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Abstract

Glucocorticoids (GCs) and topoisomerase II inhibitors are used to treat acute lymphoblastic

leukaemia (ALL) as they induce death in lymphoid cells through the glucocorticoid receptor

(GR) and p53 respectively. Mechanisms underlying ALL cell death and the contribution of

the bone marrow microenvironment to drug response/resistance remain unclear. The role of

the microenvironment and the identification of chemoresistance determinants were studied

by transcriptomic analysis in ALL cells treated with Dexamethasone (Dex), and Etoposide

(Etop) grown in the presence or absence of bone marrow conditioned media (CM). The

necroptotic (RIPK1) and the apoptotic (caspase-8/3) markers were downregulated by CM,

whereas the inhibitory effects of chemotherapy on the autophagy marker Beclin-1 (BECN1)

were reduced suggesting CM exerts cytoprotective effects. GCs upregulated the RIPK1 ubi-

quitinating factor BIRC3 (cIAP2), in GC-sensitive (CEM-C7-14) but not in resistant (CEM-

C1-15) cells. In addition, CM selectively affected GR phosphorylation in a site and cell-spe-

cific manner. GR is recruited to RIPK1, BECN1 and BIRC3 promoters in the sensitive but

not in the resistant cells with phosphorylated GR forms being generally less recruited in the

presence of hormone. FACS analysis and caspase-8 assays demonstrated that CM pro-

moted a pro-survival trend. High molecular weight proteins reacting with the RIPK1 antibody

were modified upon incubation with the BIRC3 inhibitor AT406 in CEM-C7-14 cells suggest-

ing that they represent ubiquitinated forms of RIPK1. Our data suggest that there is a

correlation between microenvironment-induced ALL proliferation and altered response to

chemotherapy.
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Introduction

Leukaemia is a cancer characterised by aberrant proliferation of white blood cells and may be

acute/chronic and myeloid/lymphoblastic. Approximately 80% of childhood ALL patients

reach remission [1]. Topoisomerase II inhibitors and GCs are used to treat ALL [2]. Drug tox-

icity and chemoresistance are major challenges and the outcome for patients who fail therapy

remains poor, increasing the necessity for more potent, less toxic therapies. GCs are used to

treat ALL [3–5] as they induce leukocyte cell death through the glucocorticoid receptor (GR)

[6]. Upon entering the cytoplasm, GCs bind to GR causing dissociation from heat shock pro-

teins, translocation into the nucleus and regulation of target genes [7, 8]. GCs utilise mainly

the intrinsic apoptotic pathway [9–13] modulating the gene expression of the pro-apoptotic

BCL-2-interacting mediator of cell death (Bim) [14], as well as fine tuning the balance between

NOXA and Mcl-1 [10].

The synthetic glucocorticoid Dexamethasone (Dex) and the topoisomerase II inhibitor

Etoposide (Etop) act via GR and p53 respectively. Etoposide-dependent cell death is partly

mediated by the induction of Bax, Puma and NOXA through p53 activation [15]. Both p53

and GR affect other pathways that regulate cell fate such as autophagy or necroptosis, poten-

tially through the regulation of the autophagy marker BECN1 [16, 17] or the key modulator of

necroptosis RIPK1 (receptor interacting serine-threonine kinase 1) respectively [18].

GR function is controlled at multiple levels, including protein stability, cofactor interac-

tions and post-translational modifications [10, 19–24]. GR phosphorylation modulates tran-

scriptional activity and cellular response to GCs by altering cofactor recruitment, nuclear/

cytoplasmic location, proteasomal degradation and protein half-life [10, 25, 26]. GR phosphor-

ylation is differentially regulated in sensitive versus resistant ALL [10] and in particular ratio

of GR phosphorylation at Ser211 versus Ser226 is higher in sensitive to GCs ALL cells. GR

phosphorylation at Ser211 is mediated by cyclin-dependent kinases and p38-MAPK pathway,

while Ser226 is targeted by c-Jun N-terminal kinases (JNK) [10, 23, 24, 27, 28]. Ser211 is

hyperphosphorylated after hormone binding whereas phosphorylation of GR at Ser226 is asso-

ciated with nuclear export, GR sumoylation and suppression of its transcriptional activity

[20, 24, 27].

Drug resistance and cancer progression are mediated by several factors including commu-

nication between the bone marrow microenvironment and leukaemia cells in a two-way

exchange of regulation [29, 30]. Different modes of communication are involved such as solu-

ble factors and direct cell-cell contact [31–33]. Furthermore, inflammation, oxidative stress

and different types of cell death have been implicated in determining leukaemic cell fate,

depending on the drugs used and exposure to the microenvironment [10, 29, 34, 35]. However,

better understanding of the role of the bone marrow microenvironment in leukaemia is

important, given its impact on clinical outcomes.

