
displayed after Canny edge detector, (d) - one slice of volume displayed as
difference between images.
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(a) registered and reference (isosurface) (b) registered - reference (isosurface)

(c) registered and reference (edges) (d) registered - reference (slice)

Figure 2.28: 3-d affine registration of volumes shown in Figure 2.27. Ref-
erence image is affine transformed version of CBCT volume. (a) yellow -
registered (RTPCT) and red - reference (CBCT) images displayed as iso-
surface, (b) - difference between images displayed as isosurface. (c) - one
slice of volume displayed after Canny edge detector, (d) - one slice of volume
displayed as difference between images.
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2.5 Nonrigid B-Spline 1-d registration

2.5.1 The algorithm implemented

In this section all data for registration are restricted to artificial 1-d images,
represented as a sequence of numbers. It is called image to be consistent with
2-d registration but they can also be called signals or curves. Consideration
is restricted to smooth curves with limited high frequency components.

During registration the displacement field is estimated. The displace-
ment field is also a smooth curve. It is assumed that the highest frequency
component of the displacement field is significantly lower than that in the
images to be registered.

Algorithm for B-Spline deformable registration is similar to affine reg-
istration (Section 2.4.1). The difference is that affine transformation is re-
placed by B-Spline. The algorithm works like the general algorithm de-
scribed in Section 2.3.1 and consists of the following components:

• B-Spline transformation TB (Section 2.2.3, Section 2.3.5)

• similarity function DSSD (Section 2.2.4)

• Levenberg-Marquardt minimisation (Section 2.3.7)

• multi resolution procedure (Section 2.3.2)

Reference image u and source image v are single-modal so DSSD is used.
Transformation TP = Id + TB is parameterised by B-Spline control points
that form parameter vector p. Calculation of cost function and Jacobian
is described below. These are necessary data for the Levenber-Marquardt
algorithm (Section 2.3.7).

Transformation 1-d B-Spline transformation is defined as follows

TP (x) = x+ TB(x) = x+
n∑
i=1

bl
(
x

h
− i
)
· pi (2.66)

Here n is number of control points and l is degree of the basis function
(in our case 3). Knots are distributed uniformly. The term x is used because
only the displacement field is parameterised (Section 2.2.3). Equation (2.66)
can be rewritten in inner product form:

TB(x) = x+ bT (x) · p = x′ (2.67)

where b(x) is the vector of B-Spline basis functions and p the vector of
control points (2.15).
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Cost function The definition of cost function is as follows:

f(p) =
∑
x∈L

(u(x)− vTP (x))2

=
∑
x∈L

(
u(x)− v(x+ bT (x) · p)

)2
=

∑
x∈L

r2(p, x)

Replacing summation over x by summation over integer index i = 1, 2, · · · ,m,
where m = |L| is number of points, gives

f(p) =
∑
x∈L

r2(p, x) =
m∑
i=1

r2(p, xi) =
m∑
i=1

r2i (p) = ‖r(p)‖2 (2.68)

Jacobian Jacobian of r(p) is defined as:

J(p) =

[
∂ri(p)

∂pj

]
i=1,...,m, j=1,...,n

(2.69)

The i-th row of Jacobian can be calculated according to:

(∇pri(p))T = (∇p[u(xi)− v(xi + bT (xi) · p)])T

= −∂v(x′i)

∂x
· bT (xi) (2.70)

where ∇p stands for gradient with respect to p.
Jacobian J(p) and vector r(p) are necessary data for the Levenberg-

Marquardt algorithm.

2.5.2 Experimental results

The registration algorithm was evaluated using simulated 1-d image v(x).
B-Spline curves with uniformly distributed knots were used in experiments
to represent 1-d images (Section 2.3.5). Values of the control points were
randomly generated on uniformly distributed set of knots. Consideration
was restricted to smooth images whose regularity was controlled by a number
of control points.

The control points can be considered as discrete samples of the image and
B-Spline curve its approximation. Since knots are distributed uniformly, the
distance between knots is a sampling period. According to Nyquist-Shannon
theorem sampling period determines frequency bandwidth of the image. As
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a result maximum frequency component of the image can be adjusted by
changing distance between subsequent knots.

For constant image estimation of any displacement field is impossible
because spatial deformation do not change the image. Texture allow to
estimate simulated spatial deformation. Therefore to make registration fea-
sible heuristic rule was applied. Registered images were expected to have
significantly more variety than the displacement field. Therefore frequency
components of registered images and displacement fields were related. The
maximum frequency component of the displacement field was kept twice
bigger than the maximum frequency component of the image. Apart from
this the maximum value of the displacement field was kept smaller than half
period of the maximum frequency component of the image (Figure 2.3). The
rules are given in terms of knot spacing and are formalized as follows:

• Knots were uniformly distributed.

• The image had twice as many knots than the displacement field.

• The maximum value of the displacement field was less than the dis-
tance between knots in image (Figure 2.3)

• The displacement field had twice as many knots than additive intensity
distortion.

The distortions were applied to generate deformed images as follows:

• smooth additive ua(x) = v(x) +A(x), u(x) = ua(Tu(x))

• non-linear mapping u(x) = F (v(Tu(x))).

For experimental purposes the displacement field Tu(x) was randomly
simulated like images. It was used to generate reference image u(x) =
v(Tu(x)). Our goal was to recover simulated displacement field Tu(x) by
image registration. It was done by estimating deformation Tv(x) so that
v(Tu(x)) ≈ v(Tv(x)). It is expected that estimated deformation should be
close to the simulated one. In Figure 2.29 an example of succesful deformable
registration is presented.

Intensity distortions A(·) and F (·) were applied to the reference im-
age in another experiment. Homogeneous nonlinear intensity distortion
F (·) was applied according to equation u(x) = F (v(Tu(x)). Inhomoge-
neous additive intensity distortion A(·) was applied according to equation
u(x) = v(Tu(x))+A(x). Both distortions A(·) and F (·) were B-Spline curves
with randomly generated control points. Knots were distributed uniformly.
Density of knots of additive distortion A(·) was twice smaller than density of
knots of spatial deformation. More detailed description of both deformations
is postponed to Section 4.3.
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Figure 2.30 and Figure 2.31 show registration with intensity distortion.
It shows that intensity distortion can prevent the algorithm from achieving
correct registration.

Figure 2.32 presents how deformation influences accuracy of registration.
If amplitudes of deformation do not exceed the displacement limit of the
image (Section 2.3.2), then registration is correct. If deformation exceed
the displacement limit then registration fails. The value of the displacement
limit depends on image content.

All experiments so far shows registration results when simulated and reg-
istered models of the displacement fields agree. The goal of next experiment
was to demonstrate how sensitive the registration algorithm is to deforma-
tion model. Therefore number of knots used for estimation deformation
was altered. Additionally knot positions used to simulate deformation were
randomly deviated from uniform positions. The deviation did not change
knots order. Figure 2.33 shows how accuracy of registration depends on
number of knots in the registration model. There is a local minimum when
the number of knots in the registration model is 32 which is equal to the
number of knots in the simulation model. However, the minimum is narrow
and normally when the best fitting number of knots is unknown no one can
rely on guess. However, the graph shows that choosing big enough number
of knots can give acceptable results.

