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Abstract: WestudyProperty (T) for locally compact quantumgroups, providing several
new characterisations, especially related to operator algebraic ergodic theory. Quantum
Property (T) is described in terms of the existence of various Kazhdan type pairs, and
some earlier structural results of Kyed, Chen and Ng are strengthened and generalised.
For second countable discrete unimodular quantum groups with low duals, Property (T)
is shown to be equivalent to Property (T)1,1 of Bekka and Valette. This is used to extend
to this class of quantum groups classical theorems on ‘typical’ representations (due to
Kerr and Pichot), and on connections of Property (T) with spectral gaps (due to Li and
Ng) and with strong ergodicity of weakly mixing actions on a particular von Neumann
algebra (due to Connes and Weiss). Finally, we discuss in the Appendix equivalent
characterisations of the notion of a quantum group morphism with dense image.

1. Introduction

The discovery of Property (T) by Kazhdan [Kaz] was a major advance in group theory. It
has numerous applications, in particular in abstract harmonic analysis, ergodic theory and
operator algebras, which can be found in the recent book of Bekka et al. [BHV] dedicated
to this property. Recall that a locally compact group G has Property (T) if every unitary
representation of G that has almost-invariant vectors actually has a non-zero invariant
vector. Property (T) is understood as a very strong type of rigidity. It is ‘antipodal’
to softness properties such as amenability—indeed, the only locally compact groups
that have both properties are the ones that have them trivially, namely compact groups.
Property (T) forG hasmany equivalent conditions (some undermild hypotheses), among
them are the following: the trivial representation is isolated in ̂G; every net of normalised
positive-definite functions on G, converging to 1 uniformly on compact sets, converges
uniformly on all of G; there exists a compact Kazhdan pair for G; there exists a compact
Kazhdan pair with ‘continuity constants’; for every unitary representation π of G, the
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first cohomology space H1(G, π) of 1-cocycles vanishes; and all conditionally negative
definite functions on G are bounded.

In the context of von Neumann algebras, Property (T) was employed by Connes
[Con1] to establish the first rigidity phenomenon of von Neumann algebras, namely the
countability of the fundamental group. Property (T) and its relative versions have been
introduced for von Neumann algebras in [Con2,CoJ,Pop1,AD,PeP,Pop2]. The various
forms of Property (T) have been a key component of Popa’s deformation/rigidity theory
(see for example [Pop2] and references therein). Thus now Property (T) appears in
operator algebras both as an important ingredient related to groups and their actions,
and as a notion intrinsic to the theory.

It is therefore very natural to consider Property (T) for locally compact quantum
groups in the sense of Kustermans and Vaes. The definition is the same as for groups,
using the quantum notion of a unitary (co-) representation. Property (T) was first in-
troduced for Kac algebras by Petrescu and Joiţa [PeJ] and then for algebraic quantum
groups by Bédos et al. [BCT]. Property (T) for discrete quantum groups in particular
was studied in depth by Fima [Fim], and later by Kyed [Kye] and Kyed and Sołtan
[KyS]. They established various characterisations of Property (T), extending the ones
mentioned above and others, produced examples, and demonstrated the usefulness of
Property (T) in the quantum setting. Property (T) for general locally compact quantum
groups was first formally defined by Daws et al. [DFSW] and then studied by Chen
and Ng [ChN]. Recently Arano [Ara] and Fima et al. [FMP] developed new methods of
constructing examples of Property (T) quantum groups; the first of these papers showed
also that for unimodular discrete quantum groups Property (T) is equivalent to Central
Property (T), whichwill be of importance for the second half of our paper. It is also worth
noting that these results spurred interest in studying Property (T) also in the context of
general C∗-categories ([PoV,NY]).

Most of our results establish further characterisations of Property (T), which can be
roughly divided into two classes. The first is based on conditions that do not involve
representations directly. These are interesting in their own right, and also provide a tool
to approach the conditions in the second class. The latter includes conditions that are a
formal weakening of Property (T) obtained either by restricting the class of considered
representations or by replacing lack of ergodicity by a weaker requirement. Some of
these results extend celebrated theorems about groups that have proven to admit many
applications. The most crucial single result along these lines is a generalisation of a
theorem of Bekka and Valette [BV1], Bekka et al. [BHV, Theorem 2.12.9], stating that
for σ -compact locally compact groups Property (T) is equivalent to the condition that
every unitary representation with almost-invariant vectors is not weakly mixing.