In this study the effect of the microenvironment on ALL cells exposed to individual and

combined treatments was investigated. Transcriptome analysis was performed and alterations

in gene expression followed. Furthermore, the effects of the combinatory drug treatment and

CM on GR phosphorylation status, GR phosphoisoforms transcriptional selectivity and cell

fate were explored.

Methods

Cell lines and treatments

CEM-C1-15 (C1, GC-resistant cells) and CEM-C7-14 (C7, GC-sensitive cells), MOLT4 ALL

and K562 chronic myeloid leukemia cell lines were cultured in Roswell Park Memorial
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Institute-1640 (RPMI-1640, Sigma-Aldrich) medium supplemented with Dextran Coated

Charcoal treated serum (DCC) (Hyclone) used during experiments. Bone marrow cell-condi-

tioned media (CM) was generated from the supernatant of HS5 cells after incubation with

serum-free RPMI -1640 for 48 hours. Leukaemic cells were treated with CM at a final ratio of

1/6th CM for 48 hours.

Western blot analysis

Cells were seeded with DCC-FBS RPMI media in the presence or absence of CM, treated with

Dex/Etop for the indicated times and western blot analysis performed as described previously

[36]. Cells were lysed in high salt lysis buffer and protein concentration was determined using

the BioRad assay. Antibodies recognizing actin (Sigma-Aldrich), GR (H300, Santa Cruz Bio-

technology), GR phosphorylated at S211 (Abcam), GR phosphorylated at S226 (Abcam),

BECN1 (Abcam), RIPK1 (Santa Cruz Biotechnology) and caspase-3 (New England Biolabs)

were used. ImageJ was used for quantifying blots [37].

Transcriptome analysis

Total mRNA was extracted from C7 cells treated with Dex, Etop and CM in varying combina-

tions using the RNeasy Plus Mini Kit and QIAshredder spin columns according to manufac-

turer’s guidelines (Qiagen). The extracted RNA was supplied to the Genomic Technologies

Core Facility, Manchester University. GeneChip Human Genome U133 plus 2.0 Array was

used to analyse expression profiles in cells as described previously [38]. Background correc-

tion, quintile normalization, and gene expression analysis were performed using the robust

multiarray average (RMA) in Bioconductor software [39]. Principal component analysis

(PCA) was performed with Partek Genomics Solution (v6.5). Differential expression analysis

was performed using the Limma package in the Bioconductor software [40]. Two-way com-

parisons were performed. Gene lists of differentially expressed genes were controlled for false

discovery rate (FDR) errors using QVALUE [41].

Profile filtering was used to cluster genes based on expression profile similarity across the

dataset [42]. A list of differentially-expressed genes was created by filtering for probesets with a

q-value less than 0.05 and fold change greater than or equal to 2.0. Clustering was performed

on the means of each sample group (log2) that had been z-transformed (for each probeset the

mean set to zero, standard deviation to 1). K-means clustering was done on the basis of simi-

larity of profiles (Manhattan Distance) across the dataset using the "Super Grouper" plug-in of

maxdView software. This method clusters all genes that have the same trend of expression

across different treatments. Data were segregated into eight clusters based on expression pro-

file similarity. DAVID was used for functional gene annotation.

Caspase-8 assay

Cells were incubated with CM, Dex and Etop for 48, 36 and 24 hours respectively, harvested

and processed according to manufacturer’s guidelines [43]. In brief, 5μl diluted FLICA (fluoro-

chrome-labeled inhibitor of caspases assay) reagent was added to 93μl cell suspension, supple-

mented with 2μl 500 μg/ml Hoechst 33342. Following 1 hour incubation at 37˚C, two washes

with Apoptosis Wash Buffer, cells were centrifuged and resuspended in 100μl of Apoptosis

Wash Buffer supplemented with 10μg/ml propidium iodide and analysed using the Nucleo-

Counter NC-3000.

The role of microenvironment in ALL chemoresistance
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Quantitative RT-PCR

Quantitative RT-PCR analysis was performed as described previously [44]. Total RNA was

extracted from the cells using RNeasy Plus Mini Kit (Qiagen, USA) and 1μg total RNA from

each sample was converted to cDNA according to the BioScript reverse transcriptase (Bioline)

two-step protocol using an oligo-dT primer (Bioline). cDNA was subjected to qPCR analysis

using SensiFAST SYBR No-ROX Kit (Bioline). The primers used for Rpl19, RIPK1, BECN1

and BIRC3 are listed in Table A in S1 File.

Chromatin immunoprecipitation (ChIP)

Chromatin immunoprecipitation assays were performed as described previously [45]. Proteins

were crosslinked to DNA by 1% formaldehyde. Crosslinking was quenched by adding 125mM

glycine. Cells were washed twice with PBS and once with ChIP Buffer 1 and ChIP Buffer 2,

then resuspended in 3ml of ChIP Buffer 3. Chromatin was sheared to approximately 300bp via

sonication (Diagenode Bioruptor) and subjected to immunoprecipitation using antibodies

against total GR (Diagenode), Ser211-phosphorylated GR and Ser226-phosphorylated GR.

