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"And the end of all our exploring 

Will be to arrive where we started 

And know the place for the first time" 

T. S. Elliot 
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Femtosecond Laser Interactions 

Abstract 

Solid State laser systems are now capable of generating temporal pulses of sub-10 fs 

duration and facilitate the study of ultrafast phenomena in chemical, biological and 

physical systems. The high field intensities inherent in these pulses, means that highly 

non-linear processes may be observed. Studies of solution phase transient absorption 

and femtosecond pulse laser ablation have been undertaken and in each case an 

experimental apparatus has been developed. 

Ultrafast pump-probe studies of room temperature solutions of 3-hydroxyflavone and a 

number of its derivatives have been undertaken. Measurement of transient absorption 

spectra attributable to the excited tautomer arising from ESIPT was observed throughout 

the visible wavelength range (400 - 700 nm). In cyclohexane and acetonitrile solutions, 

ESIPT was found to be so rapid that it was only possible to assign a time constant 

5 35 fs to the process. In ethanol, however, a time constant of 60 fs was determined. The 

slower ESIPT in this solvent is attributed to the greater strength of the solute-solvent 

interactions. The influence of substituents in the 4' position of the phenyl ring of 

3-hydroxyflavone has also been investigated and we observe unusual behaviour for a 

cyano substituent in polar solvents and for dimethylamino and aza-Crown substituents. 

We attribute this behaviour to charge transfer followed by rapid solvent re-organisation. 

The possibility of the formation of TICT states is also discussed. 

Ultrafast laser ablation has been studied for a variety of dielectric, semiconducting and 

metallic substrates with emphasis on the development of the technique for rapid 

prototyping of micro-fluidic devices. Some fundamental observations of the ablation 

mechanisms and residual structures is presented along with results for prototyped 

devices for molecular diffusion and macro-filter applications. 
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Chapter 1: INTRODUCTION 

1.1 Thesis Overview 

The last decade has witnessed significant advances in the ability to generate 

short pulses of radiation throughout the optical (and indeed) vuv and x-ray regions of 

the electromagnetic spectrum. These developments have had (and continue to have) a 

tremendous impact on the field of chemical dynamics' and high intensity light-matter 

interactions2. Fundamental questions concerning chemical reactions are now routinely 

studied in real-time experiments (see for example the review by Zewail3). Fig. 1.1.1 

shows the typical timescales of some elementary physical, chemical and biological 

processes in the condensed phase. 

Collision Time in Molecular Rotation 
liquids 

Solvent Relaxation 

Electronic Vibrational Dephasing 
Dephasing 

Vibrational Relaxation 

Vibrational motion Electronic Relaxation 
Time /s 

10'14 10-13 10-1x 10- n 10.10 10-9 10.1 

Proton Transfer -771 

Energy Transfer Protein Internal Motion 
In Photosynthesis 

El- Electron Transfer Torsional 
Photoionisation In Photosynthesis Dynamics Of 

DNA 
Photodissociation 

Photochemical I somerisat ion 

Cage Recombination 

Fig. 1.1.1 Approximate time scales of elementary molecular relaxation phenomena and 

some chemical and biological manifestations of these phenomena4. 



Femtosecond Laser Interactions 

The majority of chemical reactions occur in the condensed phase. This has 

driven a theoretical and experimental effort towards the understanding of chemical 

reactivity in the condensed phase at the molecular level. While the half-life of a 

unimolecular reaction may span from picoseconds to years, the actual time that a 

molecule spends traversing the potential surface from reactant to product is very short. 

In understanding rate processes, the most important stage of a reaction is the `transition 

state, ' representing the structure of the reactants [and solvent] at the point where the 

reaction crosses from the reactant surface to that of the product. With the emergence of 

laser sources in the picosecond and femtosecond range, direct "real time" studies of 

ultrafast dynamic processes and coherent control of reactions in the condensed and gas 

phases become possible. 

The development of stable ultra-intense sources of sub-picosecond pulses has 

enabled researchers to examine the interaction of laser fields with matter for such 

diverse purposes as x-ray generations, mass spectrometry6 and multiphoton imaging7. 

This thesis reports the development of two such femtosecond laser applications of 

interest to BNFL and the research interests of the Centre for Photochemistry at the 

University of Central Lancashire. Studies of Excited State Intramolecular Proton 

Transfer (ESIPT) in 3-hydroxyflavone derivatives have been undertaken at a variety of 

European centres as well as in house at BNFL for which a transient absorption 

spectrometer was developed. In addition to this, an investigation of the interaction of 

ultra-intense laser pulses with a variety of target materials has led to the development of 

a laser ablation workstation for the micro-machining of micro-fluidic devices of interest 

to BNFL. 

The structure of the thesis has been ostensibly dictated by the nature of the 

research undertaken. Chapter 1 consists of this overview and a number of sections 
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which outline relevant background information with regard to ultrashort pulse 

generation and amplification (Section 1.2), pulse characterisation and manipulation 

(Section 1.3) and sections devoted to each of the subject areas; transient spectroscopy of 

ESIPT (Section 1.4) and femtosecond laser ablation (Section 1.5). Chapter 2 is a 

discussion of the experimental conditions and techniques employed in the collection of 

data and is divided into three sections. Section 2.1 provides details regarding the BNFL 

femtosecond laser system (BMI Alpha 1000) previously installed at the Company 

Research Laboratories (CRL) at BNFL Springfields. Section 2.2 discusses the 

development at CRL of a two colour pump-probe absorption experiment and outlines 

the facilities used at other sites as part of the European transport and mobility for 

researchers (TMR) large scale facilities program. Section 2.3 discusses the development 

of a laser ablation workstation for rapid prototype production of micro-fluidic devices. 

The experimental results and discussion are presented as two separate chapters due to 

the disparate nature of the subject matter. Chapter 3 is concerned with the experimental 

results for pump-probe spectroscopy on compounds which undergo ESIPT and some 

other charge transfer processes. Chapter 4 presents results of femtosecond ablation 

experiments on a variety of substrate materials. In both cases, discussion is undertaken 

alongside the results and conclusions are presented at the end of the chapter in order to 

simplify the thesis structure. Finally, publications from the research are presented as an 

appendix. In all cases, references highlighted in the text are given at the end of the 

chapter concerned. 
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1.2 Ultrafast Pulse Generation And Amplification. 

In this section the theory of mode-locked pulse generation is given, followed by 

a practical discussion of solid state ultrafast lasers and the method of chirped pulse 

amplification as applied to ultrashort pulses. 

1.2.1 Modelocking8'9 

The majority of devices used to generate ultrashort laser pulses rely on the 

technique of modelocking. In principle, modelocking entails modulation of the loss [or 

gain] in a laser at a frequency equal to the inverse of the time required for a pulse to 

travel one round trip inside the cavity. In order to generate short pulses using 

modelocking, the laser resonator must support a large number of longitudinal modes. 

Under these conditions, modulation results in the locking together of the phases of the 

oscillating longitudinal modes, generating a series of discrete laser pulses that are 

separated by the cavity round trip time. 

In order to have a stable standing wave within a laser cavity it is clear that we 

must fulfil the condition whereby the change in phase between reflectors must be an 

integral multiple, n of it [i. e. the cavity length 1, is an integral number of half 

wavelengths, A] 

1- 2 1.2.1 

In a free running system, these longitudinal modes will have random phases and 
the laser intensity will vary with time depending on the number of modes in phase at any 

particular time; the output is CW. 
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A particular mode with angular frequency wo=2lty (where v is the laser 

frequency) will have a time variation of the electric field, E(t) at a particular position 

(say the output mirror), given by 

E(t)= Eo exp(iwot) 1.2.2 

Other modes will have slightly different temporal variations of the electric field. 

The nth mode of frequency (wo + nAw) will have 

E� ýtý = E� exp(i(cvo + nOwy + o� 1.2.4 

where Aw is the angular frequency separation (M) = 27tAv = nc/1) and 4� is the 

difference in phase between the nth mode and O. 

The total electric field is the sum of all the E,, (t) fields, so 

N-1 

E(t) =Z E� exp(i(wo + nEo» + oj 1.2.5 
n-0 

where N is the number of modes present in the laser cavity. 

If we make the phase difference between the modes 4,, =O and assume that the 

electric field amplitudes are equal, the total electric field becomes; 

E(t) = Eo exp(itvat 
1+ exp(i&ot)+ exp(i, & tvt)2 +.... 

... + exp(iA a)" +........ +exp(iAwt)'-' 

NO& t 

hence E(t) = Eo exp(icvot) x exp lsin 2 
1.2.6 

2 
sin 

Atzt 
2 

The intensity of the radiation at the output mirror is of interest and is given by 

the product of E(t) with its complex conjugate E', 

NA ca Eö sin 2 
I(t)=E(t)E'(t)= 2 

sine 2 

1.2.7 
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This temporal variation of intensity represents a train of modelocked pulses, emitted at a 

period troufau; p 2l/c and of pulselength to= troundn; P/N. This is demonstrated in fig. 1.2.1. 

I 

10 

8 

6 

21 

Time/ns 

Fig. 1.2.1 76MHz, 100 fs Modelocked laser pulses modelled using Eqn. 1.2.7 

[corresponding to 1.3 x 105 phase locked modes and a bandwidth of -- 10 nm] 

Clearly for ultra-short pulses it is desirable to have a large number of 

propagating modes in the laser cavity due to the uncertainty relation, 0 v&t szý 1, where 

the number of modes is proportional to Av. 

Many techniques for the ̀ phase locking of modes' have been developed, all of 

which act upon the laser in basically the same manner. In order to initiate the pulse some 

sort of switch is modulated at precisely the rate at which the pulse oscillates between the 

high reflector and the output coupler of the laser cavity. Only light which passes through 

the switch can be amplified and since the switch is closed at all other times only one 

6 
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pulse circulates around the cavity. Therefore the modulation frequency must be precisely 

matched to the repetition rate 1/troundtrip" An active system imposes a modulation 

frequency on the circulating pulse via some external reference and it is clear that timing 

and cavity thermal stability in such systems is critical. Passively modelocked systems, 

however, determine their timing from the pulse itself, automatically opening on arrival 

of the pulse, so that timing jitter due to, for example, a change in cavity length, is 

automatically compensated for by the switching mechanism [typically a saturable 

absorber]. 

A self-modelocking Ti: Sapphire laser relies on a passive mechanism to create an 

ultrashort pulselo. Intense pulses propagating through dispersive media can create 

perturbations in the refractive index of the medium, so called intensity dependent 

refractive index phenomena". A Gaussian shaped pulse will undergo a lensing effect 

due to the difference in refractive index between the edges and the centre of the beam 

[Kerr lensing]. In a Ti: Sapphire laser the Kerr lens can be formed in the crystal gain 

medium. Normally, the laser will operate exclusively in CW mode, however by 

perturbing a cavity mirror, a sufficiently high intensity fluctuation can occur to produce 

a Kerr lens in the crystal. If the cavity is well designed an intracavity slit can then be 

introduced into the beam which creates higher losses for the CW beam and the 

modelocked beam alone propagates in the cavity. The mechanism is described in the 

following section. 

7 
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1.2.2 Solid State Femtosecond laser Sources12 

The last few years have brought about significant advances in ultrashort pulse 

laser physics3, '3"4. The development of novel all-optical modulation techniques along 

with the appearance of ultra-broadbandwidth gain media [e. g. Titanium doped Sapphire] 

has opened a new era for femtosecond technology. Within a period of as little as five 

years we have witnessed the emergence and evolution of a new generation of ultrashort 

pulsed lasers based exclusively on solid state components. In this section I hope to 

provide a brief synopsis of the basic operating principles and the major performance 

limitations of solid state femtosecond lasers and summarise recent technological 

advances allowing the generation of near transform limited sub-10 fs optical pulses 

direct from laser oscillators. 

Although picosecond optical pulses were first generated in a solid state medium 

[Nd: Glass] in the mid-60's, progress in ultrashort solid state pulse generation halted 

soon after the first pioneering experiments. The picosecond relaxation time of the 

saturable absorbers used for passive modelocking prevented researchers from pushing 

the pulse generation below the picosecond limit. Hence, attention shifted to organic dye 

lasers, which, as a result of their nanosecond upper-state lifetimes, were capable of 

actively participating in short pulse formation [gain saturation], allowing intracavity 

pulse shortening down to the femtosecond regime by using "slow" (picosecond)- 

relaxation time absorbers. Operation of femtosecond dye lasers continues to be a highly 

sophisticated art up to the present, mainly because of the large number of inaccessible 

system parameters. The demand for consistent reproducibility in laser performance 

could not be met until the recent development of solid state systems. 

8 
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The development of all solid state laser technology has been possible by the use 

of the intensity induced change in the refractive index. This ultrafast "Kerr effect" can 

be transformed into an almost instantaneous saturable absorber effect by introducing 

appropriate linear optical components into the cavity. The two most successful 

embodiments of this general concept have been additive pulse modelocking and self [or 

Kerr-lens] modelocking. The effect of these passive Kerr modulators on the envelope of 

an electric field E(t) can [to a first approximation] be written as' 2 

2 AE(t) = 
(L2 

+ io) JE(t)l 1.2.7 

where, x and 4 measure the strengths of self-amplitude and self-phase modulation [SAM 

and SPM] respectively. Apart from SAM and SPM, intracavity group velocity 

dispersion [GVD] is a major pulse shaping effect, which is characterised by the 

parameter13 

322,! 

D_ 
22 d nL. AX ocd 

TlX 
2Tic2 j2 d%b2 1.2.8 

i. e. by the second derivative of the refractive index with respect to the wavelength [the 

peak of the laser wavelength spectrum]. L is the pathlength in the medium. In order to 

avoid a strong pulse broadening due to the interaction of a pulse carrying a positive 

chirp [as a consequence of 4>O] with normal dispersion [D>O] the intracavity GVD 

must be negative. GVD and SPM are discussed in detail in Sections 1.32 and 1.33 

respectively. 

Both additive-pulse and Kerr-lens modulators exhibit SPM coefficients that are 

much larger than the corresponding SAM parameters. 4 >ic implies that steady-state 

pulse formation is dominated by a soliton-like interplay between SPM and negative 

GVD. Hence, assuming; i) a linear variation of T1(%) as a function of ?,, i. e. D(A. )=D(A. o); 

9 
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ii) evenly distributed SPM and GVD in the cavity; and iii) a sufficiently broadband gain 

medium; the pulse duration r is expected to obey the soliton formula 12 

3331DI 
zý zý ow 

1.2.9 

where W is the intracavity pulse energy. The soliton like behaviour of the steady state 

pulse has been verified in a self-modelocked fused silica prism controlled Ti: Sapphire 

laser down to the 10 fs regime's. Although x does not significantly effect r, optimised 

SAM is essential for stabilising the pulse against noise and perturbations as well as 

preventing the emergence of a narrow-band CW background, which tends to co-exist 

with the modelocked pulse in soliton-like systems which have not been optimised. 

In femtosecond solid state lasers the pulse duration can be reduced by decreasing 

the magnitude of intracavity GVD until one of the assumptions or approximations [i-iii] 

leading to equation 1.2.9 fails. The most severe limitation in practical broadband lasers 

originates from the increasing deviation of T, (X) from a linear function as the oscillation 

spectrum broadens. The lowest order contribution to this deviation is referred to as third 

order dispersion [TOD]. As the pulse duration decreases and/or the pulse energy 

increases the separate action of GVD and SPM increasingly modulates the pulse 

parameters [duration, bandwidth] as the pulse circulates in the cavity. This modulation 

can be regarded as a periodic perturbation of the ideal soliton-like pulse and manifests 

itself in an additional term Ar=a(z)4W, where a depends on the position of the pulse in 

the cavity. Other potential limitations to pulse shortening are the gain and resonator 

bandwidths. 

Until recently broadband negative GVD has been introduced in short pulse 

oscillators almost exclusively by a pair of Brewster-angled prisms. The layout of a prism 

controlled Ti: Sapphire laser [similar to the Mira 900F] is shown in fig. 1.2.2. To obtain 

10 
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the shortest pulse duration, the circulating pulse is coupled out of the cavity after 

traversing the dispersive delay line (double pass through P, and P2) and an extracavity 

prism pair allows control of GVD outside the laser cavity. Since the prism pair also 

introduces a high order dispersion, careful selection of prism material is required if the 

pulse duration is to be minimised. For Ti: Sapphire, the optimum prism material is fused 

silica, which by minimising TOD in the cavity allows generation of near transform 

limited pulses of 11-12 fs in duration around 800 nm. Recent investigations 16 predicted 

a vanishing of the TOD component in Ti: Sapphire/Fused Silica system at 850 nm. In 

fact, tuning to this wavelength, extremely broad, symmetric bandwidth mode-locked 

spectra can be generated [symmetry is lost as a result of residual TOD]. 

P, 

Ti: Sapphire Crystal 

Ar Ion Pump beam 

P2 

BRF / Slit 

Output 

Fig. 1.2.2 Schematic showing the Ti: Sapphire Laser; Pt and P2 are the prisms. BRF; 

Birefringent filter, for frequency tuneability. 

Recently a novel technique has been proposed and demonstrated for intracavity 

dispersion control17. Broadband, high-reflectivity multilayer dielectric mirrors have been 

developed with their multi-layer period modulated during the evaporation process. This 

modulation not only broadens the high-reflectivity band-width but, more importantly, 

offers the possibility of engineering the dispersion properties of the mirrors. As a first 

embodiment of this general concept, chirped dielectric mirrors exhibiting a nearly 

11 
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the shortest pulse duration, the circulating pulse is coupled out of the cavity aller 

traversing the dispersive delay line (double pass through Pi and P2) and an extracavity 

prism pair allows control of' GVD outside the laser cavity. Since the prism pair also 

introduces a high order dispersion, careful selection of prism material is required if the 

pulse duration is to be minimised. For Ti: Sapphire, the optimum prism material is fused 

silica, which by minimising TOD in the cavity allows generation or near transform 

limited pulses of 1 1-12 is in duration around 800 nm. Recent investigations 16 predicted 

a vanishing of the TOD component in Ti: Sapphire/Fused Silica system at 850 nm. In 

fact, tuning to this wavelength, extremely broad, symmetric bandwidth mode-locked 

spectra can be generated [symmetry is lost as a result of residual TOD]. 
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Ti: Sapphire Crystal 

Ar Ion Pump beam 
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Output 

Fig. 1.2.2 Schematic showing the Ti: Sapphire Laser; P, and P2 are the prisms. BRF; 

Birefringent filter, for frequency tuneability. 

Recently a novel technique has been proposed and demonstrated for intracavity 

dispersion control'7. Broadband, high-reflectivity multilayer dielectric mirrors have been 

developed with their multi-layer period modulated during the evaporation process. This 

modulation not only broadens the high-reflectivity band-width but, more importantly, 

offers the possibility of engineering the dispersion properties of the mirrors. As a first 

embodiment of this general concept, chirped dielectric mirrors exhibiting a nearly 
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constant [high order dispersion free] GVD over the wavelength range 720-890 nm have 

been fabricated, where the wavelength range can be easily shifted to match the emission 

spectra of other lasers by simply rescaling the layer thicknesses. Using these mirrors, 

compact mirror dispersion controlled [MDC] self-mode-locked oscillators can be 

constructed. TOD is significantly reduced in this system as compared to its prism 

controlled counterpart. It is possible to generate highly stable near transform limited 

sub-10 fs Sech2-shaped pulses. 

In strong contrast to dye lasers, ultra-short pulse formation in solid state lasers 

using Kerr-modulators can be described and controlled in terms of a few uniquely 

defined and experimentally accessible parameters [x, 4, D and W]. As a result, the 

reliability of femtosecond solid-state lasers and the reproducibility of their performance 

is far superior to those of any previous femtosecond source. Whilst prism-controlled 

systems offer the advantage of continuously tuneable intracavity dispersion, MDC 

oscillators exhibit a cavity dispersion that is completely independent of resonator 

alignment, resulting in an unprecedented long term stability and day-to-day 

reproducibility of femtosecond pulse parameters. These advances are expected to give 

rise to further expansion of ultrafast techniques into new areas of science and 

technology' 8. 

12 
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1.2.3 Chirped Pulse Regenerative Amplification 

The continued development of tuneable, solid-state laser materials has resulted 

in the production of ever more powerful and efficient ultrashort pulse laser sources. 

Titanium-doped sapphire [Ti: Al203] is an excellent example; tuneable from 680 to 

1100nm, it has a much broader range than that of traditional organic dyes previously 

used in femtosecond oscillators and amplifiers. In addition to this unprecedented 

tuneability, the energy storage characteristics of these materials make it possible to 

produce compact, high peak power lasers. The challenge in solid-state laser design 

comes in extracting this energy in an ultrashort pulse. For a 100 fs pulse, the peak power 

exceeds Gigawatts for energies as low as a few millijoules. Consequently the intensity 

that can develop in a amplifier chain can quickly lead to self-focusing and catastrophic 

damage to optical components. This limitation can be overcome by temporally 

stretching the pulse prior to amplification, for example a 100 fs pulse can be stretched 

by a factor of 10000 to around 1 ns, with standard size optical components. The 

stretched pulse can then be safely amplified. Because the peak power has been reduced 

[by the same factor as above], the pulse can extract significant energy from the 

amplifiers without risk of catastrophic damage from self focusing. After amplification, 

the pulse is recompressed back to its Fourier transform limit. This technique is known as 

chirped pulse amplification and recompression [CPA] 19,20 Ii 22. 

The basic scheme for CPA is given in fig 1.2.3. Initially, a short pulse is 

generated in, for example, a self-modelocked Ti: Sapphire laser. The pulse is then 

temporally stretched [chirped] using a grating arrangement to introduce positive group 

velocity dispersion [GVD] (GVD and Pulse re-compression are discussed in Section 

1.3.2). The amount of stretch introduced depends on the level of amplification that is 

13 
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required. If the final pulse energy is in the 100 mJ range, a stretched pulse-width of 1 ns 

is desirable. For a few millijoules, the pulse needs only be stretched to a few hundred 

picoseconds. Below a millijoule, 10's of picoseconds is sufficient. 

Input and output beam 
Pockels cell 

Pump beam 
(Nd: YLF] 

Thin film Gain medium 
polariser 

Fig. 1.2.3 Schematic of regenerative amplifier cavity. 

After stretching any number of amplification stages can be introduced providing 

the damage threshold is not exceeded in the chain. For millijoule systems a regenerative 

amplifier scheme is typically employed. This configuration consists of a high quality 

[high Q] optical resonator that contains the gain medium, a Pockels cell and a thin film 

polariser [Fig. 1.2.3]. The Pockels cell is oriented to give a static quarter wave 

birefringence that allows an incident pulse to make one pass in the cavity before exiting. 

With a pulse inside the cavity, a quarter wave voltage is applied to the cell and the net 

birefringence is now a half wave per pass and the pulse is trapped in the cavity. The 

pulse is allowed to make as many round trips as necessary to fully deplete the gain. At 

this point, a further quarter wave voltage is applied to the Pockels cell and the pulse is 

forced to exit the cavity (cavity dumped). 

Clearly, one of the advantages of this type of configuration is that any arbitrary 

number of passes is possible in the cavity, thereby only small single pass gains are 

required. This means that for laser pumped gain media, the pump fluence can be kept 

relatively low, and the crystal can therefore tolerate an imperfect pump beam profile 

much more readily. Extraction efficiencies can be very high [20-30% have been 

14 
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demonstrated]21. Also the configuration is easy to align. Because an optical cavity is 

used, the amplified beam has the spatial mode of the resonator, acting as a built in 

spatial filter ensuring high beam quality. 

The limiting factor for regenerative amplification is that broadband intracavity 

elements are required. In general, the more passes that are made in the cavity the broader 

the bandwidth requirement, so that spectral narrowing is minimised. After amplification 

the pulse is recompressed using an arrangement similar to that of the stretcher, this time 

introducing negative dispersion. 

In conclusion, chirped pulse regenerative amplification and recompression 

allows the efficient amplification of ultrashort pulses to peak powers far in excess of 

those available in conventional laser systems. 

15 
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1.3 Femtosecond Laser Techniques 

This section aims to present various techniques which are core to the 

development of ultrafast spectroscopic methods at BNFL. Initially correlation 

techniques for pulse measurement will be described, subsequently the factors affecting 

pulse length in optical elements are considered and methods for frequency conversion 

are discussed. 

1.3.1 Measurement Of Ultrashort Pulses 

The problem of measuring the duration of modelocked ultrashort pulses is of 

great practical and theoretical interest23. Since the fastest conventional photodiodes have 

response times of -1 x 10"11 s, it is impossible to use these optical detectors to measure 

100 fs (1x103 s) pulses. A number of techniques developed for this purpose all take 

advantage of some non-linear process to obtain a spatial autocorrelation trace of the 

optical pulse intensity. The measurement of a pulse of 100 fs is thus replaced with 

measuring the spatial extent of an autocorrelation trace of length -30 µm, which is a 

relatively simple task. 

The most commonly used autocorrelators consist of a Michelson interferometer 

[see fig. 1.3.1] with its output focused into a second harmonic generation [SHG] 

crystal24. The resulting second harmonic signal is measured by a `slow' photodiode. 

Given that a second harmonic signal will only be generated if two photons arrive 

simultaneously in the non-linear crystal, as one pulse is scanned through a replica of 

itself [in space] the signal measured by the photodiode will vary due to the amount of 

pulse overlap ̀ seen' by the SHG crystal. 
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TI Variable time delay 

SHG 
<' n 
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I 
I(t) 

BS v2 =2v, Detector 

Pulse train 
from laser v, 

Fig 1.3.1 Schematic for autocorrelation measurement; SHG, second harmonic crystal. 

The autocorrelation function can be expressed, both with and without 

background [with and without SHG components arising from a single pulse replica] and 

as fast [interferometric] or slow depending on the accuracy of measuring the spatial 

increment on the delay line. 

Mathematically the 2nd order background free slow autocorrelation is given as24 

J 1(t)1(t + r)dt 
gö(T) =Tx1.3.1 

J 1(t)dt 
_x 

where I(t) is the pulse intensity and r is the time delay between pulse duplicates. 

In this case the uncertainty in the measurement of i is such that certain 

oscillatory terms containing information about time dependent phase shifts [chirping] 

average to zero. A Sech2(t/At) pulse profile is shown with its associated autocorrelation 

function in fig. 1.3.2 
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Intensity 

Fig. 1.3.2 Sech2(t/At) pulse with its associated autocorrelation function (At=100 fs). 

The interferometric autocorrelation is given as24 

21 E' (t)E(t + z)dt +2j E(t)E' (t + z) +3jE2 (t)E _ (t + z)dt 
SB =1 + 1.3.2 

j E' (t)dt 

where E(t) is the electric field envelope. Note that in this case the measurement is not 

background free, and information is gained at the expense of signal to noise ratio. 

It is clear that the second order autocorrelation function is intrinsically 

symmetrical and cannot be used to obtain the pulse shape unless the pulse is known 

from other information to be symmetric itself. Higher order correlation functions can 

give definite information on pulse shape and have been used to characterise pulses for 

various laser types. The vast majority of work, however, uses the autocorrelation 

function to provide an estimate of the pulse duration based on a number of assumptions. 

If the pulse is transform limited, the FWHM of I(t), At, is directly related to the FWHM 

of g2o(t), Ar, through a numerical factor dependent on the shape of I(t) (estimated by 
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taking the Fourier transform of the spectrum). Table 1.3.1 collects together the numerical 

factors along with the time bandwidth products for transform-limited pulses of some 

given shapes. It is common practice to obtain At by selecting the appropriate factor and 

dividing At by it. 

Table 1.3.1 Autocorrelation correction factors for various pulse shapes 

Pulse Shape I(t) OvAt AT/At 

Square At 
< < 

At 0.886 1 
t 22 

Gaussian t2 0.441 1.414 
exp - At 2 

Sech t 
sech 2- 0.315 1.5427 

et 

Lorentzian 1 0.221 2 
tj +ß t2 

Single Sided Exponential 
exp -Q t (t > 0) 

0.11 2 
t 

At CRL, we have two autocorrelation methods available to measure the pulse 

width characteristics of both the seed laser oscillator [Mira 900] and the regenerative 

amplifier [Alpha 1000]. The experimental methods differ due to the difference in the 

frequency of pulse generation in each system; the Mira operates at 76 MHz and the 

regenerative amplifier at 1 kHz. For the Mira, a CW autocorrelator [Femtoscope] has 

been used to measure the pulse width. This consists of a Michelson interferometer as 

described above with the addition of a shaker assembly to continuously scan the time 

delay. The frequency of the shaker is chosen (-30 Hz) so that the laser frequency 
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appears essentially CW to it. The Femtoscope is useful for pulses in the frequency range 

10 kHz - 100 MHz. Below this frequency minimum the autocorrelation is no longer 

`real-time' [the autocorrelation will no longer be produced from a single scan by the 

shaker]. 

For measurement of pulses from the regenerative amplifier, a single shot 

autocorrelator is used [BMI, AM-100]25. The AM-100 relies on transforming the 

temporal profile of the pulse duplicates into spatial data, which can be imaged on a CCD 

camera. A diagram of the AM-100 is given below [fig. 1.3.4]. 

M, M, Input Pulse 

Ma 
I Mb 

KEY 
SHG BS Beamsplitter, 
Crystal 

A Aperture, 
CL Cylindrical lens, 
CCD Camera Array, 
M,, Mirrors. 

A 
BS 

CL 
Ms 

CCD i1 Variable delay for 
ýM3 M2 i calibration/optimisation 

Fig. 1.3.4. Single shot autocorrelator. 

The laser output is directed onto M, and split into two replica pulses at the 

beamsplitter, BS. The two arms are directed via M2-4and M5_6, respectively onto M7 and 

in turn onto the SHG crystal, where a second harmonic signal is generated and focused 

using the cylindrical lens onto the CCD camera. The resulting signal is processed and 

viewed on an oscilloscope. The two pulses incident on the SHG crystal are not collinear 
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so the second harmonic signal is only produced when the pulses overlap both temporally 

and spatially. The spatial intensity distribution of the second harmonic signal is related 

to the incident radiation intensity such that25 

S(x) cc f i(t + Ty(r - z)dt 1.3.3 

therefore, one may obtain the same information as with a classical autocorrelator in a 

single pulse. The absolute measurement of the pulse width can be obtained either by 

measuring the exact spatial width of the pulse or by introducing a delay into one beam 

and thereby shifting the SHG signal along the CCD camera. The first method is 

undesirable because it requires accurate calibration of the CCD camera and an exact 

knowledge of the angle of incidence of the beams on the SHG crystal. A delay, Oto, 

introduced into one arm of the autocorrelator, however, is more readily measured and 

relates to a relative shift on the CCD, Lxo. The FWHM, Ox, of the spatial function S(x) 

is related to the incident temporal pulse FWHM, At, by the equation25 

At = K-'. Ax 
At° 

Axo 
1.3.4 

where K is given by AT/At in Table 1.3.1. The above equation shows that the calibration 

of the single shot autocorrelator is obtained in the same way as in a classical 

autocorrelator leading to a simple measurement method. 

We have found that to obtain reliable results, uniform illumination of the SHG 

crystal is essential and great care must be taken when setting up the apparatus, as 

misalignment or spatial inhomogenieties can effect the measurement. 
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1.3 .2 Pulse Broadening In Optical Elements And Pulse Compression 

For pulses propagating in optical materials, significant pulse broadening can 

occur due to dispersion in optical materials, thereby reducing the temporal resolution of 

ultrafast instruments. Such broadening is well studied for prisms, gratings and bulk 

media26. 

The generation and amplification of femtosecond laser pulses require that one 

compensate for the pulse broadening effects. In addition to the effects of optical 

elements in the cavity, significant pulse distortions have been observed for high- 

intensity pulses travelling through air. Three major broadening mechanisms have 

received significant attention, namely group-velocity dispersion [GVD], third-order 

dispersion [TOD] and self-phase modulation [SPM]. In addition to these effects, a 

fourth phenomenon pulse front distortion [PFD] in lenses has been shown to have a 

significant effect on pulse length. 

Whilst the effects of GVD and TOD can be compensated for, by passing the 

light through a suitable arrangement of gratings and prisms, SPM and PFD can lead to 

irreversible temporal broadening. In considering these effects, one can treat the optical 

pulse as a wave packet with central frequency coo propagating through a dispersive 

medium. A useful way to discuss this is in terms of the Taylor series expansion of the 

phase13 

ý(w)ýý(wa)+(l (m-wo)+2 jj(i) 
930 

(w-woY +63 +..... 1.3.5 
ib Wo 

The first term in this Taylor-series expansion represents the propagation of the central 

frequency of the pulse. The linear term is related to the inverse of the group velocity of 

the pulse and is responsible for PFD27. The quadratic term refers to the change in shape 
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of the pulse as it travels through the medium and gives rise to GVD. The phase term of 

an input pulse in the transform limit, due to GVD in dispersive media is given by13 

d2om 
= 

A3 d2nx 

dw2 2=2 dI%2 
1.3.6 

where c is the speed of light in vacuum and x is the distance propagated in the medium. 

Thus GVD induced by propagation through a dispersive medium results in a 

time-dependent frequency sweep or `chirp' in the laser pulse. In most materials, the 

lower-frequency components travel faster than the higher-frequency components, 

resulting in increased pulse length. This means that the broadening due to GVD depends 

upon the initial laser pulse width. For example, if a 75 fs pulse is passed through a 25 

cm cell of water, the output pulse is broadened to 410 fs. However, aI ps pulse would 

exhibit essentially no distortion passing through the same cell. 

The cubic term in Equation 1.3.5 causes complex pulse broadening and 

reshaping and is referred to as third-order dispersion [TOD]. TOD only becomes 

significant at large bandwidths and intensities and so must be considered in ultrashort 

regimes. The phase term for TOD in bulk media is given by28 

3 
A4 3d2n Ad3n 

+x 
dw3 2, T 

2c3 dý2 d3 
1.3.7 

Two schemes are commonly used to compensate for GVD; a four prism 

arrangement proposed by Fork et a! 28, and a grating pair proposed by Treacy29. Both 

schemes introduce a negative GVD thereby slowing the red pulse components and 

allowing the blue pulse components to `catch-up'. The phase terms for GVD and TOD 

for a double prism pair [Eqn. 1.3.8 and 1.3.9] and a double grating pair [Eqn. 1.3.10 and 

1.3.11] are given below28.30; 
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A3 d 'P 

d& 21r2c2 dß. 

d3cp -'14 
I d2P d3P 

dw3 - 4, r2c3 
3 

d1%2 ý dß, 3 

d2ý X31 2ý 
d-sing 

dw2 
= 2dg2 

1iý' 

d30g - d20g 6 
(iýsn7_sn27) 

, TA 
dw3 dw2 C ,ý2 1- - sin y 

GVD 1.3.8 

TOD 1.3.9 

GVD 1.3.10 

TOD 1.3.11 

Lenses present a special case for analysis; not only are GVD, TOD and SPM 

factors in determining the pulse width but the linear term in equation 1.3.5 also becomes 

significant. For simplicity we will assume that TOD and SPM are insignificant in this 

case (in a practical situation this is probably true for pulses >100 fs). The most 

significant effect (especially in the UV and for large aperture lenses) is pulse front 

distortion [PFD]. In this case, the pulse front [defined as the surface coinciding with the 

peak of the pulse] moves with group velocity through a lens and is delayed with respect 

to the phase front. This is peculiar to the lens case as the path length in the media of the 

lens is dependent on radius. A parabolic delay is therefore seen across the diameter of 

the lens. It is clear that GVD is also radially dependent, however, as we will see, the 

effect on pulse width is relatively insignificant. It is interesting to note that PFD has 

been, for the most part, ignored as a source of pulse distortion in experiments. This is 

for the most part because autocorrelation techniques are not capable of detecting spatial 

beam distortions (the autocorrelation for two interacting parabolic wave fronts is the 

same as that for a plane wave front). 
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Following the proof of Bor31; to calculate the propagation time we begin with 

Fermat's principle. Stating; 

L, +nL2+L3+L4=nDo+f 

Where, f= Focal length of the lens. 

L1,2,3,4=Pathlengths defined in fig. 

and Do =The central thickness of the lens. 

1m1 rwi A -... L, L=t_ 

z 

1.3.12 

fig. 1.3.4 Basic geometry for geometrical optical derivation of PFD in simple lenses. 

A pulse is propagating in a medium with group velocity given by vg = dco/dk, 

where w is the angular frequency and k is the wave-vector. In this case it is far more 

convenient to define group velocity in terms of wavelength in vacuum A. and refractive 

index, n(k). Now the group velocity is expressed as; 

_C 
do v8 

n_A C dit 

1.3.13 
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The propagation time T(r) of a plane wave from plane A to the focal point, F, 

can be given as; 

TO. 
L, +L, +L4. + 

L2 
I n_Adnl 

c cl d2) 

In the paraxial approximation we obtain for Do, L2 and f; 

D-r° 
1-1 

°2 R1 R2 

r 1_1 
L2 - D° -2R, RZ 

f 
=(n-1) 

1-1 
R, RZ 

1.3.14 

1.3.15 

where r and ro are the input radii of an arbitrary and the marginal ray respectively and Rl 

and R2 are the radii of curvature of the lens surfaces. 

Now substituting the expressions 1.3.15 into 1.3.14 and using the definition of 

the focal length given by Fermat's theorem we obtain the propagation time; 

z 
To= 

c 
+D° 

(n-ýdý 
+2c 

R R2 c 
1.3.16 

Substituting the expression for Do into Eqn. 1.3.16 and taking r= ro we obtain 

the propagation time for the marginal ray; 

7 =T(r=r0)=f +Don 
cc 

1.3.17 

Since the optical pathlength from Plane A to F is nDo+f it follows that the 

marginal ray propagates with the phase velocity. 