The results presented in Figure 2.32 and Figure 2.33 depend on image
contents. The reason is that random deformation and random image used
for experiments are not correlated. Deformation can not be recovered with
high accuracy if the deformed image does not vary enough in positions of
high deformation.

2.5.3 Concluding remarks

• Sum of squared differences SSD is a suitable cost function for B-
Spline deformable registration. Minimisation of SSD by applying the
Levenberg-Marquardt optimisation gives an efficient registration algo-
rithm.

• If image and displacement field fulfil the following conditions:

– the maximum frequency component of the image is twice bigger
than the maximum frequency component of the displacement field

– the maximum value of the displacement field is smaller than half
period of the maximum frequency component of the image (Fig-
ure 2.3)

then simulated deformation can be recovered.
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• If the optimum number of knots for best fitting is unknown, good
results can be achieved by chosing large number of knots.

• In presence of intensity distortion the registration algorithm can fail.
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(a) before registration

(b) after registration

Figure 2.29: 1-d deformable registration. Source image v is registered to
reference image u. Reference image is a transformed version of source image
u(x) = v(Tu(x)). The deformation Tu is known before registration. Tv is a
displacement field estimated by registration algorithm. In the beginning Tv
is initialised to constant function. After registration estimated displacement
field is approximately equal to simulated Tu ≈ Tv.
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(a) non-linear intensity distortion

(b) registered with non-linear distortion

Figure 2.30: Deformable registration with non-linear intensity distortion.
The experiment was similar to that from Figure 2.29 with simulated non-
linear intensity distortion introduced. As a result reference image is equal
to u(x) = F (v(Tu(x))) where F is intensity distortion and Tu is spatial
deformation. Tv is displacement field estimated during registration. This
displacement field was initialised to constant function in the beginning. Af-
ter registration Tu 6= Tv because of intensity distortion F .
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(a) additive bias

(b) registered with bias

Figure 2.31: Deformable registration with additive intensity distortion. The
experiment was similar to that shown in Figure 2.29 with additive inten-
sity distortion introduced. As a result reference image u is composition of
additive intensity distortion ua(x) = v(x) + A(x) and spatial deformation
u(x) = ua(Tu(x)). Tv is a displacement field estimated during registration.
This displacement field was in the beginning initialised to constant function.
After registration Tu 6= Tv because of intensity distortion A.
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(a) registered vs. initial deformation

(b) deformation which still can be registered

Figure 2.32: Mean difference between simulated and estimated displacement
fields versus maximum value of simulated displacement field. Values of con-
trol points of deformation were randomly generated and then multiplied by
a gradually increasing value. When simulated deformation exceeds limit
value 0.04 registration fails.
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Figure 2.33: Mean and maximum discrepancy between simulated Tu and
estimated Tv transformation versus number of knots used for registration.
Both graphs were normalised to range [0, 1] to show regularity rather than
absolute values. Knots for registration were randomly deviated from uniform
positions so that they do not match knots used for simulation. Number of
knots in simulated transformation was equal to 32 and for this value graph
has narrow minimum. Choosing number of knots from the range 50-70 gives
good registration results.
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2.6 Summary

• Sum of squared differences SSD is a suitable cost function for para-
metric affine and B-Spline image registration. Minimisation of SSD
by Levenberg-Marquardt optimisation gives an efficient registration
algorithm.

• If the displacement field model used to simulate the deformation is
similar to the model applied to estimated the displacement field then
SSD based registration is able to recover the simulated displacement
field.

• In case of affine registration the algorithm is able to recover much
bigger deformations than those encountered in medical practice. Since
affine registration is fast and robust, it can be applied as a preprocesing
step before deformable registration.

• In case of B-Spline registration to make displacement estimation fea-
sible the frequency component of the image and the displacement field
and value of displacement field should be bounded and fulfil specific
conditions (Section 2.5.2).

• In presence of intensity distortion SSD based image registration often
fails so the registration algorithm should be supplemented by intensity
correction.
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Chapter 3

Investigation of intensity
correction

Usually images are captured at different times or by different devices which
introduce intensity distortions. Variation of intensity in two images rep-
resenting the same object can have different sources. Imaging devices or
capture condition can introduce global intensity distortion. Some medical
imaging devices introduce intensity inhomogeneity, whereby certain objects
or tissues can appear with different intensities.

3.1 Fitting non-linear function

It is possible to assume that intensity distortion is coordinate independent
mapping. For CBCT images it is a reasonable assumption. Given RTPCT
and CBCT images of the same object, it is known that RTPCT has higher
resolution, is less noisy and has more consistent intensity mapping. As a
result RTPCT comparing to CBCT images can be considered as intensity
distortion free. Figure 3.1 shows an example of estimation of linear mapping
between RTPCT and CBCT images. The Figure 3.1c,d shows image of dif-
ferences between intensities of corresponding pixels of RTPCT and CBCT
images before and after correction. The correction has made image of dif-
ferences more uniform. In other words image in Figure 3.1d has smaller
contrast than this in Figure 3.1c.

Fitting non-linear function assumes that intensity distortion is a global
(coordinate independent - homogeneous) non-linear function. To estimate
this function pairs of corresponding pixels can be taken from both images
to form an input-output sequence for approximation [36]. Approximation
is consistent if intensity dependence of most of the image is independent of
coordinates.

Intensities of images u and v might be considered as instances of random
variables U and V . Joint intensity histogram h(u, v) is used to calculate
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probability distributions (Section 2.3.6). Having probabilities p(u), p(v)
and p(u, v) conditional probability is calculated as follows

p(v|u) =
p(u, v)

p(u)
(3.1)

then conditional expectancy

f(u) = E(V |U = u) =

∫
v · p(v|u)dv (3.2)

and variance

V ar(V |U = u) =

∫
(v − f(u))2 · p(v|u)dv (3.3)

Conditional expectancy f(u) = E(V |U = u) is a good estimator of cor-
rection mapping [11], [36]. Variance V ar(V |U) measures predictability of
the mapping. Figure 3.2 shows intensity dependence of images shown in
Figure 3.1. Intensity mapping f(u) and variance V ar(V |U) are overlapped
on h(u, v). If relation between intensity of images can be modelled as ho-
mogeneous function f(u), then h(u, v) is distributed along the plot of this
function. In Figure 3.1 joint intensity histogram h(u, v) (black points in
the background) is scattered along the plot of function f(u) (blue curve)
with variance V ar(V |U = u) (red curve). Variance demonstrates level of
predictability of the mapping.