Anti-rabbit IgG was used as a negative control. Precipitated DNA-protein complexes were

reverse cross-linked by incubating with elution buffer (50mM Tris-HCl; pH 8, 100mM EDTA

and 1% SDS w/v) at 65˚C for 16 hours. DNA was purified using QIAquick PCR Purification

Kit and subjected to qPCR using primers flanking the putative GREs in the BIRC3, BECN1

and RIPK1 promoters (Table B in S1 File). Data for each antibody was normalised to the

respective negative control IgG.

Results

Transcriptome analysis

In order to establish the experimental conditions to analyse the effects of clinically used drugs

and the microenvironment on ALL cells, effects of glucocorticoid Dex and Etop were analysed

by assessing the viability of the resistant CEM-C1-15 and the sensitive CEM-C7-14 ALL cells

to glucocorticoid and anthracycline induced apoptosis, as well as K562 chronic myelogenous

leukemia (CML) cell lines, using trypan blue exclusion assay (Figs A and B in S1 File). It was

observed that treatment with 1μM Dex for 36hrs and 10μM Etoposide for 24hrs displayed opti-

mal effect on ALL GC sensitive cells, whereas CML cells were largely GC-resistant. Condi-

tioned media obtained from bone marrow stromal cell line HS5 was used to mimic the effect

of the microenvironmental soluble factors on ALL cells and its amount and duration of incu-

bation chosen at 1/6th CM/total media and 48 hours of treatment (Fig C in S1 File and data

not shown).

To investigate the molecular effects of CM on ALL cellular pathways, transcriptome analy-

sis was performed in C7 cells treated with CM, Dex and Etop in various combinations. Using

fold-change as a criterion, 2632 genes showing altered expression were detected, though most

were of unknown function. Therefore profile filtering was used to cluster genes into 8 catego-

ries based on expression profile similarity across treatments (Fig 1, Table 1). For each cluster,

gene ontology (GO, terms indicating biological processes or cellular functions) groups were

identified using the expression analysis systematic explorer to identify biologically-related

gene groups based on GO term overrepresentation (Fig 1).

Cluster 1 genes were upregulated by Etop/Dex in the presence and absence of CM and

affected autophagy, haematopoiesis and lymphocyte differentiation. Cluster 3 genes were

mostly downregulated by combined treatment and affected nuclear functions, cell division

and cell cycle. Clusters 2/4 comprise genes involved in cell cycle control and fatty acid
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metabolism and were downregulated by CM. Genes upregulated in cells treated with Dex

alone or in combination were associated with apoptosis, lymphocyte activation, cell motility,

immune response and inflammation (Cluster 5). Cluster 7 is associated with metal binding,

cell adhesion and motor activity, whereas Cluster 8 genes are involved in the regulation of

lipid and membranes function, apoptosis and autophagy. Cluster 6 represents genes

Fig 1. Clusters, profiles, and GO groupings of CEM-C7-14 cells. CEM-C7-14 cells were grown in the absence and presence

of CM or standard RPMI media for 48h and treated with Dex (1μM) and Etop (10μM) individually or in combination for 24h. Cells

were treated with vehicle (1), CM (2), Dex (3), Etop (4), Dex and Etop (5) or Dex, Etop and CM (6). Identified genes were

assigned to one of eight distinct clusters using k-means clustering algorithms. On the left, the data for each cluster are

represented as a profile of the z-transformed, log2 values for the mean of each experimental group/condition. The most

significantly overrepresented GO terms are shown for the genes within each cluster.

https://doi.org/10.1371/journal.pone.0178606.g001
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downregulated by CM and upregulated by DNA damage, associated with the p53 (Fig 1). Fur-

ther analysis of genes that control various cellular processes suggested that cluster 6 has the

highest percentage of genes involved in apoptosis, DNA damage and mitochondrial processes

(Table 1). Given the importance of these processes in the response of leukemia cells to drug

treatment this cluster was further analysed. Cluster 6 among others contained the Bim, Fos,

Runx3 and IκB genes involved in apoptosis and these genes were downregulated in cells

grown in CM. Furthermore, repression of RIPK1 and BAD gene expression was recorded in

cells grown in CM. The RIPK1 ubiquitinating enzyme BIRC3 (cIAP2) gene expression was

upregulated in Dex-treated C7 cells (Cluster 5). BIRC3 and RIPK1 are involved in pathways

important in regulating GR such as NF-κB [46].

Differential regulation of cell death pathways in ALL

Microarray analysis indicated that RIPK1 was downregulated in cells grown in CM (Fig 1).