The temporal delay AT(r) between the group and phase fronts for a ray at 

arbitrary radius r is therefore; 
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OT(r) = T(r) - T. = 
ro 2- r2 11 dol 

2c RR d2 'ý1.3.18 
roe-r2 ( dol 

AT(r) = 2cf n -1 \-ý d, t 

For materials of practical interest, Xdn/d?, has a negative value in the spectral 

range of transparency. It is instructive to compare the relative magnitudes of PFD and 

GVD in lens designs. As we have already seen the magnitude of the induced GVD is 

given by equation 1.3.6. A more practical form of this equation is given by 

A d2n 
AzGºV °c dý' 

0.1x 1.3.19 

where the usual symbolic conventions are observed. We can then substitute the axial 

thickness; 

2 

X= 
r° 1.3.20 

2f(n-1) 

and assuming a transform limited sech2 pulse to give; 

Xd 2n r2 0.16 Ozon ° 
c2 dA' f(n -1) Oz 

1.3.21 

where Atp�isc is the full width at half maximum [FWHM] of the pulse. Since PFD and 

GVD are both functions of the f number [f#] of the lens they can be plotted graphically 

for comparison. Fig. 1.3.5 shows PFD and GVD calculated for a single element fused 

silica lens at 790 nm with a pulse width chosen at 80 fs (in this case the lens diameter is 

fixed at 25 mm). It is clear that the pulse stretch is several orders of magnitude more 

significant in PFD than in GVD. This is likely to remain true even for real lenses which 

will be thicker in order to maintain a workable edge thickness. The comparison is all the 

more significant when we consider that the initial pulse duration and stretch due to GVD 

add in quadrature. 
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Fig. 1.3.5 Effect of F# on PFD and GVD in an arbitrarily chosen fused silica singlet lens 

(X. = 790 nm, ro = 12.5 mm). 

The ratio of PFD to GVD is then given by 

Z 
palsy +T p�lsr I I_2? 

IV -AI, 
1. l) 

Using the same data as before and fixing the f# = 2, the ratio of GVD to PTD is 

1/1015. 

As both these phenomena are radially dependent they cannot be corrected in the 

usual manner (as different radial components require different compensations), but they 

can be minimised by an astute choice of lens (using only large f#) and by taking into 

account the spatial profile of the beam. For example, a Gaussian intensity distribution 

will minimise the effect on the FWHM but will suffer a slight change to its rising edge 

at the focus. A "top hat" (radially homogeneous) profile, conversely, will have a FWHM 

equal to the sum of the original FWHM and AtPFD. However, it has been shown that by 

replacing singlet lenses with achromatic lenses PFD can be eliminated and GVD 
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homogenised across the entire beam profile; in this respect, the GVD can be 

compensated for by the usual method27. 
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1.3.3 Non-Linear Wavelength Conversion 

Application of femtosecond laser pulses to spectroscopy in a wide range of 

molecules requires the ability to generate wavelength tuneable pulses to excite specific 

electronic or vibrational states. Whilst solid-state femtosecond sources are intrinsically 

tuneable over a limited bandwidth, this is typically in the near infrared. However, peak 

intensities generated by these sources are compatible with non-linear optical techniques 

by which their outputs can be frequency up/down converted. By this means broadly 

tuneable, coherent femtosecond sources are now available from the vacuum ultraviolet 

to far-infrared to address an increasing array of applications. For the purpose of this 

project, the most appropriate methods for wavelength conversion were Second 

Harmonic Generation and White Light Continuum (or Supercontinuum) generation. I 

cover each subject in turn. 

1.3.3.1 Second Harmonic Generation 

The first experiment in non-linear optics32 consisted of generating the second 

harmonic (347 nm) of a ruby laser beam (694 nm) that was focused in a quartz crystal. 

The conversion efficiency of this first experiment (- 10.8 %) has been improved to a 

point where - 30 % conversion may be observed in a single pass through a few 

centimetres of a non-linear crystal8. 

Second harmonic generation is a special case of sum frequency generation 

(V3 = vj+v2) where two photons of the same frequency (v1=v2) interact to form a signal 

photon at twice the initial frequency (V3 = 2v1). The intensity of the generated second 

harmonic assuming an undepleted pump regime is given by33 
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'/: 

1- 2w2dz µµO 
1) 2(0 - Ok ESo 

IZ (mal 
2 sin &u/) 2 

I 1.3.23 

where Co is the angular frequency (2nv), d is the non-linear susceptibility tensor and Ok 

represents the relation33 

Mk = k2" -2kw = [n2o -n"ý 1.3.24 

where n, represents the refractive index at uo and 2o. If Ok :A0 then the generated second 

harmonic will propagate with a different phase velocity to the fundamental and 

destructive interference will occur between SHG light generated at different points in 

the crystal. The coherence length is the maximum crystal length useful for producing 

second harmonic power (i. e. when sin(Ok/L)=1) and is given by33 

1-7_A 
` jk 4[n Z" - n` 

1.3.25 

It is clear that we need to phase match co-linear beams in a non-linear crystal to 

maximise relation 1.3.25. Typically n2° > n' due to normal dispersion, hence the most 

effective method of phase matching is to exploit the birefringence of non-linear crystals. 

In anisotropic materials there are two normal modes of propagation for each 

frequency. These waves are orthogonally polarised and travel at different phase 

velocities. In uniaxial crystals, for example, one of these waves, called the ordinary 

wave, sees a constant index of refraction, no independent of its direction of propagation. 

The second wave, sees a refractive index ne(O) which is dependent on its direction of 

propagation. The angle 0 describes the direction of propagation relative to one of the 

principal axes of the medium. The limits of the extraordinary index are no for 0=0 and 

ne for 0= 90°. Since the non-linear susceptibility is a tensor and can couple waves of 
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orthogonal polarisation, it is possible to mix ordinary and extraordinary waves in an 

anisotropic medium and achieve the phase matching conditions given above. 

There are two types of phase matching. Type I refers to the situation where the 

pump beams are linearly polarised (either o+o=e or e+e=o (where o and e are ordinary 

and extra-ordinary rays respectively) and is the preferred form for SHG). Type II 

corresponds to a situation where the pump is in a superposition of orthogonal 

polarisation's (o+e=o or e+o=e and is typically used for sum frequency generation). The 

phase matching angle for SHG in uniaxial crystals (single axis of symmetry which 

coincides with the optical axis) is given by33, 

n` 2 n° 2- n° )2 
sine B. _2 2m)" 

2 
for o+o=e phase matching. 1.3.26 

(ndý 
Ln2 

' -(nidý 

n' 
z rn 1z 

- 
rn°lz 

sin' 0. _ "ý 
z` 

zý Jz ` "Jz for e+e=o phase matching. 1.3.27 

Experimentally we used a crystal of beta Barium Borate (BBO, ß-BaB204) to 

generate tuneable wavelengths in the region 425 - 375 nm. BBO is a non-linear crystal 

with a combination of unique features; wide transparency and phase matching angles, a 

large non-linear coefficient , high damage threshold and excellent optical homogeneity. 

The phase matching angle for type I SHG in BBO is given as a function of fundamental 

wavelength in fig. 1.3.6 calculated from expression 1.3.26 and the refractive indices 

given by33 

n; = 2.7405 + "0184 _ 0.0155, %2 (A2 
-0.0179 

1.3.28 
n2 = 23730+ . 0128 

- 0.0044A. 2 ýý2 - 0.0156) 
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The calculated phase matching angle for frequency doubling the harmonic at 800 

nm (the peak of the laser output in its tuning range) is 29.0713°. The BBO crystal is cut 

specifically for this angle and doubling for other wavelengths is then achieved by careful 

tuning of the laser beam incidence angle. 
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Fig. 1.3.6 Phase matching angle as a function of fundamental wavelength for BBO. 

For ultrashort pulses the quasi-cw approximation can no longer be applied and 

pulse propagation effects must be considered. In general, the interacting pulses will 

travel with different group velocities and over a certain distance they will no longer 

physically overlap reducing the conversion efficiency. The critical distance over which 

the interacting pulses clearly separate is given by33 

L= vga vgl" 
r 1.3.29 LC 

vga - vg2w 

where ti is the pulse width and v denotes the group velocities given by 

Vga = n, +w-( 
) 

1.3.30 
d. d, 
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Here a denotes the appropriate field, co or 2. o. For the situation of SHG at 800 nm with 

an 80 fs pulse, the critical thickness is Lc = 259.1 µm. 

1.3.3.2 White Light Continuum Generation 

Intense picosecond/femtosecond pulses propagating in non-linear media can 

produce frequency broadened output beams with a nearly `white' spectrum, known as a 

supercontinuum (SC) or white light continuum (WLC)34. WLC formation has been 

observed in a wide variety of media; liquids [H20, D20, ethylene glycol, phosphoric 

acid], solids [quartz, glass, calcite, NaCl, CaF2] and gases [Xe, Ar]. The observed WLC 

is correlated with self-focusing and self-trapping of filaments35. The threshold36 for 

WLC is thought to be media independent and is of the order 1011 Wcm 2. Various 

processes are believed to be responsible for continuum generation. Whenever an intense 

laser pulse propagates through a medium, it changes the refractive index, which in turn 

changes the phase, amplitude, and frequency of the incident laser pulse. A phase change 

can cause a frequency sweep within the pulse envelope. This process is termed Self- 

Phase Modulation [SPM]. Non-degenerate four wave mixing [FWM] usually occurs 

simultaneously with the SPM process37. Photons at the laser frequency parametrically 

generate photons to be emitted at Stokes and anti-Stokes frequencies in an angular 

pattern due to the required phase matching condition. When a coherent vibrational mode 

is excited by a laser, stimulated Raman scattering [SRS] occurs. SRS is an important 

process that competes and couples with SPM. The interference between SRS and SPM 

causes a change in the emission spectrum resulting in stimulated Raman scattering cross 

phase modulation [SRS-XPM]. A process similar to SRS-XPM occurs when an intense 

laser pulse propagates in a medium possessing a large second and third order non-linear 

susceptibility. Both second harmonic generation and SPM occur and can be coupled 
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together. The interference between SHG and SPM alters the emission spectrum and is 

known as second harmonic generation cross-phase modulation [SHG-XPM]. A process 

closely related to XPM, induced phase modulation [IPM], occurs when a weak pulse at 

a different frequency propagates through a disrupted medium whose refractive index is 

changed by an intense laser pulse. The phase of the weak optical field can be modulated 

by the time variation of the refractive index originating from the primary, intense pulse. 

All the proposed models have difficulties in explaining WLC. Moreover, none of 

them is universal enough to explain the common characteristics observed in such a 

variety of media. For example SPM as a source of WLC predicts a spectral broadening 

smaller than observed and fails to explain the spatial properties of WLC and 

accompanying ring emission. Under conditions where SPM plays a more prominent role 

than self-focusing and propagation effects, such as WLC generated in a short interaction 

length by femtosecond pulses, the observed spectrum is independent of emission angle 

and retains the directional properties of the pump beam. An accurate model of WLC 

should not depend on the spectroscopic details of the media and must fully explain the 

spatial properties of the phenomenon. However, a simple model for self-phase 

modulation should provide us with at least a feel for the phenomenon34. 

Following the arguments of Yariv8, a sufficiently intense laser pulse can induce a 

significant change in refractive index of a medium. This in turn can affect beam 

propagation, a self action phenomenon. In this instance the refractive index is given by 

n =no+n21(t) 1.3.31 

where n2 is the intensity dependent refractive index, which is dependent on the 3rd order 

non-linear susceptibility. All systems possess a non-linear refractive index. For n2>0, an 

intense pulse with, for example, a Gaussian transverse intensity profile will produce a 

refractive index change, än, given by 
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car = n2 E2 (t) 1.3.32 

which is clearly a maximum at the most intense part of the pulse. This will produce a 

lensing effect referred to as self-focusing. Spectrally, a time varying phase shift [SPM] 

occurs given by 

AO_C11 
c 

1.3.33 

As the time derivative of the phase of the wave is the angular frequency of the 

wave, the phase shift leads to a frequency shift with respect to the central laser 

frequency wo 

ýr aoý 
_ cv -coo= - -! 

wznz 
c3 

1.3.34 

If n2 is positive the pulse sees an up chirp, a positive frequency sweep. Since the 

intensity varies throughout the pulse envelope, the various parts of the pulse undergo 

different phase shifts leading to a frequency chirp which is directly proportional to the 

distance travelled in the medium. This means that the pulse is spectrally broadened with 

a frequency sweep but its electric field envelope remains unchanged. This is shown 

pictorially in fig. 1.3.6. 
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Fig. 1.3.6 Gaussian pulse and its associated frequency sweep due to SPM. 

To find the total frequency excursion due to SPM we assume a Gaussian pulse 

profile 

I(tý =I exp- 
(Qt) 

1.3.35 

where At is the full width at half maximum. It is clear that the maximum periods of 

frequency excursion occur for times ±At. From this we find that the total angular 

frequency excursion Ow is given by 

Aco = 2(to - too) = 
4u»ozn2lo 

exp(-1) 
cAt 

and hence 

1.3.36 

Av = IA72 ' 1.3.37 
0 

where v is the optical frequency, Xa the central laser wavelength and z the pathlength in 

the medium. The maximum frequency shift indicates the following points; 

37 



Femtosecond Laser Interactions 

9 The frequency excursion is inversely proportional to the input pulse duration (Ot). 

Clearly the shorter the incoming pulse the greater the spread of generated frequencies. 

" The spectral broadening is proportional to n2. The supercontinuum generation can be 

enhanced by increasing the non-linear refractive index. 

9 The spectral broadening is linearly proportional to pulse amplitude Io. 

9 Spectral broadening is proportional to A, o and z. 

For example a pulse from a Ti: Sapphire laser [800 nm, 100 fs, 10µJ] incident on 

a1 cm thick fused silica window [n2= 3.2x 10-16 cm2W-1] with a spot size of 100 µm 

[corresponding to an area of -3.14x 10-4 cm2], will generate a frequency excursion of 

19000 GHz [-633cm l, -40.5nm]. This is in agreement with experimental results 

published by Alfano for frequency generation due primarily to SPM in fused silica 16. 

It is clear that SPM alone cannot predict the huge frequency excursion observed 

[300-1000 nm typically]. In most practical situations, however, the action of self 

focusing will significantly increase the peak intensities within the media and under the 

correct circumstances ̀trap' the focus so that it travels through the medium [self- 

trapping]. A far broader spectrum can be observed due to an increased apparent 

interaction volume. With the additional complexity of four wave mixing, stimulated 

Raman Scattering and [in x(2) media] SHG, it is clear that complex and highly unstable 

broad spectra are obtainable as the various processes compete and interfere with one 

another. 

For pump-probe spectroscopy it is clear that we must develop a method for 

continuum generation that is both highly stable and reproducible on a day-to-day basis. 

A large body of work has been presented in the literature on this subject but many of the 

experimental parameters are omitted. However, it is clear that a method of 

38 



Femtosecond Laser Interactions 

supercontinuum generation which is dominated by SPM is required. Experimental 

investigation of WLC generation is given in Chapter 2. 
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1.4 Transient Spectroscopy In The Condensed Phase 

In this section I aim to describe the main experimental techniques and principles 

of transient spectroscopy, followed by a brief literature review of Excited State 

Intramolecular Proton Transfer (ESIPT) processes as studied on the ultrafast time-scale 

(typically <1 ps) for some relevant molecules. 

1.4.1 Experimental Techniques 

Transient absorption spectroscopy is probably the simplest form of pump-probe 

spectroscopy, yet it is a powerful technique used by many researchers, principally due to 

its versatility and simplicity. It has been used to study a number of important 

photochemical and photo-physical processes in the condensed phase38°1 , for example 

photo-dissociation and recombination39, ao, optical bleaching and recovery, vibrational 

relaxation41, solvation and charge transfer [i. e. electron and proton transfer]42. 

In order to record the transient absorption of a spectroscopically unknown 

molecule it is necessary to measure the optical density change due to the pump 

irradiance with both time [kinetics] and wavelength [spectra]. For spectral 

measurements the change in optical density is recorded at fixed time delays by varying 

the wavelength; this may be achieved by changing the probe wavelength for each 

successive measurement or by probing with a spectrum of wavelengths using an optical 

multi-channel analyser43. 

Transient kinetic experiments involve measuring the change in optical density at 

fixed wavelengths while varying the probe delay43. For brevity I will restrict myself to a 
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discussion of transient absorption kinetics, as many of the features of this technique are 

common to the measurement of transient spectra. 

WCD Key 
BS SC Sample Cell 

WLC Wavelength Conversion 
DM Dichroic Mirror 
BS Beamsplitter 

WCD 
PD Photodiode 
BD Beam Dump Detection 

Electronics 
X2 

[Hi I/I UUr 

Variable SC1 PD1 Optical 
Delay BS 

DM 1 BD 

SC2 PD2 

Figl. 4.1 Block diagram for a transient absorption spectrometer. 

Figure 1.4.1 shows a typical arrangement for a two-pulse pump-probe transient 

absorption spectrometer44. In this Michelson interferometric set-up, the pump pulse at 

wavelength X1 excites the sample. After a variable time delay, r, the second pulse at 

wavelength X2 is introduced to the sample to probe the change of absorbance at X2. The 

variable time delay between the pump pulse and the probe pulse is achieved by varying 

the difference in optical paths through a high precision mechanical translation stage 

typically controlled via a computer. 

The detected transient absorption change may be classified into three categories: 

absorption, bleach and gain. If the intensity of the probe pulse decreases in the presence 

of the pump pulse, then there is an increase in absorption of the sample. If the intensity 
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of the probe beam increases in the presence of the pump pulse, but remains less than the 

intensity of the probe beam before it enters the sample, then the pump has caused a 

bleach in the density of the absorbing molecules. Finally, if the intensity of the probe 

beam increases in the presence of the pump pulse beyond its incident intensity, the 

transient signal is referred to as stimulated gain. In this later case, the signal results from 

the molecules in the excited state being stimulated back to a lower level by the probe 

pulse. 

The typical pump-pulse-induced relative absorbance change amounts to far less 

than a few percent of the total absorbance of the sample. Unfortunately, this is generally 

less than the pulse to pulse fluctuations exhibited by the lasers used in such studies. As a 

result, a normalisation and signal averaging scheme is of vital importance to increase the 

signal to noise ratio in transient absorption experiments. In the set-up shown, a reference 

beam is employed to reduce shot to shot noise. In this case the laser pulse is split into 

two beams. One beam overlaps the region of the sample excited by the pump laser 

beam, while the other beam traverses through the sample cell in a region that is not 

perturbed by the pump pulse. The ratio of the intensities of the probe and reference 

beam as a function of the delay time reflects the evolution of the transient absorbance of 

the sample. In general, multiple laser shots are averaged at a particular delay time in 

order to achieve an acceptable signal to noise ratio. 

For laser systems with a repetition rate higher than 500 Hz it is necessary to 

modulate the probe radiation using a mechanical chopper to introduce an AC component 

in the transmitted intensity of the probe beam41. This AC component is then detected by 

a lock-in amplifier as a function of delay time. It should be noted that the selection of 

the modulation frequency is not random, a judicious choice will place the modulation 

frequency at or near the minimum of the intrinsic noise spectrum of the laser. 
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Many types of detectors are used in transient absorption spectrometers. 

Typically, however, a silicon-based diode is chosen, due to its large bandwidth response 

and cost-effectiveness. In cases where the transmitted signal is weak, photomultiplier 

tubes may be employed. For studies in the infrared, pyroelectric detectors or up- 

conversion techniques may be used. 

Transient absorption spectroscopy can not only be used to measure population 

kinetics, but also orientational dynamics when polarised pump and probe light pulses 

are employed. The orientational anisotropy, Al(t), defined by equation 1.4.2, can be 

studied directly by making separate transient absorption measurements with pump and 

probe beams having parallel and perpendicular polarisations4. 

ý(t\_ 
Ipars(t/-Iperp(t/ 

Iýro(t)+21 
perp(t) 

1.4.2 

The polarisation characteristics of the laser beams are usually controlled by 

calcite polarisers and waveplates, and Pockels cells or photo-elastic modulators are used 

when periodic switching between different polarisations are needed. In cases when 

population information is desired, the relative polarisation of pump and probe pulses 

, ab. as are set at 54.7°, which is the so-called ̀ magic angle' 

Time-resolved emission spectroscopy is an important and commonly used tool in 

the study of chemical reaction dynamics in the condensed phase. There are three general 

approaches to obtaining time resolution in emission spectroscopy: time-correlated single 

photon counting, direct detection by streak camera and fluorescence up-conversion. 

Each of these techniques has its limitations and advantages and the best approach will 

depend on the characteristics of the chemical system being studied. The following is 

limited to a brief discussion of fluorescence up-conversion. 
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Despite the routine generation of sub-100 fs laser pulses, it has been a challenge 

to obtain time resolution comparable to the laser pulse width in time resolved 

fluorescence spectroscopy. The best technique developed to date relies on the optical 

gating of the fluorescence emission by non-linear optical crystals. This technique is 

currently used to study a wide variety of chemical phenomena. In the following section 

the technique and general principles are introduced. 

The basic concepts of optical gating in a non-linear optical crystal to obtain time 

resolution in emission experiments are outlined in fig. 1.4.2. The incoherent 

fluorescence photons excited by a pump laser pulse are focused into a non-linear 

frequency mixing crystal. Another ultrafast, appropriately delayed [probe] pulse is 

overlapped with the fluorescence spot in the crystal. The relative timing sequence of the 

pump, fluorescence and the probe pulses are illustrated in the lower portions of fig. 1.4.2. 
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Fig. 1.4.2 Principle of fluorescence up-conversion. 
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The non-linear optical crystal is oriented to satisfy the phase matching conditions 

for the frequency mixing process. The mixing process is generally sum-frequency 

generation [due to the availability of sensitive detectors in the UV and visible regions, 

i. e. PMT's], however, these discussions also apply to difference frequency mixing, 

which has been used to time-resolve UV emission. The light generated at the sum 

frequency is then collected and sent into subsequent light detection and data acquisition 

devices. 

The sum-frequency signal can be expressed by the following equation; 

I.. (r) 
= 

jIfi(r)IProhe(t 
- i)dt 1.4.3 

where Is�m, In, and Iprobe are the intensities of the sum, fluorescence and probe beams 

respectively. Equation 1.4.3 clearly shows that the sum frequency signal is only present 

when fluorescence photons and the probe pulse are simultaneously coincident on the 

crystal. Since the probe is typically much shorter than the time-dependent fluorescence, 

it acts as an optical gate to the up conversion signal, analogous to an electronically gated 

boxcar integrator. In principle, this technique has a time resolution comparable to the 

probe pulse width. The actual time resolution of the measurement also depends on the 

temporal width of the pump (i. e. the accuracy in the definition oft = 0). 

Fig. 1.4.3 shows the basic experimental arrangement for an up-conversion 

experiment. At time t=0, the sample is excited by an ultrashort laser pulse at wavelength 

X2. The resulting fluorescence, %fl, is then collected and focused on a non-linear crystal 

[MXC]. A second laser pulse at X1 overlaps the fluorescence spot on the crystal. The 

delay time, r, between the arrival of the fluorescence and the second laser pulse is 

typically adjusted by moving a computerised translation stage. The generated sum 

frequency light (Where =1/2, x, + 11A, ) is detected by a photomultiplier after 
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rejection of stray and laser light by a monochromator. The signal level of this 

experiment is usually low due to the small conversion efficiency of the mixing process 

and the lack of peak intensity of the incoherent fluorescence light. This is especially true 

for high-repetition rate, low power laser systems. In these cases photon counting 

electronics are often used to improve the signal to noise ratio. 

WCD 

PMT 

Sc 

Fig. 1.4.3 Schematic for a fluorescence up-conversion instrument. In addition to the 

abbreviations in fig. 1.5.1; MXC, mixing crystal; MONO, monochromator; PMT, 

photomultiplier. 

The fluorescence up-conversion technique can be used to study orientation 

dynamics in a similar fashion to transient absorption spectroscopy. The angle between 

the polarisations of the detected fluorescence and the up-conversion gating pulse is 

determined by the type of phase matching in the sum-frequency generation crystal [00 

for type I and 90° for type II (for further definition see Section 1.33)]. Therefore the 
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fluorescence anisotropy can be measured in the same manner as described by equation 

1.4.2, i. e., measuring separate up-conversion data with parallel and perpendicular 

polarisations between the excitation and up-conversion gating pulse. When only 

population information is desired the polarisation angle between pump and probe pulses 

should be set at 54.70. Care must be taken in selecting fluorescence collection optics that 

maintain polarisation properties. 

In practice, the time resolution attainable in an up-conversion experiment is 

always longer than the probe pulse width. There are two main mechanisms that are 

responsible for this lengthening of time resolution: 

1. GVD of the emitted fluorescence photons through the sample and collection optics. 

2. Group velocity mismatch between the probe pulse and the fluorescence light in the 

mixing crystal. 

The first mechanism can be alleviated by using all-reflective (non-dispersive) 

optics. A thin sample cell also helps in reducing the fluorescence dispersion. The second 

mechanism, however, is unavoidable. The group velocity mismatch physically arises 

from the fact that the probe laser wavelength and the fluorescence wavelength are 

different. In order, to minimise the effect, a low dispersion, thin non-linear crystal is 

required. Unfortunately, a low-dispersion crystal will typically have a low non-linear 

susceptibility also, resulting in inefficient conversion. The non-linear mixing signal 

scales with the crystal thickness, so the desire to obtain the shortest time resolution 

needs to be balanced with the fact that a reasonable signal level is required to obtain 

meaningful results. Two ways to reduce the group-velocity mismatch are to keep the 

probe wavelength as close as possible to the fluorescence wavelength and use type I 

phase-matching (e+e-->o; or o+o-+e) whenever possible. 
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1.4.2 Excited State Intramolecular Proton Transfer 

Proton or hydrogen atom transfer represents one of the most elementary 

reactions which can occur in chemical and biological systems47 and these processes are 

often initiated by the absorption of light. Enhancement of the acidity or basicity of a 

molecule on absorption of a photon of light is a phenomenon which is well known and 

the terms photo-acid and photo-base have been used to describe molecules which 

experience such an enhancement in the excited state48. In these systems, upon 

absorption of a photon, the molecule either loses (photo-acid) or gains (photo-base) a 

proton, the other partner in the exchange usually being the solvent. In numerous 

heterocyclic aromatic molecules, photoexcitation results in intramolecular proton 

transfer where a proton, initially linked to an acidic donor atom, moves to a basic 

acceptor group that is part of the same molecule. This process is known as excited state 

intramolecular proton transfer (ESIPT)49,50. The geometry change is highly localised 

within the molecular structure, affecting mainly the proton and neighbouring groups. In 

a number of compounds, absorption of a photon initiates a closed reaction cycle 

comprising proton transfer in the excited state, radiative or radiationless deactivation of 

the reaction product (the photo-tautomer) and reverse proton transfer to reform the 

original molecular geometry. The latter reaction step occurs either via the electronic 

ground state or the triplet manifold. 

The formation of the photo-tautomer leads to substantial changes in the 

vibrational spectra and the electronic absorption and emission bands of the molecule. 

These have been investigated by both steady state and time-resolved spectroscopic 

techniques as well as by theoretical methodssO. Time-resolved methods using ultrashort 

laser pulses to monitor the photophysical properties give insight into the dynamics and 
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the mechanism for this type of reaction. These measurements provide information on the 

relevant potential energy surfaces and the vibrational degrees of freedom involved in the 

structural change. 

, 
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Fig. 1.4.4 Normal and tautomer structure of 2-(2'-hydroxyphenyl) benzothiazole (I) and 

3-hydroxyflavone (II). 
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Fig. 1.4.5 ESIPT in 2-(2'-hydroxyphenyl) benzothiazole. 

The structural requirements for a molecule to exhibit ESIPT are quite strict. The 

acidic group in the molecule is almost invariably a hydroxyl group and the basic 

acceptor is usually a heterocyclic nitrogen atom or the oxygen of a carbonyl function. 

Examples of systems containing these groups are 2-(2'-hydroxyphenyl)benzothiazole 

(HPBT, I) and 3-hydroxyflavone (3-HF, II) respectively. It is noticeable that the donor 

and acceptor sites are in close proximity in these systems and it is usual for the sites to 

be hydrogen bonded in the ground state. The zwitterion produced as a result of ESIPT 

usually has a resonance form similar to that in Fig. 1.4.5 and this has led to the adoption 

of the terms enol and keto to describe the species before and after the ESIPT reaction. 

However, there are a number of systems (including II) where this terminology is 

erroneous and it is better to describe the states as a normal or Franck-Condon excited 

state and the tautomer excited state produced via ESIPT. The generic description of 

proton transfer reaction involves reaction co-ordinates of the type 

03H Ob or Oa HN1.4.4 
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where the light hydrogen nucleus is between two heavier hetero-atoms. With H moving 

(or transferring) between Oa and Ob, for example, the Or -H bond is broken and a new 

one (H-Ob) is formed. This elementary description, which may involve neutral H motion 

or zwitterion (H+O") formation, is abundant in organic photochemistry and proton 

transfer spectroscopy51. However, even under collisionless conditions, the motion may 

not be that simple. The motion of the hydrogen on the picosecond or femtosecond time 

scale may be localised (as Eqn. 1.4.4), or may involve nuclear motions with a 

simultaneous redistribution of electrons in many bonds. The nature of the bonding and 

electronic charge distribution determines the reaction pathway, while intramolecular 

vibrational energy redistribution (IVR) may play a role if the nuclei have enough time to 

change their positions during the course of the reaction'. 

In general, ESIPT involving excited singlet states shows very fast reaction 

kinetics. Proton transfer times in the sub-picosecond regime were estimated from early 

picosecond measurements, which could not temporally resolve the change. A 

substantially higher time resolution is required in the femtosecond regime in order to 

probe the proton dynamics directly. In this section I describe the recent progress in the 

investigation of excited state intramolecular proton transfer (ESIPT) with particular 

attention to the ultrafast dynamics. 

ORl 

OR2 

Fig. 1.4.6 Structures of salicyclic acid (III, R1=H, R2=H), methyl salicylate (IV, 

R1=CH3, R2=H), methyl 2-methoxybenzoate (V, R1=CH3, R2=CH3) and 

2-methoxybenzoic acid (VI, R1=H, R2=CH3). 
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A whole host of molecular systems have been shown to undergo ESIPT, the first 

reported study (to the best of our knowledge) was by Weller52, who was studying the 

solution phase absorption and fluorescence properties of salicyclic acid (III) and methyl 

salicylate (IV). The latter was found to exhibit two fluorescence bands in 

methylcyclohexane at room temperature compared to methyl 2-methoxybenzoate (V) 

which had only one, corresponding to the higher energy band of IV. III in methanol also 

exhibited only one emission band, but the size of the Stokes shift for this band 

(10000 cml) compared to that for 2-methoxybenzoic acid (VI, 5000 cm") implied that 

the fluorescence was also anomalous here. 

Weller suggested that the explanation for these observations was that ESIPT 

occurred in both III and IV to yield a zwitterionic species (Fig. 1.4.7). He calculated 

that the proton transfer rate constant at 93 K was >_ 108 s4 and that an activation energy 

of -910 kJ mol-1 was involved in the ESIPT step. Weller considered that the proton 

transferred species was the zwitterion in Fig. 1.4.7 but it is also possible to write down 

an uncharged resonance structure (also shown in the figure). Further studies support this 

picture of an excited state proton transfer although subsequent experiments have 

avoided molecules III and VI as prototype molecules for ESIPT due to the complication 

of dimerisation in the ground state. 
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Fig. 1.4.7 ESIPT in esters of salicyclic acid. 
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Much work on these molecules has concentrated on the long time dynamics of 

both the keto and enol species and interested readers should consult the two reviews on 

the subject as it is beyond the scope of this thesis49,50. However, Herek et a142, have 

undertaken a study of the ultrafast dynamics of IV and V (and deuterated species) in the 

gas phase, thereby isolating the molecule from collisional and solvent effects in order to 

resolve the pure proton movement in the excited state. The dynamics were probed using 

a femtosecond fluorescence depletion technique. Unlike the typical pump-probe 

experiment in which the pump excites the molecule to an intermediate state and the 

probe carries it to a final fluorescing state, here the emitting state is intermediate so that 

the probe depletes the fluorescence by absorption to some higher excited state. Both 

short and long (up to 120 ps) transients were obtained, depleting the fluorescence at 

both emission maxima: 330 and 440 nm, corresponding to the enol and keto states 

respectively. In the case of the 330 nm state the lifetime was long (in comparison to the 

transient dynamics -1.1 ns) leaving the excited state population constant on the time- 

scale of interest. However, for the 440 nm state, the decay was on the picosecond time 

scale. 

Measurement of a rise component of 60 ± 10 fs is reported for the 440 nm state 

indicating the rate of proton transfer along the hydrogen bond. Discussion of the 

relevant vibrational modes that could contribute to a transfer rate on this time-scale lead 

Herek et al to tentatively propose that the state is populated by low frequency modes 

associated with out of plane deformations of the "ring" comprising the intramolecular 

hydrogen bond. However, the OH stretch period is 13 fs (taking an 0-H stretch 

frequency of 2582 cm'). They suggest that dispersion of the wavepacket in the excited 

state could easily be responsible for broadening to 60 fs due to the large number of 

vibrational modes in the excited state of the keto form. They conclude that pump-probe 
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experiments with better time resolution (cross-correlation of pump and probe was - 80 

fs) may yield faster kinetics information. 
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Fig. 1.4.8 Normal and tautomer structure of saliclideneaniline (VII) 

Sekikawa et a153 reported measurement of proton transfer rates in thermochromic 

salicylideneaniline (SA, VII) crystals. Three SA substituent species were investigated: 

N-5'-chlorosalicylideneaniline (CISA), 4-methyl-N-5'-chlorosalicylideneaniline 

(MCISA) and 4-methyl-N-salicylideneaniline (MSA). Comparison of these three 

samples was expected to reveal substitutional effects on the dynamics of the proton 

transfer. They measured the decay rate of the S1 normal excited state fluorescence by 

femtosecond fluorescence up-conversion and attribute this to the rate of ESIPT to form 

the keto species (direct measurement of the rise time of the keto fluorescence would be 

ambiguous due to thermal population of the keto ground state at time zero). The lifetime 

of the excited enol was found to be less than a few picoseconds (as we expect from 

previous studies). The rate of S1 state decay was shown to be dependent on both the 

nature of the substituent and the probe energy, suggesting the existence of a potential 

barrier to proton transfer in the excited state. The results of their experiments are 

summarised in Table 1.4.1. The difference in the dynamics of the proton transfer among 

C1SA, MC1SA and MSA can be explained in terms of the change in the barrier height of 
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the potential-energy surface in the excited state. The energy separation (Eg) between the 

excited enol (S i) and keto (S i') forms is obtained from stationary fluorescence and 

excitation spectra. If it is assumed that the hydrogen bond lengths are the same for all 

the molecules, both the height and the width of the potential barrier increase with 

decreasing Eg. They suggest that the presence of two decay rates at lower fluorescence 

energies also suggests the existence of the potential barrier between the two forms: if 

there were no barriers, the fluorescence would decay exponentially with the continuous 

elongation of the decay time towards the lower energy fluorescence. In addition, the rate 

of proton transfer should be faster in the barrier-less potential (as observed in Tinuvin 

and 3-hydroxyflavone (see later)). 

Table 1.4.1 Time constants for saliclideneaniline derivatives 

Molecule Eg = E(S1) - E(S1') / eV Eg / kJ mol' S1 Decay Rate / x1012 s1 

C1SA 0.044 4.24 1.28 ± 0.04 

MC1SA 0.030 2.89 0.36 ± 0.04 

MSA 0.023 2.292 0.28 ± 0.06 

In a low temperature experiment at 77 K, Sekikawa et al show that the rate of 

transfer is not significantly different to that at 293 K. Since the rate of proton transfer by 

thermal activation is expected to become exponentially lower with temperature, it is 

concluded that quantum-mechanical proton tunnelling through the barrier is taking 

place. The existence of a potential barrier is supported by the deuteration effect on the 

dynamics of the proton transfer; the rate of proton transfer in C1SA becomes smaller on 

deuteration from 1.28 to 1.00 ps '. For a model such that the two energy surfaces 

(normal and tautomer state) cross to form a potential barrier, the rate of proton transfer 
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correlates with the frequency of the 0-H stretching mode, so that the reduction of the 

rate by deuteration indicates the existence of the barrier. This result contrasts markedly 

with previous studies of proton transfer in the femtosecond regime (notably Herek et 

al52). This may be due to the difference in the phase of the investigated system. In the 

liquid and gas phases, a molecule has more degrees of freedom in order to shorten the 

hydrogen bond length, resulting in a barrier-less potential. Sekikawa et al conclude that 

further investigation of the potential energy surfaces involved in proton transfer is 

necessary. Kobayashi et al54 confirmed these conclusions showing a deuterium effect 

was observed in another salicylideneaniline derivative; N, N'-bis(salicylidene)- 

p-phenylenediamine, where the S1 lifetime increased from 1.0 to 1.3 ps on deuteration. 

In a recent paper by Mitra and Tamai55 the solution phase dynamics of VII were 

reported in cyclohexane and ethanol. Transient absorption spectra for VII in 

cyclohexane show the presence of an absorption band in the region 400-500 nm and 

corresponding emission centred around 620 nm. Mitra and Tamai suggest that evolution 

of the absorption band around 420 nm and the emission at 620 nm occur at the same 

time and indicate the presence of the keto species, although the dynamics may be 

complicated by uncorrected dispersion in the white light continuum. A time dependent 

spectral shift in the 420 nm band towards the blue is observed which, they suggest, 

corresponds to the relaxation of vibrationally hot molecules, leading to the formation of 

photochromic products from the proton transferred tautomer (again we suggest caution 

in the assignment of processes which occur on a time-scale comparable with the 

dispersion of the continuum). They find the rise time of the 420 nm band to be 210 fs in 

cyclohexane and 380 fs in ethanol. It is interesting to note that the experimental error 

quoted later in the paper is 400-600 fs indicating that any proton transfer on the time 

scale indicated would not be sufficiently resolved! Certainly it would appear that the 

57 



Femtosecond Laser Interactions 

dynamics of the proton transfer are significantly different in the solid and liquid phases 

and that the dynamics of the proton transfer are solvent dependent. The rate of proton 

transfer in solution appears to be instrument limited in this case, indicating a barrier-less 

potential to the proton transfer. 
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Fig. 1.4.9 Normal and tautomer structure of 7-azaindole (VIII). 

Dimers of 7-azaindole (VIII) in non polar solvents have been proposed as a 

model for DNA base pairs for many yearS56. VIII dimers are thought to undergo double- 

proton transfer in the excited state as shown in Fig. 1.4.9. The case of intermolecular 

double proton transfer reactions in dimers differs from the more typical case of an acid 

in a base solvent or cluster, in that a sterically specific geometry is required for the 

double proton exchange. The reaction is then less dependent on the solvent and can 

represent a model for proton transfer in the gas phase. Lopez-Martins et al57 undertook a 

study of the picosecond time-resolved photoelectron spectroscopy of VIII. Dimers were 

prepared by pulsed supersonic helium expansion (1.2 atm) and both the fluorescence 

and photoelectron spectra (PES) were recorded. Fluorescence excitation spectra 

recorded over the absorption range of the dimer show a progression of bands with a 

fundamental frequency of - 117 cm'l corresponding to the symmetric stretching motions 
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of the N-HA N. To probe the time dependence of the tautomerisation reaction, the 

authors recorded photoelectron spectra using 2 pulse durations of 0.8 and 5 ps of equal 

energy. A dramatic drop in the collected PES was reported for the longer pulse duration. 