Figure 3.3 shows variance overlapped on the image. The bigger is the
variance, the broader are scattered joint intensity histogram points around
the curver representing the intensity mapping. The variance was calculated
according to equation (3.3) for intensity values of each pixel. The variance
values are overlapped as green component on image u. A significant part of
variance comes from image edges. The edges are slightly misaligned which
make f(u) ambiguous. Such points for which mapping is unpredictable are
outliers. The outliers may come from the image noise, image misalignment
or components which exist only on one image. Figure 3.3 shows that small
misalignment of images introduces small fraction of outliers. If misalignment
is small then taking pairs of corresponding pixels to estimate intensity map-
ping can give good results. However even small number of outliers can reduce
accuracy of approximation. The authors of [38] applied robust regression to
solve this problem. They used a parametric polynomial representation of
f(u|θ) where θ is a vector of coefficients:

f(u, θ) = θ0 + θ1 · u+ θ2 · u2 + · · ·+ θk · uk (3.4)

Figure 3.2 suggests some probabilistic models for mapping. With Gaussian
noise η introduced to model intensity mapping, intensity mapping is given
by

g(u, θ, σ) = f(u, θ) + η = N(f(u, θ), σ) (3.5)
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where N(·, ·) is Gaussian distribution, and θ, σ are mapping parameters. To
estimate θ and σ mean square error is minimised:

ε(θ, σ) =
∑
x,y

(g(u(x, y), θ, σ)− v(x, y))2 =
∑
x,y

r2(x, y) (3.6)

θ̂ and σ̂ can be obtained by minimising ε(θ, σ)

(θ̂, σ̂) = arg min
θ,σ

ε(θ, σ) (3.7)

To deal with outliers the authors of [38] applied least trimmed squares (LTS)
and binary reweighted least squares (RLS) estimation [39]. Pixels taken
to approximation were sorted, and certain fraction of pixels with highest
values of r was rejected in the next iteration. Variance was calculated from
remaining pixels but taking into account correction on bias [38], [39]. They
obtained iterative polynomial regression which was stable and repeatable for
single-modal images.
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(a) u (RTPCT) (b) v (CBCT)

(c) u− v (d) f(u) − v

Figure 3.1: (a) and (b) show two aligned medical images u and v whose
intensity range is [0, 1]. Difference between images u and v is shown in
(c), and difference between images f(u) and v is shown in (d). f is linear
regression function taking corresponding pixel values of u and v as input
data. Difference images are displayed in the range of [−0.5, 0.5]. After linear
correction of u the difference image is more uniform than the difference image
without correction.
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Figure 3.2: Non-linear mapping between intensities of images u and v shown
in Figure 3.1. Joint intensity histogram h(u, v) is a background of the image
(black colour represent high value of histogram), blue line - E(V |U), green
line - B-Spline approximation of E(V |U), red line - variance V ar(V |U),
light blue line - variance approximation. Dark regions in h(u, v) represent
big regions of images with approximately constant intensity.
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Figure 3.3: Variance V ar(V |U) is overlapped on image u as green com-
ponent. The variance V ar(V |U) is a function of intensity. The value of
variance was calculated for each coordinate (x, y) by mapping intensity of
this pixel u(x, y) and then displayed as green component. It is visible that
regions of high variance are spread along edges where both images u and v
are misaligned.
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3.2 Histogram matching

If images are significantly misaligned, then robust regression can produce
faulty mapping. Better results are achieved by histogram matching [37].

Histogram matching is finding such mapping f which after applying to
reference image u gives image f(u) for which intensity histogram is similar
to intensity histogram of source image v. Given u or v, intensity histogram
hu or hv can be calculated for each of them and the cumulative histograms
are obtained as follows:

Hu(x) =

∫ x

0
hu(u)du, Hv(x) =

∫ x

0
hv(v)dv (3.8)

For each intensity value ui of the reference image the best matching value
f(ui) of the source image is found as follows:

f(ui) = arg min
vj
|Hu(ui)−Hv(vj)| (3.9)

Obtained function f maps intensity of the reference image so that it has a
histogram similar to that of the source image.

The difference between approximation and histogram matching is pre-
sented in the following experiment. Source and reference images were taken
from Figure 3.1. Additionally the source image was spatially deformed to
form the third image. As a result reference and deformed source images
are misaligned. Intensity mapping between reference and source images was
compared to intensity mapping between reference and deformed source im-
ages. Intensity mapping was estimated by approximation and histogram
matching. The results are shown in Figure 3.4 and Figure 3.5. Approx-
imated intensity mapping significantly differs from other mappings in the
case of misaligned images. Remaining mappings are close to each other. It is
common that mapping obtained by histogram matching is close to mapping
approximated from the registered images. However, histogram matching
can be ambiguous for certain images.

3.3 Bi-functional mapping

For multi-modal images intensity correspondence is not a unique function.
For two identical images, as shown in Figure 3.6a, the mapping is an identity
function and joint intensity histogram is a deterministic identity line. For
single-modal images, as shown in Figure 3.6b, joint intensity histogram is
scattered around curve. Big scatter which can be seen in Figure 3.6b can
be modelled as Gaussian noise. For multi-modal images, as shown in Figure
3.6c, the mapping can not be approximated by one curve. In case of Figure
3.6c at least two curves should be used to render variability of data. For the
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Figure 3.4: Non-linear mappings between corresponding pixel intensities of
images u (shown in Figure 3.1a), v (shown in Figure 3.1b) and spatially
deformed image v. Blue line - approximation of intensity mapping for pair
of aligned images, green dashed line - approximation of intensity mapping
for pair of misaligned images, red line - intensity mapping obtained by his-
togram matching for pair of aligned images, light blue dashed line - intensity
mapping obtained by histogram matching for pair of misaligned images.
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(a) (b)

(c)

Figure 3.5: Non-linear correction of images shown in Figure 3.1a, Figure 3.1b
and spatially deformed image shown in Figure 3.1b. The images were cor-
rected using mapping shown in Figure 3.4. (a) - intensity correction approx-
imated from pair of aligned images, (b) - intensity correction calculated by
histogram matching of misaligned images, (c) - intensity correction approx-
imated from pair of misaligned images
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(a) (b)

(c)

Figure 3.6: Three joint intensity histograms (a) same images, (b) single-
modal images, (c) multi-modal images
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first two categories intensity mapping can be approximated by a function,
for the last category different methods should be used.

The authors of [38] applied bi-functional approximation for multi-modal
images. They assumed that intensity mapping is determined by two poly-
nomial functions:

f1(u) = θ0 + θ1 · u+ θ2 · u2 + · · ·+ θk · uk (3.10)

f2(u) = ψ0 + ψ1 · u+ ψ2 · u2 + · · ·+ ψk · uk (3.11)

and modeled at every point (x, y) as mixture of Gaussians:

P (v|u) = π1(u) ·N(f1(u), σ) + π2(u) ·N(f2(u), σ) (3.12)

π1(u) + π2(u) = 1 (3.13)

In (3.12) and (3.13) the following abbreviation is used with u = u(x, y) and
v = v(x, y). When it is not ambiguous, u(x, y) or v(x, y) will be replaced
by u or v. N(µ, σ) denotes normal distribution with mean µ and standard
deviation σ.