The paper is structured as follows. Its first part, consisting of Sects. 2–4, is devoted
to background material, and the main results are presented in its second part, consisting
of Sects. 5–9. Section 2 discusses preliminaries on locally compact quantum groups, in
particular their representations. Sections3 and 4 contain more preliminaries as well as
new results on (almost-) invariant vectors and actions, respectively. Section 5 introduces
various notions of what a ‘Kazhdan pair’ for a locally compact quantum group should be,
and shows that each of these is equivalent to Property (T). It also proves that for locally
compact quantum groups H and G, if H has Property (T) and there is a morphism from
H to G ‘with dense range’, then G has Property (T)—this substantially strengthens one
of the results of [ChN]. In Sect. 6, Kazhdan pairs are applied to present characterisations
of Property (T) in terms of positive-definite functions and generating functionals of
particular types, at least for particular classes of locally compact quantum groups.
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For a discrete quantum group, Fima [Fim] showed that Property (T) implies that the
quantum group is finitely generated, thus second countable, and unimodular. In Sect. 7
we introduce a further notion for a discrete quantum group—that of having a ‘low dual’.
We then provide the above-mentioned generalisation of the Bekka–Valette theorem for
second countable unimodular discrete quantum groups with low duals (Theorem 7.3);
its consequences—Theorems7.6, 8.6 and 9.3—will also have these hypotheses on the
quantum group. Our proof is closer to those of [Jol2, Theorem 1.2] (see also [Jol1,
Lemma 4.4]), [Bek, Theorem 9] and [PeP] than to the original one [BV1]. The low
dual condition is a significant restriction, but nevertheless still allows the construction of
non-trivial examples—see Remark 2.6. The attempts to drop it led us to believe that in
fact it might be necessary for the quantum Bekka–Valette theorem to hold; however, we
do not have a theorem or a counterexample that would confirm or disprove this intuition.

As a first consequence of our version of the Bekka–Valette theorem we establish
that lack of Property (T) is equivalent to the genericity of weak mixing for unitary
representations (Theorem 7.6). This extends a remarkable theorem of Kerr and Pichot
[KP], which goes back to a famous result of Halmos about the integers [Hal]. Next,
in Sects. 8 and 9 we prove several results roughly saying that to deduce Property (T)
it is enough to consider certain actions of the quantum group. Since, as is the case for
groups, every action of a locally compact quantum group is unitarily implemented on
a suitable Hilbert space, the conditions obtained this way are indeed formally weaker
than Property (T).

Motivated by Li and Ng [LiN], Sect. 8 deals with spectral gaps for representations
and actions of locally compact quantum groups. After proving a few general results,
we show that one can characterise Property (T) by only considering actions of the
(discrete) quantum group on B(K) with K being a Hilbert space (Theorem 8.6). The
purpose of Sect. 9 is to present a non-commutative analogue of the influential theorem
of Connes and Weiss [CoW], [BHV, Theorem 6.3.4], originally stated only for discrete
groups. The latter asserts that a second countable locally compact group G has Property
(T) if and only if every ergodic (or even weakly mixing) measure-preserving action
of G on a probability space is strongly ergodic; note that strong ergodicity is weaker
than the absence of almost-invariant vectors. Probabilistic tools play a central role in
the proof of the Connes–Weiss theorem. Naturally, in the more general, highly non-
commutative framework of locally compact quantum groups, actions on probability
spaces will not do. Instead, our result (Theorem 9.3) talks about actions on a particular
case of Shlyakhtenko’s free Araki–Woods factors, namely VN(F∞), that preserve the
trace. Thus, probability theory is essentially replaced by free probability theory. What
makes it possible is a result of Vaes [Va3] that facilitates the construction of such actions.

TheAppendix treats our notion of amorphism between two locally compact quantum
groups having dense range. It presents several equivalent conditions, one of which is
required in Sect. 5.