The authors suggest that this indicates that the excited state lifetime of the dimer is 

significantly less than 5 ps and that the ionisation cross-section is significantly less for 

the reactant excited state. 

Douhal et a! 58 investigated the dual proton transfer of prepared dimers of VIII in 

a molecular beam. Transient signals were obtained by time resolved ionisation 

spectroscopy, with the ion signal being measured as a function of probe delay by time- 

of-flight mass spectrometry. They studied the dynamics (with an instrumental function 

of - 150 fs) on both VIII and its deuterated analogue to investigate possible quantum 

tunnelling effects. Excitation with excess vibrational energy (E) is shown to change the 

time constant for the proton transfer from 650 fs (E = 0) to 200 fs (E = 1.5 kcal mol") 

indicating that although the vibrational excess energy plays a part in proton transfer, a 

direct reaction pathway exists. On deuteration and excitation with 1.0 kcal mol'1 excess 

energy, the time constant is shown to increase from 360 fs to 3 ps (or 1.5 ps for 

deuteration of a single moiety in the dimer). These results are known to be consistent 

with a model involving quantum mechanical tunnelling. The authors obtain a barrier 

height of - 2.6 kcal mol" for the second proton transfer step and suggest that this is 

reflected in the ps timescale for the transfer. 

Takeuchi and Tahara59 also investigated the excited state dynamics of the proton 

transfer reaction of VIII, using the femtosecond fluorescence up-conversion technique 

with a time resolution of -280 fs. Solutions of 10"2 mol dm 3 concentration in hexane 

were used to prepare an estimated 87 % of the VIII molecules as dimers. They 

measured fluorescence kinetics from both emission bands and observed tri"exponential 
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dynamics corresponding to ri = 200 ± 100 fs, T2 = 1100 ± 100 fs and a "slow" 

component with T =3.2 ns. The long lifetime is assigned to the decay of the proton 

transferred tautomer and the two fast lifetimes to ultrafast relaxation from the primary 

excited state (ti) to another excited state of the dimer followed by double proton transfer 

to the tautomer excited state (T2). However it is interesting to note that the ultrafast 

decay (present as a rise component for fluorescence measured at long wavelengths) is of 

the order of the ESIPT rate as measured in a variety of systems. The authors note that 

previous measurements in the gas phase revealed similar time constants which had been 

attributed to the transfer of a single (short time dynamics) and both protons (long time 

dynamics) respectively. 

A model of an intermediate single proton transfer prior to double proton transfer 

is further supported by the work of Folmer et a16° using the phenomenon of coulomb 

explosion to arrest and directly interrogate the reaction. A beam of 7-azaindole dimers 

was prepared in a pulsed beam in vacuum. The desired tautomerisation was initiated 

with a low intensity ultrashort pulse at 312 nm and at subsequent times the reaction was 

probed using a high intensity 120 fs pulse (624 nm, 2 mJ) to accomplish intense field 

ionisation and subsequent coulomb explosion. The ions produced were analysed by 

time-of-flight mass spectrometry. The authors report the detection of mass units of 119 

amu and 118 amu as well as a large number of smaller fragments and the dimer mass 

(-236 amu). They associate the 118 amu fragment to one half of a dimer molecule and 

the 119 amu fragment to the intermediate state where only one proton has been 

transferred. A fragment at 117 amu was not detected, indicating that this part of the 

intermediate forms the observed smaller fragments. A plot of the ratio of 119 to 118 

amu mass fragments gives the temporal evolution of the intermediate state, a rise of 
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660 fs is observed corresponding to the first proton transfer and a value of -5 ps is 

given for the decay corresponding to the second proton transfer. 

Of particular interest to the research reported here is the work on 

3-hydroxyflavone (II), the excited state dynamics of which has received significant 

interest in the literature on longer time scales (ps and ns). The anomalous fluorescence 

behaviour of 3-hydroxyflavone was first reported in detail by Sengupta and Kasha61 

although they noted that Frolov et a162 had earlier reported on the luminescence of II and 

related molecules in 77 K ethanol glasses. The emission spectrum was found to exhibit 

two emission bands, the presence and intensity of which were very sensitive to solvent 

and temperature. Excitation spectra for the two emission bands were identical and 

closely matched the absorption spectrum indicating that this behaviour was due to some 

excited state process. It was proposed that the two emission bands corresponded to 

fluorescence from the Franck-Condon excited state S1 (emission around 400 nm) and 

the tautomer SI' produced by ESIPT (emission around 500 nm) as shown in Fig. 1.4.10. 
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Fig. 1.4.10 ESIPT in 3-hydroxyflavone 
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It was suggested that the ESIPT step could be prevented by external hydrogen 

bonding (i. e. to the solvent) and that it was necessary for the 2-phenyl ring to be 

co-planar for the full basicity of the carbonyl oxygen to be developed. It is noteworthy 

that this explanation still holds essentially true. 

Following the initial report, the photophysics of 11 has been studied by a number 

of research groups. There are several early papers which report on the solution 

fluorescence kinetics of both the normal (from Si) and tautomer (from Si') fluorescence. 

All of these found that the tautomer exhibited multi-exponential kinetics including a rise 

time which matched the decay of S1. However, there was some disagreement as to 

whether the fluorescence decay of S, and the rise of S j' was single or double 

exponential. In all cases this process was found to be rapid with values quoted by Wolfe 

and Thistlethwaite63 of 69 ±8 ps for the decay of the S, fluorescence and 65 ± 10 ps for 

the rise of the S I' fluorescence in deuterated methanol giving an indication of the speed 

of the process. The lifetime of the S 1' state was found to vary considerably with the 

solvent environment from a few hundred picoseconds to several nanoseconds and some 

representative data is given in Table 1.4.2. 

The amount of fluorescence from the two species was found to vary with 

temperature such that the ratio of the quantum yields of fluorescence for S, and S 1' 

increased with decreasing temperature 63.64 
. It was found that the lifetimes of both the 

species also increased with decreasing temperature. The lifetime of the S1 fluorescence 

in methyltetrahydrofuran was found to increase up to a maximum value of 1.8 ns at 150 

K and belowM which allowed the authors to calculate an activation barrier for ESIPT of 

approximately 12 kJ mol''. Similar measurements in deuterated methanol and 

methylcyclohexane gave activation energies of 7.6 and 22 kJ mol-1 respectively63. In the 
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light of later findings, interpretation of these values as being the activation energies for 

ESIPT is dubious. 

Table 1.4.2 Solvent effect on the tautomer fluorescence of 3-hvdroxyflavone5o 

Solvent Lifetime (ns) 

Methylcyclohexane63 4.58 ± 0.03 

MethylpentaneTM. - 4.00 

Polymethylmethacrylate63 6.09 ± 0.06 

MethyltetrahydrofuranTM - 1.00 

Deuterated Methano163 0.37 ± 0.025 

Benzonitrile65 2.00 

Acetonitrile65 0.85 

Triton X-100 micelles66 < 0.80/1.90 

The S I' state exhibits similar temperature dependent behaviour. In all the solvent 

systems which have been studied, the lifetime increases as the temperature is decreased 

until a maximum value is obtained and further reduction in temperature elicits no further 

increase in Si' lifetime. Once again it is possible to calculate activation energies for this 

process in Si' and values between 11.8 kJ mol'' (polymethylmethacrylate) and 

29.8 U mo1"' (methylcyclohexane) have been obtained63,64 . These values are believed to 

relate to the torsional motion of the S I, state, probably involving the bond between the 

pyrone and phenyl rings. 

Some of the above work and its interpretation was thrown into question when 

McMorrow and Kasha 67,68 revealed that they had found the behaviour of II to be 

extremely sensitive to the presence of hydrogen bonding impurities in non-hydrogen 

bonding solvents. In rigorously purified hydrocarbon solvents ground state molecules of 
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II are intramolecularly hydrogen bonded and there appears to be little or no intrinsic 

potential energy barrier to ESIPT following excitation, only tautomer fluorescence is 

observed. However, in alcohol or aqueous solvents it was proposed that a range of 

mono- and poly-solvated species were present (including the anion of II in water68) 

whose ground state distribution is temperature dependent. The addition of traces of 

water to a hydrocarbon solution of II at 77 K leads very clearly to emission, not only 

from SI' but also SI and the 3-hydroxyflavone anion. 

The tautomer rise-time was found to be <8 ps in pure hydrocarbon solvents at 

ambient temperature and 37 ±6 ps at 77 K69. Most subsequent attempts to measure 

ESIPT in non-interacting solvents have proved to be instrument limited, including 

measurements on II in solid argon at 10-15 K and on 3-hydroxychromone (where the 2- 

phenyl group is absent) and two substituted 3-hydroxyflavones in hydrocarbon solvents 

at room temperature70 although Ernsting and Dick71 were able to calculate the ESIPT 

rate constant as 7.4 x 1011 sl on the basis of line shapes in the jet-cooled emission of II. 

Peluso et a172 have calculated the potential energy surfaces for the ground and excited 

states of II using MINDO/AM1 and attribute the rapidity of the proton motion to the 

promoting effect of a low-frequency bending vibration which shortens the distance 

between donor and acceptor sites (much as Herek et a142 and Elsaesser and coworkers75 

predicted from experimental observations for IV and Tinuvin P respectively). 

Relatively little work has been published in the literature with regard to the 

experimental measurement of ESIPT in II at femtosecond time-scales. Recent work by 

Schwartz et a173 reported the first observation of the ESIPT process on an ultrafast time 

scale. Measurements of the transient absorption with a resolution of 125 fs, were 

undertaken for absorption at 620 nm after excitation with a 310 nm UV pump pulse. 

The results of their experiments are summarised in table 1.4.3. The fast transient 
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absorption changes of II in dry methylcyclohexane (MCH) showed a resolved 

sub-picosecond component of 210 fs convoluted with the 125 fs time integrated 

Gaussian instrumental function. In methanol the ultrafast rise component was shown to 

fit to the instrument function convoluted with an 80 fs exponential rise component. 

They showed that the addition of hydrogen bonding impurities significantly increased 

the rate of ESIPT and they suggested that the time scale for the proton transfer in MCH 

(210 fs) indicates that no part is played by twisting of the phenyl group. Discussion of 

the effect of hydrogen bonding impurities leads the authors to suggest that a different 

mechanism is responsible for ESIPT in polar solvents. They suggest that the formation 

of hydrogen bonded complexes creates inter-molecular motions which may play an 

important role in the tautomerisation process. If the new intermolecular modes are also 

displaced, the resulting wavepacket could follow a trajectory in the excited state which 

is altered from the unsolvated species leading to a different measured proton transfer 

time. They propose that a cyclically hydrogen bonded monosolvate (Fig. 1.4.11) would 

lead to dual proton transfer moderated by the stretching of the two intermolecular 

hydrogen bonds alone (i. e. without coupling into low frequency in plane vibrations in 

order to modulate the intramolecular hydrogen bond). In contrast disolvated complexes 

(Fig. 1.4.12) would not undergo proton transfer and may explain the presence of the 

slower rise component. The authors propose that this slow rise component is the time 

for desolvation of 3-HF(ROH)2 to become either the monosolvated or the free 3-HF 

species. A note added in proof reports no significant isotope effect for the deuterated 

3-hydroxyflavone in methylcyclohexane or for deuterated methanol in agreement with 

the previous work of Elsaesser and co-workers on HPBT83. 
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Fig. 1.4.11 Proposed structure for cyclically hydrogen bonded 3-hydroxyflavone 

methanol monosolvate. 

Fig. 1.4.12 Proposed structure for disolvated 3-hydroxyflavone methanol complex. 

Table 1.4.3 Effect of solvent on ESIPT dynamics of 3"hydroxyflavone73 

Solvent TI, fs t2, ps ti / tie 

Dry MCH 210±30 9.3 ±0.5 1.34±0.2 

MCH+MeOH (drop) 160 ± 30 9.7 ± 0.5 0.69 ± 0.2 

MCH sat. by MeOH 110 10.2 ± 0.5 0.49 ± 0.15 

MeOH 80 10 ±O 3 0.42 ± 0.1 
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Ormson et a174 report the excited state * transient spectra for II in 

methylcyclohexane with a resolution of - 200 fs after excitation at 295 nm. Two distinct 

absorption bands are present, centred around 460 (blue) and 575 nm (green). Evolution 

of both of these bands is clearly resolved, showing the blue band shifting from 

approximately 430 mit to 460 nm in approximately 10 ps. After this point the transient 

absorption spectrum remains approximately constant and simply decays with a lifetime 

of the order of 5 ns (the lifetime of the tautomer species). The shape of the green band 

also changes in time but the evolution is somewhat contaminated by the laser 

fundamental at -590 nm. It is possible that the blue edge of the 410 - 500 nm absorption 

band is due to the S I' state of II which then evolves into a lower energy configuration 

on a time-scale comparable with solvent relaxation. A study of the kinetics of this 

absorption band should elucidate this assignment. 

A molecule which has received significant attention in the literature as an 

analogue for ESIPT is Tinuvin P (2-(2'-hydroxy-5'-methylphenyl)benzotriazole, IX). 

Along with the ortho-hydroxybenzophenones, benzotriazoles such as IX have been used 

for more than thirty years as ultraviolet photostablisers in polymer systems. Upon 

excitation with UV light, ESIPT can take place and the rapid cycle So->S1-->S1'-> 

So'-*S0 can occur to dissipate the absorbed energy. 

cl-I3 

O: N 

NN ý 

H-O 

cx3 

+ ýH__o- 

Normal (enol) Tautomer (Keto) 

Fig. 1.4.13 Normal and tautomer structures of Tinuvin P (IX). 
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The enol form of IX, which represents the main ground state species, shows a 

So- . S1 absorption band around 350 nm and emission from the tautomer structure is 

located in the wavelength range between 600 and 800 nm with an extremely low 

fluorescence quantum yield of - 10"5. Wiechmann et a175 investigated the ultrafast 

dynamics of IX in non-polar solvents. Femtosecond pump-probe measurements were 

undertaken at a number of probe wavelengths in cyclohexane with a resolution of 

70 fs. The transient gain of the S i' state in C2C14 is shown to possess a rise component 

of about 100 fs that is attributed to the proton transfer reaction. This is followed by 

ultrafast decay to the So' state with a time constant of -150 fs and transformation back 

to the enol form within 600 fs. The rapid depopulation of the SI' state is attributed to 

rapid internal conversion by vibrational redistribution, corresponding to large-amplitude 

motions in the low frequency range (80 to 200 cm'). Vibrationally hot molecules in the 

ground state are cooled on a time-scale of several tens of picoseconds by interaction 

with the solvent. The authors conclude that the rapid proton transfer and subsequent 

back transfer to the ground state enol suggest a potential energy surface with negligible 

potential barrier to proton transfer (as depicted in Fig. 1.4.14). 

In a further paper Wiechman et a176 reported ultrafast time-resolved 

measurements of IX in a number of solvent and polymer environments. Their results on 

a picosecond time-scale suggest that the solvent environment strongly affects the 

quantum yield of the keto tautomer and the kinetics of the S state. Analysis of data 

from IX with a methoxy substituent in place of the OH (so that proton transfer cannot 

occur) suggests that the Si emission is from a twisted conformer of IX without an 

intramolecular hydrogen bond (indicating that the proton transfer only occurs for the 

planar conformer). This is in contrast with previous explanations which suggest 

coupling between solvent molecules and the hydroxylic group of IX. DMSO was shown 
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to exhibit by far the strongest solvent effect with significant broadening and red shifting 

of the enol excited state emission. The emission lifetime of the state is very short 

(170 ps) and the fraction of the enol species emitting is very high (60 %). Wiechmann et 

al conclude that the high polarity of DMSO could not be the only reason for this 

behaviour when compared to acetonitrile which has nearly the same polarity. However, 

DMSO is a hydrogen bonding solvent and they suggest that this might have some 

bearing upon the twisting of the enol form prior to ESIPT. Coupling to the solvent then 

accounts for the short fluorescence lifetime of the S1 twisted conformer. Femtosecond 

spectroscopy of the tautomer species compared well with previous measurements by the 

same team and the authors observe that the proton transfer rate remains essentially 

unchanged in the different solvent environments. For IX in a polystyrene film, slower 

proton transfer was observed (approximately 200 fs) with an S1' state lifetime of 350 fs 

and a back transfer (So'-So) rate of the order 1.2 ps. This result, when compared with the 

previously discussed paper on crystalline salicylideneanilines, suggest that although the 

molecule is sterically hindered in the polymer matrix, it is not sufficiently confined to 

restrict the low frequency modes thought to facilitate proton transfer. 

Frey and Elsaesser77 investigated the process of back proton transfer using 70 fs 

UV pulses to probe the absorption of IX in the region 310-400 nm. The data shows a 

decrease in absorption (compared to the steady state) and a broadening of the absorption 

followed by complete recovery of the ground state population within 30 ps. They 

conclude that the ultrafast back transfer of the proton (700 ± 100 fs) creates vibrationally 

hot molecules at approximately 1200 K (as estimated from the temperature dependent 

specific heat of the compound). Intramolecular randomisation of energy then occurs 

(facilitated by the large number of anharmonically coupled low frequency modes of IX) 
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on a time scale comparable with the proton transfer (50 - 500 fs) followed by solvent 

relaxation in 30 ps. 

Lenz et a178 measured resonant and non-resonant Raman spectra for IX to 

facilitate quantitative calculation of the equilibrium vibrational temperature after 

excitation at 310 nm in non-polar solvents. Raman spectra were measured in the 

frequency range 850 and 1650 cm t. The intensity of a mode at 1552 cm" showed a 

pronounced solvent dependence and the authors suggest (based on normal mode 

analysis) that this mode contains essential contributions of the C-0 stretching and O-H 

bending co-ordinates, which should be intimately involved in the enol-keto 

transformation. It is interesting to note that the O-H stretching mode at around 

3200 cml has a Franck-Condon factor which is too small to be observed in their spectra. 

Calculations based on the Raman data adequately reproduce the absorption spectra for 

the So-S1 transition at times > 10 ps with a maximum vibrational temperature of 1200 K 

(estimated from intramolecular randomisation of 32260 cm' photon energy in all 78 

vibrational modes of IX). On ultrafast time-scales the measured spectra show 

significantly broader absorption than calculated. Lenz et at conclude that this is due to a 

non-equilibrium thermal population distribution, i. e. a finite picosecond time interval is 

required prior to randomisation of the vibrational energy. 

Chudoba et a179 measured the femtosecond transient absorption of IX in 

cyclohexane for various excitation energies above and below the absorption band of the 

purely electronic transition. The authors found that there was no measurable difference 

in the kinetics of the proton transfer measured across the excited state absorption 

spectrum, suggesting that there is no significant potential barrier to proton transfer under 

these conditions. They also observed that the absorption and emission bands overlap 

significantly (-2000 cm') which they suggest is evidence of strong vibrational 
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excitation of the keto species, since large Stokes shifts between the enol absorption and 

tautomer emission are usually observed. Substantial populations of molecules in high 

lying vibrational states may couple to the electronic transitions. Transitions from high 

lying vibronic states in S i' lead to an enhancement of the emission at short wavelengths, 

whereas population of vibrational levels in the ground state result in an enhancement of 

the low-frequency absorption edge. 

A recent paper by Chudoba et a18° claims to have detected vibrational coherence 

in spectrally resolved transients (corrected for solvent response) observed from IX with 

a time resolution of approximately 20 fs. Experimental measurement of the S i' rise 

component with improved resolution gives a proton transfer time constant of between 

60-80 fs and spectrally integrated data (measured with a 10 Mn band-pass filter) shows 

the characteristic behaviour as described above in other experiments. However, for a 

detection window of approximately 4 nm around 726 nm, pronounced oscillatory 

transmission changes persisting up to -700 fs are observed. It was observed from 

systematic variation of the detection window from 716 - 784 nm that the oscillatory 

changes are most pronounced on the short wavelength tail of the spectrum. After 

subtraction of the known dynamics (rise and decay, as fitted by a four state model), 

Fourier analysis of the remaining oscillatory signal shows strong contributions around 

the frequencies of 250 and 470 cm 1. The authors conclude that this is direct evidence 

for the importance of low-frequency modes in the proton transfer reaction. They also 

note that the vibrational coherence in these modes persists much longer than the 

formation time of the keto-state of 60 - 80 fs, suggesting that the potential energy 

surface along these reaction co-ordinates does not change significantly due to the proton 

transfer reaction. The frequency spectrum of the vibrations and the proposed potential 

surface of the excited state are given in Fig. 1.4.18. 
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Fig. 1.4.18 Oscillatory transmission changes measured in Tinuvin P and a proposed 

excited state potential energy surface showing the possiblity of proton motion mediated 

by low frequency twisting vibrations80 

(Reproduced from http: //www. mbi-berlin. de/en/research/projects/IIe/Ile6/pot. gif). 

Elsaesser and Kaiser81 investigated the visible and infrared spectroscopy of I 

(HPBT), a structurally similar molecule to IX, on a picosecond time-scale. Although, 

strictly speaking, not an ultrafast study, transient spectra in the infrared (3 to 10 µm) for 

these types of molecules have not been measured on time-scales less than picoseconds 

due to instrumental limitations. Infrared spectroscopy specifically probes the local 

binding geometry of the hydroxylic proton which is transferred after electronic 

excitation. The changes in vibrational absorption due to an ultraviolet pump pulse are 

monitored by infrared probe pulses tuneable in the wavelength range from 2 to 10 µm. 

The absorption cross-sections of vibrational transitions in I are much smaller than those 

of the electronic So -S1 transition, i. e., the penetration depths of the ultraviolet and 

infrared pulses are drastically different. In order to compensate for this a pump-probe 

geometry was adopted in which the sample cell was transversely pumped by the 
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ultraviolet pulses (cell thickness 0.1 cm) and the infrared beam intersected along the 

axis of the cell (length 1cm). The ultraviolet pump was spatially chirped using a grating 

pair to synchronise the pump and probe pulses throughout the interaction length. In this 

geometry the instrument had a response on the order of 4 ps. Transient infrared 

absorption during and after UV excitation was investigated in the frequency ranges of 

the OH, NH and C=O bands. In the ground state of I the intramolecular hydrogen bond 

is observed as a very broad OH-stretching band between 2600 - 3500 cm 1. At 3070 cni' 

the CH-stretching band is superimposed on the OH band leading to a sharp peak in the 

spectrum. Transient spectra at 50 ps after excitation show a decrease in absorption in the 

wings of the OH-band, whereas the oscillator strength increases considerably between 

2800 and 3100 cm 1. The kinetics of the transient are shown to recreate those of 

transient gain measurements on this time-scale (in the same report) and the authors 

tentatively assign this transient band to an NH-stretching mode. They also find that the 

ground state infrared spectrum of I shows no evidence of a C=O stretching band, 

demonstrating that in non-polar solvents the proton is predominantly present as an OH 

bond (no presence of ground state keto species at time zero). Transient spectra at 50 ps 

show the presence of an intense band centred around 1540 cm 1 (in the frequency range 

for C=O stretching vibrations) indicating the presence of an excited state keto species. 

The authors conclude that these results are conclusive proof of a structural change in the 

molecule i. e. proton transfer, in the excited state. 

Laermer et al82 measured the rise time of the transient gain of the keto tautomer 

of I using femtosecond pump-probe spectroscopy in non-polar solvents at 630 nm. With 

an instrumental function determined by measurement of the ground state bleaching of 

Oxazine-1 dye dissolved in ethanol, deconvolution of the instrumental function from the 

transient signal of I gives a rise time of 170 ± 20 fs relating to the formation of the keto 
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tautomer. The time-scale of this transfer once more suggests the influence on proton 

transfer of low frequency bending modes in the vibrational relaxation of the molecule to 

the keto S 1' state. 

Elsaesser et a183 measured the transient gain at 540 nm for I and its deuterated 

analogue 2-(2'-deuteroxyphenyl) benzothiazole (DBP) in non-polar C2C14. In contrast to 

the work on crystalline salicylideneanilines discussed earlier, no pronounced deuterium 

effect was observed. The time delayed formation of both keto-HBP and DBP were 

temporally resolved and have time constants of 160 ± 20 fs (in agreement with Laermer 

et al82) and 140 ± 20 fs respectively. The gain decays with a fluorescence lifetime of 

300 ps. They conclude that this result suggests that O-H and O-D stretching vibrations 

are of minor importance for the transfer reaction. They suggest that, as for IX, the 

redistribution of electronic charge immediately after excitation of the enol tautomer 

establishes a virtually barrier-less excited state potential with a broad minimum for the 

keto configuration. 

In conclusion, we have a picture of ultrafast proton transfer characterised by a 

schematic of the potential energy surface in Fig. 1.4.18. A wavepacket, created in the 

excited state by an ultrashort pump pulse, propagates along a reaction co-ordinate due to 

an origin shift of a low frequency mode. Subsequent motion along this co-ordinate leads 

to a change of the potential energy surface along another vibrational co-ordinate of 

higher frequency, opening an essentially barrier-less channel for the transfer reaction in 

the gas and liquid phases. 
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1.5 Femtosecond Laser Ablation 

In this section I aim to describe the main experimental techniques and principles 

of laser ablation, followed by a brief literature review of laser ablation using ultrafast 

laser pulses (typically <1 ps) for materials of relevance to the experimental sections of 

this thesis. 

1.5.1 Principles 

The ability to machine sub micron features in a wide variety of materials has a 

number of technological applications in industry and medicine. One machining method 

which shows promise is that of pulsed laser ablation84'85. Currently CO2, nanosecond 

Nd: YAG and excimer laser systems are the most commonly used for machining. 

However, it is believed that the limiting factor for the spatial resolution of laser ablation 

(at a particular wavelength) is the diffusion of heat outward from the irradiated area. 

This diffusion length is proportional to the square root of the pulsewidth, therefore 

diffusion length will decrease by shortening the pulse width. Further, a nanosecond 

pulse will generate a plasma at a surface within its temporal pulse width. The plasma 

will thereby decouple the radiation from the surface and the remaining pulse energy will 

serve only to heat the plasma. In contrast, femtosecond pulses will effectively be 

absorbed by the surface before generation of a plasma plume. 

Laser micromachining, specifically drilling, marking and cutting, involves the 

removal of material from a target substrate. Material removal takes place throughout the 

ablation process, where a target under laser irradiation absorbs energy and undergoes a 

phase transformation to liquid or vapour. The melted liquid is expelled from the 

interaction region (laser focus) by the recoil from the expulsion of vaporised material at 
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the liquid/vapour phase boundary. Other processes associated with the laser matter 

interaction include heat conduction, radiation and plasma expansion. 

The primary interaction mechanism is electronic excitation by the absorption of 

photons, which may be accomplished by both linear and non-linear means, depending 

on the properties of the material, laser wavelength and intensity. In metals, the band 

structure allows absorption of most moderate to low energy photons because the Fermi 

level is in the middle of the conduction band. For semiconductors and insulators, the 

Fermi energy is between the valence and conduction bands and so an absorption cut-off 

for photons with energy less than the bandgap is present. Absorption of energy can 

hence be accomplished by one of two processes; electron avalanche and multiphoton 

absorption. 

In transparent dielectric materials, the bound valence electrons have an 

ionisation potential or bandgap greater than the laser photon energy. The bound 

electrons do not absorb the laser light at low intensities. However, in any real material 

there are always some conduction electrons present due to the presence of metallic 

impurities. Thermal or linear optical ionisation's of shallow energy levels of such 

impurities seed electrons for the avalanche process. A free electron, when simply 

oscillating in an electric field, does not gain energy when averaged over an optical cycle. 

However, a free electron may gain energy through collisions with bound electrons and 

the lattice through dephasing. This process is termed Joule heating (or inverse 

Bremstrahlung). The electron can be accelerated such that its kinetic energy exceeds the 

ionisation potential of a bound electron, therefore further collisions with bound 

electrons may result in an ionisation event. The free electron transfers most of its energy 

to the bound electron resulting in two low kinetic energy free electrons. The process 

may then continue leading to an avalanche where free electron density grows 
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exponentially from the low seed electron density. When enough bound electrons are 

ionised by this process, a plasma with "critical density" is created and the transparent 

material is broken down and becomes absorbing (absorption of the initial seed electrons 

is negligible). For nanosecond and longer pulses the critical density is customarily taken 

to be - 1018 cm 3 since this is the density at which significant absorption for irreversible 

damage is considered to occur. 

When the laser field strength is very high, as is the case for ultrashort pulse laser 

irradiation, bound electrons of the transparent material may be directly ionised through 

multiphoton absorption. A bound electron can be excited from the valence band to the 

free energy or conduction band by the simultaneous absorption of m photons in the laser 

pulse, such that mhv z E;, where by is the photon energy and Ei is the ionisation 

potential or bandgap. This process is important in the case of high intensity fields, as the 

absorption of the material will deviate considerably from Beer-Lambert behaviour. The 

absorption becomes proportional to a power of the intensity given by the number of 

photons required to reach the conduction band. The equation describing multiphoton 

absorption is as follows; 

do 
= Na('")F' 

dt 1.5.1 

This states that the rate of change of valence electrons to conduction electrons is 

dictated by N, the active ion density; a(m), the m-photon absorption cross-section and F 

the incident photon flux density. Electrons excited by this process may subsequently 

become seed electrons for the avalanche process. In certain cases, intense pulses may 

create enough multiphoton absorption to eliminate the need for further impact 

ionisations to exceed the critical electron density. In general, once a material has a 

critical density of electrons, it starts absorbing sufficient photon energy to undergo 
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ablation. The absorbed energy in the electron plasma is transferred, in part, to the 

motion of atoms or ions in the lattice by electron-phonon coupling. Typical transfer 

times between hot electons and the lattice are on the order of a picosecond. 

For "long" pulsed lasers (> 1 ps), ablation of material occurs through melt 

expulsion driven by the vapour pressure. This is an unstable process in which the 

dynamics of the liquid phase and the driving vapour conditions are complex. The melt 

layer is re-solidified, resulting in geometric changes to the ablated regions. With 

ultrashort, ultra-intense pulses («lps) the deposited energy is limited to a shallower 

depth and the absorbed energy heats the material rapidly to the vapour phase, with high 

kinetic energy. The material is removed by direct vaporisation away from the surface 

without formation of a significant recast (solidified melt) layer. Most of this will be 

accomplished after the laser irradiation has occurred. The material is still heated by the 

thermal diffusion over a longer time scale. However, the resulting melt layer thickness 

will be small because most of the heated material reaches the vaporisation temperature 

and there is rapid cooling due to the steep temperature gradient. The heating of the 

material by heat diffusion is further reduced by the fact that a large amount of the 

absorbed energy is carried away by the direct vaporisation. Because little liquid is 

involved, ablation and material removal become highly precise. 

The thermal diffusion length is approximately obtained from the expression; 

L=151 1.5.2 

where L is the diffusion length, D is the ratio of thermal conductivity to the volume heat 

capacity and t is the pulse width. It can be seen that for sufficiently short t, L can 

become almost insignificant in comparison to the linear absorption depth and the focal 

spot size of the laser. For example, the thermal diffusion length for silicon and gallium 
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arsenide are given in Table 1.5.1 with comparison for femtosecond, picosecond and 

nanosecond pulses at 395 and 790 nm and the corresponding linear absorption. 

Table 1.5.1 Calculated heat affected zones for silicon and GaAs 

Material Thermal Absorption Depth (nm) HAZ For Pulse Wid th (nm) 
Diffusivity (cm2s 

1) 
790 nm 395 nm 170 fs 300 ps 30 ns 

Silicon 0.9 2500 12.5 4 164 1640 

GaAs 0.24 250 20 2 85 850 

Many models use this fact in asserting that thermal diffusion is negligible. 

However, this is not the case, for example for pulses with t< et (the electron-phonon 

relaxation time) the electron plasma can still deliver significant energy to the 

surrounding material. In the case of ultrashort pulses the heated volume is governed by 

the absorption depth and therefore the threshold for ablation becomes independent of the 

pulse width (as long as t« te) and critically dependent on the laser intensity, due to the 

non-linear absorption mechanism. 

Fig. 1.5.1 Schematic model of nanosecond and femtosecond laser ablation. 

The main features of nanosecond and femtosecond laser ablation are given in 

Fig. 1.5.1. In the nanosecond case, an absorbing plasma is formed within the 

pulselength, which both serves to "shield" the surface from the incoming radiation and 
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in part transfers heat back to the substrate. A heat effected zone (HAZ) is evident due to 

the thermal conductivity of the material (Eqn. 1.5.2) and there is also a region which is 

effected by the recoil shock of the vapour, liquid and plasma phases which penetrates 

deep into the bulk of the material. In the femtosecond case, however, the ultrashort pulse 

is absorbed prior to the equilibration of electron and lattice temperatures (and certainly 

prior to plasma formation) and the ablation depth is approximately equal to the 

absorption depth. HAZ is virtually eliminated due to Eqn. 1.5.2 and shock effected zone 

(SAZ) is minimised due to the reduced plasma-substrate interaction. 

In order to fully appreciate the advantage of ultrashort pulses in precise 

micromachining applications, I describe a one dimensional, two temperature diffusion 

model, following the arguments of Chichkov et a186. 

The evolution of absorbed laser energy involves thermalisation within the 

electron subsystem, energy transfer to the lattice and energy losses due to the electron 

heat transport into the target. We may assume that the thermalisation of the electron 

subsystem is ultrafast and that the electron and the lattice sub-systems can be 

characterised by their temperatures (T. and T; ). The energy transport into the metal can 

then be described by 

öT aQ(z) 
-Y(T, -T, )+S 1.5.3 at az 

C, 
a-, 

=-Y(1, -T, ) 1.5.4 

Q(z)_-k, 
aTe 

1.5.5 

S= I(t)A a exp(-az) 1.5.6 

where z is the direction perpendicular to the target surface, Q(z) is the heat flux, S is the 

laser heating source tem, I(t) is the laser intensity, A=1-R and a are the surface 

80 



Femtosecond Laser Interactions 

transmissivity and the material absorption coefficient, C, and C, are the heat capacities 

(per unit volume) of the electron and lattice subsystems, y is the parameter 

characterising the electron-lattice coupling and k,, is the electron thermal conductivity. 

We neglect the thermal conductivity in the lattice subsystem (phonon component). The 

electronic heat capacity is much less than that of the lattice, therefore electrons can be 

heated to very high transient temperatures. When the electron temperature (in units of 

energy) remains smaller than the Fermi energy, the electron heat capacity and the non- 

equilibrium electron thermal conductivity are given by C, =C, 'T. (where C. ' is a 

constant) and k,, =ko(T; )"T f Fi (where ka(T; ) is the conventional equilibrium thermal 

conductivity). 

Equations 1.5.3 to 1.5.6 have three characteristic timescales r,, T; and TL,, where 

tc Ce/y is the electron cooling time, t; =C; /y is the lattice heating time (t<«T; ) and rL is 

the duration of the laser pulse. These parameters define three different regimes of the 

laser-substrate interaction, which we term femtosecond, picosecond and nanosecond 

regimes. 

Femtosecond Pulses 

First we consider the case when TL« -cc. For t«Te, which is equivalent to 

C, T, /t»yT,,, the lattice coupling can be neglected. In this case the solution of 1.5.3 is 

given as (neglecting the electron heat conduction term) 

C` 
at = 21. a exp(-oz) 1.5.7 

and gives 

2 

Te (t) = 
(i. 

o2 + 
2I 

,, a t exp(-oz) 1.5.8 
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where I(t)=Io is assumed constant, Ia IOA, and To=Te(0) is the initial temperature. At the 

end of the laser pulse the electron temperature is given by 

Te (TL) = 
2Fpa 

exp(_az) 1.5.9 
C. 

where TT(TL)»To is assumed and Fa IaTL is the absorbed laser fluence. 

The evolution of the electron and lattice temperatures after the laser pulse are 

described by 1.5.3-6 with S=O. Initial conditions for the electron and lattice temperatures 

are given by 1.5.9 and T; To. After the laser pulse the electrons cool rapidly due to 

energy transfer to the lattice and heat conduction to the bulk. Since the electron cooling 

time is very short, 1.5.4 can be written as T; TC(TL) t/T; (neglecting the initial lattice 

temperature). The attainable lattice temperature is determined by the average cooling 

time of the electrons and is given by 

7'r = T2 2 (T17 L) 2C exp(-oz) 
, 

1.5.10 

Significant evaporation of the target occurs when C; TI becomes larger than pS2, 

where p is the density and Q is the specific heat of evaporation. Using 1.5.10 we can 

write the condition for evaporation in the form 

F, >_ F� exp(az) 1.5.11 

where Fth- pQ/a is the threshold laser fluence for evaporation with femtosecond pulses. 

Then the ablation depth per pulse, L is given by 

Lia-' In 
F° 
F, n 

1.5.12 

This logarithmic dependence of the ablation depth on the laser fluence is well known 

and has been demonstrated experimentally in many instances (see for example the 

reviewby Shirk and Molian 87). 
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Due to the very short timescales involved in the ablation with femtosecond 

pulses the ablation process can be considered as a direct solid-vapour (or solid-plasma) 

transition. In this case the lattice is heated on a picosecond time scale which results in 

the creation of vapour and plasma phases followed by a rapid expansion. During all 

these processes thermal conduction into the target can be neglected in a first 

approximation. These advantages of femtosecond laser ablation allow very precise and 

pure laser processing of materials. 

Picosecond Pulses 

Now we turn to the discussion of ablation with picosecond pulses when the 

following condition is fulfilled ie« TL«Ti. 

At a time t>>ti,, which is equivalent to CeTcIt«yT, , equation 1.5.3 for the 

electron temperature, becomes quasi-stationary and 1.5.3-6 reduce to 

a k° 
OT" 

-y(TT -T, )+Ioaexp(-az)=0 
aZ oz 

1.5.13 

T, = 
1 fex 

-t 
e 

(9)d6+To 1.5.14 
r, 0 zr 

Here 1.5.14 is written in the integral form. These equations describe the heating of 

targets with laser pulses such that tiL »te. When the condition t«T; is fulfilled, 1.5.14 

can be simplified due to the quasi-stationary character of the electron temperature. 