The procedure can be divided into parameter estimation and intensity
evaluation. To estimate θ they applied least trimmed squares (LTS) and
binary reweighted least squares (RLS) estimation [38]. Outliers not used to
estimate θ were used to estimate ψ. n1 pixels taken to estimate θ were used
to calculate σ1, and n2 pixels taken to estimate ψ were used to calculate
σ2. Calculation of σ1 and σ2 required correction of bias because they were
not calculated from random sample of pixels [38], [39]. Then π1, π2, σ were
calculated according to:

σ =
n1

n1 + n2
· σ1 +

n2
n1 + n2

· σ2, (3.14)

πε(u) =
nε

n1 + n2
, ε = 1, 2 (3.15)

Evaluation of the mapping function was implemented as weighted sum:

f(u, v) = P (ε = 1|u, v) · f1(u) + P (ε = 2|u, v) · f2(u) (3.16)

where weights are calculated as follows:

P (ε|u, v) =
πε(u) ·Gσ(v − fε(u))

π1(u) ·Gσ(v − f1(u)) + π2(u) ·Gσ(v − f2(u))
(3.17)

and Gσ(·) denotes Gaussian function.
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As a result effective mapping was mixture of two functions f1 and f2
with weights defined by pair of corresponding pixels taken from both images.
The method has been successfully applied to intensity correction of CT and
MR images. Registration algorithms with bi-functional intensity correction
outperformed NMI registration on CT and MR images [38].

3.4 Intensity inhomogeneity correction

Intensity inhomogeneity is a common problem of magnetic resonance (MR)
images and cone beam computed tomography (CBCT) images. There are
methods to normalise intensity of MRI [32]. However, they try to estimate
unknown intensity distortion having only one image.

In image registration there are two misaligned images which makes prob-
lem slightly different. The task is not to detect unknown inhomogeneity but
to make intensity of the images to be registered consistent. The problem
is that images are misaligned so corresponding pixels have different coordi-
nates. Before registration coordinates of these pixels are unknown.

The authors of [2] applied intensity correction to CBCT and RTPCT
images. They used histogram matching with linear correction as the first
step. Then they applied rigid registration as the second step. It is assumed
that after rigid registration problem of correspendence between pixels is
approximately solved. In the third step intensity correction was estimated
as pixelwise quotient of the images and than smoothed. Then CBCT image
was pixelwise devided by the correction matrix. Before estimation of the
mapping bony structure was segmented and removed. Remaining empty
regions were filled by interpolation. Similar procedure was applied to air
bubbles. The correction enabled the use of CBCT images for dose calculation
in radiotherapy.

Another approach is to apply spatial registration which is independent
of smooth inhomogeneous intensity distortion [33]. Finite set of reference
points is scattered in the reference image. The reference points are sur-
rounded by small rectangular frames of image. Each frame of reference
image is rigidly registered to local part of source image. The reference point
which is the centre of the frame is displaced together with the frame. In
[33] normalized cross correlation coefficient (NCC) was used as a similarity
measure. NCC is independent of linear intensity changes so every frame can
be registered with different linear intensity distortion. Spatial deformation
is estimated in finite set of reference points and then approximated using
spring mass system [33]. This method is not influenced by smooth changes
of intensity mapping under condition that the mapping is so smooth that
can be approximated as linear inside single frame. On the other hand the
bigger is the frame the better is accuracy of estimated displacement for the
frame centre. Therefore choosing proper frame size is matter of compromise.
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The authors of [34] demonstrated that estimation of smooth intensity
correction and registration can be included in one optimization step. When
the algorithm is progressing the displacement field is getting smaller and
estimated intensity correction more accurate. In [35] more sofisticated pre-
processing of intensity correction was applied. It was demonstrated [35] that
SSD based registration with intensity correction can outperform registration
based on normalized mutual information (NMI) or correlation ratio (CR).

More detailed description of the algorithm from [34] is presented below
as an example.

Local affine registration with correction of brightness and contrast

The authors of [34] applied intensity correction together with spatial reg-
istration in the same optimisation algorithm. The displacement field and
intensity correction were parameterised as local affine transformation.

They used the following cost function which was derived from brightness
constancy assumption [24]:

fb(p(x, y)) =
∑

(x,y)∈L
(p7(x, y) · u(x, y) + p8(x, y)− v(x′, y′))2 (3.18)

where

x′ = x+ p1(x, y) · x+ p2(x, y) · y + p3(x, y) (3.19)

y′ = y + p4(x, y) · x+ p5(x, y) · y + p6(x, y) (3.20)

Image transformation is determined by 8 parameters for each pixel of
the image. To make displacement field smooth authors of [34] introduced
the following regularisation term:

fs(p(x, y)) =
∑

(x,y)∈L

8∑
i=1

λi

[(
∂pi(x, y)

∂x

)2

+

(
∂pi(x, y)

∂y

)2
]

(3.21)

The regularization term penalizes big variation of p. Coefficients λi
control variation for each component of p separately. To avoid pure intensity
modulation of registered images coefficients λ7(x, y) and λ8(x, y) should be
carefully chosen with respect to λ1(x, y), . . . , λ6(x, y).

The authors of [34] optimised the following cost function

f(p(x, y)) = fb(p(x, y)) + fs(p(x, y)) (3.22)

where fb are forces defined by brightness difference and fs is regularization
term. (3.22) was linearised and solved by explicit discretisation.
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They applied the Expectation Maximization (EM) step [36] to deal with
outliers. The EM step allows images to be registered to have missing com-
ponents in one image.

The algorithm was tested on natural and artificial images and was able
to recover spatial deformations and intensity distortion in range encountered
in typical CT and MR images.

3.5 Summary

The investigation was carried out in intensity correction methods based on
global non-linear mapping or smooth intensity correction. As far as medical
images are concerned there are much less publications about intensity cor-
rection for image registration than about inhomogeneity correction of MR
and CT images which is a slightly different problem.

The problem considered here is to make intensity of two images more
consistent in order to improve accuracy of spatial registration. The most
important obstacle is that images to be corrected are misregistered. To
overcome this difficulty the most representative methods use global intensity
correction or intensity correction which is smoother then estimated displace-
ment field (e.g. [34]). Very few methods take into account discontinuities
(e.g. bi-functional mapping [38], [2]). Application of intensity correction for
image registration is justified because it was reported that registration with
intensity correction can outperform registration with application of common
multimodality similarity measures [38], [35].
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Chapter 4

Image registration with
intensity correction

4.1 Intensity mapping and image registration

Most registration algorithms impose regularisation constraints on estimated
deformation [4], [20] and intensity correction [34]. Regularisation of the dis-
placement field is justified by the nature of deformation of physical objects.
In the case of intensity mapping there is also another justification. If two im-
ages represent the same object, then they are geometrically similar to each
other. When they are better aligned, then intensity mapping between them
is predictable and has low complexity. The complexity can be measured as
description length of intensity mapping [41], [42].

If the intensity mapping is allowed to be any function it is possible to
map any two images on each other. It is expected that intensity mapping
estimated from two registered images which represent the same object is
simple. Simple means restricted to simple models which can be specific
to the class of images to be registered. Therefore if during registration
intensity correction is estimated then a simple model should be used. For
example smooth mapping might be appropriate for single-modal images and
piecewise smooth for multi-modal images. Piecewise smooth means that
intensity mapping consists of compact segments of smooth mapping. Such
mapping allows discontinuity only along borders between segments.