2. Preliminaries

We begin by establishing some conventions and notation to be used throughout the
paper. Inner products will be linear on the right side. For a Hilbert space H the symbols
B(H),K(H) will denote the algebras of bounded operators and compact operators on
H, respectively, and if ξ, η ∈ H, then ωξ,η ∈ B(H)∗ will be the usual vector functional,
T �→ 〈ξ, Tη〉. We will also write simply ωξ for ωξ,ξ .
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The symbols ⊗,⊗ will denote the spatial/minimal tensor product of C∗-algebras
and the normal spatial tensor product of von Neumann algebras, respectively. If A is a
C∗-algebra then M(A) denotes its multiplier algebra. For ω ∈ A∗, we denote by ω ∈ A∗
its adjoint given by ω(x) := ω(x∗), x ∈ A.

A morphism between C∗-algebras A and B is a non-degenerate ∗-homomorphism
from A to M(B), and the set of all such maps is denoted by Mor(A,B). Representations
of C∗-algebras in this paper are always non-degenerate ∗-representations.Wewill tacitly
identify elements of A∗ and Mor(A,B) with their unique extensions to M(A) that are
strictly continuous on the closed unit ball [Lan, Proposition 2.5 and Corollary 5.7]. This
allows composition of morphisms in the usual manner. We will freely use the basic facts
of the theory of multiplier algebras and Hilbert modules—again, see [Lan] for details.
We will also occasionally use the ‘leg’ notation for operators acting on tensor products
of Hilbert spaces or C∗-algebras.

For a normal, semi-finite, faithful (n.s.f.) weight θ on a von Neumann algebra N ,
we denote by

(

L2(N , θ),ηθ
)

the associated GNS construction and by Nθ the left ideal
{x ∈ N : θ(x∗x) <∞}. We write ∇θ , Jθ and Tθ for the modular operator and modular
conjugation of θ and for the closure of the anti-linear map ηθ (x) �→ ηθ (x∗), x ∈
Nθ ∩ N ∗

θ , respectively, all acting on L2(N , θ) [Str,Tak]. In particular, Tθ = Jθ∇1/2
θ .

For a locally compact quantum group G, we write ∇, J, T,η for the objects associated
with the left Haar weight of G (see the following subsection).

2.1. Quantum groups. The fundamental objects studied in this paper will be locally
compact quantum groups in the sense of Kustermans and Vaes. We refer the reader
to [KV1,KV2,VD2] and to the lecture notes [Ku2] for an introduction to the general
theory—wewill in general use the conventions of these papers and also those of [DFSW].

A locally compact quantum group is a pair G = (L∞(G),Δ), with L∞(G) being
a von Neumann algebra and Δ : L∞(G) → L∞(G) ⊗ L∞(G) a unital normal ∗-
homomorphism called the comultiplication (or coproduct) that is coassociative:

(Δ⊗ id)Δ = (id ⊗Δ)Δ,
such that there exist n.s.f. weights ϕ,ψ on L∞(G), called the left and rightHaarweights,
respectively, that satisfy

ϕ((ω ⊗ id)Δ(x)) = ϕ(x)ω(1) for all ω ∈ L∞(G)+∗, x ∈ L∞(G)+ with ϕ(x) <∞,
ψ((id ⊗ ω)Δ(x)) = ψ(x)ω(1) for all ω ∈ L∞(G)+∗, x ∈ L∞(G)+ with ψ(x) <∞.

For a locally compact quantum group G, the predual of L∞(G) will be denoted
by L1(G) and the corresponding algebra of ‘continuous functions on G vanishing at
infinity’, which is a weakly dense C∗-subalgebra of L∞(G), will be denoted by C0(G).
The comultiplication reduces to a map Δ ∈ Mor

(

C0(G),C0(G) ⊗ C0(G)
)

. The dual
locally compact quantum group of G will be denoted by ̂G. The GNS constructions
with respect to the left Haar weights of G,̂G give the same Hilbert space. Therefore, we
usually assume that both L∞(G) and L∞(̂G) act standardly on the Hilbert space L2(G).
The comultiplication is implemented by the multiplicative unitary W ∈ M(C0(G) ⊗
C0(̂G)):Δ(x) = W ∗(1⊗x)W for all x ∈ L∞(G). Themultiplicative unitary of̂G, to be
denoted ̂W , is equal to σ(W )∗, where σ : M(C0(G)⊗C0(̂G))→ M(C0(̂G)⊗C0(G)) is
the flipmap. The ‘universal’ version ofC0(G) (see [Ku1])will be denoted byCu

0(G), with
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the (coassociative) comultiplicationΔu ∈ Mor
(

Cu
0(G),C

u
0(G)⊗Cu

0(G)
)

, the canonical
reducing morphism Λ : Cu

0(G)→ C0(G) and the counit ε : Cu
0(G)→ C.