Neglecting To, we get 

ex -tt Tý 
r, r, 

1.5.15 

As can be seen from this expression, in the picosecond regime the lattice temperature 

remains much less than the electron temperature. This allows us to neglect the lattice 
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temperature in 1.5.13. The analysis of 1.5.13 and 15 is especially simple when the 

condition k,, Týa2«yT, is fulfilled. In this case the electron cooling is due to the energy 

exchange with the lattice. The electron and lattice temperature at the end of the laser 

pulse are given by 

T -- 
1' 

exp(- az), T, ;: e 
FCa 

exp(- oz) 1.5.16 

Note that once more the attainable lattice temperature after the laser pulse is again 

determined by the electron cooling time. Since TL»T,, the attainable lattice temperature 

and the lattice temperature at the end of the laser pulse are approximately equal. In 

femtosecond and picosecond regimes 1.5.10 and 1.5.16 give the same expressions for 

the lattice temperature. Therefore the expressions derived for threshold fluence and 

ablation depth remain unchanged. 

Thus a logarithmic dependence of the ablation rate on fluence is also possible in 

the picosecond domain. However, in this case we have neglected the electron heat 

conduction to the target, and this would be critical in the formation of a melted zone 

within the target. In spite of this one can consider the evaporation as a direct 

solid-vapour (or solid-plasma) transition, although the presence of a liquid phase within 

the target significantly reduces the precision of laser processing in this regime. 

Nanosecond Pulses 

In now turn to a comparison with nanosecond laser ablation in the regime where 

the condition TL »T; is fulfilled. In this case the electron and lattice temperatures are 

equal T, T; =T and 1.5.3 -5 reduce to 

C/ 
aT 

_a ko aT 
+I pa exp( az) at aZ aZ 1.5.17 
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In this regime, the absorbed laser energy first heats the target surface to melting point 

and then to the vaporisation temperature. During the interaction the main source of 

energy losses is the heat conduction into the bulk of the target. The heat penetration is 

given by 1.5.2. The energy deposited inside the target mass is given by En iIat/pL. When 

at t= to, this energy becomes larger than the specific heat of evaporation SZ, significant 

evaporation occurs. The condition for strong evaporation can be written as 

Y2 , I> 'ih F>F, h ý pnD x ry 
ZL 

1.5.18 

for laser intensity and fluence respectively. The threshold of ablation with nanosecond 

pulses grows as TLV2. 

In the case of ablation with long pulses there is enough time for the thermal 

wave to propagate into the target and to create a relatively thick layer of melted material. 

In this case the evaporation occurs from the liquid metal, which makes precise materials 

processing with nanosecond pulses very complicated. 
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1.5.2 Current Literature 

In recent years a considerable body of work has appeared in the literature to 

address the effects of ultrashort pulse ablation and has been the subject of a short 

review87. Most of this work deals with experimental observations and there has been 

little effort invested in the explanation of the fundamental phenomena associated with 

such short pulses. The experimentally observed effects are detailed below for each type 

of material. 

1.5.2.1 Metals 

Initial experiments in femtosecond pulse laser ablation or, at least, surface 

modification studies were reported as long ago as 1985 by Downer et a188 at the prolific 

AT&T Bell labs. However, for the most part these studies were concerned with the 

onset of surface melting and damage of semiconductor surfaces at low fluence. The first 

publication of femtosecond laser ablation of metals was in a paper by Krüger and 

Kautek in 199489. Since that point various groups have published a plethora of data on 

the fundamental aspects of ablation, but notably few groups have shown the application 

of the phenomena? 0,91,92,93,94" 

A summary of a selection of laser ablation experiments is given in Table 1.5.2. It 

should be noted that the determination of the threshold laser fluence, Fth, for ablation is 

by no means trivial. For the most part, Ft, is determined by the onset of macroscopic 

material removal and a fit to the two-temperature model of ablation (Eqn. 1.5.12). 

However, actual material removal by desorption (especially for metals under vacuum) 

may occur for much more modest fluence. 
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Table 1.5.2 Summary of femtosecond laser ablation of metal substrates. 

Substrate At / fs X/ nm Fth / Jcm'2 F/ Jcm2 d/ nm Pressure 

Gold89 300 612 0.25 0.3 20 1 bar 

Gold95 150 800 -0.3 1 bar 

Gold96 500 248 0.21 0.3 17 10'8 bar 

Nickel96 500 248 0.1 0.3 15 10'8 bar 

Indium96 500 248 0.125 0.3 90 10'8 bar 

Molybdenum96 500 248 0.15 0.3 6 10'8 bar 

Tungsten96 500 248 0.4 0.6 10 10"8 bar 

Copper96 500 248 0.175 0.3 8 10'8 bar 

Platinum89 300 612 0.1 0.3 25 1 bar 

Copper93 150 780 0.14 

For example, the experimental measurement by macroscopic damage for the 

ablation threshold of gold shows good agreement between experiments by Krüger and 

Kautek89 and Preuss et a196 (despite differences in the experimental parameters). 

However, the determination of fluence by optical emission from a laser produced 

plasma by Pronko et a195 is slightly higher at 0.3 (± 0.1) Jcm-2 at 800 nm. In contrast, 

experiments by time-of-flight mass spectrometry give threshold fluences of -20 mJcm-2, 

due possibly to thermal desorption effects at high repetition rate. For the purpose of 

consistency we take the threshold fluence to mean the time at which significant 

macroscopic damage occurs. 

The optical emission studies conducted by Pronko et a195 measured the threshold 

fluence for pulsewidths ranging from 100 fs to 7 ns. Their results suggest that the 

threshold is exponentially dependent (F,,, c er') for pulsewidths above -5 ps and 

87 



Femtosecond Laser Interactions 

relatively independent of pulsewidth below this point. They conclude that the transition 

from a weak to strong pulselength dependence is due to the role of thermal diffusion vs 

absorption. 

Taking advantage of both the more precise ablation threshold and the reduced 

role of thermal diffusion, Pronko et a195 showed that features smaller than the I/e spot 

size at the focus (and indeed the theoretical limit) may be ablated. A pulse from a 

Ti: Sapphire regenerative amplifier (150 fs, 800 nm) was prepared such that only the 

centre of the Gaussian spatial profile was just at the ablation threshold for a silver 

substrate when' focused by a microscope objective. The spot size had a minimum 

theoretical diameter of 6 µm, whereas the diameter of the ablated region was of the 

order of 300 nm. The pit depth was only 52 nm, indicating that the effects of thermal 

diffusion had been eliminated. A comparison with a7 ns pulsed laser showed that the 

minimum ablation area for the ultrashort pulse was approximately 60 % of the 

theoretical spot size. The morphology of the ablated region (analysed by atomic force 

microscopy) indicated the presence of a molten phase which had been expelled from the 

ablated region to form an annulus above the surface, to a height comparable to the 

ablation depth (-. 500 nm). In contrast the ultrashort pulse shows little evidence of 

melting, although significant redeposition of expelled material had occurred 

(experiments were performed in ambient atmosphere). 

Chichov et a197 investigated hole drilling of materials using a commercial 

Ti: Sapphire laser system. The image projection method was used to obtain a spot size of 

170 µm. Laser hole drilling experiments were carried out in vacuo (-10-4 mbar) on 100 

µm thick steel and copper foils at fluences ranging from 0.1 to 5 Jcm 2. For steel, holes 

drilled with 104 pulses in the femtosecond regime (150 fs, 0.5 Jcm 2,780 nm) show no 

trace of molten material, only a vapour dust ring around the ablation site. Comparisons 
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with both nanosecond and picosecond pulse ablation at this wavelength show that the 

instability introduced by the formation of a molten phase is virtually eliminated for 

pulses in the femtosecond region. 

In a further experiment, the second harmonic at 390 nm was used to drill holes in 

500 µm thick steel and copper. The ablated structures showed the existence of 

characteristic microstructure which they attribute to an instability of the plane 

evaporation front due to diffraction effects and pulse to pulse fluctuations. These 

microstructures had previously been observed on gold by Krüger and Kautek89 but on a 

much reduced scale (close to threshold) and attributed to interference between incident 

and surface reflected beams. Examination of the micrographs of Chichkov et al reveals 

an increase in scale of the microstructure from sub-micron to -10 microns for holes 

drilled with 10 to 100 pulses respectively, possibly indicating amplification and 

randomisation of the microstructure for repeated pulse exposure. 

Preuss et a196 reported a comprehensive study of laser ablation of metals in the 

ultraviolet at 248 nm and with pulses of 500 fs. The details are summarised in Table 

1.5.1 with ablation depth per pulse at 0.3 Jcni-2 given for direct comparison. Ablation 

rates were also studied for both nickel and indium in air and vacuum. In each case the 

threshold for ablation was not significantly affected by environment. However, the 

ablation rate was seen to increase by a factor of 2-3 as the pressure was reduced from 

atmospheric to 10'5 mbar. They conclude that the increase in ablation rate was due to 

vapour pressure exceeding the ambient and minimising re-deposition. 

The ablation data was compared to the model given above (Eqn 1.5.4) and 

shown to be in good agreement for most of the investigated materials, with the 

exception of indium, possibly because only unpolished samples of indium were used 

(thereby reducing the initial reflectance). 
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Simon and Ihlemann98 reported the ablation of copper (chosen for its high 

thermal diffusivity) for various pulse widths from 0.16 to 50 ps at 248 nm. Holes were 

drilled using a Schwartzchild (all reflective) objective in order to minimise PFD and 

maximise energy transmission in the UV. The spot size at the focus was approximately 

400 nm. For ablation at 1.2 Jcm 2, melt expulsion is clearly evident at all pulse widths. 

However, it would appear to be reduced in scale with pulsewidth as we expect. The 

authors comment that 50 ps pulses produce smoother variations in structure (a uniformly 

expelled ring around the ablated region) as opposed to irregular ejection and 

resolidification of droplets. In contrast to previously published material Simon and 

Ihlemann maintain that the environment does not significantly affect the residual 

morphology. 

Further experiments on copper, produced periodic (period 364 nm) imaged 

structures. Ablation at 500 fs and 0.6 Jcm 2 shows good feature definition, in contrast to 

ablation at 50 ps implying that edge definition is heat diffusion dependent. The quality 

of the edge definition for 0.6 Jcnf 2 in comparison to that produced at 1.2 Jcm 2 seems 

also to suggest a dependence on laser fluence. 

The recent work of Nolte et a193 supports the hypothesis of a fluence dependent 

regime for copper. A1 mm thick polycrystalline Cu foil was ablated using 150 fs pulses 

at various fluences and two logarithmic dependences were identified between ablation 

depth and laser fluence. For fluences < 0.5 Jcm2, a fit to the data using Eqn 1.5.4 gives 

Fth= 0.14 Jcm 2 and a7 l- 10 nm (the value for ci' is in agreement with previously 

measured value of 13 nm for 780 nm). At fluences > 0.7 Jcm 2 the second logarithmic 

dependence is evident. This is characterised by a higher energy penetration depth and 

threshold fluence given as 80 nm and 0.46 Jcm 2 respectively. Analysis at various 
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pulsewidths revealed that the first regime is only present for ultrashort pulses (where the 

penetration depth is greater than the thermal diffusion depth given by 1.5.2). 

A qualitative difference is also observed for the two regimes. For ablation 

governed by the absorption depth, no trace of molten material is observed (vacuum 

10-4 mbar). At higher fluences, a thin layer of material appears. The sub-micron features 

(which are characteristic of the first regime) on the ablated surface melt away in the high 

fluence regime indicating a larger heat penetration depth. 

A theoretical treatment using a two-temperature model, concluded that for 

fluences below 0.5 Jcm2 the hot electron density is low and energy transfer out of the 

skin depth becomes negligible. For higher pulse energies the influence of electronic heat 

conduction becomes important and the second ablation regime appears. 

In summary, ultrashort pulses for metal ablation offer benefit in terms of 

increased resolution due to minimisation of heat diffusion in the low fluence regime. 
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1.5.2.2 Semiconductors 

The ablation of metals has always been noted to be different from the ablation 

of semiconductors and insulators at modest fluences. This difference is due to the 

transition from linear to non-linear processes, including multiphoton absorption. 

The initial study of semiconductor microstructuring by femtosecond ablation 

was undertaken by Downer et a188. They describe a method using a pump-probe 

technique to image excited surfaces as a function of time. Laser induced reflectivity 

changes of the surface due to a 620 nm pump pulse are observed to occur on a timescale 

comparable with the pulsewidth (-80 fs). However, the reflectivity has a rise time 

corresponding to the electron-phonon relaxation time of I ps. For fluences below 

approximately 2.5 times the melting threshold, the reflectivity then remains relatively 

constant until later than 1 ns, when resolidification begins. At higher fluence levels 

ablation of the central region occurs, indicated by a darkening of the image due to 

scattering of the probe by hot silicon clusters ejected from the melt pool. 

Tom et a199 reported further evidence of laser induced disorder using time 

resolved surface second harmonic generation on a silicon substrate. They found that the 

SH reflection changed abruptly in a way which is consistent with the top 75-130 A of 

the silicon surface losing cubic symmetry in <150 fs. Because this timescale is less than 

twice the electron-phonon relaxation time the result suggests that the laser induces 

disorder before the phonons equilibrate above the melting temperature. At the laser 

intensities used, 5% of the valence band is photoexcited if we assume linear absorption 

and even more if non-linear absorption is considered. At 10 % promotion from the 

valence band, there is already the equivalent to a charged defect at next-nearest- 

neighbour sites which could force the atoms to conform to a random configuration. At 
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40 % the bonding is sufficiently weakened that the lattice is predicted to be unstable due 

to shear stress. At greater than 40 % it is suggested that the lattice is unstable to the 

small amount of vibrational energy transferred to the lattice in the first 100 fs. In any 

case, if the atoms disorder this quickly, they are probably cold, compared to the 

equilibrium melt. A previous experiment by Kanemitsu et al1°° using 400 fs pulses also 

(in retrospect) seems to support this conclusion i. e. that liquid silicon is formed during 

the pulse duration but superheated on a timescale comparable with electron-phonon 

equilibration. They also analyse the anomalous surface transformations near threshold 

which clearly indicate that the silicon has melted and formed a raised amorphous ring of 

material at the extremity of the melted region. They conclude that these multi-annular 

surface transformations are consistent with a thermal shock wave due to the expansion 

and subsequent contraction of the surface on cooling. 

In a number of recent papers, gallium arsenide has also been shown to undergo 

similar surface transformations 101.102.103. Glezer et al'04 suggested that ultrafast 

transitions occur when high intensity femtosecond pulses are incident on GaAs surfaces. 

They suggest that the excited valence electrons destabilise the covalent bonds within the 

material thereby causing a phase transition (as proposed for Si). This transition 

subsequently eliminates the band gap and the affected volume subsequently behaves like 

a metal. Multi-angle pump probe measurements were undertaken on GaAs and dielectric 

constants obtained from the data. It was found that for fluences above 0.05 Jcm 2 the 

Drude model was no longer accurate in predicting the dielectric constant. From this they 

conclude that initial increases in reflectivity are caused not by changes in dielectric 

constant but by significant changes in the electronic structure of the semiconductor. 

Krilger and Kautek105 compared ablation of n-type silicon <111> surfaces with 

femtosecond and nanosecond pulses at -600nm. They show that although phase 
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transformations occur on a timescale comparable or less than the pulse length (300fs), 

ultrashort pulse ablation eliminates melt splashing and irregular morphologies due to 

negligible light-plasma interaction. Although surface microstructure is not eliminated 

the scale of corrugation features is much reduced. They show that the threshold fluence 

for ultrashort pulsed ablation is dominated at low fluence by non-linear absorption 

leading to a well-defined penetration depth significantly less than the linear absorption. 

Ablation threshold is given as < 0.2 Jcm 2 (in agreement with Downer et a188 for the 

threshold for particle emission at approximately twice the melting threshold of 

0.1 Jcm 2). This may indicate that a two-regime process may occur (as for Cu) with the 

linear absorption regime playing a role at higher fluences. 

Pronko et al106 used a two-temperature finite difference model to describe the 

response of semiconductors under ultrashort pulse irradiation in the energy regime 

where vaporisation and melting can occur. Comparison of their results was made with 

analysis of damage and plasma optical emission threshold fluences. They find that the 

threshold fluence for optical damage is of the order of 0.13 Jcm 2 for an 80 fs laser pulse 

at 800 nm. They conclude that the absorption depth is laser field strength dependent 

(pulselength dependent) and that the mechanism for energy absorption is avalanche 

electron ionisation. Absorption depth was measured at threshold fluence to be of the 

order of 100 nm; significantly less than the linear absorption coefficient at 800 nm 

(6.6 µm). 

Hebst et a1107 reported use of an excimer laser to ablate both Si and Ge, using 

pulses of 15 mJ at 400 fs and 7.5 mJ at 100 fs. The maximum intensity achieved was 

3x1013 Wcm2. Samples were ablated using a1 mm aperture, imaged at 55: 1 onto the 

sample. During the drilling process they found that vertical cones and pillars were 

formed as seen previously for 612 nm and 800 nm ablation. They claim that no evidence 
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of a liquid phase was observed on any of the samples indicating that melt ejection was 

not the mechanism for ablation. This may be due to the decreased linear absorption 

depth at UV wavelengths. They observe the presence of horizontal steps of 

approximately XJ2 dimensions on the sides of the ablated regions. The morphology of 

these steps resembled threshold ablation patterns. The most probable ablation 

mechanism, they conclude, would appear to be a direct transition to either a vapour or 

plasma phase. Evidence of some minor chipping around the ablated holes was proposed 

to be due to sonic shock in the material, however abrasion by the rapidly expanding 

plasma/vapour plume is an equally valid explanation. SEM studies comparing both 

grounded and ungrounded samples provided evidence of permanent structural changes 

caused by multi-photon emission of electrons. This emission caused a negative charge 

distribution in the material, which in turn created defects and amorphous regions. It was 

found that 100 fs pulses showed better edge definition at ablated sites than the 400 fs 

pulses, probably an effect of reduced thermal diffusion. 

It is clear that the ablation of semiconductors is non-trivial even for ultrashort 

pulses, although the effects of thermal diffusion and plasma-light interaction are 

negligible. Surface second harmonic studies seem to indicate the formation of a 

disordered state within the pulsewidth, which undergoes a transition to a plasma/vapour 

phase on a picosecond timescale. 
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1.5.2.3 Dielectrics 

As the bandgap becomes larger than the single photon energy, non-linear 

processes such as multi-photon absorption and impact ionisation become more 

important. Investigations of the ablation behaviour of insulating ceramics, which have 

significantly higher bandgap compared to semiconductors, have also been investigated. 

Ilhemann et al108, in the first reported study of femtosecond laser ablation of 

dielectric materials, compared nanosecond and femtosecond laser ablation of fused 

silica. They used 193,248 and 308 nm wavelengths with 20 - 30 ns pulses and 

compared results with 248 nm for 500 fs pulses. Experiments were undertaken at 1 bar 

for the ns pulses and at 10"2 mbar for femtosecond pulses, to prevent air breakdown in 

front of the sample. As the bandgap for fused silica is -8 eV, the photon energies used 

were not sufficient for single photon excitation to occur in the bulk. 

The effects of ablation at 248 nm, 8.2 Jcm 2 and 500 fs showed a two-stage 

ablation process on the front surface of thin samples. The femtosecond and nanosecond 

ablation processes differed significantly. The incubation period is only one or two pulses 

(as opposed to ten or more for nanosecond pulses) and the material removal rate remains 

constant after incubation (as opposed to increasing for larger numbers of pulses). The 

surface of the hole switches from a smooth, reflecting surface to a rippled, absorbing 

surface with a few drops of melted and recooled glass attached. 

Comparison of femtosecond and nanosecond data shows that femtosecond 

pulses exhibit a reduced thermal diffusion effect. Large scale cracks were observed for 

the nanosecond samples, but not for the femtosecond case. This indicates that thermal 

diffusion and material heating (HAZ) cause thermo-mechanical stresses that lead to 

cracking. For the femtosecond pulse ablated sample, the strongest evidence for thermal 
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damage is the presence of small droplets of material, which have melted and undergone 

rapid cooling. Ablation at 193 nm gave the best results for all conditions, probably due 

to increased linear absorption at surface impurities and therefore a reduced absorption 

depth. The threshold for femtosecond laser ablation at 248 nm was measured to be 

around 1 Jcm 2. 

Du et al109 studied the breakdown of fused silica induced by near infrared 

photons at 780 nm, for pulse widths from 150 fs to 7 ns. The energy threshold for 

ablation varied with the square root of the pulse width only if the pulse width was longer 

than 10 ps. They also observed an increase in ablation threshold for single laser shots 

below approximately 1 ps, which they attribute to a saturation of the ionisation rate per 

unit length for fields on the order of a few MVcm'. They suggest that the breakdown 

mechanism was multi-photon ionisation for the generation of initial free electrons, 

followed by electron avalanche ionisation. 

Barium borosilicate glass was investigated as a substrate for silicon thin films by 

Krüger and Kautek11°. Femtosecond laser ablation at 612 nm (300 fs) gave an ablation 

threshold of 1.2 Jcm 2, sharply contrasting with a linear threshold of approximately 

25 Jcm 2 at 308 nm for 50 ns pulses where the absorption coefficient is 4400 cm' 

(barium borosilicate glass is practically transparent at 612 rim). They observe that it 

takes several pulses above threshold to generate melt ripples and first ablation features, 

supporting the hypothesis of an incubation effect. They suggest that inhomogenieties in 

the material removal indicates the necessity of defects to efficiently couple laser 

radiation into the surface. Massive ablation results in cavity surfaces which provide a 

sufficient number of defect sites allowing for homogeneous ablation. Micrographs of 

ablated glass reveal that the material has been mechanically broken away from the bulk, 

resulting in a sharp edged morphology of approximately I µm dimensions. They note 
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that the expanding glass vapour abrades the brittle walls and edges and results in some 

micro-cracking. 

In a further paper, Kautek and co-workers"' investigated the ablation 

characteristics of a range of glasses for an increasing number of pulses at a fixed fluence 

(2.8 Jcm 2,612 nm and 300 fs). Similar morphologies are observed for all glasses 

investigated. Fused silica shows a more pronounced incubation effect than the other 

investigated glasses, in all probability due to an greater bandgap in comparison with 

borosilicate and lime glasses. Once ablation takes place, unique ripple structures are 

observed. They suggest that these structures are not generated by coherent light 

interference patterns because their size does not correlate with the wavelength. They 

associate these structures with surface plastification and melting followed by relaxation 

of internal mechanical stresses. 

Table 1.5.3 Summary of femtosecond laser ablation of dielectric substrates. 

Substrate X/ nm At / fs Fth / Jcm'2 

Fused Silica 825 120 1.2 

Sapphire 825 120 1.6 

BaF2 1053 400 1.6 

CaF2 1053 400 2 

MgF2 1053 400 2.1 

LiF2 1053 400 2.6 

Von der Linde 112 and co-workers determined the laser induced optical 

breakdown thresholds in optically transparent solids using pump-probe techniques. The 

threshold for plasma formation in fused silica for a pulse length of approximately 120 fs 

was found to be in agreement with that determined previously by Du et all 09 and Krüger 
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and Kautekt t 1. Further, they showed that a significant reflectivity change occurs with a 

rise time of - 200 fs (50 % reflectivity at 10 Jcm2) indicating that an overdense electron 

plasma is formed on this time-scale. They also concluded that there is no systematic 

variation of the threshold among three different materials (MgF2, sapphire, fused silica), 

indicating that the phenomena responsible for surface breakdown is extrinsic, in contrast 

to results already published for bulk breakdown thresholds (on picosecond and 

nanosecond scales). 

Stuart et all 13 also studied the damage thresholds for fused silica and fluoride 

glasses. Damage was measured using a Normanski microscope with an ultimate 

resolution of approximately 0.5 µm. In contrast with the results of Von der Linde 112 they 

suggest that the threshold damage fluence scales with the bandgap energy, indicating 

that the mechanism for damage is multiphoton initiated avalanche ionisation. The 

damage thresholds for fluoride glasses and fused silica are given in Table 1.5.3. 

The measurements of both Stuart et all 13 and Von der Linde et all 12 seem to 

suggest that there is no rise in ablation threshold for pulse lengths less than 1 ps in 

contrast with the results of Du et al109. This discrepancy may be attributed to the 

difference in measuring technique or to the effect of incubation on the substrate (Du et 

al measured single pulse thresholds). In a paper by Varel and co-workers' 14, both single 

shot and 5 pulse thresholds were obtained. Thresholds determined for plasma emission 

showed no rise in ablation rate below 1 ps duration for either experimental condition. 

Thresholds determined by damage measurement show a rise in ablation rate for single 

shot measurements, although these are in agreement, within experimental error, with 

those determined from the multiple exposure measurement. They conclude that the 

plasma studies (which directly compare with the measurements of Du et al) confirm the 

findings of both Stuart et all 13 and Von der Linde' 12. Measurements by Kautek and co- 
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workers' 15 on borosilicate glass also confirm this result for pulse durations down to 

20 fs. 

Significant interest has been shown in polymeric materials due to their 

importance as photomasks in lithography. Polymers are very different from metallic and 

indeed oxide ceramic materials such as glass, in that they are bound together by weak 

bonds, van de Waals, dipole-dipole and hydrogen bonds. 

The first experiments on femtosecond laser ablation of polymer substrates were 

by Kuper and Stuke't6. They ablated PMMA (polymethylmethacrylate) with 300 fs 

pulses at 248 nm and compared results with ablation for 16 ns pulses. They observe a 

reduced threshold for femtosecond ablation and an etch rate per pulse which does not 

follow the linear model of Beer-Lambert. They suggest that this is due to an incubation 

effect. They observe that surface roughness is also reduced for femtosecond pulses. 

Kuper and Stuke"7 also investigated the femtosecond laser ablation of both 

polytetrafluoroethylene (TeflonTM, PTFE) with 248 nm laser pulses. Attempts to ablate 

Teflon with a nanosecond pulsed excimer laser (248 nm, 16 ns, 2Jcm Z), led to a 

chemically degraded and disrupted surface after 50 pulses. In contrast 300 fs, 1 Jcm 2 

pulses smoothly ablated the substrate and the edges of the ablated region showed little 

or no thermal damage. 

The experiment used 4 mm thick commercial Teflon sheets (a248 11m 158 cm", 

density = 2.15 g cm3) that had been polished and cleaned with methanol. Multiple holes 

were drilled at a range of fluences and pulse numbers at 248 nm and 300 fs. Possible 

residual thermal effects were eliminated by using 1 Hz repetition rate. In contrast to 

ablation of PMMA, the Teflon showed no measurable incubation effect. As fluence was 

increased, the etch rate deviated from the linear Beer-Lambert behaviour, indicating the 

presence of non-linear absorption. Threshold fluence for Teflon was determined to be of 
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the order of 0.5 Jcm 2 for 300 fs pulses. The ablation rate per pulse increased 

approximately linearly between 0.5 and I Jcrri 2 (from 0.4 to 0.75 µm / pulse) after 

which the rate of increase slowed dramatically, with a value of 1.3 µm per pulse at 4J 

cm 2. This is large compared to the disrupted surface that was formed by 2 Jcm 2 for 16 

ns pulses, which has not removed a significant amount of material even after 50 pulses. 

Kumagai et all's used -200 fs pulses at 798 nm to ablate a variety of polymer 

substrates in vacuum (-I0"5 Torr). Ablation depths for 200 pulse irradiation were 

measured by a stylus profile monitor. The photon energy in the IR is not sufficient to 

directly break the chemical bonds of the polymer (the absorption coefficient at 798 Mn 

is 300 times less than at 248 rim) so the authors propose that a multiphoton mechanism 

is responsible for the observed ablation at this wavelength. Interestingly, the observed 

ablation rates are comparable to that of KrF laser ablation at 248 nm and 300 fs. 

However, the observed threshold fluence of 0.29 Jcm2 significantly higher than shown 

for excimer pulses - 0.07 Jcm 2 for ArF ablation at 248 nm (for PTFE). Comparison of 

the experimental results with a multiphoton model show good agreement between 

experiment and 3 photon absorption for polyamide (Kapton) and 5 photon absorption 

for tetrafluoroethylene-hexafluoropropylene co-polymer (FEP). They conclude that 

solid-state high intensity femtosecond laser ablation in the infrared is a viable alternative 

to UV excimer laser ablation. 

Bor et a1119 determined the time dependent reflectivity of PMMA, Teflon, Mylar 

and Kapton that had been exposed to 7 mJ (5 Jcm2), 0.5 ps pulses at 248 rim. 

Reflectivity was probed using 496 nm light on a picosecond timescale. The rise time of 

the reflectance was measured to be instrument limited, suggesting that a solid-state 

plasma is formed within the pulse width and decays with a time constant of the order 10 

- 20 ps, giving an indication of the electron-phonon relaxation time. After 20 ps, the 
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reflectance has dropped below that of the original unablated surface, indicating the 

presence of an absorbing plasma on the surface. The authors propose that this "transient 

mirror" could be used as a high contrast saturable absorber for UV excimer laser pulses. 

A number of recent papers have reported the application of femtosecond pulsed 

laser microstructuring on dielectric materials. In particular Chen and co-workers92 

reported the fabrication of Bragg reflector grating structures with a period of 360 nm 

and a modulation depth of 80 nm in lithium niobate for DBR (distributed Bragg 

reflector) lasers. Davis and coworkers91 used 120 fs laser pulses at 810 nm to write 

waveguide structures inside a range of glasses (silica and ZBLAN) with application to 

the telecommunications industry. They show that high intensity irradiation of the 

material produces an increase in silicon colour centres, non-bridging oxygen hole 

centres and peroxy radicals. In a similar application in bulk materials, Glezer et a19° 

reported the application of short pulses to optical data storage. The decreased feature 

size of femtosecond produced damage allowed them to write binary data patterns in 

three dimensions with a density of _1013 bits cm 3 with a 0.65 Numerical Aperture 

objective. Comparison with 200 ps pulses shows the advantage of ultrashort pulses in 

reducing damage volume (feature diameters of 200 nm for 100 fs at 780 nm, compared 

to -5 µm for 200 ps pulses) and eliminating cracking due to thermal shock. 

Sub-picosecond lasers have been shown to create more precise, lower threshold 

ablation fluences for insulating materials"s. Theoretical arguments point towards an 

increase in non-linear absorption compared to the nanosecond case. It is also evident 

that femtosecond pulses at fluences far above the ablation threshold cause unwanted 

thermal effects within the materials. In conclusion, for maximum precision in 

femtosecond ablation, fluences should be kept close to the ablation threshold. 
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Chapter 2: Experimental 

This chapter details the systems developed for the experimental programs of 

femtosecond photochemistry and laser ablation. Section 2.1 provides details regarding 

the BNFL femtosecond laser system including system characterisation and typical 

operating parameters and procedures. Sections 2.2 and 2.3 give an account of the 

apparatus developed for the photochemical and ablation studies respectively. 

2.1 The BNFL Ti: Sapphire Laser System 

A schematic of the CRL laser system is given in Fig. 2.1.1 An argon ion laser 

[Coherent Innova 310] operating in multi-line visible mode [approximately 8 W] is used 

to optically pump a self-modelocked Titanium Sapphire laser [Coherent Mira 900F] to 

produce 10 nJ pulses of -100 fs duration. The output of the Ti: Sapphire passes through 

an optical isolator and is positively chirped to produce 300 ps pulses for amplification in 

the regenerative cavity. Pulses are injected into the regenerative cavity [BMI Alpha 

1000S]', amplified and then ejected using a Pockels cell. The output from the 

regenerative amplifier is then temporally re-compressed to approximately 80 fs with 

energy of the order of 800 µJ. The regenerative amplifier is pumped using 9W from a 

frequency doubled Q-switched Nd: YLF laser [BMI 621-D, 1 kHz, 200 ns]. 
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Fig. 2.1.1 Schematic of BNFL femtosecond laser system. 

Fig. 2.1.1 Modelocked output of Mira 900F. 
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Solid State lasers exhibit excellent pulse to pulse stability2. Fig. 2.1.2 shows the 

modelocked output of the seed laser observed with a fast photo-diode and demonstrates 

pulse-to-pulse stability of -1% rms. The 13 ns period corresponds to a repetition rate 

of 76 MHz. Fig. 2.1.3a shows the effect of injection of the seed pulses into the 

regenerative cavity. The trace clearly shows the growth of the injected pulse as it 

propagates in the cavity picking up energy from the pumped region of the Ti: Sapphire 

crystal, then the exponential decay as the pulse continues to propagate after the gain has 

been depleted. Fig. 2.1.3b shows the effect of cavity dumping at the peak of the gain 

using synchronous ejection by the Pockels cell. The Pockels cell is synchronised to both 

the Nd: YLF pump laser and Ti: Sapphire oscillator. These traces were obtained by a fast 

photo-diode placed behind the cavity end mirror and coupled to a 400 MHz analogue 

oscilloscope [Tektronix 2465B]. 

The spectrum of the amplified laser pulse after recompression is routinely 

measured using a spectrometer [Jarrel-Ash Monospec 18 spectrograph (173.8), with an 

Alton LS-2000 diode array and 100 µm slit]. The measured bandwidth is typically of the 

order of 13 nm. Fig 2.1.4 shows an autocorrelation of the amplified pulses 

corresponding to a pulse width of - 80 fs. The time bandwidth product &tiv a 0.500 

shows the pulse to be 1.59 times the transform limit if we assume a Sech2 pulse profile 

[ itEv=0.315]. 
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Fig. 2.1.3a Injection seeding in the regenerative amplifier cavity. 

Fig. 2.1.3b Cavity dumping of the regenerative amplifier cavity. 
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Fig. 2.1.4 Autocorrelation of amplified laser pulse after recompression. 

Observation of the continuum generated by optical breakdown of the air, by 

focusing the compressed output of the regenerative amplifier with a 50 mm focal length 

lens, was found to be an excellent method for optimising the pulse length after 

compression. Fig. 2.1.5 shows a photograph of the continuum projected onto a card. A 

small spark is observed in the region of the focus indicating the breakdown of the air. 
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Fig. 2.1.5 Optical breakdown of the air in the vicinity of the focus of a 50 mm focal 

length lens. 

A significant factor in the quality and reproducibility of ablated structures is the 

spatial profile of the laser beam as quantified by the M2 value. Measurement of the M2 

(which should be -1 for pure Gaussian beams) is typically by measurement of the laser 

divergence from3; 

M2 = 
B1rd 
A 

2.1.1 

where 0 is the half angle of divergence of the laser beam and d is the diameter of 

the beam waste at the focus of a lens. Undertaking a measurement of 0 and d for a 

specific lens provides us with enough information to estimate the M2 value. For this 

purpose the output from the regenerative amplifier was attenuated to approximately 

0.01% of the beam energy and focused using a lens with f=Im. The spot size was 

measured using a CCD beam profiler (Spirocon). Simple trigonometry gives us a value 
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of the half angle divergence as 1.786 mrad and a corresponding M2 of 2.13 and 1.77 for 

the x and y dimensions respectively. The slight ellipticity of the beam may be due to a 

minor misalignment of the stretcher/compressor, or more likely, an error in the 

measurement due to beam distortions in optical elements. 
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2.2 Femtosecond Pump-Probe Spectroscopy 

In the following section I describe the system designed and built for dual 

wavelength transient kinetics at BNFL's femtosecond applications laboratory together 

with experimental observations of white light continuum and outline the principal 

features of the European user facilities to which I had access. 

2.2.1 Experimental System For Dual Wavelength Transient Kinetics 

For experimental measurement of two colour transient absorption kinetics an 

apparatus has been developed to provide pump pulses in a number of spectral ranges 

[given in table 2.2.1] and probe pulses with wavelength range of approximately 350 to 

1000 nm from a continuum source. The system has been demonstrated using the 

4'-N, N-dimethylamino-3-hydroxyflavone molecule and is shown to have an 

instrumental function of -r 230 fs (as measured by the stimulated Raman emission at 

450 nm in cyclohexane). 

Table 2.2.1 Wavelength ranges available for excitation pulse by non-linear frequency 

mixin in BBO. 

Wavelength Range Energy / µJ 

Fundamental 850 - 750 nm 500 - 800 

OPG 420-1000nm 40-60 

Second Harmonic 425 - 375 nm 100 - 300 

Third Harmonic 280 - 250 nm 50 - 75 

114 



Femtosecond Laser Interactions 

A complete scheme for a pump delayed two colour pump-probe apparatus is 

given in fig. 2.2.1 and a photograph of the actual arrangement is shown in fig. 2.2.2. 

Near transform limited 80 fs pulses at 790 nm [as described previously] are split into 

two arms using an 80: 20 ultrafast beamsplitter [BS1]. The pump beam, provided by the 

more intense transmitted beam, is then incident upon a gold-coated cube retroreflector 

[RR] mounted on a motorised translation stage [Photon Control] to provide the time 

delay between pump and probe. The appropriate frequency conversion is by type I SHG 

in BBO [0.3 mm thick], after reducing the beam radius in a 3: 1 telescope formed by L3 

and L4 (f = 300 mm and f= -100mm respectively). The second harmonic beam was then 

reflected by a dichroic mirror (M1o) to remove the fundamental and focused onto the 

sample by L5 [f = 300 mm], to give an estimated spot size of 124 µm (in the diffraction 

limit). 
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CaF2 CaF2 window 
BS Beam Splitter 
RR Cube Retro-Reflector 
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Fig. 2.2.1 Schematic of transient absorption spectrometer. 
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frequency conversion (CaF2 and BBO for probe and pump respectively), optical delay, 

sample cell and detection electronics. 

The probe beam reflected from BS, is reflected by M2, M3 and M4 to provide a 

static delay and is then incident on a half wave plate [HWP] in order to bring the 

polarisation to the "magic angle" with respect to the pump. The probe is further 

attenuated using neutral density filters to approximately 10 µJ. The probe continuum is 

generated by focusing the beam onto a2 mm thick CaF2 disk rotating at approximately 2 

Hz. The quality of the continuum is controlled by an iterative process of moving the 

position of the CaF2 disk with respect to the focal point of the lens, the angle of the 

window [pathlength] and pulse energy. A brief discussion of the properties of the 

continuum is given in Section 2.2.2. The continuum is approximately collimated by L2 

[f = 75 mm] and split by a 50: 50 aluminium beamsplitter [BS2] to provide signal and 

reference beams. Both signal and reference are then focused by L6 [f = 150 mm] into the 
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sample cell in the fashion illustrated in Fig. 2.2.3. The diffraction limited spot size of the 

probe beams was of the order of 14.6 µm so that the probe volume is approximately one 

tenth of the pump volume ensuring uniform absorption changes across the beam. 

%-Cl l 

Aperture 

Fig. 2.2.3 Schematic of the detection geometry for referenced transient absorption. 