Multi-modal images can be registered without explicit intensity correc-
tion. Normalized mutual information (NMI) [8], [9] and Correlation ratio
(CR) [11] are used to register such images. However, they contain implicit
estimation of intensity mapping. The way the intensity mapping is esti-
mated is fixed. As a result the class of images which can be registered with
similarity measure is also fixed. There is no perfect similarity measure and
each similarity measure can be outperformed by others on some class of
images (Section 2.3.6).
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The author decided to avoid applying multi-modal similarity measures
because they are inflexible. SSD with intensity correction is used instead.
Intensity correction was restricted to simple models. Our registration algo-
rithm is optimising cost function with respect to spatial deformation and
intensity correction simultaneously. Selecting a proper class of intensity
correction makes the algorithm specific to some class of images.

Here only RTPCT and CBCT images are considered. For this class the
following intensity mappings were selected: global non-linear mapping and
smooth local affine mapping. In the case of 2-d affine registration local affine
intensity mapping was restricted to additive bias.

4.2 Affine 2-d registration with intensity correc-
tion

In the case of 2-d affine registration the following intensity correction models
are considered:

• global linear mapping

• global non-linear mapping

• smooth additive bias

4.2.1 Linear intensity correction

Linear correction is included in the same optimisation algorithm as affine
registration. Spatial registration was described in Section 2.4.1. This Section
describes the part related to intensity correction. Now vector p contains 2
additional components responsible for intensity correction. The model of
intensity correction described here is a simplified version of the model from
[34].

Cost function Additional parameters are contrast p7 and bias p8 which
control intensity correcton. They are applied to reference image u instead
of v to simplify solution. As a result the cost function is similar to that
defined in [34]:

f(p) =
∑

(x,y)∈L
(p7 · u(x, y) + p8 − vTP (x, y))2

=
∑

(x,y)∈L

(
p7 · u(x, y) + p8 − v(x′, y′)

)2
=

m∑
i=1

r2i (p) = ‖r(p)‖2 (4.1)
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where:

ri(p) = p7 · u(xj , yi) + p8 − v(xi + p1 · xi + p2 · yi + p3, yi +

+p4 · xi + p5 · yi + p6) (4.2)

Pixels were sorted then summation over (x, y) ∈ L was replaced by
summation over integer index i = 1, 2, ...,m where m = |L| is number of
pixels.

Jacobian The i-th row of Jacobian is equal to:

(∇pri(p))T = (∇p(p7 · u(xi, yi) + p8 − v(x′i, y
′
i)))

T

= −[vx · xi, vx · yi, vx, vy · xi, vy · yi, vy,−u(xi, yi),−1]

(4.3)

The remaining part of algorithm is similar to that described in Section 2.4.1.

4.2.2 Non-linear intensity correction

Intensity correction was separated from spatial registration. In our algo-
rithm intensity correction procedure is alternated with affine spatial regis-
tration described in Section 2.4.1. The intensity correction is based on linear
regression with respect to B-Spline basis functions.

The intensity correction step searches for such mapping gP which makes
image gP (v(x, y)) as similar as possible to reference image u(x, y). Since gP
is parameterised by p = [p1, p2, . . . , pn] searching for mapping is equivalent
to searching for vector p̂ which minimises the following cost function:

f(p) =
∑

(x,y)∈L
(u(x, y)− gP (v(x, y)))2

=
m∑
i=1

(u(xi, yi)− gP (v(xi, yi)))
2

=
m∑
i=1

(ui − gP (vi))
2

=
m∑
i=1

(
ui − bT (vi) · p)

)2
(4.4)

Equation (4.4) describes only intensity correction step which is alternated
with affine registration step. gP is parameterised according to a B-Spline
model (2.14), in which b is the vector of B-Spline basis functions and p
is the vector of control points (2.15). The images are normalised to range
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[0, 1] so knots are distributed uniformly over this range. The number of
knots are chosen to compromise between accuracy and smoothnes of the
mapping function. Equation (4.4) is a linear regression equation [36] which
is a least-square optimisation problem (Section 2.3.7).

Comparing to (4.1) equation (4.4) has non-linear intensity correction,
which is applied to source image v instead of reference u and does not contain
spatial deformation. Solution of (4.4) might be ambiguous and can lead to
over fitting of estimated function [36]. To avoid this problems regularisation
term λ · pT · p was added to (4.4):

f(p) =
m∑
i=1

(
ui − bT (vi) · p

)2
+ λ · pT · p (4.5)

Setting ∇f(p) = 0 gives:

−
m∑
i=1

b(vi)
(
ui − bT (vi) · p

)
+ λ · p = 0 (4.6)

which has the following solution:

p =

(
m∑
i=1

b(vi) · bT (vi) + λ · Id
)−1( m∑

i=1

b(vi) · ui

)
(4.7)

Regularisation term λ · pT · p shrinks vector p towards zero [36]. Dumping
parameter λ controls the importance of regularisation. The bigger the λ,
the smoother is the estimated function.

Figure 4.1 demonstrates the efficiency of our algorithm. Affine defor-
mation and global non-linear distortion were randomly simulated. Affine
deformation was simulated by random generation of all 6 parameters with
uniform distribution. In the example shown in Figure 4.1 maximum value
of initial displacement field was 46 pixels. Despite intensity distortion the
registration algorithm recovered the displacement field with accuracy less
than 3 pixels. For the same example without intensity correction (described
in Section 2.4) the displacement field was recovered with the error of 9 pix-
els. The source image registered with correction (Figure 4.1d) is similar
to the reference image (Figure 4.1b). They are not only spatially aligned
(Figure 4.1f) but also their intensity values agree.

Figure 4.2 shows the quality of spatial registration versus non-linear
intensity distortion for different correction models. Non-linear intensity dis-
tortion was generated as a sum of identity function and integral of some
smooth curve:

g(y) = y · (1− p) +

∫ y
0 h(y)dy∫ 1
0 h(y)dy

· p (4.8)
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where h(y) is an arbitrary smooth function over range [0, 1] which follows
h(0) = 0 and h(y) ≥ 0. In the experiment the function h(y) was a B-
Spline curve with randomly generated values of control points and uniformly
distributed knots. Parameter p describes non-linearity and if p = 0 then
g(y) = y is an identity function and when p = 1 then g(y) has biggest level
of non-linearity.