RIPK1 exerts pro-survival effects when it forms the complex I together with TRADD, TRAF

and cIAP proteins thereby activating NF-κB, or facilitates apoptosis/necroptosis depending on

the type of complex formed with RIPK3 (complex IIa or IIb) [47, 48]. We hypothesized that

CM-mediated RIPK1 downregulation could explain the development of chemoresistance. To

test this we followed RIPK1 mRNA and protein levels under different treatments (Figs 2 and 3

respectively). In C1 cells, although increasing mRNA trends were observed in cells treated

with CM and Dex, the change was not statistically significant (Fig 2A, compare lanes 2 and 3

with lane 1, black bars). In C7 cells CM alone or in the presence of Dex and Dex/Etoposide

combination led to decrease in RIPK1 gene expression (Fig 2A compare lanes 2, 4 and 8 to

lane 1). A similar effect was observed in cells treated with a combination of Dex and Etoposide

(Fig 2A compare lane 7 to lane 1). BECN1 mRNA was measured to assess whether this key

indicator of autophagy, was affected by these treatments (Fig 2B). BECN1 mRNA levels were

altered by several treatments however, no significant changes were observed.

Alterations in the protein levels of RIPK1, BECN1 and caspase-3 were determined by

western blot analysis. In C1 cells RIPK1 protein levels were downregulated in cells treated

with Dex/Etop combination (Fig 3A/3B, compare dark grey bars in line 7 to other bars). In

C7 cells modest and significant downregulation of RIPK1 protein levels was detected in most

treatments. These observations are recapitulated to some extent in another ALL cell line

MOLT4 where CM downregulated RIPK1 protein levels (Fig D in S1 File). CM affected Dex-

mediated downregulation of RIPK1 (Fig 3B, compare light grey bars 4 to 3) suggesting that

alterations of RIPK1 in cells grown in CM is a potential route to ALL survival or altered

response to chemotherapy.

Table 1. Further clustering according to the percent of different cellular processes assigned by EASE analysis.

ClusterNo. Lysosomes Apoptosis DNA

Damage

Cell

Cycle

Mitochondria ER Cytoplasmic

vesicles

Phosphorylation Inflammation Others

1 7% 2% 0% 2% 2% 8% 4% 0% 2% 73%

2 0% 6% 4% 6% 14% 0% 0% 3% 1% 66%

3 0% 7% 2% 5% 4% 6% 3% 7% 1% 65%

4 0% 4% 4% 10% 6% 2% 1% 5% 0% 68%

5 1% 4% 0% 0% 0% 3% 0% 0% 2% 90%

6 4% 12% 8% 5% 23% 0% 7% 7% 3% 31%

7 3% 5% 2% 6% 7% 6% 6% 7% 5% 53%

8 4% 6% 0% 4% 10% 31% 7% 4% 2% 47%

https://doi.org/10.1371/journal.pone.0178606.t001
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Protein levels of apoptosis (caspase-3) and autophagy (BECN1) markers were followed to

determine the effect of CM on cell death and survival in ALL upon Dex/Etop treatment [49]

(Fig 3). Analysis of these markers (Fig 3C) indicated that BECN1 protein levels were not signif-

icantly affected in either cell line grown in CM with or without Dex (Fig 3A and 3C, lanes

1–4). Repression of BECN1 was observed in C1 cells treated with Dex/Etop combination (Fig

3 compare dark grey bar in lane 7 to other bars). Reduction of BECN1 protein levels was

observed in Etop, Etop/CM and Dex/Etop-treated C7 cells, whereas Dex/Etop/CM showed no

Fig 2. RIPK1 and BECN1 gene expression. (A) Gene expression of RIPK1 and (B) BECN1 in ALL cells treated with

1μM Dex, and 10μM Etop individually or in combination for 24h in the presence or absence of CM. The data is

representative of at least three independent experiments. Error bars represent SEM. P-value of less than or equal to

0.05 is indicated by *.

https://doi.org/10.1371/journal.pone.0178606.g002
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statistically significant loss (Fig 3C compare light grey bar 8 to bars 5, 6 and 7). These results

suggest that CM reverses the inhibitory effect of Etoposide on BECN1 protein levels in C7

cells. However, C1 cells were insensitive to CM as the downregulation of BECN1 observed in

these cells treated with Dex/Etop was not reversed by CM (Fig 3, compare dark grey bars of

lanes 7 and 8), suggesting that CM exerts cell-specific effects on BECN1.

No major changes in cleaved caspase-3 were observed in C1 cells apart from an elevation

exhibited in cells treated with Etoposide (Fig 3A). Cleaved caspase-3 was detected at very low

levels in C7 cells treated with all combinations except those containing Etoposide (Fig 3A and

data not shown). Decreased protein levels of cleaved caspase-3 were recorded in C7 cells

grown in CM and treated with combination of Dex and Etop compared to cells grown in nor-

mal media and treated with combination of Dex and Etop, suggesting that CM potentially

exerts pro-survival effects (Fig 3A compare lanes 7 and 8). Taken together, these results indi-

cated that CM exerts inhibitory effects on the cell death mediators RIPK1 and caspase-3 and

possibly stimulates pro-survival autophagy.