The sample cell was made from Spectrosil Q to provide maximum transmission 

throughout the ultraviolet and visible wavelength range. To minimise heat conduction 

effects the sample solution must be flowed, so a simple 1 mm pathlength spectroscopic 

flow cell [Lightpath Optical Ltd] was employed. The cell was sealed to PTFE tubing 

using VITON high performance heat shrinkable tubing [Majortek Components]. An air 

tight seal was obtained by using tubing with a shrink bore of less than the cell 

inlet/outlet tubing without applying external stress to the cell. A small all-Teflon 

diaphragm pump [Whatman mini] was used to circulate the sample [flow rate 

0.3 It/min] using a reservoir of approximately 100 ml. 

Signal and probe beams were detected after appropriate wavelength filtering for 

probe (with 10 nm bandpass filters) using a dual element pin photodiode [EG&G 

Optoelectronics UV 100BQ] with a quartz window for enhanced response in the 

ultraviolet. The output of each photodiode was measured using a lock-in amplifier 

[EG&G] synchronised to a mechanical chopper [EG&G Electro-optics]. 
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The linearity of the detection system at 450 nm was checked by placing neutral 

density filters in the signal arm of the probe and measuring4; 

Inference - prone 
= Ire/erence exp(- DOD -DOD (for small signals) 2.2.1 

A plot of filter OD against In (AI/Iref) is shown in Fig. 2.2.4. It is clear that the reverse 

biased configuration provides a relatively linear response in this region. However, we 

note a factor of two difference in the observed O. D. which is due to an error in the data 

collection software. The linearity of the sample response with respect to pump intensity 

was verified for pump powers in the region 1-5 mW. 

Both the lock-in amplifiers and the motorised delay stage are controlled via the 

GPIB interface of an IBM personal computer. Software was developed using LabView 

(National Instruments) providing simple integration of data collection, instrument 

control and data presentation by the use of virtual instruments. Data was collected at 

approximately twice the time constant of the Lock-in amplifier with a user selectable 

number of acquisitions per time delay [typically 10]. It is clear that for long acquisition 

times the long-term stability of the laser becomes an issue. For this reason the number of 

acquisitions per time delay was minimised and a number of runs [in both directions] are 

averaged. 
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Fig. 2.2.4 Plot of filter OD with Ln (A. UIref) 

118 

0.1 0.2 03 0.4 0.5 



Femtosecond Laser Interactions 

The instrumental response of the experiment may be determined by 

measurement of the FWHM of the stimulated Raman emission generated in the solvent 

at - 450 nm in cyclohexane. The Raman signal is shown in fig. 2.2.5 with a Gaussian 

pulse of FWHM 280 fs, approximately corresponding to the cross-correlation of pump 

and probe. 
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Fig. 2.2.5 Plot of stimulated Raman spike instrumental function (error bars with ±0.005) 

with Gaussian fit (solid red line). 

Samples for analysis were prepared in solution to give an OD - 1.0 for a1 mm 

pathlength (corresponding to cell width) at the pump wavelength. All solvents used 

were HPLC or spectroscopic grade to minimise possible sources of error. Samples were 

checked spectroscopically before and after the experiments to ensure that they had not 

degraded during exposure. 

In conclusion the system described above is suitable for obtaining kinetic 

measurements on systems with time constants of no less than 280 fs with transients in 

the UV or visible range. Data collection with lock-in amplifiers is relatively slow when 

compared to an time gated electronic approach but much of the signal averaging is taken 

care of prior to data storage, so that approximately the same time is spent on an 
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experimental cycle. Signal to noise is good and transients of the order of 1% absorption 

can be measured with a minimum of signal averaging (10-20 acquisitions per channel). 
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2.2.2 Experimental Observations Of White Light Continuum 

Experiments to demonstrate a stable and reproducible white light continuum 

were undertaken at BNFL in conjunction with the pump-probe experiments. The 

experimental arrangement is as in fig. 2.2.1 with the media for the generation of the 

Fig. 2.2.6 Experimental observation of white light continuum generated in a1 mm 

pathlength water cell with varying laser intensity (Images scanned from 35 mm film). 

Preliminary work was undertaken using a cell containing H20, a well 

documented medium for white light generation 5.6. The output of the regenerative 

amplifier was attenuated to approximately 25 µJ and focused through a 40 cm focal 

length lens onto a1 cm quartz cell containing de-ionised water. The cell was oriented 

close to Brewster's angle to reduce reflections from the cell walls. By moving the cell 

with respect to the focal point of the lens continua were generated (Fig. 2.2.6). Far from 
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the focal point [low intensity beams] the generated spectra appear unstable and yellow 

indicating only a small frequency excursion due to SPM. As the intensity is increased 

the frequency spread clearly increases until a relatively low intensity white beam is 

evident. After the cell, the radiation appears to diverge with similar characteristics to the 

incident beam. For observation times of <15 s the continuum remains relatively stable. 

However, for longer observation times it is clear that the quality is deteriorating as the 

spectrum becomes increasingly red [decreasing frequency excursion] and unstable. This 

is also evident from observing the cell itself. At low intensities a weak unstable filament 

is evident [due to self-focusing] and the filament appears to fluctuate in intensity with 

time. As the intensity is further increased, coloured rings become evident around the 

central white region, with redder components towards the centre and blue towards the 

edge [due to the optical path difference in the medium]. 

Observing the cell itself, a strongly white, trapped filament can be seen. There is 

still some evidence of fluctuation, however, and this is probably due to bubble 

formation along the filament. Further increasing the intensity we observe an interference 

pattern [strong spatial modulation] in both the central white region and rings, which 

appear perpendicular to each other. Higher intensities reveal yet more interference, with 

further patterns introduced, until a strong, apparently uniform white light continuum is 

produced. However, the produced continuum is both spatially and temporally unstable 

and follows the divergence characteristics of the rings, which appear to be independent 

of the incident beam. 

It is our belief that the interference patterns produced at the higher intensities are 

due to interaction between self focused filaments, a single pattern being due to a pair of 

filaments and further patterns due to an increasing number of filaments. It is believed 

that the instability of the continuum at intensities just above threshold is due to heating 
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of the water in the cell causing fluctuations in the refractive index, which clearly reduces 

the effectiveness of the SPM. To eliminate the heating effects a longer focal length lens 

[50cm] to reduce the power density, was applied. However, noise reduction was traded 

for signal intensity. 

In order to reduce the cumulative heating effect evident in the static cell, a 

flowing cell was used. The water was pumped through the cell with a micro-pump gear 

pump (pump series 180) at a flow rate which afforded a clearance ratio of approximately 

one [i. e. the surface area exposed to the pulse was renewed between consecutive pulses]. 

The white light generated appears the same as for the static cell, however the stability is 

greatly improved. Repeated experiments using the same pump and probe wavelengths as 

above showed a remarkable difference in the stability of the continuum. However, for 

measurements of kinetics in 4'-N, N-dimethylamino-3-hydroxyflavone probe beams of 

450 nm were required at sufficiently high intensity and stability to detect a relatively 

weak transient. At this wavelength the signal to noise was unsatisfactory. Although the 

water was clearing between each pulse, noise was generated due to ablation of the cell 

walls from the high intensity at the beam waist. 

Clearly a further method of generation was required. The flow cell was replaced 

with a jet formed using a nozzle created by removing the sealed base of a Imm thick 

sample cell. Due to the nature of the continuum generation it is necessary to control the 

pathlength in the medium, z, and this clearly requires a highly stable jet. Glycol forms a 

more stable jet than water due to its higher viscosity, however the intensity dependent 

refractive index for glycol is very low. A compromise of a 50: 50 mix was used. In 

agreement with Fork et als, the most stable continuum was generated using a5 cm focal 

length lens and attenuating the incident light energy to -10 pJ per pulse. The generated 

continua showed similar behaviour to the flowing cell but there was a marked 
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improvement in stability. It became clear that a far more stable and intense continuum 

source was required for repeatable transient absorption experiments in all regions of the 

UV-Visible spectrum. 

Glasses have been given considerable attention in the literature and the use of 

short optical fibres in pulse compression is well documented7. A low n2 in fused silica 

means that high intensities must be incident on samples to produce a sufficient 

frequency excursion. Preliminary experiments show that even at low intensities, local 

heating effects can cause microscopic damage to the sample surface. Despite this, 

however, the continuum generated in fused silica shows little difference to that of water. 

To avoid optical damage we used a2 mm thick CaF2 window mounted on the rotating 

shaft of a high stability motor at approximately 2 Hz. Continua generated in this 

manner, with careful control of incident energy and the position of the plate in the focus, 

can be highly stable and intense [to the point that attenuation is required to avoid 

saturation of the photodetectors]. Although a chirp will occur across the whole 

wavelength excursion the effect of this is minimised by selecting a 10 nm bandwidth for 

the probe. In retrospect it has been noted through discussion with Paolo Foggi at 

L. E. N. S that CaF2 although having a cubic crystal structure has a slight birefringence 

causing a modulation instability in the continuum due to the rotation. In this respect it is 

thought that a translational rather than rotational movement of the disk would give more 

favourable results. This has indeed been shown to be the case at L. E. N. S where work is 

ongoing in understanding the experimental principles of continuum generation. 
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2.2.3 European User Facilities 

Although we have facilities to undertake time resolved chemical studies at 

BNFL much of the work had little commercial significance to BNFL's business 

interests. Access and collaborations with other facilities throughout Europe allowed us 

to pursue investigation of photochemical phenomena in areas of fundamental interest in 

addition to providing experience of the relevant techniques for transient spectroscopy. 

The systems at the European Laboratory For Non-Linear Spectroscopy (L. E. N. S. 

Florence), Rutherford Appleton Laboratory (R. A. L. Chilton, Oxon) and the Max Born 

Institute für Nichtlinear Optik und Kurzzeitspektroskopie (M. B. I. Berlin) are briefly 

described and the relevant parameters discussed. 

The European Laboratory for Non-Linear Spectroscopy (L. E. N. S) at the 

University of Florence is one of a number of research laboratories (including the Max 

Born Institute for Laser Spectroscopy (Berlin)) funded under the European Community 

Large Scale Facilities Initiative to provide access for workers from other European 

countries. We have taken advantage of this initiative to perform femtosecond pump- 

probe experiments at L. E. N. S on a variety of molecular systems. This not only allowed 

us to undertake the experiments but also helped us to learn about the techniques 

appropriate for transient spectroscopy. 

In order to fully characterise the transient response of a system it is necessary to 

obtain both transient spectra and kinetics. During our stay in Florence over two periods 

in 1996 and 1998, we obtained transient spectra for time delays ranging from 0 to 500 ps 

for a series of compounds thought to undergo Excited State Proton Transfer (ESIPT) 

and in some cases the formation of Twisted Intramolecular Charge Transfer (TICT) 

states. 
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Transient pump-probe spectra were obtained at L. E. N. S using a laser system 

similar to that described in Section 2.1, but with an - 70 fs Spectra-Physics Tsunami 

Ti: Sapphire Oscillator used as the seed laser for the regenerative amplifier. 

Approximately 150 fs pulses at 800mn and a repetition rate of 1 kHz are delivered at the 

front end of the system. The experimental system has been described previouslyg, 

however some of the important features are reiterated below. 

For pump-probe experiments, the desired wavelengths are derived from an OPO 

and a white light continuum for pump and probe respectively. The pump beam at 800 

nm is used to drive a custom built OPO producing - 120 fs pulses in the spectral region 

1.2 to 1.5 µm. This output can be used to generate 2°d and 3`d harmonics (600 - 750 nm 

and 400 - 500 nm respectively). Further pump wavelengths can be derived from the 2°a 

and 3rd harmonics of the regenerative amplifier and by mixing the OPO output with the 

harmonics. In this manner, most pump wavelengths are obtainable. However, it is clear 

that pump stability is dependent on the complexity of the technique used to generate the 

desired wavelength. Typically, no more than 5 mW is used to pump the sample. 

The probe light is temporally delayed and used to generate a white light 

continuum in a CaF2 window (continuously translated), producing a stable probe beam 

across a broad frequency excursion (200 - 1000 nm). The probe is divided into signal 

and reference beams and focused collinearly with the pump onto the sample. Dispersion 

in the continuum means that there is a slight discrepancy in time zero across the spectra 

(of the order 500 fs from red to blue components). The dispersion of the continuum is 

given in Fig. 2.2.7. 
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Fig. 2.2.7 Measured time dispersion of white light continuum generated in CaF2 

(Courtesy Of Paolo Foggi, LENS). 

Samples are prepared to give 1.0 OD at the pump wavelength in the pathlength 

of the cell (2 mm). The cell is constructed from Teflon with CaF2 windows to allow 

good transmission of UV wavelengths. The sample is flowed to reduce problems of heat 

conduction and photoproduct generation at the focus, which can reduce the signal 

stability. 

Following the sample cell the pump is blocked and the signal and reference 

beams pass through a pair of pinholes into a spectrometer. The spectra are dispersed 

onto different parts of a CCD camera. Captured signals are analysed by a computer and 

changes in transmission of the molecular system are made by equation 2.2.1. For 

samples with significant fluorescence, subtraction of the fluorescence signal (with the 

pump on and probe off) can also be selected. Fluctuations of the background (pump off) 

of ± 1% are readily obtainable and adequate for the type of transients observed in our 

molecular systems. 
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The full spectra at visible wavelengths of a molecule may be taken at ultrashort 

times to provide information regarding transient processes which effect the excited state 

absorption of a molecular system. 

The Rutherford Appleton Laboratory is a division of the CLRC which provides 

access to researchers from the UK academic community to extensive research tools, 

particularly in the area of laser physics. Under the Lasers For Science program at R. A. L. 

we have gained access to a system for femtosecond time resolved single frequency 

kinetics. The recently developed apparatus employs the use of custom designed optical 

parametric amplifier technology to offer two synchronised and widely tuneable 

ultrashort pulses9. 

The laser system is similar to that described in Section 2.1 and is based on a 

Ti: Sapphire oscillator (Spectra Physics Tsunami) and a Ti: Sapphire regenerative 

amplifier (Spectra Physics Spitfire) pumped with a Q-switched intracavity frequency 

doubled Nd: YLF laser (Spectra Physics Merlin). The fundamental output is tuneable 

from 770 - 840 nm with pulse energies of approximately 500 pJ at 1 kHz. 

Transient absorption measurements may be undertaken at a variety of 

wavelengths with pump tunability from an OPA and other non-linear frequency mixing 

techniques from 200 - 2200 nm. The probe wavelength is selected by 10 nm bandpass 

filter from a continuum generated in a1 cm flowing water cell. The continuum produced 

is high power but multifilament, which ultimately limits the resolution of the system to 

500 fs due to third order dispersion. 

Signal processing is carried out by dividing signal and reference photodiode 

outputs in an analogue circuit to reduce pulse to pulse jitter and then measurement using 

a digital lock-in amplifier (EG&G 7206). The lock-in frequency of around 200 Hz is 
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derived from a chopper in the pump arm, which superimposes a modulation only on the 

signal diode. 

Transient kinetics are obtained by setting a time delay look-up table of user 

defined time delays. To reduce systematic errors due to sample degradation and laser 

misalignment, the delay values are sampled in random order for a duration set by the 

time constant of the lock-in. The detection limit of the system is of the order of 104 of 

absorption. 

Access to facilities at the Max Born Institute für Nichtlinear Optik und 

Kurzzeitspektroskopie (Berlin) was also gained under the EU Large Scale Facilities 

Initiative. The Institute specialises in providing laser facilities for research collaboration 

in the areas of atomic, molecular, cluster and solid state physics, UV and XUV 

spectroscopy, laser development, quantum optics, chemical physics and biophysics. 

Access was granted in order to undertake measurements of ESIPT in 3-hydroxyflavone 

in the region of the first absorption band at or around the absorption maximum. 

The MBI system is based on a custom built chirped mirror dispersion 

compensated Ti: Sapphire laser oscillator capable of generating 10 fs laser pulses from 

the design of the ETH ultrafast laser group in Zurich'°. Amplification is initially in a 

regenerative cavity (after appropriate pulse stretching) and subsequently in a bowtie 

amplifier to bring the output to approximately 3 mJ after recompression. The output is 

continuously monitored by a single shot second harmonic FROG (frequency resolved 

optical gating) instrument to give simultaneous measurement of pulse width and 

spectrum (and by the use of custom algorithms, phase). The pulses produced in this 

manner are typically < 50 fs FWHM, 1 kHz and with a spectral extent centred around 

800 nm. Shorter pulses are obtained by loosely focusing the beam into a2m lossy 
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hollow glass fibre waveguide filled with krypton gas at -1 mbar. The high intensity of 

the laser pulses due to the confinement in the waveguide and the 2m pathlength in the 

krypton provides significant spectral broadening due to SPM despite the low x3 of the 

gas. Pulse compression with gratings and prisms can then produce pulses of 

approximately 10 - 20 fs duration with energy in the region of 50 % of the input due to 

losses in the fibre. This is a simple and efficient method of providing high energy pulses 

of this duration although the beam quality is significantly reduced. 

Transient absorption measurements were performed in the same manner as 

detailed previously (section 2.2.1) with the following exceptions". Pump and probe 

pulses were derived from frequency doubling components of the spectrum created in the 

fibre waveguide12 by angle tuning a pair of BBO crystals to provide the desired 

wavelengths (this restricts the bandwidth of the pulses to the acceptance angle of the 

crystal). Following generation the two beams are independently compressed in double 

pass prism pairs and then directed to the sample using all reflective optics. The sample 

is flowed through a dye laser jet to produce a pathlength of approximately 200 µm. 

Solutions of 6 mmol concentration were used to give significant absorption at the pump 

wavelength. Changes in the probe transmission were monitored using a silicon 

photodiode and read to computer via a time gated analogue to digital converter at the 

laser repetition rate. The probe was referenced to a second photodiode measuring probe 

intensity prior to the sample jet. Changes in transmission of 10-4 are achievable 

providing many experiments are averaged to provide good statistics. The resolution of 

the system is of the order of 70 - 100 fs. Presently only pump and probe wavelengths at 

the second harmonic and fundamental are available for experiments (360 - 440 nm and 

720 - 880 nm respectively). 
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2.2.4 Data analysis 

Fitting of transient kinetic data was undertaken for the most part using Microsoft 

Excel based macros written for the purpose. Following the arguments of Foggi et a18 we 

assume a model such that the transient absorption signal can be reproduced by the 

convolution of the system response, R(t) and the instrumental response, I(t); 

S(r) = 
fR(t)I(t)dt 2.2.2 

The system response is defined by the model chosen to represent the chemical 

system under examination. For a simple system where the depopulation time of a state is 

much longer than the population time R(t) can be characterised by; 

R(t) =A 1- exp - 
*J] 2.2.3 

where, A, is a parameter proportional to the ground state absorbance. The selection of an 

instrumental response for the experimental apparatus itself is not a trivial exercise and 

we have either fitted a Gaussian function to data from molecular systems with 

instantaneous response (ground state bleach of beta carotene) or cross-correlation data 

obtained prior to and immediately after experimental runs. 

Initially data is fit to single exponential kinetics and if indications in the 

residuals and x2 values show evidence of potential additional components, appropriate 

parameters are added to the fitting routines. For the purposes of this thesis x2 is a figure 

of merit defined as; 

xz_ 
(xI - AA )Z 

2.2.4 

where xj and f, are the measured and expected values respectively. 
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2.3 Femtosecond Laser Ablation 

In this section I describe the experimental apparatus built for femtosecond laser 

ablation together with the methods employed for analysis and preparation of samples 

after ablation. 

2.3.1 Experimental System For Ultrashort Laser Ablation 

As has been shown earlier in section 1.5, the advantages of laser material 

processing with ultrashort pulses include precise ablation threshold, reduced laser 

fluence, much reduced heat affected zone and improved energy coupling to the surface 

due to reduced (if not eliminated) plasma shielding. These advantages translate well in 

precise micromachining applications. With this in mind, a femtosecond laser 

micromachining workstation was developed in order to facilitate the production of high 

value, low volume components for other BNFL projects. 

A number of factors determine the choice of experimental technique employed. 

Principally the arrangement must be flexible enough to deal with a variety of different 

substrate materials and feature sizes with particular emphasis on reproducibility and fast 

"turn around". 

From an experimental standpoint there are a number of approaches which may 

be employed. In the simplest arrangement the laser beam is focused onto a target 

substrate and the substrate translated in one or more dimensions. In this case, minimum 

feature sizes are determined principally by the diffraction limited spot size (although for 

ultrashort pulses this is not necessarily the case). For high resolution, high complexity 
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applications (such as integrated circuits) a more complex imaging system may be 

employed, whereby the laser is imaged onto the target via a preformed mask or aperture. 

Within the bounds of our brief to produce relatively simple devices with feature 

sizes of the order 50 µm, it is clear that the added complexity of the second approach 

(including the fabrication of masks for projection imaging) is not suitable. Initial work 

has been undertaken using the first approach and a third technique involving the 

manipulation of the laser beam onto a static substrate has been evaluated for use as a 

fast prototyping method. 

Pulse Energy Meter Key 
BS Beamsplitter 
A Aperture 
L Lens 

Spectrometer A3 Single Shot 
Autocorrelator 

f/3.8 
J4S3.. 

A4 BS2 

" A, 
AZ 

L1 BS1 

N2Jet 
31/min 

Sample Output From 
Regenerative 
Amplifier 

Fig. 2.3.1 Experimental arrangement for laser ablation. 

The optical system for fundamental studies of femtosecond laser ablation is 

given in Fig. 2.3.1. Effectively there are four beam lines created using 50: 50 ultrafast 

beamsplitters and attenuators (reflective neutral density filters) so that pulse width, 

energy and spectrum can be monitored throughout the experiments. In preliminary 
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studies to gauge the potential of the technique the substrate was translated under a 

focused laser beam using a two axis positioning system (Photon Control UPC-SD 

motion controller), providing a resolution of 0.5 µm. The pulses were focused using a 

fused silica piano convex lens with a focal length f= 100 mm (4 = 25 mm). The laser 

beam diameter at the lens was approximately 8 mm, so the effective f# was - 12.5. The 

calculated PFD (see section 1.4.2) and GVD introduced by the lens was insignificant 

(- 5 fs). However, for shorter pulses, or when precise control of the pulse length are 

required at the surface a reflective focusing element should be employed. 

Samples were mounted on an ablation cell which allowed experiments to be 

performed at atmospheric pressure or which could be evacuated to 0.02 mbar using a 

rotary pump. In addition a low velocity N2 jet could be directed onto the surface to 

reduce debris collection and in some cases (notably the ablation of metals) to reduce the 

formation of surface oxides. With this arrangement, several parameters can be varied 

independently to provide data regarding effective ablation rates, effect of atmosphere 

and estimates of ablation threshold and non-linear absorption coefficient. However, the 

severe limitation of this arrangement is its inflexibility with regard to the type of 

patterns (straight lines mostly) which may be marked and control of stage velocity 

profiling which leads to imprecise control of ablation depth in regions where the 

translation stages accelerated and decelerated. For prototype fabrication it became clear 

at an early stage that a more flexible system was required. 

The work-station for prototype fabrication is given in Fig. 2.3.2 and consists of a 

beam delivery system based on a pair of orthogonally arranged temperature stabilised 

galvonometer mirrors (silver coating with SiO2 protective overcoat) which scan the 

beam onto a standard flat field lens (ffl corrected, fell - 190 or 350 mm depending on 

required field). The scanhead provides two axis beam deflection with a 15 mm input 
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aperture within the scan field. Mechanical limit stops at the full scan angle (± 20°) 

protects the XY mirrors from unintentional collisions. 

X Sc \- 
Mirror or 

Focus 

Femtosecond 
Laser Pulses 

Flat Field 
Scanning Lens 

Nx Flow 

Sample Tilt 

Fig. 2.3.2 Schematic of galvonometer based laser scanning system. 

The digital scanning controller (DSC) provides two axis control of the 

galvonometer mirrors using digital scanning techniques. Computer host commands, via 

a user interface, are translated from the active bus into appropriate servo signals and, by 

extension, scanner positions. Vector scanning is used, where each vector is subdivided 

into a sequence of incremental points (XY pairs). Scan patterns are created either as 

Hewlett Packard Graphic Language (HPGL) files in CorelDraw or directly as XY-pairs 

using the correct language protocols. Manipulation of objects created in this manner is 

performed in a dedicated interface program (Job Editor) which communicates via the 

DSC. The Job Editor also provides interface with such parameters as scan speed and 

shutter control. 

135 

Y Scan 
Mirror , �rý 



Femtosecond Laser Interactions 

The type of lens adopted in the ablation scheme is dependent on the 

experimental parameters. A summary of the lenses used for ablation experiments is 

given in Table 2.3.1 below with various parameters of interest. For experiments at the 

fundamental wavelength (-. 790nm) with moderate field requirements (< 100 cm) a 

three component fff= 190 mm fD scanning lens (Omitec Electro-optics "Lasonar") may 

be used. Although optimised and anti-reflection coated for Nd: YAG operation at 

1.063 µm the lens has good operating performance for the fundamental wavelength 

despite reflection losses at component interfaces. For larger field operations (as in the 

case of the Nitration of Benzene device) a four component fff = 350 mm f» lens may be 

employed (again optimised for Nd: YAG) to give a maximum field of -500 cm2. The 

increase in focal length from 190 to 350 mm leads to a 1.8 times increase in the 1/e2 

spot diameter and a corresponding reduction in the fluence at the focus for equivalent 

input energy. This may be accommodated by increasing the input beam diameter from 8 

to 15 mm, to bring the system to the equivalent M. Reflection losses are significant for 

both lenses and in the four element lens amount to a reduction in pulse energy at the 

substrate of approximately 50% of the input energy. 

Commercially available fH lenses are inappropriate for use with the second 

harmonic of the laser at - 395 nm, due to absorption in the coatings and glass 

components. Necessarily fO correction requires the use of high dispersion glass such as 

SF10, which is incompatible with UV light due to transmission losses. In addition GVD 

in glass is highly significant. In this case a singlet lens of fused silica was adopted and 

ray trace analysis showed that with the piano surface to the infinite conjugate aberrations 

could be balanced to give adequate scanning performance over a limited scan range. 
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Table 2.3.1 Pulse stretching due to PFD and GVD in fP lenses. 

Lens Type Wavelength 
mm 

Focal length 
mm 

F 
Number 

PFD / fs 
On Axis 

PFD / fs 
At Max 0 

GVD / fs 
On Axis 

Fused Silica 790 nm 150 mm 19 5.48 28.77 < 0.1 

Fused Silica 395 nm 150 mm 19 16.94 88.95 0.7 

3 element fO 790 nm 190 mm 24 20.55' 90.85' 14.28 

4 element f0 790 nm 350 mm 24 20.55` 143.11* 24.75 

Approximation assumes singlet fused silica lens. 

The parameters for group velocity (GVD) and pulse front distortion (PFD) are 

also given in table 2.3.1. For the 10 lenses the figures for both phenomena have been 

estimated by making the assumptions that the lenses are single element and are made 

from fused silica. Whilst the assumptions are clearly inadequate to characterise the 

lenses rigorously they serve to illustrate the possible magnitude of pulse distortion. 

Taking the f= 350 mm lens as an example, the pulse stretching due to GVD amounts to 

a maximum of 14 fs pulse stretch for a 150 fs input pulse and compares to a 21 fs stretch 

due to PFD (which is independent of pulse width and assuming a 12mm beam 

diameter). However, PFD is not linear across the lens aperture due to the r2 dependence. 

For a maximum scan angle (calculating an annulus of 12mm at the extreme of the 

aperture) the PFD will be of the order of 143 fs! Whilst this amounts to a 63% change in 

pulse width, we do not appear to experience a measurable drop in ablation rate at large 

scan angles with Pyrex substrates. This seems to indicate that the ablation rate for Pyrex 

is relatively insensitive to pulse width for this range (150 - 300 fs), as one might expect, 

as the pulse width is still much shorter than the electron-phonon relaxation time (-1 ps). 

However, the result illustrates that a different optical arrangement would be necessary to 

deliver well-defined, short pulses to the target (achromatic or reflective optics). 
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Alignment of the optical arrangement in the first instance was achieved by 

removing the scan lens and overlapping a back reflection from the target with the 

incoming beam at a pinhole by manipulating the sample holder. Replacing the lens, the 

various component back reflections were also aligned to the pinhole. The focal plane of 

an fly lens is always perpendicular to the optical axis, so a small tilt of the lens with 

respect to normal incidence of the laser beam will introduce a similar tilt of the focal 

plane. This is evident for the 350 mm focal length lens as a change in ablation rate 

(characterised by a loss of visible optical emission from the plasma) from one end of a 

long scan to another at near ablation threshold. Fine adjustment of the target can be 

achieved by monitoring the plasma and introducing small angular modifications until a 

constant ablation rate can be observed throughout a long scan. Misalignment is 

indicated both by the loss of the characteristic kHz buzz of the expanding plasma and 

the development of a self-focusing filament (in thick samples) which can be seen to 

move towards the surface as the correct angular adjustment is applied. Gross 

misalignment may require iteration between angular adjustments and lens-target 

distance. 
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2.32 Sample Analysis 

Samples were optically polished and cleaned prior to ablation with acetone and 

methanol using the drop-drag technique. Fused silica samples were made from 

Spectrosil B, 10 or 25 mm in diameter and 6 mm thick, polished to X/5 per face at 

633 nm (Optical Works). Silicon and Pyrex samples were provided by the BNFL micro- 

engineering group and used as provided, details (where appropriate) are given in the 

appropriate results section. Metal samples were polished to near optical flatness using a 

sub-micron abrasive. 

Analysis of femtosecond micromachined components has been accomplished 

using a variety of complementary microscope techniques. Initial investigation was 

principally undertaken qualitatively using optical microscopy and device dimensional 

characterisation (typically in the range of 50 - 500 µm) was performed on a confocal 

microscope 13. Investigation of microstructure has been performed using ESEM14 and 

AFM'5 techniques. Each method has significant advantages at particular resolutions and 

all methods have been used to fully analyse the ablated samples. 

Probably the most useful technique for quantifying the features of the ablated 

samples is confocal microscopy. The technique employs a laser beam to scan across the 

sample surface and the signal is detected by a CCD camera. The reflected light is 

directed through an aperture confocal with the focal point on the sample surface. This 

severely restricts the depth of field by allowing only in-focus light to pass to the CCD. 

As the sample is scanned through the focal plane, the in-focus points produce the most 

intense signals, corresponding to the height of the stage relative to the starting position. 

The information is then compiled to recreate a 3-dimensional image of the surface. 

Features of the order of 1 µm are readily resolvable. 
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A high quality confocal image depends on the reflected signal being within a 

particular intensity range. A sample with poor or inhomogeneous reflectivity will not 

produce a strong enough signal for imaging. Because the majority of our samples were 

of glass or Pyrex, which exhibit poor reflectivity at normal incidence (- 4%), samples 

were sputter coated with a few tens of nanometers of gold, both enhancing and 

homogenising the reflected signal (clearly ablated regions are much less reflective (due 

to enhanced roughness) than unablated glass). 

Environmental scanning electron microscopy (ESEM) is conceptually similar to 

conventional SEM and produces high quality images at a range of magnifications up to 

105 with exceptional depth of field. In this respect the ESEM is an excellent tool for 

high resolution imaging of fine surface microstructures. The ESEM differs from the 

SEM in that operation is at higher pressure and uses secondary electrons from ionised 

environmental gas to produce an image. Due to the neutralising effect of the- positively 

charged gas ions, negative charge accumulation is much reduced (although not 

eliminated) and non-conducting and even biological materials may be analysed. For this 

reason ESEM is a suitable technique for imaging ablated regions in non-conducting 

media such as fused silica without significant sample preparation. 

Atomic force microscopy (AFM) uses a scanning technique to acquire high 

resolution, 3-dimensional reconstruction of surfaces. A very sharp tip on the end of a 

flexible cantilever approaches the surface. Atomic forces between the tip and the surface 

cause the cantilever to bend. A laser beam, reflected from the cantilever detects 

movement to provide depth profiling. No sample preparation is required to use this 

technique. The resolution of the technique is superior to ESEM and evidence of atoms 

can be seen on some special samples (graphite). The upper range is limited to 4 µm in 
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the Z direction. The AFM has been used to characterise samples with dimensions below 

approximately I or 2 µm in order to analyse microstructure and near fluence ablation. 

Further analysis has been undertaken using a conventional Talisurf surface 

profiler to give cross-sectional data and information regarding residual surface 

roughness. 
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Chapter 3: Pump-Probe Spectroscopy: 

ESIPT To Oxygen (3-Hydroxyflavone and Derivatives) 

The following chapter presents experimental results obtained using the laser 

systems and techniques detailed in Section 2.2. The main thrust of the research has been 

in understanding and quantifying the mechanisms involved in the transient kinetics of 

3-hydroxyflavone (I), which may undergo ESIPT to form a tautomer after excitation 

with 350 nm light. Previous work by our group' has shown that the addition of certain 

substituents to the 4' position of the phenyl ring of I can anomalously affect the 

fluorescence emission and this has been attributed to switching between charge and 

proton transfer. With this in mind, transient spectra of a number of 3-hydroxyflavones, 

containing various substituents, have been measured in a variety of solvent 

environments to examine the effect of the substituents upon the ultrafast dynamics of 

the excited state. 

The structure of I and a number of substituted derivatives are given in Fig. 3.0.1 

These compounds have been synthesised at the University Of Central Lancashire by 

Stuart Ormson and Xavier Poteau. 

I: R=H 
II: 
III 

R= Cl 
R= 

o--ý 
: 

IV: 
CH3 

R= OCHS 
VIII: R= o 

e- 

0 V: R=CN \, ýoJ VI: R= N(CH3)2 
VII: R= N(CH3)2 &H replaced with CH3 

Fig. 3.0.1 Structure of normal form of I and various substituted derivatives. 
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3.1 3-Hydroxyflavone 

The prior research on 3-hydroxyflavone is extensive and has been discussed in 

Section 1.4.2. Presented here are the results of several experiments undertaken to 

elucidate the effect of the proton transfer process on the excited state dynamics of this 

molecule. 

S2 

440 nm 620 nm 

Si 

Pump 
350 nm 

S i' 

Fluorescence I Fluorescence 
400 nm , 540 nm 

So' 

So 

Fig. 3.1.1 Excited state processes in I (ESIPT: excited state intramolecular proton 

transfer, GSIPT: ground state intramolecular proton transfer). 

We start with the model of excited state processes in I (Fig. 3.1.1) proposed by 

Schwartz et a12 and introduce modifications as the experimental results dictate. The 

notation in the diagram will be adopted where appropriate throughout the text. Where 

appropriate the model is modified to fit the observed excited state dynamics. 
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Transient absorption spectra of I in spectroscopic grade methylcyclohexane, 

ethanol and acetonitrile were recorded following femtosecond excitation using the 

ultrafast laser facility at LENS in Florence (previously described in Section 2.3.3). 

These three solvent systems were chosen as representing examples of a non-polar, non- 

interacting solvent (methylcyclohexane, MCH); a polar, hydrogen-bonding solvent 

(ethanol); and a polar, non-hydrogen-bonding solvent (acetonitrile). Particular care was 

taken, where practicable, to ensure that solvents were free of hydrogen bonding 

impurities. 
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Fig. 3.1.2 Transient spectra for I in methylcyclohexane (0 -I ps). 

For I in MCH (1 mM solution), the spectra at short delay times (200-500fs) 

exhibit transient absorption in the region of 350-475 nm with the spectral peak moving 

to the red at the later times (figure 3.1.2). At delay times of I ps and greater, the 

transient absorption is principally in the 400-500 nm region (figure 3.1.3) with a clear 

peak at approximately 450 nm and a shoulder around 490 nm. There is also gain at 
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wavelengths above approximately 500 nm due to stimulated emission. The shape of 

these spectra after approximately I ps appear to be independent of the time delay 

between the pump and probe, although there are the expected variations in overall 

intensity with delay time. 
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Fig. 3.1.3 Transient spectra for I in methylcyclohexane (1 - 10 ps). 

The assignment of these two absorption bands is complicated by the lack of 

accurate kinetics data from these spectra. Prior work by Schwartz et a12 and others has 

assigned the emission at 500 run to the tautomeric excited state and the lower energy 

absorption band to the Si'-S2' transition of the tautomeric species. Almost certainly the 

red edge of the higher energy absorption band (400-500 nm) is associated with 

absorption from the S i' state to some higher excited state of the tautomeric form which 

we term S3'. The change in the shape of this band from short delay times until it reaches 

its steady state condition (1 ps) suggests a movement on the excited state potential 

energy surface towards equilibrium due to stabilisation of the charged tautomer by the 
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solvent, although we accept that this peak shift is convoluted to a large extent with the 

dispersion of the continuum, a discussion of which is given in Chapter 2.2.3. 
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Fig. 3.1.4 Transient spectra for I in acetonitrile (0-1 ps). 

The transient spectra for I (1 mM solution) dissolved in acetonitrile are given in 

Fig. 3.1.4 and Fig. 3.1.5 for 0-1 ps and 1-10 ps respectively. The spectra appear to evolve 

in a similar fashion to that observed in methylcyclohexane and no obvious effect of 

solvent polarity is apparent in these spectra. 
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Fig. 3.1.5 Transient spectra for I in acetonitrile (1-10 ps). 

The transient spectra for I dissolved in ethanol show a marked difference to 

those in the previously described non-hydrogen bonding solvents (Fig. 3.1.6 and Fig. 

3.1.7 for 0-1 ps and 1-10ps respectively). The initial time-dynamics are similar in that a 

peak in absorption shifts from - 400 nm to form a broad absorption feature from 425- 

550 nm. However, a larger Stokes shift to a peak at -525 run is observed with a 

shoulder at around 450 nm after I ps. This contrasts with the methylcyclohexane 

spectra, which showed a peak at 450 nm and a shoulder around 525 nm. In ethanol we 

are perhaps observing a shift in molecular population to a lower energy state due to 

solvent stabilisation of the tautomer. For longer time scales we see an apparent peak 

shift back to the 450 nm band due to the grow-in of stimulated emission around 530 nm, 

as one would expect. For longer time-scales the spectra are identical in form to those 

observed for methylcyclohexane as solvent. 
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Fig. 3.1.7 Transient spectra for I in ethanol (1-10 ps). 
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Fig. 3.1.6 Transient spectra for I in ethanol (0-1 ps). 
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methylcyclohexane solution, we see a small ps rise component in the 420 - 480 nm 

region of the excited state spectra. However, a significant component of rise is observed 

at 585 nm of -10 ps and a much faster component of - 1.6 ps is clearly resolved at 620 

nm. It is possible that both the 1.6 and 10 ps components are present in each of the 

transients, although the coefficients are very small in comparison to those of the 

resolved components. For the acetonitrile and ethanol cases in the 420 - 480 nm region, 

we observe -5 and 10 ps rise components respectively. 