The best results are achieved for global non-linear correction which agree
with the distortion model used for simulation. From the results of registra-
tion with different correction models shown in Figure 4.2, registration with
any form of corrections is seen to be better than no correction at all.
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(a) source image (b) reference image

(c) reference - registered (d) registered image

(e) before registration (f) after registration

Figure 4.1: 2-d affine registration of RTPCT and CBCT slices of size
226x282. Reference image is an affine transformed version of CBCT slice.
Apart from affine deformation global non-linear intensity distortion was in-
troduced. Spatial deformation and intensity distortion were known before
registration and maximum value of the displacement field of spatial defor-
mation was 46 pixels. During registration non-linear intensity correction
was applied. The registration was successful because maximum discrepancy
between simulated and registered displacement fields was reduced to 2.8
pixels (which is 3 times better than in the same case but without intensity
correction Figure 2.22).
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Figure 4.2: Mean difference between simulated and estimated displacement
fields versus non-linearity of intensity mapping. RTPCT and CBCT slices
normalised to [0,1] range were used as input data. Both images were man-
ually registered and had intensity normalised before experiment. Affine de-
formation was simulated together with intensity distortion. The best regis-
tration result is produced by the global non-linear intensity correction model
which was the same as the model used in simulation.
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4.2.3 Additive inhomogeneity correction

In the algorithm proposed in this Section inhomogeneity correction is sepa-
rated from spatial registration. The optimisation procedure has two steps:
intensity correction step and spatial registration step. The iterative algo-
rithm is similar to non-linear correction described in Section 4.2.2 and al-
ternates both of these steps.

To make image v identical to image u it is enough to add difference u−v
to v. This way intensity correction can be calculated if images are aligned.
If images are misaligned it is assumed that pairs of corresponding pixels
from different images are close to each other. So it is reasonable to blur the
difference by convolving with Gaussian kernel. The kernel parameters should
be chosen according to the predicted maximum displacement field. Not
enough smoothing causes spatial registration to fail and too much smoothing
prevents correction from following intensity distortions (Figure 4.5).

For testing purposes smooth intensity distortion was added to reference
images. Then the images were spatially deformed by affine transformation.
The intensity distortion was modeled as 2-d B-Spline surface with randomly
generated control points and uniformly distributed knots. Regularity of
distortion was controlled by number of knots (Section 2.3.5).

A result of registration is presented in Figure 4.3, where the source image
registered with correction (Figure 4.3d) is seen to be similar to the reference
image (Figure 4.3b). Not only they are spatially aligned (Figure 4.3f) but
also their intensity values agree.

Despite inhomogeneous intensity distortion the registration algorithm
recovered the displacement field with accuracy less than 1.25 pixel which
was more than 46 pixels before registration. For the same example without
intensity correction (described in Section 2.4) the displacement field after
registration was even larger increasing error to 58 pixels.

Figure 4.4 shows the quality of spatial registration versus additive in-
tensity distortion. The best result is achieved for local additive correction
which agrees with the distortion model used in simulation. From the results
of registration with different correction models shown in Figure 4.4, regis-
tration with any form of corrections is seen to be better than no correction
at all.
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(a) source image (b) reference image

(c) reference - registered (d) registered image

(e) before registration (f) after registration

Figure 4.3: 2-d affine registration of RTPCT and CBCT slices of size
226x282. Reference image is an affine transformed version of the CBCT
slice. Spatial deformation was known before registration and the maximum
value of displacement field of this deformation was 46 pixels. Before spatial
transformation smooth intensity distortion was added to reference image.
During registration smooth additive intensity correction was applied. Reg-
istration was successful because maximum discrepancy between simulated
and registered displacement fields was reduced to 1.25 pixels. The same
registration algorithm without intensity correction only increased missalign-
ment to 58 pixels (Figure 2.23).
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Figure 4.4: Mean difference between simulated and estimated displacement
fields versus maximum value of additive intensity distortion.

Figure 4.5: Mean difference between simulated and estimated displacement
fields versus standard deviation of Gaussian kernel in additive intensity cor-
rection.
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4.2.4 Concluding remarks

• Intensity correction significantly improves registration accuracy (Fig-
ure 4.4). The higher accordance of correction model with the simula-
tion model the higher accuracy of spatial registration.

4.3 Nonrigid B-Spline 1-d registration

The algorithm for 1-d deformable registration with intensity correction is
similar to the algorithm described in Section 2.5. The difference is that
parameter vector p is longer because, besides deformation part, it contains
components responsible for intensity correction. Two intensity correction
models are considered:

• global non-linear mapping

• smooth local affine

Both models are described in the following sections. The description is
concentrated on elements which are missing in Section 2.5.

4.3.1 Global non-linear intensity correction

Non-linear correction consists of applying non-linear function FP to all pixels
of an image. Mapping FP is independent of pixel coordinates. It is assumed
that FP is smooth and can be approximated as a B-Spline curve.

Transformation and non-linear correction Spatial transformation and
non-linear correction are parameterised as B-Spline curves

TP1(x) = x+ b1
T (x) · p1 = x′

FP2(y) = b2
T (y) · p2 = y′

where b1(x), b2(y) are vectors of B-Spline basis functions, and p1, p2 are
vectors of control points with lengths n1 and n2 (Section 2.3.5, Section 2.5).
In both cases knots are distributed uniformly. In the case of TP1 domain
spreads over image point positions and in the case of FP2 domain spreads
over intensity levels. Both vectors form joint parameter vector p = [p1,p2]

T

with length n = n1 + n2.
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Cost function

f(p) =
∑
x∈L

(
FP2(u(x))− vTP1 (x)

)2
=

∑
x∈L

(
bT2 (u(x)) · p2 − v(x+ bT1 (x) · p1)

)2
=

m∑
i=1

r2i (p) = ‖r(p)‖2 (4.9)

where summation over x was exchanged by summation over integer index
i = 1, 2, · · · ,m with m = |L| being number of points. Comparing to (4.1)
equaton (4.9) instead of linear contain non-linear spatial deformation and
non-linear intensity correction.

Jacobian the i-th row of Jacobian is equal to:

(∇pri(p))T = [−vx · bT1 (xi), bT2 (u(xi))] (4.10)

Jacobian J(p) and vector r(p) are necessary data for the Levenberg-Marquardt
algorithm (Section 2.3.7).

4.3.2 Registration examples

Our experiments are similar to those described in Section 2.5. Image u(x),
spatial deformation Tu, and intensity distortion Fu are known before regis-
tration. They were randomly generated using B-Spline curves.

Frequency components of registered images and displacement fields were
restricted to make recovery of simulated displacement field feasible. The
main issue was to keep maximum frequency component of the image twice
bigger than the maximum frequency component of the displacement field
(similar to Section 2.5.2). Apart from this the maximum value of the dis-
placement field was kept smaller than half period of the maximum frequency
component of the image (Figure 2.3). The rules are given approximately in
terms of knot spacing and are formalized as follows:

• Knots are uniformly distributed.

• The image has twice as many knots than the displacement field.

• The maximum value of the displacement field is less than the distance
between knots in image.

Reference image u is formed from source image v according to u(x) =
Fu(v(Tu(x)). Non-linear intensity distortion Fu was generated according to
(4.8). Input to the registration algorithm are u(x) and v(x) and the goal is
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to recover Tu and Fu. Fv was initialised by histogram matching Section 3.2.
Figure 4.6 is an example of successful registration with non-linear intensity
correction. The goal was achieved with high accuracy.

Figure 4.7 demonstrates the significance of non-linear intensity correc-
tion for registration accuracy. In this example the model used for intensity
correction was the same as the model for intensity distortion.