Fig 3. RIPK1, BECN1 and Caspase-3 protein levels in ALL cells. (A) CEM-C7-14 and CEM-C1-15 cells were grown in the absence and presence of

CM or standard RPMI media for 48h and treated with Dex (1μM) and Etop (10μM) individually or in combination for 24h. Cells were lysed and analysed by

SDS PAGE followed by western blot. Blots were probed with antibodies specific for RIPK1, BECN1 and cleaved caspase 3. Actin was used as a loading

control. Western blots (Fig 2A and data not shown) were densitometrically scanned, normalised to actin and presented as bar charts. (B) RIPK1 protein

expression; (C) BECN1 protein expression. The data is representative of at least three independent experiments. Error bars represent SEM. P-value of

less than or equal to 0.05 is indicated by *. C is control; CM is conditioned media; D is Dex; DCM is Dex and CM; E is Etop; ECM is Etop and CM; DE is

Dex and Etop; DECM is Dex, Etop and CM.

https://doi.org/10.1371/journal.pone.0178606.g003
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The microenvironment alters GR phosphorylation

To investigate whether CM affects GR phosphorylation, thereby mediating sensitivity or resis-

tance in ALL cells [27, 28, 46] total GR protein levels and its phosphoisoforms S211 and S226

were monitored in ALL cells following Dex and Etop treatment (Fig 4, data not shown).

Although some increase in total GR levels in the presence of Dex and decrease in the pres-

ence of Etop were observed, these changes were marginal and mostly insignificant, except

when C7 cells were treated with Dex and Etoposide (Fig 4A and 4B, lane 7 light grey bars).

S226-phosphorylated GR increased in CM and Dex-treated C1 cells, whereas Dex/CM com-

bined treatment downregulated S226 phosphorylation (Fig 4A and 4C, compare lanes 1–4, left

panel). S226 phosphorylation was mostly downregulated in the presence of Etoposide individ-

ually or in combination with other treatments in C1 cells, with significant effects recorded in

Etoposide treated cells (Fig 4A and 4C, compare lanes 5, 6, 7 and 8 to lane 1). However, effects

of Dex and CM on S226 phosphorylation were not recapitulated in C7 cells as Dex, CM and

combination Dex/CM exerted minor effects (Fig 4A and 4C, compare lanes 1–4). Etoposide

alone or with co-treatments downregulated S226 phosphorylation in C7 cells (Fig 4A and 4C,

compare lanes 5–8 to lane 1).

The efficiency of GR phosphorylation at S211 was higher in C7 than in C1 cells under most

conditions. Increase in S211-phosphorylated GR was observed in C1 cells grown in CM,

Fig 4. Dex, Etop and the microenvironment affect GR phosphorylation in ALL. (A) CEM-C1-15 and CEM-C7-14 cells were cultured in CM or

standard RPMI media for 48h and treated with Dex (1μM) and Etop (10μM) individually or in combination for 24h. Treatments were as in Fig 2. Cells were

lysed and protein extracts were subjected to western blot analysis. Total and phosphorylated GR was detected using specific antibodies against these

proteins. Actin was used as loading control. Western blots (Fig 4A and data not shown) were densitometrically scanned, normalised to actin and presented

as bar charts. For phosphorylation experiments, phosphorylation blot data was scanned and normalised to the actin-normalised total GR. (B) Total GR

protein expression. (C) S226-phosphorylated GR protein expression. (D) S211-phosphorylated GR protein expression. The data is representative of at

least three independent experiments. Error bars represent SEM. P-value of less than or equal to 0.05 is indicated by *.

https://doi.org/10.1371/journal.pone.0178606.g004
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whereas no further changes were observed in C1 cells exposed to other treatments (Fig 4A and

4D, dark grey bars). Increased S211-phosphorylated GR was evident in Dex and Etoposide

treated C7 cells (Fig 4A and 4D, compare lanes 3–8 to 1, light grey bars). In C7 cells, when CM

was added to cells treated with Dex and Etoposide, trends of decreased levels of phosphoryla-

tion were detected upon quantification of multiple blots (Fig 4D, compare lanes 3, 5, 7 with

lanes 4, 6, 8).

Recruitment of GR on RIPK1 and BECN1 promoters

Recruitment of GR and its S211/S226 phosphoisoforms to the RIPK1 and BECN1 promoters

was analysed using ChIP assay. Two putative GREs were identified in the RIPK1 promoter

using the Qiagen Champion ChiP Transcription Factor Search Portal. GR recruitment was

detected on both GREs of the RIPK1 promoter in Dex-treated C7 cells (Fig 5A). Surprisingly,

GR phosphoisoforms recruitment to the GRE2 of the RIPK1 promoter decreased in the pres-

ence of hormone (Fig 5A).