0.03 

cd 

O 

Time Delay / ps 

Fig. 3.1.8 Transient kinetics of I in ethanol (pump: 350 nm, probe: 450 nm). fitted with 

an instrument limited and 10 ps rise components to give x-0.23. 2 

Schwartz et a12 associate the longer rise component of the dynamics to the 

presence of intermolecular hydrogen bonds to the solvent, which may indeed be the 

case. Certainly, we should not expect to see a picosecond component of rise in the 

methylcyclohexane case if we assume that this component is due to hydrogen bonding 

of the solvent, proposed by Schwartz et a12. However, some hydrogen bonding 

impurities are no doubt present and these could potentially cause the component 

observed in these transients. The fast component of rise in the kinetics has been 

assigned to the ESIPT and a dependence on solvent environment. If we accept this 
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Fig. 3.1.9 Transient absorption of I in methylcyclohexane 

(pump: 360 nm, probe: 440 nm). Fit to instrument limited rise and I ps decay 

component to give x2-0.62. 

A typical transient is given in Fig. 3.1.9 for I in methylcyclohexane at 440 nm 

which was excited with a UV pulse at 360 nm, along with the instrumental function 

(time integrated cross diffraction measurement). It is clear that the response at this point 

in the spectrum is instrument limited indicating that the proton transfer event in this 

solvent is considerably less than 70 fs and indeed significantly less than the 120 fs 

observed by Schwartz et a12. This might be attributed to the deconvolution method used 

by Schwartz et al to extract the rise component. Careful scrutiny of the experimental 
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section of the paper reveals that the instrumental function for the experiment was of the 

order of 250 fs, which is probably insufficient to accurately resolve such a 100 fs rise 

component. We certainly are unable to resolve a rise time of this magnitude from our 

RAL experiments. 
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Fig. 3.1.10 Transient absorption of I in acetonitrile (pump: 360 nm, probe: 440 nm). Fit 

to instrument limited rise and 1 ps decay component to give x, 2'-1.12 (over the peak). 

Observations in acetonitrile solution (Fig. 3.1.10) seem to confirm our initial 

results with no resolvable rise component observed at 440 nm. This contrasts with 

observations of I in ethanol, which seem to require a rise component of the order of 

60 fs (Fig. 3.1.11) to give a satisfactory fit (x2 = 0.51). We also observe a decay 
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component on a ps timescale which may be due to the decaying edge of the blue 

absorption region as observed in the spectra. However, no such component was 

observed for the RAL experiments and may be a consequence of the difference in 

experimental parameters (concentration and excitation wavelength). The same data is 

fitted using an instrument limited rise and ps decay component (fig. 3.1.12a) and plotted 

with the methcyclohexane data (fig. 3.1.12b) for direct comparison. Whilst the x2 values 

are not significantly different we see structure in the residuals for the instrumental 

function alone, indicating the need for the 60 fs rise component in the fitting algorithm. 

The noise on the data can be attributed in the main to shot noise from the detection, 

however we observed some low frequency fluctuations in the dye jet which cause some 

oscillations to be superimposed upon the transient, thereby reducing the overall 

sensitivity of the experiment. Indeed, the best jet was achieved in ethanol which may 

explain the observation of a rise component in this solvent. 

These results contrast sharply with those of Schwartz et a12 who observed 

transients in cyclohexane and methanol solution, which showed faster kinetics for the 

alcohol. However, once again this may be attributed to the lack of resolution of their 

experimental system. In addition, the experimental arrangement in the Schwartz 

experiment involved excitation (pump) well above the S0- S1 transition (-350 nm) at 

296 nm. This may explain the discrepancy with respect to the fast time component. 

Vibrationally hot molecules of I may undergo significantly different kinetics. Indeed, 

the potential energy landscape of higher order singlet states would certainly differ from 

the S1 state. 
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Fig. 3.1.11 Transient absorption of I in ethanol (pump: 360 nm, probe: 440 run). The 

best fit occurs for a rise component of 61 fs and a decay component of the order of I ps, 

giving a x2_0.5. 
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These results seem to compare favourably with those undertaken for other 

molecules believed to undergo ESIPT such as Tinuvin and methyl salicylate 

investigated by among others Elsaesser et a13 and Herek et a14 respectively. In both these 

systems transients of the order of 100 fs were observed and attributed to either 

mediation of the proton transfer by low order bending modes of the molecule or 

intramolecular vibrational relaxation (IVR) after the proton transfer event. Herek et al 

modelled the intramolecular proton transfer and found that, based purely on the length 

of the hydrogen bond, transfer should occur on a timescale of - 13 fs. In comparison to 

these two molecules, I is comparatively rigid with both donor and acceptor moeties on 

the same ring, so that low order bending modes should not significately mediate the 04- 

H-03 bond lengths. In the case of methyl salicylate the molecule can form two 

rotamers which may have a significant impact on the kinetics of the proton transfer 

motion. Tinuvin has significantly more degrees of freedom in comparison to I and is 

also free to rotate about an inter-ring bond (See Figures 1.4.6 and 1.4.13 for the 

structures of methyl salicylate and Tinuvin respectively). 

Fig. 3.1.13 Proposed structure for cyclically hydrogen bonded I methanol monosolvate. 
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Whilst we observe the opposite effect on the kinetics for intramolecular proton 

transfer in going from non-interacting to hydrogen bonding solvent environments, we 

consider this to be consistent with the arguments put forward by Schwartz et a12 to 

explain the anomalous behaviour. The presence of intermolecular hydrogen bonds will 

considerably influence the kinetics. In the case of a mono-solvated molecule 

(Fig. 3.1.13), proton transfer can occur mediated by the intermolecular hydrogen bonds. 

Such a process involves either a two step motion or concerted proton transfer. Systems 

such as 7-azaindole which form dimeric proton transfer complexes have been observed 

to undergo such a dual proton motion with what appears to be biphasic kinetics with a 

slow (picosecond component) and a faster - 200 fs component which has been observed 

to be dependent on the excess energy of the excitations. With this in mind we suggest 

that proton transfer mediated by intermolecular hydrogen bonds could occur on a 

comparable or slightly slower timescale than observed for the non-interacting case. 

Certainly, considering the problem on a probabilistic basis, the probability of two 

protons moving along the appropriate reaction co-ordinates must be low in comparison 

with a single comparable event. However, resonance Raman spectra of the molecule in a 

variety of solvents should elucidate the mechanism by which protic solvents effect the 

intramolecular hydrogen bond but this is, unfortunately, beyond the scope of this thesis. 

In conclusion, we have observed the behaviour of I under excitation with UV 

laser pulses at 350 nm and 360 nm. Transient absorption measurements show small 

spectral and kinetic differences in behaviour for an alcohol solvent environment, 

confirming the earlier work of Ormson et a16. Measurement of the ultrafast ESIPT event 

also shows such a dependence, with non-interacting and polar solvent environments 

showing an instrument limited response and an appreciable rise component for a 
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hydrogen bonding solvent of - 60 ± 10 fs. We attribute this behaviour to the presence of 

mono-solvated I complexes, which may undergo either a dual intermolecular proton 

transfer to the solvent, or intramolecular proton transfer along the 04-H-03 reaction 

co-ordinate. 
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3.2 4'-Chloro-3-hydroxyflavone 

Spectra observed for 4'-chloro-3-hydroxyflavone (II) in methylcyclohexane, 

show time dependent behaviour similar to that observed for the unsubstituted molecule 

(Fig. 3.2.1 and 3.2.2 for 0-1 ps and 1-16 ps respectively). Within 500 fs a broad - 50 nm 

absorption feature is observed with a peak at approximately 440 nm which shifts to form 

a broad peak at 470 nm with a full width at half maximum of - 75 run within 1 ps, when 

motion of this band can be said to be complete. A second absorption feature is observed 

which grows in within 1 ps from the long wavelength region to form a peak at - 620 nm 

with a width of - 25 nm and a long tail towards 700 nm. Stimulated emission from the 

tautomer S1' state is observed at 530 nm within 1 ps and a long timescale anti-Stokes 

shift is observed to approximately 520 nm. 

Spectra observed in acetonitrile (Fig. 3.2.3 & 3) and ethanol (Fig. 3.2.5 & 6) 

solution show similar behaviour, although the appearance of the stimulated emission 

band appears to be delayed (- 4ps for acetonitrile, - 16 ps for ethanol) with respect to 

the cyclohexane case. This is consistent with the observations for unsubstituted I, which 

showed a weak dependence of the spectral observations on the solvent. 
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Fig. 3.2.1 Transient spectra for II in methylcyclohexane (0-1 ps). 
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Fig. 3.2.2 Transient spectra for II in methylcyclohexane (1-16 ps). 
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Fig. 3.2.3 Transient spectra for II in acetonitrile (0-1 ps). 
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Kinetics data for each of the relevant spectral regions was extracted by averaging 

a 10 nm bandwidth around the region of interest and plotting this as a function of time 

delay. The data was analysed in the manner described in Section 2.2.4 by fitting to 

appropriate models. A typical result is given in fig. 3.2.7 for II in cyclohexane at 600 

nm. The results for the 3 solvent environments are given in table 3.2.1. In all cases an 

instrument limited rise was observed which may be attributed to the proton transfer 

dynamics. We take the rise component to be of the order of 10 fs but no significant 

change in the fit is observed for values up to half the instrumental response of 230 fs. 
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Fig. 3.2.7 Wavelength integrated kinetics for II in methylcyclohexane for a 10 nm 

bandwidth centred on 600 nm. Fit to a2 component exponential model with an 

instrument limited rise and t2-12 ps. 

The kinetics clearly indicate that the 460 nm and 600 nm absorption bands are 

due to the same state in all solvents even though the relative weight of the fast to slow 

transient response is dependent on spectral position and solvent environment. At 

530 nm, we observe an instrument limited rise in absorption followed by fast decay into 

spontaneous emission in all environments investigated, however the time constants 
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involved vary dramatically with solvent. For methylcyclohexane we observe a- 500 fs 

time constant for the rise in population to the emissive potential surface, indicating the 

presence of a secondary process which hinders the fluorescence on this timescale. A 

similar such component is present for the acetonitrile solution with a time constant of 

the order of 360 fs. Such a fast component is completely absent from the ethanol 

kinetics indicating once again the importance of intermolecular hydrogen bonds. The 

increase in the rate constant for acetonitrile may indicate some dependence on the 

polarity of the solvent, however it is clear that further work is required to confirm this 

hypothesis. 

Table 3.2.1 Kinetics data For II. 

Solvent Wavelength T1 / 
fs 

tie / 
ps 

T3 / 
ps 

At A2 A3 X2 Al/ 
A2 

460 IL 12 100 2.1 0.33 -0.9 0.02 6.36 
Methylcyclohexane 530 IL 0.5 12 1.28 -2.14 -0.75 0.15 

600 IL 12 ýý"""' 1.95 1.13 0.06 1.73 
460 IL 6 40 1.75 0.49 0.48 0.08 3.57 

Acetonitrile 530 IL 0.36 6 0.9 -0.3 -1.32 0.08 
600 IL 6 1 2.05 0.04 0.49 
460 IL 12 ns 1 0.13 0.2 7.69 

Ethanol 530 IL 11 : ýý_. ý 1 -1.6 0.07 
600 IL 12 0.85 1.75 0.49 

The picosecond time constants, observed for all spectral regions and solvents are 

comparable with those observed at RAL for I and are certainly within experimental 

error. We observe identical time constants for ethanol and methylcyclohexane indicating 

the possibility of protic impurities in the non-interacting solvent. The longer time 

constants observed in some spectral regions are indicative of the excited state decay, 

which typically occurs on a nanosecond timescale, too long for us to accurately 
determine and hence the discrepancy in the long time component. 
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3.3 4'-Methyl-3-hydroxyflavone 

Transient spectra for 4'-methyl-3-hydroxyflavone (III) in methylcyclohexane 

solution are given in Fig. 3.3.1 and 3.3.2 (for 0 to 1 ps and 1-16 ps). Similar behaviour 

is observed to that of the 4'-chloro substituent. However, where the chloro species gives 

a broad absorption peak in the 450 nm region, for the methyl substituent we see a 

pronounced peak at 450nm with a shoulder at 500 nm with a corresponding emission 

state profile as in the unsubstituted case. Acetonitrile solutions give a comparable result 

to that of the unsubstituted compound. For ethanol solutions, we observe an absorption 

shoulder at 500 nm and for short time scales the population of this state appears to 

exceed that of the 450 nm band; for longer time-scales this distinction is lost due to the 

growth and spectral shift of the emission band around 530 nm (Fig. 3.3.3). 
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Fig. 3.3.1 Transient spectra for III in methylcyclohexane (0-1 ps). 
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Fig. 3.3.2 Transient spectra for III in methylcyclohexane (1-16 ps). 
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Fig. 3.3.3 Transient spectra for III in ethanol (0-16 ps). 

Kinetics data for each of the relevant spectral regions was extracted by averaging 

a 10 nm bandwidth around the wavelength of interest and plotting this as a function of 
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time delay. The data was analysed in the manner described in Section 2.2.4 by fitting to 

appropriate models. The results for the 3 solvent environments are given in table 3.3.1 

for 460,530 and 600 nm respectively. The same conclusions can be drawn for these 

results as from the 4'-chloro substituted case, with each of the solvent environments 

reproducing almost identical kinetics in all three spectral regions. Instrument limited 

time constants are present for all solvents and spectral regions except for ethanol at 

530 nm, which shows the same behaviour as the 4-chloro substituent with a slow rise in 

transmission on a -11 ps timescale (in this case the instrument limited response 

manifests as absorption). 

Table 3.3.1 Kinetics data for III. 

Solvent Wavelength i, / 
fs 

T2 / 
ps 

T3 / 
ps 

A, A2 A3 x2 

460 IL 1.5 1.55 0.4 0.35 
Methylcyclohexane 530 IL 1.5 9.5 1 -0.15 -1.12 0.16 

600 IL 9.5 2.07 1.04 0.08 
460 IL 5 50 0.84 0.7 -0.6 0.05 

Acetonitrile 530 IL 4 0.72 -1.84 0.21 
600 IL 5 0.74 1.67 0.12 
460 IL 11 0.75 1.5 0.13 

Ethanol 530 IL 11 1 ns 0.99 -1.3 -8 0.05 
600 IL 11 0.81 0.26 0.06 

In the case of the methylcyclohexane solution, we observe two components of 

rise in the 530 nm emission region of the spectrum. These two components are also 

observed in one of the corresponding absorption bands. In the acetonitrile and ethanol 

solutions only a single decay component is observed (notwithstanding the long decays 

which correspond to the lifetime of the tautomer). 
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3.4 4'-Methoxy-3-hydroxyflavone 

Transient spectra for 4'-methoxy-3-hydroxyflavone (IV) are given in Fig. 3.4.1 

for methylcyclohexane from 0-8 ps. In this case we observe very noisy spectra possibly 

due to the poor solubility of this compound in cyclohexane. The spectra reproduce the 

features observed for other substituents although we observe a strong emission spike in 

the kinetics around time zero, which masks any short time dynamics of the 450 nm 

band. The behaviour of IV in acetonitrile and ethanol essentially mimics that of other 

derivatives (Fig. 3.4.2 and 3 respectively). 
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Fig. 3.4.1 Transient spectra for IV in methylcyclohexane (0-8ps). 
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Fig. 3.4.2 Transient spectra for IV in acetonitrile (0-32 ps). 

1 ? II 

115 

1 10 

1 05 

"f 1(111 

". 0 9j 

(1 911 

(1 ýi 

(1 \11 

(1 5 

i: (1 

PS 

)s 

Ds 

400 450 ; Op 5 5(1 6ý i (;; i( rni -so 

Wavelength QIIm 
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Kinetics data for each of the relevant spectral regions was extracted by averaging 

a 10 nm bandwidth around the region of interest and plotting this as a function of time 

delay. The data was analysed in the manner described in Section 2.2.4 by fitting to 

appropriate models. The results for the 3 solvent environments are given in table 3.4.1 

for 460,530 and 600 nm respectively. Unfortunately the kinetics data is not complete 

due to very noisy signals in methylcyclohexane. Acetonitrile solution gives kinetics 

which are clearly reproduced in each of the spectral regions of interest, with a time 

constant of 5.5 ps. For the ethanol solution we observe slightly anomalous results, with 

the 460 nm band showing no ps rise component whilst the 530 nm band shows a9 ps 

rise to the emissive state and the 600 nm band shows bi-phasic rise kinetics, with time 

constants of 1.5 ps and -Ins (nominal). However, this may be attributed to the noise as 

illustrated by the x2 value of - 2. Certainly, the kinetics are ambiguous and there are no 

significant indications that IV shows any different behaviour to that observed for other 

substituents in I. 

Table 3.4.1 Kinetics data for 1V. 

Solvent Wavelength T1 / 
fs 

T2 / 
ps 

T3 / 
ps 

A, A2 A3 x2 

460 IL Kinetics masked h noise 
Methylcyclohexane 530 IL 3 -1.2 0.35 0.27 

600 IL Kine tics masked b noise 
460 IL 5.5 40 0.45 1.02 -0.66 0.17 

Acetonitrile 530 IL 5.5 0.91 -2.09 0.14 
600 IL 5.5 0.75 1.73 0.31 
460 IL 0.37 

Ethanol 530 IL 9 1.26 -1.95 0.22 
600 IL 1.5 1 ns 0.26 0.34 5 1.94 
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3.5 4'-Cyano-hydroxyflavone 

Transient spectra for 4'-cyano-hydroxyflavone (V) show significant differences 

to those for other substituted I in ethanol and acetonitrile solutions. Unfortunately the 

compound proved relatively insoluble in methylcyclohexane and no transient could be 

resolved with a lower concentration. For V in acetonitrile solution (Fig. 3.5.1 for 

0-128 ps) we observe the presence of a weak stimulated emission band at 400 nm at 

short timescales which is masked by absorption at later times. This is most likely 

associated with the normal Franck-Condon excited state of the molecule. As for the 

other substituted molecules we observe short time evolution of an absorption band in the 

region from 420 - 550 nm and indeed for the 4'-cyano compound tails of the absorption 

are observed throughout the measured wavelength region. Within I ps we observe a 

peak-shift to approximately 490 nm. Growth of a second absorption band centred 

around 600 rim occurs after 1 ps and we see a corresponding decay from the 500 nm 

band. Interestingly the growth of an emissive state around 550 nm does not occur on the 

timescale of the observations suggesting a significant reduction in the quantum 

efficiency of the fluorescent state. A red shift is evident in the spectral peaks, however 

this is most probably due to the decreased influence of the emissive state, which masks 

the absorption for compounds II-IV. 

Transient spectra for ethanol solutions show no apparent difference to those for 

acetonitrile and are given in Fig. 3.4.2. In contrast to the other substituents, we observe 

decay of the 450 nm band which at first glance appears to correspond to the rise in 

absorption in the 600 nm region (illustrated by arrows on the figure). 
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Fig. 3.5.1 Transient spectra for V in acetonitrile (0-128 ps). 
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Fig. 3.5.2 Transient spectra for V in ethanol (0-64 ps). 
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Kinetic re-constructions from the spectra (as described previously) are given in 

Table 3.5.1 for ethanol and acetonitrile solutions at 460,500,550 and 600 nm. In both 

solvents we observe slight differences in the behaviour between the 450-500 nm and 

600 nm regions of the spectra. In acetonitrile solution a-8±1 ps decay component is 

observed in the 450 nm and 500 nm transients in comparison to a biphasic rise for the 

600 nm band. Fitting of the 460 - 500 nm band with a 1.2 ps rise component in addition 

to the slower component leads to very small coefficients, indicating that the contribution 

from such a component is negligible if present at all in this state. In ethanol we observe 

similar differences in the kinetics between the two states, although in this case a-5 ps 

component is evident on the 600 and 550 nm transients in comparison to an - 1-2 ps 

component for the 450 and 500 nm transients. A long time component is also required 

to fit the data adequately, although the lifetime of this component is too long to be 

accurately determined (and is taken here to be 27 ps for best fit) given the timescale of 

our data. 

Table 3.5.1 Kinetics data for V. 

Solvent Wavelength T, / 
fs 

T2 / 
ps 

T3 / 
ps 

Al A2 

460 IL 8.2 1.5 -0.6 
Acetonitrile 500 IL 8.5 3.3 -1.2 

550 IL 7 1.7 -1.0 
600 IL 1.2 7 0.98 1.1 
460 IL 1.4 27 1.2 -0.3 Ethanol 500 IL 1.9 27 3.1 -0.6 
550 IL 5 27 2.2 -0.95 600 IL 5.1 1.06 1.01 

A3 IX 

0.06 
0.09 
0.12 

0_. 44 0.09 

-0.1 0.03 

-1 0.07 

-0.83 0.11 
0.11 

The results for the kinetics indicate that the cyano suhstituent has a significant 

impact on the transient dynamics in comparison with other I derivatives, which appear 

to mimic that of the parent system. 
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In compounds I-IV, the rise of the stimulated emission indicative of the 

formation of the excited tautomer is biphasic. The fast component is usually also present 

in the rise of the transient absorption in both the blue and red spectral regions, but the 

.av 

slower component is usually only associated with increased transient absorption in the 

red. These two components appear to be due to ESIPT in "bare" and solvated molecules 

respectively. In V, alone of all the 3-hydroxyflavones, we observe a redistribution of 

intensity between the two transient absorption bands, with increased absorption in the 

red at longer delay times at the expense of the blue band. On the basis of the assignment 

of the transient absorption bands, this might suggest that "bare" V molecules are being 

dynamically solvated and that this is the cause of the absorption changes. However, this 

process is not observed for any of the compounds I-IV and it is perhaps more 

appropriate to assign the unique behaviour of V to its cyano substituent. 

Alone of the various substituents used in this work, the cyano group is electron 

withdrawing in nature and could interact with the negative charge developed by the 

proton transfer process as shown in Fig. 3.5.3. This could account for the observed 

transient absorption changes. 

+D. -H 

Cý 
"N 

Din 

`II 
O/I 

Cý 
N 

f', 

Fig. 3.5.3 Interaction of cyano substituent with the charged tautomeric state created after 

ESIPT. 
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3.6 4'-N, N-Dimethylamino-3-methoxyflavone 

It has been shown in the literature that substitution of a dimethylamino group in 

a fluorescent molecule can lead to the presence of a second fluorescence state which has 

been attributed to a, so called, twisted intramolecular charge transfer (TICT) state7. Such 

fluorescent states of a molecule have been observed to be strongly dependent on solvent 

environment, in particular on viscosity. The influence of solvent friction on the relative 

orientations of the donor and acceptor parts of the molecule leading to the formation of 

the emitting state is crucial: the twisting motion of the TICT mechanism is a large 

amplitude motion which can be stopped by very high viscosity conditions obtained with 

temperature or solvent polarity changes. Polarity plays an important role due to the 

charge separation of the TICT state (highly dipolar) which leads to solvent dependent 

peak intensity and mean frequency of the Stokes shifted TICT emission. 

In order to see how such a substituent would affect the proton transfer dynamics 

of the 3-hydroxyflavone molecule, we have undertaken transient spectral measurements 

on the three compounds shown in Fig. 3.0.1 4'-N, N-dimethylamino-3-hydroxyflavone 

(VI), 4'-N, N-dimethylamino-3-methoxyflavone (VII) and 4'-(1"-aza-4", 7", 10", 13"- 

tetraoxacyclopentadecyl)-3-hydroxyflavone (VIII). The results for VII are presented 

first since the behaviour for this system is less complex due to the absence of ESIPT and 

the results improve our understanding of the other two systems. 

In order to try to separate the two excited state mechanisms observed for VI we 

investigated the spectral properties of 4'-NN-dimethylamino-3"methoxyf]avonc (VII) 

which cannot undergo proton transfer, but may form a TICT state. Transient spectra for 

VII in methylcyclohexane (Fig. 3.6.1) show initial weak absorption with two peaks at 
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410 and 460 nm and a long tail to the red. For longer time-scales we see the formation 

of a broad emission centred at 430 nm with a bandwidth of - 30 nm. Within 1 ps we see 

the formation of a further broad (100 nm) absorption band with a peak around 550 run. 

The observed spectra are not well resolved in terms of the signal amplitude in this 

solvent and restrict us to qualitative analysis as extraction of kinetics data is impractical. 

The formation of a TICT state will be less favouable in a non-polar solvent such as 

methylcyclohexane, but the evolution of the spectra on a timescale of tens of 

picoseconds is probably indicative of a process such as this. 

For VII in acetonitrile (fig. 3.6.2) we observe absorption in a broad band at 400 

nm to approximately 430 nm at short timescales, corresponding to excited state 

absorption of the local excited state. An emissive state with a peak at 460 nm is present 

within 500 fs and we observe this to red shift to 490 nm and increase in intensity within 

2 ps. The shifting of the emission peak causes a corresponding movement of the edge of 

the 420 nm absorption band. Such a slow Stokes shift of the emission cannot be 

attributed to the continuum dispersion, which is of the order of 200 fs across the 

observed spectral region (450-500 nm). 
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Fig. 3.6.1 Transient spectra of VII in methylcyclohexane (0-128 ps) 
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Fig. 3.6.2 Transient spectra of VII in acetonitrile (0-128 ps). 
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Femtosecond Laser Interactions 
The wavelength integrated kinetics for VII are given in table 3.6.1. In the case of 

VII in acetonitrile solution at 470 nm, we see an instrument limited rise component 

which is contaminated by large amplitude noise over the peak. This masks the fast 

response of the compound and we can only tentatively assign a long time component of 

decay of some 16 ps to this behaviour. In the 520 and 570 nm transients, however, we 

observe an instrument limited rise component which corresponds to the small initial 

transient absorption convoluted with ultrafast and picosecond components of the order 

of 300 - 400 fs and 1.3 - 1.4 ps respectively. The latter may be assigned to the charge 

transfer process and associated solvent relaxation. Literature reports of ultrafast 

(50-100 fs) or 70 fs + 200 or 400 fs and picosecond components for solvent relaxation 

in acetonitrile8 are in line with the values found here. This conclusion is supported by 

the time dependent Stokes shift (TDSS) shown in Fig. 3.6.3. The TDSS, C(t), has been 

calculated from' 2 

C(r) = 
v(i) - v(c) 
V(O) - v(oo) 

3.1.1 

where v is the energy of the emission maximum at time zero, t and infinity. C(t) versus t 

(fig. 3.6.3) is fitted extremely well by a double exponential with lifetimes of 0.4 and 

1.3 ps. 

Table 3.6.1 Kinetics data for V11. 

Solvent Wavelength Ti / 
fs 

T2 / 
ps 

i3 / 
ps 

Ai A2 A3 x2 

470 IL 16 1.7 
Acetonitrile 520 IL 0.3 1.3 -0.6 -0.77 -119 0.6- 

570 IL 0.4 1.4 0.67 -0.75 -0.31 0.1 
470 IL 2.6 18 -4.4 -3.6 6.51 0.5 

Ethanol 520 IL 0.3 15 1.4 -1.7 -3.2 0.4 
550 IL 0.3 18 0.7 -0.64 -1.9 0.1 
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Fig. 3.6.3 Time-dependent Stokes shift (C(t)) for VII in acetonitrile. Fit to 2"d order 

exponential decay (i, = 0.4 ps, t2 =1.3 ps to give x2 _ 0.6). 

For VII in ethanol (Fig. 3.6.4) we observe similar spectra to those for 

acetonitrile solution, with an emissive species formed within 500 is at - 450 nm, which 

then undergoes a spectral shift to - 520 nm. However, in this case we see a significantly 

slower response of the system with the motion of the band occurring throughout the 

period of the observations (128 ps). This is further evidenced by the extracted kinetics of' 

the 520 and 570 nm transients which show both an ultrafast component of the order of' 

400 fs and a 15 - 18 ps component, significantly slower than observed for the 

acetonitrile case. The 470 nm band shows a decay of the order of 18 ps which 

corresponds to the long time rise observed in the 520 and 570 nm transients which is not 

surprising given the spectral shift of the band. This assignment is further supported by 

the TDSS data in figure 3.6.5. 
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Fig. 3.6.4 Transient spectra of VII in ethanol (0-128 ps) 
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Fig. 3.6.5 Time-dependent Stokes shift (C(t)) for VII in ethanol. Fit to 3"' order 

exponential decay (ii = 0.3 ps, t2 = 2.6 ps and t2 = 18 ps to give x2 - 0.1 1). 
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Femtosecond Laser Interactions 
The spectra and extracted kinetics data for VII together with its steady state and 

time resolved emission properties Table 3.6.2, give us a fairly consistent view of the 

solution photophysics for this compound. In a non-interacting solvent such as 

methylcyclohexane we observe a small Stokes shift in the steady state spectra and a low 

fluorescence quantum yield. These observations are consistent with the position of the 

stimulated emission and the weakness of the transient spectra in figure 3.6.1. The time 

resolved emission is essentially bi-exponential with lifetimes of - 20 ps (tf in table) a 

value which is instrument limited, and 180 ps. These two lifetimes are in agreement 

with the qualitative comments made earlier with respect to the evolution of the transient 

spectra of VII in methylcyclohexane. 

Table 3.6.2 Steady state and time resolved emission properties of VII in solution9, 

Solvent , max 
nm 

Stokes Shift 
(CM-) 

Tf 
s 

Tf 
ns 

Methylcyclohexane 411 2300 0.06 -20 0.18 

Acetonitrile 486 5700 0.48 -250 2.43 

Ethanol 507 5800 0.403 -40 1.14 

In polar and polar, protic solvents we observe the rapid formation of an emissive 

state in the transient spectra whose emission spectrum shifts to the red with time, to 

peak around 500 nm. We observe a slightly larger Stokes shift for solutions in ethanol, 

which is to be expected from the steady state results. We also see a slower component in 

the Stokes shift for ethanol solutions, and this suggests that the presence of 

intermolecular hydrogen bonds have a significant effect on the dynamics of the 

solvation and/ or the charge transfer process. However, whether the latter process 
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involves twisting (as suggested by Ormson et all), or purely charge transfer (as proposed 

by Chen et al1°), is unresolved by the transient spectral data presented here. It is clear, 

however, that the polar solvents favour the formation of a strongly emissive (high 4f and 

longer tief values) and heavily Stokes shifted excited state. 
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3.7 4'-N, N-I)imcthylamino-3-hydroxyflavone 

Transient spectral measurements, were undertaken tier VI in lour solvent 

environments, in order to elucidate the effect of the "I'ICT mechanism with respect to 

polarity (to a minor extent) and viscosity on the ultrafast dynamics of the excited state. 

The transient spectra for VI excited at 400 nm in methylcyclohexane solution are 

given for delays of 0- 64ps in fig. 3.7.1. The excited state spectra resemble those of' 

3-hydroxyflavone albeit slightly red shitted due to the influence of the dimethylamino 

substituent. 
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Fig. 3.7.1 Transient spectra for VI in methylcyclohexane (0-64 ps). 

At a delay of 500 fs, transient absorption occurs across most of the spectral 

range and there is evidence (in the light of spectra at longer delays) that there is some 

stimulated emission between 550 and 600 nm. Identical comments may he made about 

the spectrum at a delay of I ps, but here transient absorption is also observed between 
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Femtosecond Laser Interactions 
600 and 700 nm. At even longer delay times the three spectral regions become more and 

more distinct: - transient absorption from 425 to approximately 530 nm and from 610 to 

750 nm and stimulated emission between. 

The shape of the stimulated emission band appears to change with time. The 

band exhibits a peak at approximately 550 run and a shoulder around 580 nm. The ratio 

of intensities at these two wavelengths (550: 580) clearly increases with increased delay. 

However, it is possible that this is simply caused by changes in the transient absorption, 

which can be reasonably be assumed to be occuring over this wavelength range. It is 

also noticeable that the intensity of the stimulated emission changes in a similar manner 

to that of the red transient absorption. However, the blue transient absorption band 

reaches a stable intensity after -8 ps. 

The transient spectra observed in acetonitrile solution (Fig. 3.7.2), are markedly 

different to the ones in methylcyclohexane, with a stimulated emission band shifting 

from - 450 nm at time zero, to form a maximum at 480 nm. The band shifts further to 

form a broad peak throughout the region 475-600 nm in - 2ps. At longer delays we see 

continued evolution of the band, which eventually develops into a broad peak at 570 nm 

with a shoulder around 520 nm. It is noticeable, however, that there are two distinct 

events in the evolution of the stimulated emission- a red shift of the initially observed 

emission band and the growth of the emission at 570 nm, whose maximum emission 

wavelength appears to be invariant with time delay. The small range of the transient 

absorption at the blue end of the spectrum may be the result of competition with the 

stimulated emission which occupies a greater wavelength range in acetonitrilc compared 

to methylcyclohexane. However, the absence of transient absorption in the red is in 

marked contrast to the situation in methylcyclohexane. 
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Similar results are observed for VI in ethanol solution (Fig. 3.7.3). Although in 

this solvent we see more distinction between the two emission hands, the kinetics of the 

spectral evolution appears comparable. We also observe more transient absorption 

(albeit weak at delays >500 ts) at longer wavelengths than in acetonitrile. 
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Fig. 3.7.2 Transient spectra for VI in acetonitrile (0-64 ps). 

Spectra observed for VI in 1-decanol solution (Fig. 3.7.4), however, show 

markedly different behaviour. In this case, we see the formation of' two distinct 

stimulated emission bands, with peaks at 475 nm and 560 nm, which do not converge 

throughout the measurement period (128 ps). In fact, part of the 475 nm band is 

observed to decay within this time to törn a weak absorption hand at shorter 

wavelength. There are also strong transient absorption bands lying between the two 

absorption bands and at the red end of the spectrum. This behaviour is markedly 

different to the behaviour of VI in the two other polar solvents. 
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Fig. 3.7.3 Transient spectra for VI in ethanol (0-64ps). 
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Fig. 3.7.4 Transient spectra for VI in I-decanol (0-64ps). 
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Time integrated kinetics for VI have been obtained from the spectra as 

previously described and the results of analysis are given in table 3.7.1. For 

methylcyclohexane we see behaviour similar to that of the unsubstituted molecule, with 

an instrument limited rise component and a slightly slower -1.7 ps rise component. For 

the emissive region above 550 nm we also observe a longer rise component of - 8.5 ps. 

Table 3.7.1 Kinetics data for VI. 

Solvent Wavelength 'r, / 
fs 

tie / 
ps 

T3 / 
ps 

Al A2 A3 X 

470 IL 1.6 0.23 0.34 - 0.53 
Methylcyclohexane 520 IL 1.8 . '. ̀ 0.43 0.29 0.27 

550 IL 1.6 8.5 0.4 -1.5 -0.6 0.33 
550 IL 5.6 0.14 -0.88 : .r 

0.4 
650 IL 1.6 8.5 0.27 0.27 0.44 0.11 
470 IL 0.36 1.3 -1 0.95 0.24 0.05 

Acetonitrile 520 IL 0.27 33 0.69 -1.32 0.6 0.04 
570 IL 0.33 33 0.44 -0.93 -0.5 0.06 
470 IL 0.28 8.6 -1.7 2.5 -0.31 0.08 

Ethanol 520 IL 0.3 8.1 1 -0.7 -1.6 0.15 
550 IL 0.3 8.1 0.75 -2.1 -0.39 0.09 
650 IL 8.1 27 0.9 0.6 -1.5 0.02 

475 (35nm) See text 
1-Decanol 520 IL 2.2 120 1.75 0.44 -1.8 0.55 

550 IL 3.7 33 1.68 -2.78 -3.7 0.45 
650 IL 3 120 0.55 0.45 -0.55 0.11 

For acetonitrile solution at 470 nm we see an instrument limited rise in emission 

followed by fast decays of - 360 fs and - 1.3 ps respectively to form a weak absorption 

feature which does not decay on the time-scale of the measurements. At longer 

wavelengths such as 520 and 550 nm, a small amount of transient absorption is 

observed initially which is then transformed to a stimulated emission signal with a rise 

time of approximately 300 fs. At 520 nm, the stimulated emission then decays with a 

lifetime of 33 ps, where as the 550 nm emission continues to increase - again with a 

lifetime of 33 ps. The three lifetimes of - 300 fs, 1.3 ps and 33 ps are also appropriate 
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for fitting the I'DSS data for VI in acetonitrile (Fig. 3.7.5). although the middle litetimc 

needs to be a little longer than 1.3 ps for the optimal fit which has time constants of 

ii = 0.3 ps (Ai=-0.57), i2 =1.6 ps (A-, =-1.6), T3 = 33 ps (A3=-0.3) to give a x2 of - 0.56. 
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Fig. 3.7.5 Time-dependent Stokes shift, C(t), for VI in acetonitrile. Fit to 3 rd order 

exponential decay (Ti = 0.3 ps, t2 =1.6 ps, i3 = 33 ps to give x2 _ 0.56). 

The kinetic behaviour in VI in ethanol is similar to that observed fier the 

compound in acetonitrile, i. e. we see similar fast dynamics (i, - 300 fs), but in this case 

we observe only a single picosecond component in the 8 ps range. The kinetics clearly 

show the transient state at 470 nm decaying into a second state, components of' which 

are at 520 and 550 nm. In ethanol the transient absorption in the red is sufficiently 

intense to enable its kinetics to be fitted. We find that it displays instrument limited and 

8 ps risetimes and a 27 ps decay. Finally the TDSS data for VI in ethanol is shown in 

fig. 3.7.6 where the kinetic components of 300 fs and 8 ps are once again reproduced. 
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Fig. 3.7.6 Time-dependent Stokes shift, C(t), for VI in ethanol. Fit to 2nd order 

exponential decay (ii = 0.3 ps, T2 =8.2 ps to give )( ̀ -0.18). 

Solutions of VI in 1-decanol show significantly different kinetics to those 

observed in other solvents. In this case we observe stimulated emission bands at 470 nm 

and 550 nm, however the time dependent Stokes shift observed for ethanol and 

acetonitrile does not occur. The kinetics of the 470 nm band show large amplitude 

variations (even with integration over the whole band), such that the dynamics could not 

be resolved. These large amplitude oscillations are most likely noise, however time 

integrated kinetics at 520 nm and 550 nm show no such oscillations and are comparable 

in quality to all the other data obtained at LENS. Further investigation of this emission 

band is clearly desirable, in order to fully characterise the excited state dynamics of this 

molecule. Attempts to fit the transient absorption around 440 nm were similarly 

thwarted. 
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It is evident that the Stokes shift of the stimulated emission is strongly viscosity 

dependent. What is not clear is how the viscosity of the solvent effects the initial 

creation of the proposed TICT state. Certainly, the stimulated emission from the 470 nm 

band is at a maximum within a picosecond. We observe significantly greater time 

constants for the rise in absorption (at 520 nm) and the rise in emission at (550 rim). 