The antipode S is an ultraweakly closed, densely defined, generally unbounded linear
operator on L∞(G). It maps a dense subspace of C0(G) into C0(G) and admits a ‘polar
decomposition’ S = R ◦ τ−i/2, where R is an anti-automorphism of L∞(G) called the
unitary antipode and (τt )t∈R is a group of automorphisms of L∞(G) called the scaling
group. In general the respective maps related to the dual quantum group will be adorned
with hats, and the ‘universal versions’ of objects we introduce will be adorned with the
index u, so that for example the right invariant weight on ̂G will be denoted by ̂ψ and
the unitary antipode of Cu

0(
̂G) by ̂Ru ; if necessary we will also decorate the symbols

with the index of the quantum group to which they are associated.
Both R and τt leave C0(G) invariant and are implemented on L2(G) as follows (recall

the convention introduced above: ̂∇ is the modular operator of (L∞(̂G), ϕ̂)):

R(x) = ̂J x∗̂J , τt (x) = ̂∇ i t x̂∇−i t ∀x∈L∞(G) ∀t∈R. (2.1)

Using the inclusion C0(G) ⊆ L∞(G) and the epimorphism Λ : Cu
0(G) → C0(G),

one obtains the natural embeddings L1(G) ↪→ C0(G)
∗ ↪→ Cu

0(G)
∗.

The comultiplication induces the convolution product on Cu
0(G)

∗ by the formula
ω1 ∗ ω2 := (ω1 ⊗ ω2) ◦Δu for ω1, ω2 ∈ Cu

0(G)
∗, turning Cu

0(G)
∗, C0(G)

∗ and L1(G)

into completely contractive Banach algebras. The embeddings from the last paragraph
respect the convolution product and make the smaller spaces closed ideals in the larger
ones. The subspace

L1
�(G) :=

{

ω ∈ L1(G) : ∃ρ∈L1(G) ∀x∈D(S) ρ(x) = ω(S(x))
}

is a dense subalgebra of L1(G). Forω ∈ L1
�(G), letω

� be the unique element ρ ∈ L1(G)

such that ρ(x) = ω(S(x)) for each x ∈ D(S). Then ω �→ ω� is an involution on L1
�(G).

Sometimes we will assume that the locally compact quantum groups we study are
second countable, by which we mean that C0(G) is separable.

If the left and right Haar weights of G coincide, we say that G is unimodular. In the
case when G is compact (so that C0(G) is unital, and we denote it simply by C(G))
recall thatG is of Kac type if its antipode S is bounded, or equivalently,̂G is unimodular.

The multiplicative unitary W admits ‘semi-universal’ versions (see [Ku1]), namely
unitariesW ∈ M(Cu

0(G)⊗C0(̂G)) and W∈ M(C0(G)⊗Cu
0(
̂G)), characterised by the

following properties. For every C∗-algebra B, there is a bijection between

– unitary elements U ∈ M(B⊗ C0(̂G)) with (id ⊗ ̂Δ)(U ) = U13U12 and
– non-degenerate ∗-homomorphisms φ = φU : Cu

0(G)→ M(B),

given by the relation (φ ⊗ id)(W) = U .
Similarly, for every C∗-algebra B, there is a bijection between

– unitary elements U ∈ M(C0(G)⊗ B) with (Δ⊗ id)(U ) = U13U23 and
– non-degenerate ∗-homomorphisms φ = φU : Cu

0(
̂G)→ M(B),

given by the relation (id ⊗ φ)( W) = U .
There is also a truly universal bicharacter V V∈ M(Cu

0(G)⊗ Cu
0(
̂G)). It satisfies the

equalities W = (id ⊗Λ
̂G
)(V V) and W= (ΛG ⊗ id)(V V).

We shall use repeatedly that W implements ‘one-half’ of the coproduct at the uni-
versal level, see [Ku1, Proposition 6.2], in that

(id ⊗ΛG)Δu(x) = W∗(1⊗ΛG(x))W (x ∈ Cu
0(G)). (2.2)
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An element a ∈ M(C0(G)) is said to be a positive-definite function/element if there
exists μ ∈ Cu

0(
̂G)∗+ such that a = (id ⊗ μ)( W∗). We say that a is normalised if

μ is a state. For more information on positive-definite functions, including equivalent
definitions, see [Daw,DaS].