Sequence analysis of BECN1 revealed the existence of numerous potential GREs in its pro-

moter region (thirteen were identified by Qiagen Champion ChIP). No significant GR recruit-

ment to BECN1 GREs was evident in the Dex-treated compared to untreated C1 cells whereas

S211-phosphorylated GR was recruited slightly less compared to untreated cells (Fig 5B, left

panel). Increased recruitment of total GR but not GR phosphorylated at S211 was evident in

Dex-treated C7 cells (Fig 5B, right panel).

BIRC3 gene expression

Ubiquitination/deubiquitination cycles of RIPK1 define the multiprotein complexes formed

by this protein, determining whether cells survive or undergo necroptosis/apoptosis. Forma-

tion of the pro -survival complex I requires that RIPK1 is ubiquitinated by BIRC3, leading to

NF-κB activation and cell survival [47]. Alternatively, RIPK1 deubiquitination results in the

formation of the complex IIa inducing apoptosis [48]. When caspase-8 activity is blocked, and

caspase-8-mediated cleavage of RIPK1 does not take place, RIPK1 binds to RIPK3 (complex

IIb) and necrotic signalling is triggered [48]. BIRC3 gene expression was followed in Dex-

treated C1 and C7 cells to validate BIRC3 upregulation observed in microarray experiment in

Dex-treated C7 cells and gain insight in molecular aspects of RIPK1 signalling. Upregulation

of BIRC3 gene expression was observed in C1 cells grown in CM and more prominent upregu-

lation of the expression of this gene was observed in the presence of Etoposide alone or in

combination with Dex and CM (Fig 6A, compare dark grey bars, lane 2 to 1 and lanes 5–8 to

1). CM alone led to downregulation of BIRC3 mRNA in C7 cells (Fig 6A, compare lane 2 to

lane 1 light grey bars). BIRC3 was substantially upregulated in C7 cells treated with Dex or CM

(Fig 6A, light grey bars 3 and 4). Dex and Etop with/without CM upregulated BIRC3 gene

expression but to a lesser extent than cells treated with Dex only (Fig 6A, compare lanes 7/8

with lane 1/3, light grey bars).

No change in total GR and S226-phosphorylated GR recruitment on BIRC3 promoter was

observed in Dex-treated C1 cells whereas decreased recruitment of the S211-phosphorylated

GR in these cells was evident (Fig 6B). In contrast, substantial Dex-dependent recruitment of

total GR and modest decrease in phosphorylated GR was recorded in C7 cells (Fig 6C).

Effects of Dex, Etop and the microenvironment on leukaemia cell fate

Effects of different treatments on ALL cell cycle progression were investigated using FACS

analysis and PI staining. CEM-C7-14 cells exhibited higher sensitivity to glucocorticoids com-

pared to CEM-C1-15 cells as estimated by the number of cells accumulating in the SubG1
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phase (Fig 7A). Combination of Dex with CM, or Dex/Etop with CM resulted in reduction of

the sensitivity of CEM-C7-14 cells to treatment (Fig 7A, compare grey bars 4/8 to grey bars 3/7

respectively). Similar effect of CM was observed in CEM-C1-15 cells but to a lesser extent than

that detected in the CEM-C7-14 cells (Fig 7A, compare black bars 4, 6 and 8 to black bars 3, 5

and 7 respectively) indicating the potential role of CM in conferring resistance to leukaemia

cells in a cell and type of treatment-dependent manner.

The interplay between caspase-8 and BIRC3 is crucial in determining cellular pathways

leading to survival or apoptosis/necroptosis [17, 18]. In order to investigate which of these

Fig 5. Differential recruitment of GR and its phosphoisoforms on the RIPK1 and BECN1 promoters. Chromatin immuniprecipitation (ChIP) analysis

was carried out in CEM-C1-15 and CEM-C7-14 cells treated with 1μM Dex for 24hrs. We identified potential GR binding sites on the (A) RIPK1 and (B)

BECN1 promoters and analysed total GR, and GR phosphorylated on S211 and S226 on a subset of sites. The data is representative of at least three

independent experiments. Error bars represent SEM. P-value of less than or equal to 0.05 is indicated by *.

https://doi.org/10.1371/journal.pone.0178606.g005
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pathways is predominant in C1 and C7 cells under various conditions, caspase-8 activity was

determined in these cells (Fig 7B). In C1 cells, caspase-8 was upregulated in the presence of

Etoposide alone or in combination of Dex with CM (Fig 7B, compare dark grey bars lanes 5–8

to 1). Increasing trend of caspase-8 intensity was observed in C7 cells upon Dex or Etoposide

treatment individually or in combination (Fig 7B, compare light grey bars lanes 3–8 to lane 1).