From a purely qualitative look at the 470 nm data, we see a long time constant decay, 

which appears to be of the same order of magnitude as the 120 ps observed for 520 nm, 

however, this is somewhat speculative. Interestingly, the 2-3 ps component observed 

for the 520 and 550 nm bands is approximately 10 times that observed for ethanol and 

acetonitrile, correlating with the viscosity change between the two solvents (ethanol 

1.037 at 300 K, 1-decanol - 10.16 at 300 K). However, this may be a coincidence and 

further experimental observations are required to establish this hypothesis. Certainly the 

effect of viscosity is a dramatic one, both in terms of the changes in the time constants 

and the absence of a time-dependent Stokes shift. The other comment which can be 

made is that the decay of the transient absorption at 520 and 650 nm (with time 

constants of 120 ps in each case) appears to correlate with the rise in the stimulated 

emission band, albeit the latter has a faster time constant. 
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Fig. 3.7.7 Single wavelength transient absorption of VI in ethanol solution 

(Pump: 395 run, Probe: 430 nm). Fit to 300 fs and 1.6 ps rise components to give 

x2 -0.9. 

In addition to the kinetics reconstructed from the LENS data, single wavelength 

kinetics for ethanol and methylcyclohexane solutions of VI have been undertaken using 

the recently developed BNFL pump-probe apparatus discussed in Chapter 2, Section 2.2 

in the blue region of the transient absorption. Fig. 3.7.7 and Fig. 3.7.8 show transient 

absorption measurements for ethanol solutions of VI at 430 and 450 nm respectively. In 

each case we observe a small transient emission at time zero followed by 300 fs and 

8.6 ps components of rise confirming the results obtained for the reconstructed kinetics. 
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The x2 values reflect the scatter in the data but we observe reasonable fitting in the 

residuals. 
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Fig. 3.7.8 Single wavelength transient absorption of VI in ethanol solution 

(Pump: 395 nm, Probe: 450 nm). Fit to 290 fs and 8.6 ps rise components to give 

x2 -0.95. 

Transient absorption of methylcyclohexane solutions of VI at 450 nm is given in 

Fig. 3.7.9. Once again, we observe similar behaviour to that given in the reconstructed 

kinetics with an instrument limited and 1.6 ps component present, albeit that the data is 

contaminated at time zero by an instantaneous emission spike which may be a 

stimulated Raman peak. 
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Fig. 3.7.9 Single wavelength transient absorption of VI in methylcyclohexane solution 

(Pump: 395 nm, Probe: 450 nm). Fit to instrument limited rise and 1.6 ps components to 

give x2 -0.95. The result is contaminated by instantaneous emission at time zero. 

An understanding of the excited state processes for VI in solution which has led 

to the data presented here can perhaps be best obtained by first considering the 

behaviour of VI in acetonitrile. The transient spectra (Fig. 3.7.2) and derived kinetics 

(Table 3.7.1) show many similarities to those for VII where proton transfer is 

impossible. In both VI and VII the initial stimulated emission band undergoes a red 

shift, with virtually identical time constants, to yield stimulated emission peaking 

around 500 nm. In VII the emission decays with a nanosecond lifetime (Table 3.7.1) but 
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the decay is much more rapid (33 ps) for VI. The rapidity of this decay is clearly 

associated with the presence of a second stimulated emission band at 570 nm for VI in 

acetonitrile. This emission, which must arise from ESIPT, grows in with two very 

different time constants of 330 fs and 33 ps. These observations can be rationalised on 

the basis of a model such as shown in Figure 3.7.10. ESIPT can occur in both the initial 

excited state and from the solvent relaxed charge transfer state on the basis of the 

kinetics and one would assume that the ESIPT can also occur from all the intermediate 

states between these two extremes. Modelling the kinetics with sums of exponentials 

may therefore be inappropriate - distributions of lifetimes such as those proposed by 

James and Ware' 1 may be more appropriate. 

Solvent relaxation and charge 
transfer (T1= 300 fs, ti2= 1.3 ps) 

%°i -rýý 
Initial Excited Relaxed CT 
State state 

ESIPT ESIPT 

(T < 300 fs) (T = 33 ps) 
Excited Proton Transferred Tautomer 

Fig. 3.7.10 Scheme for VI in acetonitrile, incorporating both ESIPT and charge transfer 

processes. 

The time constants observed for the solvent relaxation / charge transfer process 

are identical for VI and VII in acetonitrile and compare well with the literature values 

of 0.1,0.86 and 1.85 ps (for coumarin dyes) 12. The solvent cage around the excited 

molecule of VI and / or its electronic structure following solvent relaxation and charge 

transfer are obviously very different. This is perhaps a truism but is vividly illustrated by 

195 



Femtosecond Laser Interactions 
the two different proton transfer rates which are derived from the kinetics, differing by a 

factor of 100. It may be that faster kinetics for ESIPT are observed with better time 

resolution as undertaken for I, however further work of this nature is sadly beyond the 

scope of this thesis. 

The steady state and time resolved emission properties of VI in acetonitrile 

(Table 3.7.2) fit in well with the model proposed in figure 3.7.10 and the above 

discussion. The emission spectrum, contains two strongly Stokes shifted bands and their 

decay profiles exhibit fast (instrument limited) and slower (hundreds of ps) components. 

The slower decays are complex, but the instrument limited decay reflects the ultrafast 

and 33 ps components observed in the transient spectra. There is a marked contrast 

between the fluorescence quantum yields of VI and VII in acetonitrile, with the latter 

(0.48) being nearly an order of magnitude greater than the former (0.07). This reflects 

the high proportion of the excitation energy which is channelled into ESIPT via the two 

routes in Fig. 3.7.10 and the low emission yield of the excited tautomer (0.04 for I in 

acetonitrile'). 

Table 3.7.2 Steady state and time-resolved emission properties of Vi in solution13 

Solvent 
, max 
run 

Stokes Shift 
(cm) 

ý ýr it 
s 

tr 
ns 

Tr 
ns 

Methylcyclohexane 551 6950 - 0.16 IL 1.36 

Acetonitrile 507,560 5400,7250 0.07 IL 0.37 0.5.1.0 

Ethanol 520 5350 0.27 IL' 1.75 

1-Decanol 498,55 44550,6450 

The behaviour observed for the transient spectra of VI in cthanol can be 

understood using a very similar model to that used for acetonitrile as solvent, with one 
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major difference; there is no evidence from the kinetics of VI in ethanol that the relaxed 

charge transfer state undergoes ESIPT. That is to say, there is no direct parent-daughter 

relationship between the two states. This is almost certainly due to solute-solvent 

intermolecular hydrogen bonding, which may prevent the intramolecular proton motion. 

The reduction in ESIPT is reflected in the emission yield for VI which is much higher in 

ethanol than in acetonitrile, although the longer excited state lifetime of the proton 

transferred tautomer in ethanol may also help to increase 4f. The steady state emission 

spectrum is not structured for VI in ethanol; a single band peaking around 520 nm is 

observed. The emission maximum reflects the contribution of the charge transfer state to 

the overall emission and the absence of the ESIPT decay route for the charge transfer 

state removes the dip in the emission spectrum which causes the two bands observed for 

VI in acetonitrile. 

The transient spectra observed for VI in methylcyclohexane are very different to 

those for the two solvents discussed above. There is significant transient absorption over 

most of the spectral range covered at all decay times and there is only one single 

stimulated emission band whose spectral position changes only slightly with decay time. 

On the basis of the assignments made for VI in acetonitrile and ethanol, the stimulated 

emission may be considered to originate from the excited proton transferred tautomer. 

The shape and spectral position of the emission is also in agreement with the stimulated 

emission from I in methylcyclohexane (Fig. 3.1.4) when the red-shift in the absorption 

properties of VI with respect to I is taken into account. - 

The origins of the transient absorption appear to be similar to those proposed for 

IN when the spectral shape, position and kinetics are considered. The absence of any 

transient absorption above approximately 570 nm'at a delay of 500 fs, suggests that 
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there is little or no excited tautomer present resulting from ESIPT. This would also 

explain the weakness/absence of any stimulated emission at this early delay time. The 

transient absorption at - 500 fs can therefore be largely assigned to the initially excited 

state. In the absence of any evidence for solvent relaxation processes, the two time 

constants of 1.6 and 8.5 ps can be assigned to the ESIPT from the bare and impurity 

solvated molecules of VI respectively. The longer of these components compares 

favourably with the 10 ps lifetime observed for I in methylcyclohexane. However, the 

1.6 ps component is considerably longer than the instrument limited value observed for 

I. This may reflect the fact that the proton transfer event is bound up with the charge 

transfer and that the 1.6 ps lifetime component represents a convolution of the two 

processes. Alternatively, it may be that the electron-donation properties of the N, N- 

dimethylamino group reduce the acidity and/or basicity of the excited state hydroxyl and 

carbonyl functions, such that ESIPT is no longer as favourable as it is in I. Such a 

lifetime for proton transfer is not inconceivable if the event is moderated by other 

motions on the excited state than simply along an intramolecular hydrogen bond. 

The behaviour of VI in 1-decanol also appears to fit with the above model, even 

though we observe no significant time-dependent Stokes shift of the blue stimulated 

emission band. We have not been able to obtain meaningful kinetics for the blue 

transient absorption and stimulated emission bands, but there appears to be a qualitative 

correlation between the increased transient absorption and decrease in the stimulated 

emission and the spectral changes observed at 550 and 650 nm. The kinetic component 

with a lifetime of 2-4 ps presumably relates to charge transfer/ESIPT occurring in the 

initial excited state together with a small amount of solvent reorganisation. The 

increased lifetime for this component can be matched with the increased viscosity of 
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1-decanol. The 120 ps component represents ESIPT from the partially relaxed charge 

transfer excited state - again the lifetime is increased over the values seen in ethanol and 

acetonitrile due to increased viscosity. It is impossible to deduce whether the increased 

lifetimes of the kinetic components in 1-decanol are due to the slower rate of diffusion 

of the solvent such that the solvent relaxation and reorientation (to allow the progression 

of ESIPT) processes are much slower or whether a TICT state is involved, whose rate of 

formation would also be greatly reduced in a more viscous solvent such as 1-decanol. 
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3.8 4'-(1"-Aza-4", 7", 10", 13"-Tetraoxacyclopentadecyl)-3-Hydroxyflavone 

The 4'-(1"-aza-4", 7", 10", 13"-tetraoxacyclopentadecyl)-3-hydroxyflavone (VIII) 

molecule has been examined by our group14 and others15 as a potential environmental 

sensor, using the ability of the 15-crown-5 moiety to selectively complex metal ions and 

act as a charge donor group in a charge transfer or TICT process as previously described 

for VI and VII. Transient absorption measurements were undertaken for VIII at LENS 

in a range of solvents analogous to those chosen for VI and VII. The spectra which were 

obtained are very similar to those for VI and it would appear that an identical model 

(Fig. 3.7.7) may be used to describe the photophysics of VIII. 
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Fig. 3.8.1 Transient spectra of VIII in methylcyclohexane (0-32ps). 

The transient spectra for VIII excited at 350 nm in methylcyclohexane for delays 

of 0-32 ps are given in Fig. 3.8.1. The spectra are virtually identical to those for VI in 

methylcyclohexane (Fig. 3.7.1). However, there are changes in the time constants 

200 

450 500 550 600 650 700 750 



Femtosecond Laser Interactions 
describing the evolution of the spectral bands (Table 3.8.1). An instrument limited 

component is observed at all wavelengths, in an identical fashion to VI, but the two 

picosecond components are increased for VIII; -3 ps (from 1.6 ps for VI) and 15 ps 

(from 8.5 ps for VI). 

For acetonitrile solutions of VIII we observe the initial formation of an emission 

band at 470 nm, the peak of which shifts to approximately 500 run on a timescale of 

2 ps and undergoes a subsequent decay (Fig. 3.8.2). A second emissive region evolves' 

with a peak around 570 nm on a similar timescale as the decay from the 470 nm band 

but we do not observe the merging of the two emission bands as observed for VI. The 

initial emission band at 470 nm does not undergo as large a Stokes shift as for VI in 

acetonitrile - possibly reflecting difficulties in solvent relaxation / reorientation around 

the sterically bulky aza crown ether ring. The extracted kinetics data (Table 3.8.1) for 

VIII in acetonitrile shows a fast decay of - 700 fs from the 470 nm state and a 

corresponding rise component in the 570 nm band. We also observe a slower -32 ps 

component in both 470 and 570 nm bands. The corresponding constants for the 

dimethylamino substituent were a- 300 fs fast component and a 33 ps slow component. 

This indicates that the 33 ps component is independent of the substituent, however it 

does not occur in the unsubstituted molecule indicating that it is associated with the 

charge transfer process. The difference in the time constant for the fast component may 

be due to the increased size and mass of the crown substituent (with respect to the 

dimethylamino substituent) which would lead to a substantial change in the effect of 

solvent viscosity and reorientation with respect to the change in charge distribution in 

the solute. Alternatively the 0.7 ps component may reflect two components of' 300 fs 
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and -1 ps (as observed for VI in acetonitrile at 470 nm) which are convolved to give a 

value of 700 fs. 
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Fig. 3.8.2 Transient spectra of VIII in acetonitrile (0-64ps). 

The time dependent Stokes-shift for acetonitrile solutions of V111 is given in 

fig. 3.8.3. Here we see a far more rapid shift (310 fs) of the blue stimulated emission 

band than observed in the transient kinetics. This may indicate that the conclusion 

regarding the 700 fs transient is correct. Although no longer component is observed, this 

may be due to the grow-in of the green stimulated emission, which masks any slower 

dynamics. 
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Fig. 3.8.3 Time-dependent Stokes shift, C(t), for VIII in acetonitrile. Fit to Single 

exponential decay (c, = 0.31 ps to give X2 -0.03). 

The spectra observed for VIII in ethanol solution (Fig. 3.8.4) are very similar to 

those observed for VI. Whilst there is clearly a discontinuity in the Stokes shift between 

the two excited state populations, there is a clear superposition of the spectra at long 

delay times. The kinetics data does not indicate as clear a parent-daughter relationship 

between the two states as in VI, but this may be because we have not used enough 

components in the analysis of the data. However, as in the case for VIII in 

methylcyclohexane, the extracted time constants exhibit an increase compared to the 

corresponding values for VI. The TDSS data confirms the time constants found for the 

blue emission band with components of 0.2 and 15 ps being reproduced - whilst the fast 

component (0.2ps) is faster than that extracted from the kinetics this is probably within 

error given the instrumental response of the LENS system. 

203 

0.4 + 



Femtosecond Laser Interactions 
Table 3.8.1 Kinetics data for VIII. 

Solvent Wavelength T, / 
fs 

T2 / 
ps 

ti3 / 
ps 

Al A2 A3 x 

440 IL 2.4 -0.2 0.79 0.51 
Methylcyclohexane 470 IL 3.2 0.23 0.32 0.12 

550 IL 3.3 15 0.57 -0.97 -1.41 0.35 
470 IL 0.7 32 -1.3 1.3 0.5 0.28 

Acetonitrile 520 IL 0.4 32 0.68 -1.28 0.9 0.07 
570 IL 0.7 31 0.45 -0.99 -0.99 0.1 
470 IL 4.5 20 -1.1 0.64 0.86 0.7 

Acetone 520 IL 0.5 23 0.9 -1.2 0.91 0.6 
570 IL 0.7 20 0.61 -0.9 -1.5 0.25 
470 IL 0.3 23 3.6 -5.2 3.4 0.41 

1,2-Dichloroethane 520 IL 0.4 25 2.0 -0.99 0.68 0.13 
570 IL 2.1 21 1 -2 -3.5 0.3 
470 IL 0.3 15 0.64 -2.2 2.1 0.03 

Ethanol 520 IL 2.5 27 0.32 -0.45 -1.1 0.15 
570 IL 1.5 21 0.56 -0.78 -1.5 0.13 
470 IL 0.3 85 2.2 -3.2 2.1 1.5 

1-Decanol 520 IL 3 88 1.5 0.4 -1 0.6 
570 IL 2.4 85 1.4 -2.7 -2 0.73 

We observe a change in the colour of the ethanol solution of VIII after the 

experiment from green to red, potentially indicating contamination by metal ions from 

the steel of the experimental arrangement. No change in the absorption of the solution 

was observed. However, the presence of metallic ions in solution may have lcd to 

unexpected changes in the photophysics of VIII in ethanol. 
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Fig. 3.8.4 Transient spectra of VIII in ethanol (0-128 ps). 
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Fig. 3.8.5 Time-dependant Stokes shift for VIII in ethanol. Fit to 2"`' order exponential 

decay (TI = 0.2 ps, T2 =15 ps to give x2 _0.19). 
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Similar behaviour to that observed for acetonitrile solutions of VIII is observed 

for VIII in 1,2-dichloroethane and acetone (Figures 3.8.6 and 7), with the two 

stimulated emission bands clearly separated in energy and a parent daughter relationship 

between the states clearly indicated in the extracted kinetics. The evolution of the 

spectra in these two solvents is very similar to the changes observed in ethanol and 

acetonitrile, with similar time constants. A connection between the viscosity and the 

picosecond time constant is suggested by the data, but it is clear that data for viscosities 

between 1 and 10 with a fixed polarity is desirable. Such experiments have been 

undertaken for the fluorescence lifetime of VIII at a range of temperatures in a number 

of solvents down to 77 K using single photon counting at the BESSY (Berlin) and SRS 

Daresbury, U. K. ) synchrotron sources and confirm these conclusions1' 
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Fig. 3.8.6 Transient spectra of VIII in 1,2-dichloroethane (0-128 ps). 
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Fig. 3.8.8 Transient spectra of VIII in 1-decanol (0-128 ps). 
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Transient spectra for VIII in 1-decanol over a time range of 0-128 ps arc 

presented in Fig. 3.8.8. Once again the spectra bear a remarkable resemblance to those 

of VI in 1-decanol as do the extracted kinetics. 

It is clear that the behaviour of VIII is comparable with that of VI suggesting 

that the excited state energy surfaces for the two substituents are similar. The results 

lead us to suggest potential energy surfaces with axes representing the charge transfer 

and proton transfer relaxation pathways as given in Fig. 3.8.9. Fig. 3.8.9 represents a 

barrier-less potential, whereby the wavepacket created on the excited state potential 

energy surface may proceed via a multiplicity of pathways towards the TICT state, 

tautomeric state, or a superposition of these states. Such a surface may be inappropriate 

for the observed dynamics, in that it implies an ultrafast time scale for the ESIPT step as 

in the case of I. The movement of the wavepacket on the excited state potential is 

indicated by the strong Stokes shift from the initial emission band at 470 nm towards the 

minimum energy position via a superposition of charge transfer and solvation dynamics 

at 570 nm, corresponding to the tautomer emission. Such a model, whilst attractive, 

does not fully describe the observed dynamics in that a much slower proton transfer 

event is observed than in I and other systems. This suggests that a barrier is formed on 

the excited state potential between the initial state formed on excitation and the excited 

tautomer, such that the ESIPT event is mediated by the charge transfer. This implics that 

ESIPT can proceed via quantum mechanical tunnelling through the barrier or via some 

other route (i. e. out of plane bending vibrations3) and not solely via the 0-11-0 stretch. 

However, since the absence of stimulated emission around 570 nm docs not imply that 

ESIPT has not occurred, merely that an emissive potential has not been formed, such an 

excited state potential should not be dismissed. In the case of 3-hydroxyfavonc liscif, 

208 



Femtosecond Laser Interactions 

the stabilisation of the highly vibrationally excited molecule and, in particular, 

planarisation by the solvent is thought to play a role in the rise of the fluorescence2. 

W 
ESIPT + CT 

Fig. 3.8.9 Barrier-less potential energy surface as a model for molecules undergoing 

charge transfer and ESIPT processes. 

In conclusion, it would seem that dimethylamino and aza-crown-ether 

derivatives of 3-hydroxyflavone undergo two excited state processes, the dynamics of 

which are strongly dependent on solvent polarity and viscosity. Experimental results 

suggest a model with a strongly solvent dependent barrier between the two fluorescent 

states of the molecules. A significant separation of the states present in a highly 

sterically hindered environment (1-decanol) and kinetics indicate a parent-daughter 

relationship between the charge transfer and ESIPT fluorescent states in some solvent 

environments. 
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3.9 Conclusions 

We have observed the behaviour of a number of 3-hydroxyflavone derivatives 

under excitation with UV laser pulses in order to elucidate the excited state mechanisms 

involved in proton and charge transfer events in a variety of solvent environments. 

We have undertaken ultrafast pump-probe studies of room temperature solutions 

of 3-hydroxyflavone in the ultrafast time domain with a time resolution of less that 

35 fs. Transient absorption attributable to ESIPT was observed throughout the visible 

spectrum. In cyclohexane and acetonitrile solutions, the ESIPT was found to be so rapid 

that it was only possible to assign a time constant of S 35 fs to the process. In ethanol, 

however, a time constant of 60 fs was determined. The slower ESIPT in this solvent is 

attributed to the greater strength, of the solute-solvent interactions. In all three solvent 

environments a transient in the 1-10 ps range was also observed and we attribute this 

behaviour to the presence of monosolvated 3-hydroxyflavone complexes, which may 

undergo either a dual intermolecular proton transfer to the solvent, or intramolccular 

proton transfer directly along the Oa-H-Ob reaction co-ordinate. The influence of 

substituents in the 4' position of the phenyl ring of 3-hydroxyflavone has also been 

investigated and we observe unusual behaviour for a cyano substituent in polar solvents 

and for dimethylamino (VI) and aza-Crown (VIII) substituents. The anomalous 

behaviour of VI and VIII is explained in terms of a charge transfer state which has been 

postulated and experimentally confirmed previously's"', although our results do not 

allow us to definitively determine if the state formed has a `twisted' conformation in the 

excited state as previously postulated. We observe fast transients on the order of 300 

and 700 fs for the time dependent stokes shift of the CT emission band in acctonitrile 
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for VI and VIII respectively, which we attribute to solvent reorganisation and 

stabilisation of the charge transfer state. The observed difference in the timescale for 

reorganisation is explained in terms of the difference in mass of the substituents. 

The results of transient absorption measurements of VI and VIII lead us to 

suggest potential energy surfaces with axes representing the charge transfer and proton 

transfer relaxation pathways. A potential energy surface is proposed whereby the excited 

state wavepacket proceeds initially towards the superposition state where a local 

minimum exists for the CT emission. A pathway corresponding to the relaxation or 

quenching of the CT state is then available for the subsequent creation of a tautomeric 

emissive potential well, which is the global minimum of the excited state. The decay of 

the initial CT emissive state is mediated by solvent interaction and, in this case, the 

behaviour of both VI and VIII may be described by modifying the height of the 

potential energy barrier between the two minima for the various solvent environments. 

In the case of 1-decanol solutions for both - molecules and, to an extent, 

1,2-dichloroethane solutions of VIII, we clearly observe separation of the CT and 

ESIPT states and a clear parent-daughter relationship in the kinetics, indicating that a 

significant barrier is present on the excited state potential. Similar behaviour is also 

suggested by the acetone and acetonitrile kinetics of VIII. However, in this case the 

energy barrier appears to be less significant although the emissive states remain distinct, 

and there is clear evidence in the kinetics for a parent-daughter relationship. Conversely, 

in the case of the ethanol solutions of both molecules and acetonitrile solution of VI, we 

see a distinct shift of the CT emission into that of the ESIPT state. This may indicate a 

broad potential minimum between the two states, with no barrier, suggesting strong 

solvent interaction. Indeed we are probably observing dynamic solvent interactions with 
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the potential energy surface, such that the minimum position is shifted in time from the 

CT state to the ESIPT state via an equilibrium position. 

We have shown a dynamic interaction between two excited state processes in 

3-hydroxyflavone derivatives, the dynamics of which are strongly dependent on solvent 

polarity and viscosity. Experimental results suggest a model with a strongly solvent 

dependent barrier between the two fluorescent states of the molecules. A significant 

separation of the states present in a highly sterically hindered environment (1-decanol) 

and kinetics indicate a parent-daughter relationship between the CT and ESIPT 

fluorescent states. Further investigation of the excited states of these derivatives with 

better time resolution (such as that available at MBI) or at infra-red wavelengths in the 

region of the C-N and H-O bond energies would further elucidate the role of solvent in 

these reactions. 
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Chapter 4: Ultrashort Pulse Laser Ablation. 

Femtosecond laser ablation has been investigated as a method for producing 

highly controlled surface modifications on a variety of substrate materials with the aim 

of producing low cost micro and macro size prototype devices of interest to BNFL's 

advanced materials group. In order to facilitate the production of such devices, some 

fundamental aspects of the ablation process have been investigated and a 

micro-machining workstation has been developed (see chapter 2). This chapter is 

necessarily divided into two sections, dealing with the fundamental aspects of laser 

ablation and prototype fabrication respectively. In section 4.1 we present quantitative 

and qualitative results of laser ablation for glasses, semiconductors, polymers and 

metals. In section 4.2, prototype device fabrication is discussed and some results 

presented. 
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4.1 Fundamental Parameters 

4.1.1 Glasses 

Two types of glass were investigated for use as substrates for microchemical 

devices, fused silica (spectrosil B) and Pyrex 7070 (borosilicate glass). Results for each 

material are presented below. 

Fused Silica 

The interaction between visible light and practically transparent materials like 

glasses is expected to be negligible (see fig. 4.1.1). The bandgap for fused silica is 

-8 eV, so that in the linear optical regime, laser light at 790nm (hv = 1.6 eV) should be 

transmitted. However, for very high light intensities of the order of I GWcm'2, 

multiphoton absorption (in the case of fused silica absorption of -5 photons) results in a 

finite penetration depth in glasses. Electronic and/or thermal excitation below damage 

and ablation thresholds can lead to incubation effects associated with colour centrest 

(section 1.5). 
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Fig. 4.1.1 Transmission Spectrum Of Spectrosil B. 
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Samples of Spectrosil B synthetic fused silica of 10 mm diameter, 6 mm 

thickness were ablated by scanning the sample through the focused laser beam at 

various stage velocities to produce a track. Typically the laser fluence was kept constant 

while varying the scan speed during an experiment, a track being produced for each scan 

speed. Fig. 4.1.2 shows how the track depth measured using a confocal microscope 

varied with scan speed for various incident fluences. 
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Fig. 4.1.2 Track depth as a function of scan speed for ablation of spectrosil B at various 

incident fluences. 

Increasing scan speed corresponds to decreasing numbers of pulses overlapping 

at each point, given by 

ýf 
N= 

v 
4.1.1 

where 4 is the focal spot diameter, f the laser repetition rate (I kHz) and v is the velocity 

of the stage. The pulse overlap varies from 40 pulses at I mms'' to -- 6 pulses at 

7 mms'. The focal spot diameter using a 150 mm focal length lens is estimated from the 

ablated track width at high fluence and pulse overlap to be approximately 40 Fim. 
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Fig. 4.1.3 Track depth as a function of pulse overlap for spectrosil B at various fluences. 

The ablation depth is plotted as a function of the number of overlapped pulses in 

Fig. 4.1.3. It is clear that for larger numbers of overlapped pulses (and to a lesser extent 

higher fluence) the ablation rate is relatively linear. Non-linearity in the case of' low 

fluence and scan speed is indicative of incubation effects. 

A typical confocal microscope image is shown in fig. 4.1.4. The image can 

provide information on track depth, width and to a lesser degree residual surface 

roughness. Track cross-sections at fast scan speeds [low numbers of overlapped pulses] 

reflect the focused intensity profile and resemble an inverted Gaussian, as one would 

expect from the measured beam M2 value (see section 2.1). However, ablation at higher 

fluences and with greater numbers of overlapped pulses results in more triangular cross- 

sectional geometries. 
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Fig. 4.1.4 Typical confocal microscope image of ablated fused silica at -- 50 Jcm-2 and 

with a -7 mms-1 Scan Velocity. 

Analysis of ablated samples was primarily undertaken using optical microscopy. 

However, information regarding the residual microstructure was obtained by imaging in 

an environmental scanning electron microscope (ESEM, see section 2.3.2). Typical 

ESEM images of ablated fused silica are shown in fig. 4.1.5 for scan velocities of 1.4 

and 7 mms-' at a fluence of -4 Jcm 2 in air. Good contrast is obtained between the 

microstructure and the smooth surface of the glass due to charging at microstructural 

boundaries. However, track geometries cannot be inferred due to the large depth of f ield 

of the microscope. Clearly the area over which microstructure is observed increases with 

decreasing scan velocity (increasing pulse overlap). The microstructural features appear 

to be on the same scale (- 1 µm) for all scan speeds, but appear to be distributed more 

homogeneously for the 1 mms-1 scan velocity. For both the 7 and 4 mms-1 velocities, the 

boundary between the microstructure and apparently unstructured glass substrate is not 

well defined and no particular orientation of the microstructure relative to the scan 

direction is observed. The I mms-1 scan shows good contrast between the microstructure 
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and unstructured substrate and cracking at the boundary is evident (notably near the top 

of the micrograph) as observed by optical microscopy. 

Fig. 4.1.5 ESEM image of fused silica ablated in air at 4 Jens -. 

Fig. 4.1.6 ESf M linage Of Fused Silica Ablated In Vacuum at 4 icui 
. t: \º .1 iiini. 

(B) v=4mms-1, (C)v-7mmti-1. 

For direct comparison to fig 4.1.5, fig. 4.1.6 shows the residual micnýanicture 

after ablation in vacuum (2.4 x 10-2 mbar) at approximately the same tluenec Ihr sl i 

speed scan appears very similar to that ablated at ambient pressure, with evidence t%t 

edge cracking (perhaps even more evident). The images of the 7 and 4 mms 1 SCMI%, 

however, are strikingly different to those seen at ambient pressure. Hic 4 mms 1 scan 

shows highly ordered microstructure, with a pitch of 0.7 µm oriented in an an, 
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perpendicular to the scan direction. The radius of curvature of the microstructure may 

correspond to the beam diameter (- 40 µm) however, the pitch is much less than the 

pulse to pulse separation of -4 µm. The boundary between the microstructure and the 

unstructured surface is also well defined in contrast to the ambient case. The scan at 

7 mms'1 clearly illustrates the effect of incubation on the ablation rate. The 

microstructure is clearly confined to regions where higher integrated fluence has been 

deposited, other areas appear to have been altered but no microstructure is observed. 

The microstructured regions are separated by - 6.9 µm, approximately the scan velocity 

but much less than the width (- 17 µm) of the altered surface. Both the tracks ablated in 

air and in vacuum show approximately Gaussian profiles as observed with both confocal 

and AFM microscopy, however the microstructures are clearly pressure dependent. The 

size of the microstructured features is clearly reduced at the lower pressure and , we 

propose that this is due to a reduced solidified melt thickness for the low pressure case. 

In vacuum, the vaporisation temperature of the glass is reduced so that for a comparable 

fluence the ablation rate is higher. This means that although the penetration depth 

remains constant, a greater volume of material will be removed and so the remaining 

melt solidification depth will be reduced (in comparison to that at ambient pressure). In 

addition, this hypothesis may explain the presence of a well-defined boundary in the 

vacuum case. At ambient pressure, the dynamics of the vapour-liquid phase boundary 

are likely to be unstable and the vapour will transfer more heat to the liquid phase. In the 

partial vacuum, more energy will be removed from the surface by the vapour, due to the 

reduced vapour pressure. Further measurements of the pressure dependence on both 

ablated volume and the residual microstructure are required to confirm this hypothesis. 

The appearance of microcracking at the track edges indicates the presence of 

high stresses in these regions. Under single scan conditions the microcracks tend to 
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appear for scan speeds below 3 mms' and at higher fluence. However, samples 

subjected to multiple overscans have been observed to suffer the same problem. Kruger 

and Kautek' have suggested that this is due to shock abrasion of the material by the 

rapidly expanding glass vapour and the appearance of these cracks are shown to be 

dependent on both fluence and pulse number. 

In order to minimise edge cracking a milling technique was developed, where by 

the required width and depth for a given device could be ablated using a series of raster 

patterns overwritten on the sample. Initially, a series of lines (n) were written with a 

separation of approximately 10 µm at 5 mms' (fluence -4 Jcm 2) to give the requircd 

width. A second "layer" of (n-1) lines was then ablated, offset by 5 µm from the initial 

raster pattern. Subsequent "layers" were then ablated to provide the required depth and 

track geometry. The technique is illustrated in a series of confocal images in Fig. 4.1.7. 

The pictures correspond to increasing numbers of "layers". A cross-section of a track 

milled to required dimensions in fused silica and sectioned using a diamond saw is 

given in Fig. 4.1.8(a & b). The result is a high quality track with smooth edges and no 

cracking. The residual microstructure is also significantly reduced in scale and the 

surface roughness is <1 µm rms (measured using a Talysurf surface profiler). 

"ö 
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Fig. 4.1.7 A series of confocal images illustrating the laser milling techniyuc. 
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AL 

Fig. 4.1.8 ESEM image of laser milled 
(A) 375 x magnification, (B) 1450 x magnification. 

Pyrex 7070 

Studies of Pyrex 7070 Borosilicate glass have been undertaken and shim ionic 

similarities to fused silica ablation. Fig. 4.1.9 shows the depth ofthe ablated track as a 

function of scan speed and incident laser fluence. We see similar behaviour to that of 

fused silica ablation as we would expect, but Pyrex exhibits a reduced incubation di ct. 

supporting the findings of Kruger and Kautek' 

ca. 

K 

'r 

Fig. 4.1.9 Transmission Spectrum Of Pyrex 7070. 

ESEM images of Pyrex ablated at 4 Jcm' are given in fig. 4.1.10 for direct 

comparison with the fused silica results (Fig. 4.1.5). The residual microstructure shows 

a similarity to that shown for fused silica, but we see a well-defined boundary bctwccn 
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the structured and unstructured substrate in the Pyrex case (as indeed we did fier fused 

silica ablated in vacuum). 
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Fig. 4.1.10 ESEM images of laser ablation oll rcx 7071) in , iir a( -l Jon 

týý 

(A) v=I mms"1, (B) v-4 mms-1, (C) v=7 mms-t. 

The problem of microcracking still occurs in Pyrex, as we can secs From the 

1 mms-' scan in Fig. 4.1.10. However, the scale of the damage is less pronounced, 

which we expect, for a material with better thermal qualities than fused silica. 

Microstructuring by laser milling (as described above) has been shown to he etixetive in 

reducing edge cracking and an example of a milled track is given in Fig. 4.1.1 1. We see 

no apparent edge cracking, and similar residual surface morphologies (as for the single 

scan case), with features of the order of 0.5 µm. 

Fig. 4.1.11 ESEM linage Of Laser Milled Pyrex (4 Jei» = ), 
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4.1.2 Semiconductors 

The interaction of ultrashort pulses with semiconductors has been of significant 

interest to the scientific community for some years, as we have already seen in section 

1.5.2. We have looked in detail at the ablation of silicon for the microstructuring of 

chemical microdevices and make direct comparisons with the ablation of gallium 

arsenide (GaAs). 

p-type Silicon 

The ablation threshold for silicon has been measured2 to be of the order of 

0.2 Jcm2 at 610 nm; similar to that of metals (Au -0.3 Jcm Z). The primary absorption 

process for visible laser processing is by single photon absorption (silicon has an in- 

direct bandgap of -- 1.12 eV at 300 K). However, the high intensities generated by 

ultrashort pulses may also lead to multiphoton absorption to the direct bandgap of 4 cV. 

The absorption spectrum for silicon is given below in Fig. 4.1.12. 

Ablation of p-type silicon (boron doped to 1 part in 104) oriented with the 100 

plane parallel to the substrate surface has been undertaken at 790 and 395 nm (the 

fundamental and second harmonic of the laser system respectively). Qualitative analysis 

shows that whilst ablation occurs for both wavelengths the microstructural properties 

are remarkably different. A comparison of ablation at 790 nm for 170 fs pulses, 

picosecond and nanosecond pulses is also given. 
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Fig. 4.1.12 Absorption spectrum of silicon and gallium arsenide at room temperature 

(reproduced From reference; ). 

Fig. 4.1.13 shows a graph of ablation rate vs incident laser fluence for tracks 

ablated on silicon using the scanning galvo system at a speed of 10 mms '. Laser fluence 

was calculated by assuming a beam diameter of 100 µm, which is consistent with the 

maximum ablated beam diameter given on the second y-axis of Fig. 4.1.13. Clearly the 

trend does not conform to the'expected Beer-Lambert behaviour. We suggest that this is 

due to an increase in the intensity dependent absorption in the silicon substrate reducing 

the absorption depth. The ablation rate is clearly at odds with the linear absorption 

coefficient at this wavelength (- 4x 103 cm'), which implies an ablation rate per pulse 

of - 2.5 µm. The result contrasts with work by Ilhemann et a14 at 248 nm (500 fs) which 

showed typical Beer-Lambert behaviour and Krüger and Kautek2 at 612 nm (300 fs) 

who reported non-linear behaviour which deviated from the Beer-Lambert law but 

which could be fitted to a model incorporating an intensity dependent absorption 

coefficient (given by a= ai + (X2. I). The ablation rate per pulse also contrasts with the 

rate quoted for 612 nm ablation at 1J cm-2 of approximately 40 nm / pulsc avcmgcd for 
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1000 laser pulses. This may indeed be a consequence of a change in absorption 

coefficient, however a result given below for 500 overlapped pulses at 50 µJ shows a 

significant reduction in ablation rate compared to the 10 pulse case given in Fig. 4.1.13. 
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Fig 4.1.13 Ablation rate as a function of laser fluence for silicon ablated at 791) tun (a 

polynomial fit is given as an aid to the eye). 