2.2. Representations of quantum groups. In this subsection we recall basic facts con-
cerning unitary representations of quantum groups.

Definition 2.1. A unitary representation of G (or a unitary corepresentation of C0(G))
on a Hilbert spaceH is a unitaryU ∈ M(C0(G)⊗K(H))with (Δ⊗ id)U = U13U23. We
will often write HU for the Hilbert space upon which U acts. The trivial representation
of G, i.e. U = 1⊗ 1 ∈ M(C0(G)⊗ C), will be denoted simply by 1.

In the above definition, it suffices to require that U ∈ L∞(G) ⊗ B(H), as this
automatically implies that U ∈ M(C0(G) ⊗ K(H)). This is folklore, see for example
[BDS, Theorem 4.12].

As in this paper we will only consider unitary representations, we will most of the
time simply talk about ‘representations of G’.

Definition 2.2. The contragradient representation of a representationU ∈ M(C0(G)⊗
K(H)) is defined to be Uc = (R ⊗�)U ∈ M(C0(G)⊗ K(H)). Here H is the complex
conjugate Hilbert space and � : K(H) → K(H) is the ‘transpose’ map, defined by
�(x)(ξ) = x∗(ξ).

Evidently, if J is an anti-unitary from H onto another Hilbert space JH and we
consider the ∗-anti-isomorphism j : K(H) → K(JH) given by j (x) := J x∗J ∗,
x ∈ K(H), then the representation (R ⊗ j)(U ) is unitarily equivalent to Uc.

Recall that an anti-unitary on a Hilbert space is involutive if its square is equal to 1.

Definition 2.3. Say thatU satisfies conditionR if there exists an involutive anti-unitary
J on H such that, with j : K(H)→ K(H) as above, we have (R ⊗ j)(U ) = U .

By the foregoing, if U satisfies condition R then Uc is unitarily equivalent to U .
Every representation U ∈ M(C0(G) ⊗ K(H)) satisfies the formal condition (S ⊗

id)(U ) = U∗, which means that for all ω ∈ B(H)∗,
(id ⊗ ω)(U ) ∈ D(S) and S((id ⊗ ω)(U )) = (id ⊗ ω)(U∗). (2.3)

Due to the polar decomposition of the antipode and (2.1), this is equivalent to (see the
paragraph before Subsection2.1 for the notation)

(id ⊗ ω)(U )̂T ⊆ ̂T (id ⊗ ω)(U ), ∀ω∈B(H)∗ . (2.4)

The map L1(G)→ B(H) given by ω �→ (ω⊗ id)(U ) is an algebra homomorphism, and
its restriction to L1

�(G) is a ∗-homomorphism. Thus, the norm closure of {(ω⊗ id)(U ) :
ω ∈ L1(G)} is a C∗-algebra.

We define the tensor product of two representations in two ways: namely as the
representations

U �������	� V = U12V13 and U �������	⊥ V := V13U12,

both acting onHU⊗HV . (Note that the notation ‘ �������	⊥ ’ is not consistent with [Wor1].) There
is also a natural notion of the direct sum of two representations U and V , which is the
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obvious representation acting on HU ⊕ HV . A representation of G is called irreducible
if it is not (unitarily equivalent to) a direct sum of two non-zero representations.

We will often use the fact (a consequence of the correspondence described in the
previous subsection) that there is a natural bijection between representations of G and
representations of the C∗-algebra Cu

0(
̂G), implemented by the semi-universal multiplica-

tive unitary. It interacts naturally with the passing to the contragredient and the tensor
product operations, as the two following lemmas show.

Lemma 2.4. Let G be a locally compact quantum group. Let μ ∈ Cu
0(
̂G)∗ be a state, let

π : Cu
0(
̂G)→ B(K) be the GNS representation of μ and let U be the representation of

G on K associated with π . If μ is ̂Ru-invariant then U satisfies condition R.