To demonstrate sensitivity of the registration algorithm to the defor-
mation model, the number of knots used for estimation and their positions
were varied in a way similar to that described in Section 2.5.2. Figure 4.8,
shows how accuracy of registration depends on the number of knots in the
registration model. There is a narrow local minimum when the number of
knots is equal to 32 which match with the simulation model. Registration
accuracy is acceptable when the number of knots is about twice bigger than
the number of knots in the simulation model.
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(a) before registration

(b) after registration

Figure 4.6: 1-d deformable registration with non-linear intensity correction.
Source image v is registered to reference image u. Reference image is a
transformed version of source image u(x) = Fu(v(Tu(x))). Fu is simulated
intensity distortion and Tu is simulated spatial deformation. Displacement
field Tv and correction function Fv are estimated during registration. After
registration Tu ≈ Tv and Fu ≈ Fv.
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(a) graph with intensity correction and without

(b) graph with intensity correction

Figure 4.7: Mean difference between simulated Tu and estimated Tv displace-
ment fields after registration versus non-linear intensity distortion. Non-
linear intensity correction significantly improves accuracy of spatial regis-
tration. The model used for intensity correction was the same as the model
used for simulation of intensity distortion.
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Figure 4.8: Mean and maximum discrepancy between simulated Tu and
estimated Tv transformation versus number of knots used for registration.
Both graphs were normalised to range [0, 1] to show regularity rather than
absolute values. Knots for registration were randomly deviated from uniform
positions so that they do not match knots used for simulation. Number of
knots in simulated transformation was equal to 32 and for this value the
graph has a narrow minimum.
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4.3.3 Affine inhomogeneity correction

As described in the previous section, intensity correction mapping is inde-
pendent of pixel position. Here position dependent correction was intro-
duced. Correction mapping consists of two components: contrast A(x) and
bias B(x). Both components A(x) and B(x) are parametrized by B-Spline
control points. Correcting image u consists of local affine mapping according
to equation A(x) · u(x) +B(x). It is assumed that both functions A(x) and
B(x) are smooth so they are approximated by B-Spline curves.

Transformation and non-linear correction Spatial transformation and
affine correction are parameterised as B-Spline curves

TP1(x) = x+ b1
T (x) · p1 = x′

AP2(x) = b2
T (x) · p2

BP3(x) = b3
T (x) · p3 (4.11)

where b1(x), b2(x), b3(x) are vectors of B-Spline basis functions, and p1, p2,
p3 are vectors of control points with lengths n1, n2, and n3 (Section 2.3.5,
Section 2.5). In all cases knots are distributed uniformly. All three pa-
rameter vectors form joint parameter vector p = [p1,p2,p3]

T with length
n = n1 + n2 + n3.

Cost function

f(p) =
∑
x∈L

(
AP2(x) · u(x) +BP3(x)− vTP1 (x)

)2
=

∑
x∈L

(
bT2 (x) · p2 · u(x) + bT3 (x) · p3 − v(x+ bT1 (x) · p1)

)2
=

m∑
i=1

r2i (p) = ‖r(p)‖2 (4.12)

In the above equation summation over x is replaced by summation over
integer index i = 1, 2, · · · ,m, where m = |L| is number of points.

Jacobian the i-th row of Jacobian is equal to:

(∇pri(p))T = [−vx · bT1 (xi), bT2 (xi) · u(xi), bT3 (xi)] (4.13)
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4.3.4 Registration examples

These experiments are similar to those described in Section 2.5. Image u(x),
spatial deformation Tu, and affine intensity distortion Au, Bu are known
before experiments. They were randomly generated using B-Spline curves.

Similar to Section 4.3.2 frequency components of registered images, dis-
placement fields and intensity distortion were restricted to make registration
feasible. The maximum frequency component of the displacement field was
kept twice smaller than the maximum frequency component of the image.
Also the maximum frequency component of the intensity distortion was
twice smaller than the maximum frequency component of the displacement
field. Apart from this the maximum value of the displacement field was
kept smaller than half period of the maximum frequency component of the
image (Figure 2.3). The rules are given in terms of knot spacing and are
formalized as follows:

• Knots are uniformly distributed.

• The image has twice as many knots than the displacement field.

• The maximum value of the displacement field is less than the distance
between knots in image

• Displacement field Tu has twice as many knots than intensity distortion
Au and Bu.

Reference image u is formed from source image v according to equations:
ua(x) = Au(x)·v(x)+Bu(x) and u(x) = ua(Tu(x)). Input to the registration
algorithm are u(x) and v(x) and the goal is to recover Tu, Au and Bu.
Figure 4.9 and Figure 4.10 shows examples of successful registration with
local affine intensity correction.

Figure 4.11 demonstrates the significance of affine intensity correction for
registration accuracy. In this example the model used for intensity correction
was the same as the model used for intensity distortion.

To demonstrate sensitivity of the registration algorithm to the deforma-
tion model, the number of knots used for estimation and their positions were
varied in a way similar to that in Section 2.5.2. Figure 4.12 and Figure 4.13
show how accuracy of registration depends on the number of knots in the
registration model. Figure 4.12 shows that there is a narrow local mini-
mum when the number of knots in registration is equal to 32 which match
the number of knots used in the simulation model. If the number of knots
is approximately twice bigger than that for simulation, then registration
accuracy is acceptable.
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4.3.5 Concluding remarks

• Sum of squared differences SSD is suitable as a cost function for B-
Spline deformable registration with intensity correction. Minimisation
of SSD by applying the Levenberg-Marquardt optimisation gives an
efficient registration algorithm.

• If images to be registered and the displacement field fulfil the following
conditions

– the maximum frequency component of the image is twice bigger
than the maximum frequency component of the displacement field

– the maximum value of the displacement field is smaller than half
period of the maximum frequency component of the image (Fig-
ure 2.3)

– the maximum frequency component of the displacement field is
twice bigger than the maximum frequency component of the in-
tensity distortion

then simulated deformation and intensity distortion can be recovered.

• If the exact value of the number of knots for best fitting of the dis-
placement field and intensity distortion is unknown, then good results
can be achieved for values which are approximately twice bigger than
the expected one.
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(a) images u and v, deformation Tu and displacement field Tv

(b) intensity distortion Au,Bu and correction Av,Bv

Figure 4.9: Deformable registration with affine intensity correction - before
registration. Source image v is registered to reference image u. Reference
image is a transformed version of source image. u is composition of affine
intensity distortion ua(x) = Au(x) · v(x) + Bu(x) and spatial deformation
u(x) = ua(Tu(x)). Tv, Av and Bv were initialised as constant functions and
estimated during registration.
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(a) images u and v, deformation Tu and displacement field Tv

(b) intensity distortion Au,Bu and correction Av,Bv

Figure 4.10: Deformable registration with affine intensity correction - data
after registration. Spatial deformation Tu and affine intensity distortion
Au and Bu were known before registration. After registration estimated
displacement field is approximately equal to simulated Tu ≈ Tv, Au ≈ Av
and Bu ≈ Bv.
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Additive inhomogeneity distortion

Figure 4.11: Mean difference between simulated and estimated displacement
fields after registration versus additive inhomogeneity distortion. Affine in-
tensity correction significantly improves accuracy of spatial registration. The
model used for simulation of distortion was a special case of the model used
for intensity correction.