Fig. 4.1.14 I SFM image olahlated silicon at SU F_I (I Oo 
. 
Iý iii i 
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Fig. 4.1.15 ESEM image of ablated silicon - threshold fluence ( (). ' Jcin ) 

An example of silicon ablated at 50 [tJ and 10 mms"I is given in Fig. 4.1.14 .\ 

re-solidified melt layer is evident in the central portion of the track , ýith an une' en 

boundary between this region and a second microstructured region, %%hich dispIaýs 

0.5 µm periodicity parallel to the scan direction. Comparison with a further scan at near 

threshold fluence, in Fig. 4.1.15, show the same microstructure in the wings of the 

intensity profile, but not the apparent melting in the central, high intensity region of the 

track. Here, we suggest, is qualitative evidence of a transition from an ablation regime 

dominated by non-linear interactions (low fluence, high intensity ) to that of it rrtnmmmc 

with a significant linear contribution (high fluence, high intensity). this is supported hs 

the presence of the fine rippled microstructure in the wings of both images, and the 

presence of such a rippled structure in the central part of the low tluence case. A higher 

magnification image (also shown in fig 4.1.15) shows the transition region bcoveen the 

wings and central portion. It is evident that the parallel ripple structure continues into 

the central region, but a lower frequency ripple is present perpendicular it) it. I he 

presence of a perpendicular ripple structure cannot he attributed to the scan speed (pulse 

separation at 10 mm s-1 with a beam diameter of -100 µm is 10 Fun ). Previous work 

has suggested that the periodic microstructures in dielectric materials could he attributed 
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to stress relaxation. However, this is clearly not the case in crystalline silicon, which 

should have a depth independent stress vector (i. e. stress dependent microstructure will 

be independent of ablation depth in crystalline materials). Work by Von der Linde and 

Saurbreys on time resolved melting of metallic materials (and indeed earlier work on 

semiconductors) show the presence of time dependent ripple structures, which they 

attribute, not to acoustic surface waves in the melt pool, but Newton's rings formed by 

interference between the beams reflected from the solid-melt surface and the 

melt-vacuum interface. It is possible that such an interference effect might lead to areas 

of higher intensity at the liquid-vapour boundary in the ablative regime, and that the 

periodicity of such interference would be dependent on the melt depth and hence the 

intensity (in the non-linear regime). Clearly, more rigorous experimental and theoretical 

study is required in this area to elucidate the processes behind the development of this 

residual microstructure. 

Multiple overscans of a track (shown in Fig. 4.1.16) revealed microstructure 

similar to that observed by Kruger and Kautek2. We also observe (as mentioned above) 

a pronounced reduction in ablation rate from 0.158 to 0.033 µm / pulse at 50 tJ for one 

(10 pulses) and fifty (500 pulses) overscans respectively. A reduction of this magnitude 

may be accounted for by the geometries of the ablation sites, which show very steep side 

walls and very pronounced residual microstructure. Measurement of the residual depth 

surface roughness gives a value of - 5.85 pm with some features with dimensions 

approaching 10 µm in dimensions. Clearly target dimensions of 50 - 100 tun with 

residual roughness of the order of 1 p. m are not achievable using femtosecond near IR 

pulses without employing another technique. 
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overscanned 50 times (-- 500 pulses). 

In order to make direct comparisons with picosecond and nanosecond lair 

ablation, silicon was ablated using the uncompressed output from the regenerative 

amplifier at 300 ps and the 50 ns output of the regenerative amplifier without injection 

seeding. In both cases the laser beam mode is of better quality than observed tiºr the 

femtosecond pulses and a spot size of - 20 . im is observed. Ablation at 50 ns and with 

an energy of 230 µJ/pulse (fluence - 73 Jem-2) is shown in Fig. 4.1.17. We clearly kc 
the demarcation between each laser shot by a bar of expelled melt with it separation of 

approximately 7 µm corresponding to the scan speed (even though 1U overseans %% ere 

used to make this track). We also observe an area to each side of the track extending the 

track width to - 40 µm, which is disrupted due to the interaction of' a thick melt IaN er 

with the plasma and vapour phases. This corresponds to a heat aliccted zone of' 

10 µm, which is compatible with that determined from the heat diffusion cqu;, tion. 
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Fig. 4.1.17 ESEM image of silicon ablated with 50 ns pulse; at 7. ' Jýný i ti(j() imi) 

Fig. 4.1.18 Shows 300 ps laser ablation of silicon at -- 73 Jcm'' o\ er. canned1 I () 

times. The residual surface features are similar to those shown tier ahlation %%ith Sºº n. 

pulses. However, the microstructure is more complex with melt ridges from 1)re% iuu. 

scans observed suggesting a thinner melt depth and heat affected zone. Whilst the track 

appears broader (- 46 µm), it is more well defined than the ns case and this might hr 

attributed to a reduction in mode quality due to injection seeding. In any case, the 

disrupted surface observed for 50 ns pulses is not observed here and \ýe ittmihutr III, . ,, 

a reduction in both the heat affected zone II lA% - (ki)'' 'I and pItsnna . 111cl, ltii . t11,1 

therefore more efficient energy coupling into the silicon. The track pruduccd limn 

femtosecond pulses, in comparison, is broader due to the increased spot 'iie (inc re. t' ci 

M2) but we do not observe the large melt features and splashing associated ýý ith Itt e! 

pulses. Calculated heat affected zones from equation 1.5.2 in Section 1i ; irr º', ' en it, 

Table 4.1.1. 
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Fig. 4.1.18 ESEM image of silicon ablated with "(M) h, puke-, at - 
_It. 111 

Table 4.1.1 Calculated heat affected zones for silicon and (ia: \s 

Material Thermal Absorption Depth (nm) f IA/ For Pulse Width Inn) 

Diffusivity (cm2s- 
i) 

790 nm 395 nm 170 fs 300 ps 30 ns 

Silicon 0.9 2500 12.5 4 104 1 b4O 

GaAs 0.24 250 20 2 85 850 

The success of employing laser milling techniques to the ablation of fused silica 

led us to try the same process with silicon. This technique allows us to crcatc a pscujhº 

flat topped track profile, determined by the integral of the fluence impinging the surfacc. 

Ablation at low fluence ensured that large amplitude variations in the ablated surf c 

were minimised throughout the ablation process, leading to unifirm ablation arc ri ' the 

track profile. An example of a track ablated using the milling technique % gi\rn ºn I ý: 

4.1.19. Note that the microstructure is much reduced as compared to the caw ot a ýnºý. Ic 

track. Fig. 4.1.20 shows the ablated depth as a function of the number ot o%cr':. mncd 

milling patterns for laser ablation at 50 mW for a milled width of loo Iºm. I Iw º»ºIlr, t 

width did not vary significantly after the initial scans ±5 µrn. I lomcvcr, the roughncoti 

(plotted on the second y axis) rises dramatically after 10 mcr'e'm, , rnd %%r . rr Ow 
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Femtosecond Laser Interactions 
appearance of relatively large (ý 18.5 µm) regions which have undergone enhanced 

ablation. The positioning of these regions is random and does not seem to be due to the 

milling process. The peak to peak roughness (in the absence of the pitting) is reduced in 

comparison with the single scan case (no milling) but the target depths and o%er: ti! 

roughness values could not be met at this wavelength. 

Fig. 4.1.19 ESEM image of laser milled silicon (7t)0 11111, >u µJ). 
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Fig. 4.1.20 Ablated depth as a function of the number of laser milled layer, for silicon 

with F-I Jcm'2. 
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With these findings in mind we used the frequency doubled output of the 

Ti: Sapphire laser amplifier at 395 nm for a comparison with the near IR (790 nm) 

ablation. Due to the unavailability of an f» lens (see Section 2.2) at the desired 

wavelength, a 150 mm focal length plano-convex lens with the piano face to the infinite 

conjugate was employed. Modelling6 of the lens showed that orientation of the lens in 

this manner, whilst increasing spherical abberations, led to a flattening of the field 

curvature in comparison to the normal geometry. The ablation rate per pulse is given as 

a function of fluence in Fig. 4.1.21. with the data for ablation at 790 nm given for 

comparison. 
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Fig. 4.1.21 Ablation rate per pulse as a function of laser fluence. Comparison between 

ablation at 790 (red circles) and 395 nm (blue diamonds). Trendlines are givcn as an aul 

to the eye. 

A micrograph of a typical ablation track is given in Fig. 4.1.22. The residual 

surface morphology of the track is clearly different to that given in Fig. 4.1.14 (ablated 

with the same fluence and under the same experimental conditions). hearing more 
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resemblance to that of Fig. 4.1.16 although the scale of the microstructure is reduced in 

the UV case. The observed asymmetry of the track is due to aberrations in the lens and 

reduced beam quality during the frequency conversion, with the right hand side of the 

track "seeing" more intensity than the left hand side. Certainly there is not the melting 

observed in the case of ablation at 790 nm. We believe that this is due to the reduction 

in linear absorption depth for 395 nm light. 

Fig. 4.1.22 FSEM image of ablation at 395 nm and So pJ (I. tº. tJý m) 

Application of the milling technique to production of tracks \% ith c u't in 

dimensions shows a significant improvement over the infrared case in that the 

surface roughness is more homogeneous and remains within tolerance limits for 

prototype production to a depth exceeding the target value. Fig. 4.1.2 3 show% I . 
SI ý1 

images of features milled under the same experimental conditions (lens and pulse 

energy). 

234 



Fig. 4.1.23 ESEM images of laser milled tracks ablated with 790 (left) and 

395 nm (right) under identical experimental conditions. 

Fig. 4.1.24 shows a graph of ablation depth as a function OI the nººnnhe ý, 1 

overscanned layers of a raster pattern; a linear fit is given as an aid toi the e%e". (Iý"; irl\ 

target depths of 50 µm are achievable and correspond to approximately 90 overscans of 

the ablation pattern. Measurements of the average residual surface roughness using it 

Talysurf surface profiler are given in 'T'able 4.1.2. These values are within tolerance for 

device fabrication. There is a clear discrepancy between the observed void Icatures on 

the ESEM images of ablation tracks at 395 nm and the average roughness value. I his 

cannot be explained by the size of the protiler tip which has adequate resolution to see 

these features. This is most likely due to the depth of tick! of the I: tiI: M allýýwiný 

excellent contrast in a relatively small depth region. 
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Fig. 4.1.24 Ablation Depth As A Function Of Overscanned Layers At 395 nm (-200fs 

laser pulses, F- 0.6 J cm2). 

Table 4.1.2 Roughness Measurements Using Talysurf Surface Profiler 

Depth / . tm Roughness / µm 

6.4 0.1 

19.9 0.2 

25.9 0.2 

35.7 0.2 

49.6 0.3 

57.1 0.5 
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Gallium Arsenide 

Gallium arsenide (GaAs) is a III-V semiconductor composite material with a 

direct bandgap of -'1.42 eV (at 300 K) which is used primarily for photonic applications 

(laser diodes) The absorption spectrum of GaAs was given in Fig. 4.1.12. GaAs was 

ablated at both 790 nm (close to the bandgap energy) and 395 nm with 170 fs laser 

pulses for direct comparison with the ablation of silicon. Fig. 4.1.25 shows ESENt 

images of the residual surface microstructure after laser ablation at 790 nm with a 

fluence of - 0.6 Jcni 2. In the low magnification image, we clearly sec a number of 

separate regions with similar characteristics to those seen for silicon. The low flucncc 

region (in the wings of the laser intensity profile) show the familiar ripple structure 

(pitch - 700 nm) we observe in silicon and indeed in other metallic substrates (sec 

below). We then see a region which shows both the - 700 nm ripple and some larger 

structural formations which are far less precisely defined with an axis perpendicular to 

that of the low fluence rippling and a pitch corresponding to approximately 2 ltnt 

(distance between pulses ablating track is -10, µm). In the intersection between the 

ripple minima (dark contrast) we see areas which appear to have undergone prcfcrcntial 

ablation to form sub-micron perforations, much as that observed in silicon. In the central 

region of the ablated track the surface has clearly undergone melting and subsequent 

solidification. Large material droplets are observed indicating a thicker melt depth than 

silicon, or at least a more pronounced interaction between the liquid and vapour phases. 

The asymmetry of the ablated track is due to a slight misalignment of the Salvo system 

with respect to the lens. 
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Fig. 4.1.25 ESEM images of GaAs ablated at -- 0.6 Jcm ' (i. 7 ̀)U um. ti, I 'i) I. i 

Fig. 4.1.26 Shows two ESEM images of GaAs ablated at 395 nm %+ºth 

0.6 Jcm-'`. The lower magnification image shows the large scale surface detür orations 

observed for ablation at 790 nm, although the presence of a resoliditication layer is Tess 

pronounced (if it is there at all) as we expect from the comparison of linear absorption 

coefficients. In this case, the appearance of regularity in the microstructure of the -7')Uº 

nm ablated material is not observed, although at this magnification we scc the sub- 

micron perforations seemingly at random along ablated features to the top and bottom of 

the image. We also observe the large scale -2 ýtm, "random" hole drilling observed in 

silicon ablation at 790 nm. The higher magnification image shows the central region of 

the track and we see a ripple structure with a pitch of approximately i(N) tim. I hip, 

reduction in ripple pitch implies a connection between the observed mkrostnueturc and 

the wavelength. 
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Fig. 4.1.26 ESEM images of GaAs ablated at - 0.6 Jcm ̀  0. = 395 nm). 

Microstructures observed after ablation of silicon and (ia As slio%% , onic 

similarities in terms of melting and micro-hole drilling. I lowever, melting appears to hr 

more pronounced on GaAs, which may be accounted for by a difference in the electron- 

phonon coupling rate in the two materials. Whilst on the evidence of' previous 

experiments, an electron plasma (or melted surface) is formed within the pulse width 

(170 fs) in both cases, it is likely that the GaAs plasma Corms more rapidly resulting in 

enhanced heating of the plasma and subsequent coupling hack iiui the hulk. 
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4.1.3 Metals 

We have undertaken some studies of stainless steel and alumintunn, tear the 

ablation threshold in various environments. The results for each material are taken in 

turn. 

Stainless Steel 

Ablation of stainless steel was undertaken near threshold tluence to in%c tigatr 

the residual microstructures formed by the process in air. In ambient atmosphere the 

ablated sites show signs of oxidation which obscure and degrade the stnictures. It was 

possible to reduce the formation of oxide deposits on the substrate by directing a 

nitrogen jet at the ablation site to both reduce the oxygen present and entrain the ejected 

ablation plume so that it was not redeposited at the ablation site. An I St s1 image (A 

two tracks ablated in stainless steel at approximately 10 tJ (F 0.1 Jcnm') is t; i'cn In 

Fig. 4.1.27. Distinct periodic microstructure is observed parallel to the scan direction 

with a period of --680 nm which is close to that ohser\ cd on Ikl cdi . iliC ,ºIn\, I, t,,,,,, 
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Fig. 4.1.27 ESE; M image of'stainles�teel ablated neat 
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Studies of the ablation products ejected from the substrate under vacuum have 

also been undertaken on steel samples and formed part of a BNFL internal report'. 304 

type stainless steel was ablated at near threshold fluences and the ablated ions probed 

using a quadrupole mass-spectrometer. The threshold fluence for laser ablation is 

characterised by the measurement of chromium ions (m/z = 52). The variation of ion 

count with laser fluence is given in Fig. 4.1.28. The result indicates a threshold for 

ionisation of -- 0.3 Jcm 2 and the ion signal effectively saturates at a fluence of 

0.5 Jcm"2 although the signals are very noisy. Operating in RGA mode while ablating 

the metal sample did not reveal any neutral species, indicating that the ablation products 

are predominantly ionised. In comparison, ns laser pulses are relatively inefficient at 

producing ions8. The threshold ionisation fluence compares favourably with the ablation 

thresholds obtained by Preuss et al9 for 500 fs pulses at 248 nm, summarised in section 

1.6.2.1. 
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Fig. 4.1.28 Variation of ion count with laser fluence for m/z =52 (chromium) 
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Femtosecond Laser Interactions 
The measurements in Fig 4.1.28 were undertaken with fixed extractor and ion 

lens voltages and the shape of the curve in the plateau region is probably an instrumcntal 

response due to increased ion energy with fixed extractor and lens voltages. 

Optimisation of the voltages for each laser fluence would allow a better acceptance ratio 

for higher ion energies. In such a case we would expect to see characteristic logarithmic 

dependence with laser fluence. 
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Fig. 4.1.29 Positive SIMS spectra for steel ablated at F -- 0.3 Jcm'2 (inset F-0.5 Jcm'2). 

Fig. 4.1.29 shows a positive ion SIMS analysis of 304 stainless steel. A mcxicst 

pulse energy of 7 µJ at 790 nm, corresponding to a fluence of -3 Jcm'2 was uscd to 

generate the ions. Inset is a similar scan at - 0.5 Jcm'2 for the mass range 48 - 60 amu. A 

slight asymmetry in the shape of the mass peaks is due to a misalignmcnt of the ablation 

site with respect to the quadrapole axis. The main peaks are summarised in Tablc 4.1.3 

with the ionisation potentials for each element. The composition of 304 stainless steel 

(approx. 10% Ni, 18% chromium and 72% Fe) would suggest that the total of the Fe 

isotope peak heights should be the largest component of the mass spectra. Since this is 
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clearly not the case, with the 52Cr count in excess of the sum of the m/z values at 54,56 

and 57, it can be concluded that selective ionisation is occurring. The ionisation energies 

for the constituents seem to support this conclusion, with Cr being some 1.13 cV below 

Fe. Considering the photon energy is 1.57 eV (for 790 nm) we have what amounts to the 

difference between a four and five photon ionisation process. 

Table 4.1.3 Main peaks in 304 stainless steel ionisation by 0.5 Jcm 2 laser Pulses, 

m/z Element First Ionisation Energy" W 

50 Cr 6.77 

52 Cr 6.77 

53 Cr 6.77 

54 Cr, Fe 6.77,7.90 

55 Mn 7.43 

56 Fe 7.90 

57 Fe 7.90 

58 Ni 7.64 

60 Ni 7.64 

Fig. 4.1.30 shows steel ablated in vacuum at near threshold fluencc - 0.3 Jcm'2 

in vacuum (- 10'' mBar). We see what appears to be a roughening of the surface, with 

only small areas which appear to have under gone significant material rcmovnl (thc 

scans are at approximately 0.1 mm s'). We also see ripple structures which appear to be 

at an acute angle to the scan direction. The ripple depth is clearly insignificant in 

comparison to the depth of the ablated voids. 
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Fig. 4.1.30 ESEM images of stainless steel ablated at < 0.3 Jcm-1 At 10 mBar. 

Aluminium 

Surface modification of aluminium has proven problematical for ablation by 

nanosecond excimer laser due to its high reflectivity in the UV (Fig. 4.1.31)1. We have 

ablated aluminium using 170 fs laser pulses to compare residual microstructure with 

other ablated metals. Fig. 4.1.32 shows ESEM images of tracks ablated in Aluminium at 

near threshold fluence in air with a nitrogen jet present to entrain the ablation products. 
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Fig. 4.1.31 Reflectivity spectrum for aluminium. 
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Fig. 4.1.32 ESEM image of aluminium ablated at near tlirk. held tl, ýý r; ý: 

The difference in resulting surface structure compared to steel is clcarIN eN ident 

Inspection under an optical microscope suggests that the aluminium surface ha, lost it., 

high reflectivity. We see no evidence of the regular surface features that we observe on 

steel or silicon, indeed the residual microstructure appears chemically altered. The high 

reactivity of the aluminium surface in the liquid/vapour phase may play a significant 

role in the ablation process, however, more rigorous analysis of the process in controlicd 

environments is required before conclusions may be draw. It is possible that etle tip r 

micromachining of aluminium may be performed with fenuoscconý1 puIsc in th,. 

presence of an inert gas or in vacuum. 
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4.2 Chemical Device Fabrication 

4.2.1 Microchemical Contactor For Metal Ion Extraction 

The application of microtechnology for chemical processing requires the 

creation of micron size channels of specific geometries in which reactants are brought 

together in a highly controlled fashion 12. Solvent extraction (for metal separation) is 

important to the nuclear industry. Diffusion controlled solvent extraction of Fei' ions in 

30 - 100 µm wide channels was recently demonstrated in microchemical "contactors" 

with immiscible liquids under laminar flow conditions, with subsequent complete 

separation of the phases'3. Microchannels (and ports) have previously been produced in 

silicon and glass using standard lithographic, and wet etching techniques, with the 

materials anodically bonded together to form devices. The timescales for prototype 

fabrication, however, range from weeks to months, limited by the time taken for mask 

fabrication. "Direct write" femtosecond laser microstructuring is an attractive alternative 

for short lead time prototype fabrication for, devices with dimensional requirements 

limited by heat affected zones. 

Fig. 4.2.1 shows a schematic diagram of a microcontactor in which fluid strc, 3ms 

can be brought together, contacted at a stable interface over a controlled distance with 

subsequent complete separation of the streams. Requirements for the microchanncls 

were to produce tracks with widths 80 -. 100 µm and depths - 30 - SO pm, residual 

surface roughness <1 µm and with good edge definition. 
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aqueous organic 

design design 

conceptl 

aqueous organic 

Fig. 4.2.1 Schematic of a microchemical contactor 

Pyrex 7070 was laser milled (see section 4.1.1) with the second harmonic of the 

regenerative amplifier output at 395 nm with a fluence of 2.5 J cm, 2 to produce a 40 mm 

long track consisting of a 10 mm straight with 180° bends at either end. The resulting 

edges were well defined and uncracked. The residual surface roughness is submicron as 

we have seen previously in Fig. 4.1.11. The width was 80 ±3 µm and depth 35±2 pm 

throughout the track length. 

The second half of the device was to be made in p-type silicon and was to 

consist of a 40 mm track with width 150 µm and depth of 50 µm. Four 1 mm diameter 

ports for input/output of the two liquids were also to be provided. Drawing on our 

experience of ultrashort pulse ablation of silicon, we successfully carried out device 

fabrication at 395 nm to the required specifications. 

Laser milling of the silicon devices was undertaken with pulse energy of 25jjj 

and a fluence of 0.6 J cm 2 and the required depth was achieved by overscanning a raster 

pattern consisting of 9 lines with 10 µm separation. One overscan of the pattern 

corresponds to an ablation depth of - 1µm. Devices were produced with dimcnsions of 

width - 150 ±5 µm and depth 50 ±3 µm throughout the track length. Residual surface 

roughness is approximately 0.5 pm with peak to peak variations of <2 µm. 
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Fig. 4.2.2 shows an ESEM image of a typical device in silicon. Micron slic 

holes are present with a pitch of 6 µm and it is these holes %hich limit the ultimate 

resolution. Whilst these holes are not a consequence of the scanning pattern as dis u%M ii 

in section 4.1.2, they may result (at least in part) from the aberrations caused bs the scan 

lens. But we suspect that this may be a feature of laser ablation of silicon in this regime 

Fig. 4.2.2 ESEM image of laser milled dc% ice (silicon. 

Circular ports with a diameter of 1 mm for liquid input and output «crc . ut 

through 500 µm thick silicon wafer with a pulse energy 150 pJ per pulse (i :o cm "º 

As the amount of material to be removed was large, only the radius tit' the I-Kins. 

marked until penetration through the wafer was achieved and the central region dropped 

through, typically taking approximately 10 minutes at 10 nim s'' (corresponding to 

-19100 laser pulses per spot diameter). 

We have shown that microchemical contactors may he produced h% direct I: ucr 

writing using femtosecond laser milling techniques. The success of this project conlinns 

that rapid prototyping using this technique is achievable at a significantly reduced co%t 

to conventional techniques. 
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4.2.2 Microchemical Contactor For The Nitration Of Benzene 

Fabrication of several micro-chemical contactor designs for the nitration of 

Benzene was undertaken for a BNFL collaborative project under the direction of Dr 

John R. Burns at the University Of Newcastle 14.260 mm diameter borosilicate glass 

disks were provided with pre-drilled ports for alignment and subsequent dcvicc 

operation. The devices were to be machined with rectangular track geometries to a depth 

of 50 ±5 µm, according to Fig. 4.2.3 

Device ABD 
840 um 

Width - 100 um 
c 

t 

67.2 mm r 
A E67 

um 

Device B 

55 um % 
67.2 mm 

Width - 75 um 

840 um 

Fig. 4.2.3 Microchemical contactor for the nitration of benzcnc 

This particular application required the production of a prototype device with 

uniform depth (50µm) over a field of 120 mm. This required the provision of a new 

scanning lens (previous maximum field was 110 mm) with a longcr focal length 

(f= 350 mm) to give a field of 190 mm and the further development of laser milling 
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techniques to maintain uniform depth throughout the device (discussion of scan lenses is 

presented in Chapter 2, Section 2.3). 

The increase in effective focal length from 190 to 350 mm leads to a doubling of 

the 1/e2 spot diameter and a corresponding reduction in fluence at the focus. We 

accommodated this by increasing the diameter of the input beam from 8 mm to - 15 mm 

thereby maintaining the f-number of the lens system. Reflection losses due to poor anti- 

reflection coatings in the four element lens amount to a reduction in pulse energy of 

50% at the substrate. 

With a pulse energy of 120 pJ (measured prior to the lens system) the diameter 

of the pulse intensity profile above the ablation threshold was determined to be of the 

order 20 µm (single laser shot). However, taking into account incubation in the substrate 

we estimate the diameter of interaction to be - 35 µm (the width of a track alter a 

sufficient number of pulses to eliminate incubation). 

Prior work presented in section 4.2.1 showed that we could produce micro. 

channels of various widths by rastering the beam across the desired width. The required 

depth can then be reached by over-scanning the pattern. Depth resolution is determined 

by both the number of over-lapping rasters and the laser iluence. It is clear from a 

simple model of adding Gaussian intensity profiles'that a critical point can be reached 

whereby adding additional rasters does not affect the overall depth, only the volume of 

material ablated. This has been shown to work experimentally for shallow tracks where 

the side walls are not too steep, 'however for deeper, narrower tracks the ablation rate 

can fall as a function of depth due to decreased laser fluencc at the walls resulting in a 

triangular track profile. 

Micro-cracking, due `to the abrasive action of the high velocity cjccta 

(perpendicular to the substrate, regardless of the angle of incidence) is more serious for 
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narrow, deeper tracks where the plasma is more confined. This can be avoided, as 

described previously (section 4.1.1), by slightly offsetting the over-scans at low iluencc. 

However, for tracks <100 µm with a relatively large aspect ratio this is impractical and 

cracking can still occur. We have also observed that ablation at an angle of incidence 

other than normal to the surface may produce micro-cracking on only one edge of a 

track. This is due to the ejecta always being emitted perpendicular to the surface, 

abrading only the slightly undercut edge. Clearly, this phenomenon will lead, not only to 

micro-cracking, but track widening and asymmetry. This could be eliminated using a 

telecentric scanning lens for critical applications. 

Calibration of the Job Editor software was achieved by measuring ablated track 

lengths and dividing by the expected length (calibrated for a 160 mm lens). The 

expected maximum field is of the order 230 mm (for f= 350 nm). Scan speed for the 

prototype device was set at 17.5 mm s 1. This corresponds to approximately two 

overlapped pulses for a single scan (selection of this speed was arbitrary in that this was 

the slowest speed available with this lens), however the number of pulses per unit area is 

significantly increased as the number of rasters is increased up to the interaction 

diameter. 

Alignment of the optical arrangement in, the first instance was achieved by 

removing the flat field lens and overlapping a back reflection from the target with the 

incoming beam at a pinhole by manipulating the sample holder. Ater replacing the lens 

the various component back reflections were also aligned to the pin hole. The focal 

plane of the lens is always parallel to the plane of the, final clement (perpendicular to the 

optical axis of the lens) so a small tilt of the lens with respect to normal incidence of the 

laser beam will introduce a similar tilt of the focal plane. This is evident as a change in 

ablation rate (characterised by a loss of plasma at the surface) from one end of a long 
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scan to the other. Fine adjustment of the target is achieved by monitoring the plasma and 

introducing small angular modifications until an even ablation rate can be observed 

throughout a long scan. Misalignment is indicated by the development of a self-focused 

filament, which can be seen to move towards the surface as the correct angular 

adjustment is applied. Gross misalignment may require an additional change in lens- 

target distance to re-acquire the focal plane after angular adjustment. 

The scan pattern was aligned to the input ports by attenuating the laser energy to 

well below the ablation fluence and scanning the pattern continuously at high speed 

(3 m s) onto the substrate. The pattern is seen as a series of points of generated white 

light continuum (observed by placing a piece of card beneath the substrate) which can 

be used to roughly align the ports. Fine adjustment of the start and end points of the scan 

can be achieved by observing the blue fluorescence on a piece of card placed at the 

input/output port. All alignment procedures can be followed without direct observation 

of the 790 nm laser light. 

The prototype was produced by breaking the design into three parts 

corresponding to the three intersecting channels indicated in fig. 4.2.3. A raster pitch of 

5 µm was chosen arbitrarily and the number of rasters required to reach the desired 

widths (taking into account the beam diameter) was calculated. It is important to 

maintain the raster width throughout the device or depth discrepancies may occur due to 

changes in the integrated intensity "seen" by the surface. The pattern was then marked 

onto the substrate to determine the ablation rate per pass which was of the order of 3.5 

µm. The required depth corresponds to approximately 14 over-scans with a pulse energy 

of - 120 µJ. HPGL files written for the galvonometer Job Editor show a good 

correspondence to the experimental results. However, some fine tuning of individual 

vectors was required to produce the desired widths. Ablation of each of the two dcviccs 
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took approximately two hours due to the complicated nature and physical size of the 

scan pattern. A photograph of the ablated glass substrate is given in Fig. 4.2.4. 

A summary of the dimensions of the various components (illustrated in Fig. 

4.2.3) of the two devices is given in Tables 4.2.1 and 4.2.2. It is clear from the data that 

device A does not meet the design tolerance in terms of depth. However, the track 

widths and depths were calculated for channels with rectangular cross-section and the 

actual geometry is typically Gaussian (or even triangular) for relatively thin tracks. 11ý 

increasing the depth we compensate for the reduced cross-sectional area of the ablated 

geometry. Similarly, the reduced width of the acid inlet will compensate for the slight 

increase in depth of this channel due to raster density. 

Fig. 4.2.4 Micro-chemical device for the nitration of benzene, machined by fcnitosc : ond 

laser ablation at 790 nm. 
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Table 4.2.1 Microchemical device A; dimensions 

Position DepthAv 

(t 2µm) 

Width 

(t 1µm) 

Target Width 
(tm) 

A, 61.0 62.2 67 

A2 63.0 63.2 67 

A3 63.8 61.9 67 

Bi 72.3 831 840 

B2 70.4 825 840 

B3 72.7 831 840 

C1 61.0 98.2 100 

C2 61.2 97.9 100 

C3 56.0 95.9 100 

Di 58.9 61.9 67 

D2 61.8 61.9 67 

D3 55.4 62.5 67 

Ei 67.7 836 840 

E2 68.6 831 840 

E3 68.7 835 840 

The subscript of the dimensions refers to the a separate group 
of measurements in a particular field of view for the confocal 
microscope. 

254 



Femtosecond Laser Interactions 
Table 4.2.2 Micro-chemical device B: dimensions 

Position DepthAv 

(t 2µm) 

Width 

(t 1µm) 

Target Width 

(PM) 
Al 47.8 60.9 55 

A2 48.4 59.6 55 

A3 49.9 60.9 55 

B, 59.0 824 840 

B2 60.1 837 840 

B3 56.5 828 840 

C1 48.2 76.6 75 

C2 50.0 78.6 75 

C3 52.1 77.3 75 

Di 51.4 60.1 55 

D2 51.4 62.2 55 

D3 50.1 60.2 55 

Ei 63.5 829 840 

E2 57.1 831 840 

E3 60.6 827 840 

A modulation of pitch -70 µm can be seen in two directions (at 34° and 56° to 

the channel edge corresponding to the x and y planes of the scanning galvonomctcrs 

respectively). Modelling a single pass of a raster pattern with spccd 15 mm sl (pulse 

separation 15 µm) and raster separation 5 µm (assuming a Gaussian with F\VIIM 

35 µm) we see no modulation of the relative intensity in the scan direction 

corresponding to the scan speed. However, the model neglects incubation cffccts which 
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can lead to modulation corresponding to the pulse overlap. It is likely that the effect is 

due to incubation, with early overscans ̀ imprinting a memory' of modulation onto the 

substrate which is subsequently driven deeper into the material. The problem may be 

minimised by reducing the scan speed to maximise the pulse overlap and thereby reduce 

the ripple pitch, or indeed eliminate it altogether. 

Rapid prototyping of microchemical devices by ultrashort pulse laser ablation 

holds significant advantages over existing photo-lithographic and LIGA techniques in 

terms of lead times and processing stages. No mask fabrication [the major time 

component in projection routes] or chemical etchants, are required leading to greater 

control of track dimensions within prescribed limits of resolution [clearly laser ablation 

at 790 nm will never achieve the resolution afforded by projection techniques]. Ablation 

of features below the diffraction limit is possible with careful control of laser energy 

with stability off 1%. 

Two micro-chemical contactors have been produced with a lead time of three 

weeks. It is conceivable that this turn-around could be significantly reduced now that the 

problems regarding interfacing multiple channels of varying widths have been 

addressed. It is also possible that with more development, finer control of the residual 

structure may be achieved. 
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4.2.3 Auxetic Macro-filter 

Auxetic materials exhibit a negative Poisson's ratio; that is they expand laterally 

when stretched and contract laterally when compressed's. This unusual, countcrintuitivc 

behaviour is very rare in naturally occurring materials although it has been an accepted 

consequence of classical elasticity theory for over 150 years. Recent interest in this 

property has resulted from a number of synthetic auxetic materials being produced. In 

nearly all these cases, the auxetic material has been formed by altering the internal 

microstructure of a conventional material, for example, foam16 and microporous 

polymers'7, to produce auxetic behaviour. 

The mechanism for producing a negative Poisson's ratio is not scale dependent 

so it is possible to envisage structures, rather than materials, exhibiting exactly the same 

phenomenon. In this situation, other benefits from having an effectively negative 

Poisson's ratio across the structure have been identified. One, which is the subject of 

this section, is the use of auxetic honeycombs and structures in filtration. 

In order to use auxetic honeycombs in practical filtration systems it is necessary 

to construct honeycombs with cell sizes in, the appropriate particulate size range. 

Microstructures of this type could be formed by conventional stercolithography. This 

has been identified as a method for producing auxetic microstructures for improved 

sensors and for micromachine manipulators. However, these applications require stiff 

materials that can only withstand very, small strains before failure. In this instance we 

have fabricated polymeric and silicon structures having the geometry known to lead to 

auxetic behaviour, by femtosecond laser ablation. The polymeric membranes arc 

capable of sufficient distortion for use in filtration. 
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UV laser ablation for micromachining and patterning of polymers using 

nanosecond excimer lasers (e. g. KrF, 248 rim) is a well established techniquc'1. A 

strong UV absorption coefficient is desirable (a > 104 crri l) and, in the case of weak 

absorption, significant thermal degradation effects may be observcd19. Studies of 

femtosecond polymer ablation show that UV, visible and near IR femtosecond pulses 

may be used to microstructure transparent polymers at ultrahigh intensity since multi- 

photon absorption by chromophores dominates the ablation mechanism20. 

Micromachined re-entrant (auxetic) and conventional honeycomb polymeric 

membranes were formed by direct femtosecond laser ablation in air of a sheet of 

Hewlett Packard Colour Laser Jet Transparency film (part no. IHP C2936A). Devices 

were successfully formed by ablation at both 790 and 395 nm. However, we observed 

significant darkening of the edges of the 395 nm ablated material due to linear 

absorption of photons and, possibly, thermal damage. Membranes ablated by 790 nm 

pulses show no such darkening of the unablated material, in addition to which, the 

scanning lens used for the 790 nm experiments produced a less abcrated focal point over 

the whole field. Pulses with a fluence of - 1.3 J cm2 were used to mark the cell 

perimeters at a scan speed of 5 mm s 1. Penetration through the 128 Eun thick polymer 

substrate was achieved after approximately 5 overscans per cell (- 100 pulses / spot 

diameter) corresponding to an ablation rate of approximately 1.3 µm per pulse. In terms 

of the linear optical response, the membrane is essentially transparent at both 

wavelengths and absorbs strongly only below 350 run. Examples of polymeric 

membranes with conventional and re-entrant honeycomb structures arc given in 

Fig. 4.2.5 and 4.2.6 respectively. 
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Fig. 4.2.5 Conventional polymeric membrane formed by femtosecond laser ablation. 

Fig. 4.2.6 Auxetic polymeric membrane formed by femtosecond laser ablation. 

Similar structures were also formed in p-type silicon by ablation at 395 nm, 

although the ablation rate is significantly lower, as we found in previous work on 

microchemical contactors. An example of a cell ablated with a fluence of approximately 

3.6 J cm'2 is given in Fig. 4.2.7. A small 5x5 cell auxetic structure was formed in the 

silicon due to the time taken for penetration in each cell (- 10 mins) but the material is 

probably too brittle for use as a filter. 
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Fig. 4.2.8 ESEM image of auxetic honeycomb fOrmcd b` laser iblation o1 silicon at 

395 nm withF - 3.6Jcm-2 . 

Both the polymeric membranes have been tested and a negative Poisson's nitio 

is observed for the re-entrant structure21. Furthermore, the auxetic membrane has teal 

shown to offer benefits as a cleanable filter due to deformation of the membrane Zeading 

to the pores opening up in both in-plane principle directions. 
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4.3 Conclusions 

Femtosecond laser ablation has been studied for a variety of dielectric, 

semiconducting and metallic substrates with emphasis on the development of the 

technique for rapid prototyping of micro-fluidic devices. Fundamental observations of 

the effect of ultrashort pulse laser ablation have been presented for fused silica, pyrex, 

silicon, GaAS, Steel and Aluminium for a variety of pulse energies and at both 790 and 

395 nm. We find that residual surface microstructure is much reduced for all materials 

studied when compared to picosecond and nanosecond laser ablation. Micro-structuring 

of high quality micro-chemical devices has been achieved in fused silica, pyrcx and 

silicon using a scanning galvanometer system. Pyrex and fused silica, can be 

micro-machined in the near infra-red (790 nm) and the UV (395 nm) to required 

tolerances, whilst silicon can only be accurately structured to 10 µm depth at 790 nm. 

For depths of -- 50 µm, with sub-micron roughness, machining is accomplished at 

395 nm where the linear absorption coefficient plays a greater role in the ablation 

process. Devices have been fabricated using a technique we describe as laser milling. 

which allows us to accurately control both the final dimensions of the devices and the 

residual surface roughness. We find that ultrashort pulse laser ablation is a practical 

method for rapid prototype production, given the degree of control over ablation depth 

and width, afforded by the technique. 

We present a number of examples of components structured using the laser 

milling technique for chemical applications and also for a novel, macro sized nuxetie 

filter which has properties which allow it to be deformed for dc-fouling purposes. 
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