Given that BIRC3 serves as ubiquitin ligase for RIPK1, AT406 BIRC3 inhibitor was used to

assess the RIPK1 protein levels in C7 cells (Fig 7C). Longer exposure of the blots revealed sev-

eral bands of higher molecular weight that interacted with RIPK1 antibody. Band of about

130kDa increased in intensity in C7 cells incubated in CM when compared to C1 cells (Fig 7C,

compare lanes 3 and 4 to 5 and 6). Intensity of high molecular weight bands was modified in

cells treated with the BIRC3 inhibitor AT406 (Fig 7C, compare lane 1 to lane 2) implying that

these bands possibly represent ubiquitinated RIPK1 forms. Taken together these data suggest

that conditioned medium diminishes the effects of Dex and Etop on ALL cells and that this

process is at least in part executed through alterations of RIPK1 ubiquitination.

Fig 6. Control of BIRC3 gene expression by GR in ALL. (A) mRNA expression of BIRC3 in ALL cells treated with Dex, Etop and CM. (B) ChIP analysis

was carried out in CEM-C1-15 and (C) CEM-C7-14 cells treated with 1μM Dex for 24hrs. Occupancy on one of the GREs by total GR, and GR

phosphorylated on S211 and S226 was analysed. The data is representative of at least three independent experiments. Error bars represent SEM. P-

value of less than or equal to 0.05 is indicated by *.

https://doi.org/10.1371/journal.pone.0178606.g006
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Discussion

The effects of the microenvironment on ALL cells were investigated by microarray analysis of

these cells grown in CM and treated with Dex and/or Etop. CM inhibited RIPK1 and caspase-

8/3, and interfered with chemotherapy-induced downregulation of BECN1. GCs induced the

RIPK1 ubiquitinating enzyme BIRC3 only in GC-sensitive cells. CM altered GR phosphoryla-

tion state providing potential link between microenvironment and drug response. GR was

recruited preferentially on RIPK1, BECN1 and BIRC3 promoters in C7 cells with lower

amount of the phosphorylated GR occupancy in the presence of hormone. CM showed ten-

dency to increase cell survival and increased high molecular weight RIPK1 forms that were

sensitive to AT406 (BIRC3 inhibitor).

Although genome-wide analyses of differentially expressed GC- regulated genes have been

reported, limited information exists regarding the effects of the microenvironment on che-

moresistance [13, 38, 50–52]. Transcriptome analysis of GC-sensitive cells treated with Dex,

Etop and CM identified genes exhibiting altered expression [53, 54]. BCL2-associated agonist

of cell death (BAD) and the nuclear factor of kappa light polypeptide gene enhancer in B-cells

inhibitor beta (I-κB) were repressed by CM. I-κB is an NK-κB inhibitor therefore inhibition of

Fig 7. Microenvironment and chemotherapy effects on ALL cell fate. (A) Cells were treated with CM (48 hours), 1μM Dex (36 hours) and 10μM Etop

(24 hours) in varying combinations. Percentage of cell death was obtained using FACS analysis of PI-stained CEM-C1-15 and CEM-C7-14 cells treated as

above. SubG1 phase is shown. (B) Caspase-8 activity was measured in ALL CEM-C7-14 and CEM-C1-15 cells treated as indicated. CEM-C1-15 cells are

represented by dark grey bars, CEM-C7-14 by light grey bars. (C) RIPK1 high molecular weight forms were analysed in cells treated with CM and BIRC3

inhibitor AT406 (10μM for 48 hours). Western blot analysis was carried out as described above. The data is representative of at least three independent

experiments. Error bars represent SEM. P-value of less than or equal to 0.05 is indicated by *.

https://doi.org/10.1371/journal.pone.0178606.g007
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its activity by CM could lead to survival/resistance. RIPK1, related to different forms of cell

death [55] as well as to pathways important for the regulation of GR function such as the

MAPK and NF-κB, was repressed in cells grown in CM. Furthermore, transcriptome analysis

indicated that the RIPK1 ubiquitinating enzyme BIRC3 was upregulated in cells treated with

Dex (Fig 1). CM repressed RIPK1 levels in C7 cells to a greater extent than in C1 (Figs 2 and

3), suggesting that this might be a path to chemoresistance given the role of RIPK1 in necrop-

tosis [56], NF-κB [57] and GR [16] signalling.

The large number of putative GREs within the BECN1 promoter suggests that crosstalk

between BECN1 and GR might exist and that BECN1 may be involved in GC-induced cell

death [58]. Downregulation of BECN1 protein levels by Dex and Etop was abrogated in the

presence of CM in C7 cells (Fig 3 compare lanes 7 and 8 to lane 1), suggesting that CM-depen-

dent BECN1 upregulation leads to induction of pro-survival autophagy and protection from

chemotherapy.