107



Figure 4.12: Mean and maximum value of difference between simulated Tu
and estimated Tv transformation versus number of knots used for registra-
tion. Number of knots used for simulation and estimation of affine intensity
correction was the same. Both graphs were normalised to range [0, 1] to
show regularity rather than absolute values. Knots for registration were
randomly deviated from uniform positions so that they do not match knots
used for simulation. Number of knots in simulated transformation was equal
to 32 and for this value the graph has a narrow minimum.
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Figure 4.13: Mean difference between simulated Tu and estimated Tv trans-
formation versus number of knots used for estimation of spatial deformation
(k) and affine intensity correction (l). Knots for simulation were randomly
deviated from uniform positions so that they do not match knots used for
estimation. The deviation did not change knot order. Number of knots used
for simulation are marked in blue (l = 19 and k = 32).
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4.4 Summary

• Sum of squared differences SSD is suitable as a cost function for B-
Spline deformable registration with intensity correction. Minimisation
of SSD by applying the Levenberg-Marquardt optimisation gives an
efficient registration algorithm.

• If the models used to simulate spatial deformation and intensity dis-
tortion are similar to that used to estimate them then SSD based
registration is able to recover the simulated deformation and intensity
distortion.

• To make recovery of deformation and intensity distortion feasible the
frequency component of spatial deformation and intensity distortion
should be bounded. Also maximum value of displacement field cannot
exceed maximum value determined by frequency component of the
image (Figure 2.3).

• Intensity correction applied together with spatial registration improves
accuracy of SSD based image registration.
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Chapter 5

Conclusions and future work

The research aimed to develop means to increase the accuracy of radiation
therapy treatment. Radiation therapy is planned on RTPCT images and
validated using CBCT images. CBCT image might contain inhomegeneous
intensity distortion which can decrease accuracy of spatial registration.

Intensity based image registration has been applied because it works
without human expert interaction. Such registration optimizes similarity
measure between registered images. Choice of similarity measure is difficult
in presence of intensity distortion. There are multi-modal similarity mea-
sures which deal with images with incosistent intensity mapping. However,
they can fail when intensity distortion is smooth inhomogeneous mapping
[35]. To overcome this problem author included intensity correction in the
registration algorithm. The algorithm optimises sum of squared differences
(SSD) with respect to spatial transformation and intensity correction simul-
taneously. The problem was shifted from choice of similarity measure to
choice of model of intensity correction. In fact multi-modal similarity mea-
sures like normalized mutual information (NMI) or corelation ratio (CR)
have implicit estimation of intensity mapping. The model of the mapping
is fixed and may fail to render specific intensity distortion.

2-d affine registration has been implemented with intensity correction.
The algorithm was implemented as Levenberg-Marquardt optimisation of
SSD. Registration was tested on limited set of medical images and simulated
spatial deformation and intensity distortion. The intensity distortion was
simulated to resemble typical CBCT image. Two intensity correction mod-
els were applied: global non-linear and smooth local additive. Simulations
showed that both methods work properly for simulated data. Experiments
demonstrated that intensity correction improves accuracy of spatial registra-
tion. Tested algorithm was able to recover much bigger spatial deformations
than those encountered in medical practice.

Nonrigid B-Spline 1-d registration was implemented with intensity cor-
rection. The algorithm was implemented as Levenberg-Marquardt optimisa-
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tion with SSD as a cost function. Registration was tested on simulated data.
Two intensity correction models were implemented: global non-linear and
local affine. Experiments demonstrated that if the simulation model agree
with the registration model, then it is possible to recover spatial deforma-
tion and intensity distortion. The algorithm was able to recover deformation
which did not exceed the theoretical limit on displacement field calculated
for registered images. Experiments shows that intensity correction often
improves accuracy of spatial registration even when models of intensity cor-
rection used for simulation and registration are different.

The idea of separating intensity correction mapping from similarity mea-
sure is shown to have advantages. Image registration can be considered
as simultaneous estimation of spatial deformation and intensity distortion.
Choosing proper models of spatial deformation and intensity distortion is
essential. These models can make the registration algorithm specific to the
image class of interest. Author expects that demand on increase accuracy
of medical image registration will motivate developement of spatial defor-
mation and intensity distortion models.

Future extensions to the algorithm

• Application of multi-resolution is required to increase the capture
range of the B-Spline registration algorithm.

• Extension of 1-d deformable registration to 2-d is considered as a fu-
ture step. Implementation could utilise the property of B-Spline basis
functions being separable.

• B-Spline models of spatial deformation and intensity distortion might
be replaced by more general model which can deal with discontinuities.

• Global non-linear intensity mapping and smooth local affine can be
generalised to inhomogeneous non-linear intensity mapping.

• The algorithm should be extended to deal with noisy images and out-
liers which are generated by components which exist in one image and
do not exist in another image.

• Segmentation based intensity correction. Most intensity correction
methods impose smooth regularisation on correction mapping. The
author plans to implement method which can deal with discontinu-
ities. The method is motivated by the assumption that each physical
objects or tissues is mapped by one intensity mapping. On the other
hand objects or tissues usually form connected regions. As a result
image can be devided into connected regions with one mapping func-
tion assigned to each region. This procedure is a segmentation, where
similarity between pixels in segment is based on proximity to intensity
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mapping assigned to this segment. Segmentation can be alternated
with estimation of intensity mapping inside segments, which is similar
to the method described in [45]. Good candidates of segmentation
algorithms are graph cuts [43], [44] and level set methods [46].

The author implemented simplified version of this method as prelim-
inary sample. CT and MR slices of the same object were taken for
tests. Such images are inherently multimodal so difficult to correct
intensity. The area of image was divided into 2 sets of pixels and for
each set only one intensity mapping was used. The first set was ob-
tained by applying least trimmed squares (Section 3.3, [38]). Apart
from rejecting outliers, pixel sets were not allowed to be scattered.
After each iteration of rejecting outliers, morphological closing was
applied. Morfological closing forced pixel sets to forme geometrically
connected regions. Promissing result of the experiment is shown in
Figure 5.1.

As a next step homogeneous mapping which is assigned to segments
might be replaced by smooth inhomogeneous mapping. As a result the
whole mapping would be smooth with discontinuities along borders of
segments.
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(a) u - MR image (b) v - CT image

(c) fε(u,v)(u) (d) f1, f2

Figure 5.1: MR and CT images of the same object with segmentation based
intensity correction. Pixel u(x, y) is mapped by one function f1(u(x, y)) or
f2(u(x, y)) . Each mapping forms a pair (u(x, y), fε(u(x, y)) where ε = 1, 2.
The function fε for which the pair (u(x, y), fε(u(x, y)) is closer to the pair
(u(x, y), v(x, y)) is used to map intensity at position (x, y). MR image after
correction shown in (c) is much more similar to CT image shown in (b) than
MR without correction shown in (a).
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