Downregulation of cleaved caspase-3 was observed in C7 cells grown in CM and treated

with both Dex and Etop (Fig 3). This could indicate a pro-survival pathway induced by CM

since the phosphatidylinositol-4-phosphate 3-kinase (PIK3C2B) that blocks caspase-3 was

upregulated by CM [59–61]. In summary, CM downregulates RIPK1 and caspase-3, mediators

of necroptosis and apoptosis respectively, and increases the pro-survival BECN1 protein levels

in C7, but not in C1 cells, thereby promoting survival of the sensitive cells.

CM displayed cell and site specific effects on GR phosphorylation. It is possible these effects

are mediated through modulation of kinases known to affect GR. JNK-mediated phosphoryla-

tion of GR at S226 plays an important role in reversing GC-sensitivity in resistant T-cells

whereas inhibition of GR phosphorylation at S226 potentiates its transcriptional activity [10,

20, 23, 27, 62, 63]. Higher ratio of S211/S226 GR phosphorylation has been shown in C7 com-

pared to C1 cells, coinciding with altered NOXA/Mcl-1 gene expression in sensitive cells,

implying that site—specific GR phosphorylation determines GC sensitivity [10]. The hypothe-

sis of altered gene expression by differentially-phosphorylated GR thereby leading to the

induction of pro—survival pathways was investigated employing ChIP to determine the

recruitment of GR and its phosphoisoforms to the RIPK1, BECN1 and BIRC3 promoters.

Increased recruitment of total GR occurred at all three promoters when antibody against total

GR protein was used, however, there was decreased recruitment of GR phosphoisoforms in

hormone treated C7 cells (Figs 4 and 5). These data suggested that GR may affect gene expres-

sion of these genes however no statistically significant effects were observed when mRNA lev-

els were determined for RIPK1 and BECN1 (Fig 2). This is potentially due to complex control

of BECN1 given the existence of 13 putative GREs in its promoter and numerous levels of

crosstalk between GR and NF-κB that is a RIPK1 downstream target. No recruitment of GR to

the promoters of these genes was observed in C1 cells.

TNF-alpha mediated apoptosis involves the formation of complex I which contains ubiqui-

tinated RIPK1, TRADD, TRAF2 and BIRC3 [64–66]. Complex I formation activates NF-κB

leading to cell survival. Increased recruitment of GR on BIRC3 promoter coinciding with

marked induction of this gene expression in Dex-treated C7 cells (Fig 6) raises the possibility

that ALL resistance to drug treatment could be reversed by applying combinatorial treatments

of Dex with BIRC3 inhibitors. Caspase-8, induced by Dex in C7 cells only, is also involved in

this pathway. However, Etop co-treatment with Dex changes BIRC3 induction and brings it to

similar levels in both C1 and C7 cells, highlighting the molecular basis for the beneficial effect

of combination therapy in the clinic.

Activation of caspase-8 by Dex could induce cleavage of RIPK1 and RIPK3 and formation

of the complex II which contains RIPK1, RIPK3, caspase-8 and FADD and leads to apoptosis.

Additionally Dex upregulates cFLIP in hepatocytes therefore cFLIP upregulation in C7 cells
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may lead to caspase-8 inhibition and stimulation of necroptosis [67, 68]. Necrosome formation

via stimulation of TRAIL/TNF activates RIPK3 which interacts with enzymes regulating glyco-

lytic flux and glutaminolysis [68]. Reactive oxygen species ultimately form, whilst redox status

is important in determining sensitivity to microenvironment and chemotherapy [35, 67–69].

RIPK1 substrates are yet to be identified as are factors necessary for cell death induction

through necroptosis or apoptosis [55].

Although the CM constituents are not fully known, they may include membrane receptor

activators, miRNAs and exosomes [35]. CM may affect RIPK1 potentially leading to altered

GR and other proteins phosphorylation levels. Alternatively, miRNA-mediated modulation of

kinases targeting GR could explain its differential phosphorylation patterns in the sensitive

versus resistant ALL cells. It is evident that RIPK1 is a target of direct (promoter binding) and

indirect (BIRC3 upregulation) GR activity. It is also possible that CM increases RIPK1 ubiqui-

tination thus promoting survival and potentially affecting NFκB signalling. Our data suggest

that the microenvironment affects components of the autophagy, apoptosis and necroptosis

pathways favouring survival and chemoresistance. Effective treatment of ALL may be achieved

through therapies targeting components of the microenvironment.

Conclusions

This study provided evidence to suggest that several components of apoptosis, autophagy and

necroptosis are regulated by the tumour microenvironment in a manner dependent on the

post-translational modification profile of the GR. These effects of the microenvironment cor-

relate with the outcome of the response to particular chemotherapeutic treatments. Further

studies are needed to identify the details of the causative relationships between tumour micro-

environment and response to chemotherapy in order for these findings to be utilised in the

clinic.
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