Proof. Consider the GNS construction (K, π,η) of (Cu
0(
̂G), μ). The map η(x) �→

η(̂Ru(x∗)), x ∈ Cu
0(
̂G), extends to an involutive anti-unitary J on K by invariance of μ

and because ̂Ru is an anti-automorphism of Cu
0(
̂G) satisfying (̂Ru)2 = id. Now, defining

an anti-automorphism of B(K) by j (x) := J x∗J , x ∈ B(K), we have j ◦ π = π ◦ ̂Ru .
As a result,

(R ⊗ j)(U ) = (id ⊗ π)(R ⊗ ̂Ru)( W) = (id ⊗ π)( W) = U.

��
Lemma 2.5. Let U, V be representations of a locally compact quantum group G on
Hilbert spaces HU ,HV , and let φU : Cu

0(
̂G)→ B(HU ), φV : Cu

0(
̂G)→ B(HV ) be the

corresponding representations of Cu(̂G). Then φU 
��
�����V = φU � φV , where φU � φV =
(φU ⊗ φV ) ◦ σ ◦ ̂Δu, and σ : M(Cu

0(
̂G)⊗Cu

0(
̂G))→ M(Cu

0(
̂G)⊗Cu

0(
̂G)) is the tensor

flip.

Proof. Since (id⊗ ̂Δu)( W) = W13 W12, the non-degenerate ∗-homomorphismφU �φV :
Cu
0(
̂G)→ B(HU ⊗ HV ) satisfies

(id ⊗ (φU � φV ))( W)

= (id ⊗ (φU ⊗ φV )σ )( W13 W12) = (id ⊗ (φU ⊗ φV ))( W12 W13)

= (id ⊗ φU )( W)12(id ⊗ φV )( W)13 = U12V13 = U �������	� V .

By the universal property of W, we have φU 
��
�����V = φU � φV . ��
We will also sometimes use another ‘picture’ of representations, as follows. For

i = 1, 2, let Ai be a C∗-algebra and Xi a Hilbert Ai -module. The exterior tensor product
X1 ⊗ X2 [Lan, Chapter 4] is the Hilbert A1 ⊗ A2-module obtained from the algebraic
tensor product X1 � X2 using the A1 � A2-valued inner product

〈x1 ⊗ x2, x
′
1 ⊗ x ′2〉 := 〈x1, x ′1〉 ⊗ 〈x2, x ′2〉

after completion. Now, we deduce from [Lan, Theorem 2.4 and p. 37] that

L(X1 ⊗ X2) ∼= M(K(X1 ⊗ X2)) ∼= M(K(X1)⊗K(X2)) (2.5)

canonically as C∗-algebras. In the particular case when X1 is a C∗-algebra A and X2 is
a Hilbert space H, the Hilbert A-module A ⊗ H satisfies L(A ⊗ H) ∼= M(A ⊗ K(H))
by (2.5) since K(A) ∼= A. This ∗-isomorphism takes U ∈ M(A ⊗ K(H)) to the unique
element U ∈ L(A⊗ H) characterised by

〈b ⊗ η,U(a ⊗ ζ )〉 = b∗(id ⊗ ωη,ζ )(U )a ∀a,b∈A ∀ζ,η∈H.
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When G is a locally compact quantum group andU ∈ M(C0(G)⊗K(H)) is a represen-
tation of G on H, we henceforth use the correspondences U ↔ U ∈ L(C0(G)⊗ H)↔
φU ∈ Mor(Cu

0(
̂G),K(H)) without further comment.

2.3. Compact/discrete quantum groups. Recall that a locally compact quantum group
is called compact if the algebra C0(G) is unital (we then denote it simply by C(G)),
or, equivalently, the Haar weight is in fact a bi-invariant state. It is said to be discrete if
C0(G) is a direct sum of matrix algebras (and is then denoted c0(G), and likewise we
write �∞(G), �1(G), �2(G)), or, equivalently, ̂G is compact. See [Wor2,EfR,VD1] for
the original definitions and [Run] for the equivalent characterisations.

For a compact quantum group G the symbol Irr(G) will denote the family of all
equivalence classes of (necessarily finite-dimensional) irreducible unitary representa-
tions of G. The trivial representation will be denoted simply by 1. We will always as-
sume that for each α ∈ Irr(G) a particular representative has been chosen and moreover
identified with a unitary matrix Uα = (uαi j )nαi, j=1 ∈ Mnα (C

u(G)). So for all α ∈ Irr(G)
and 1 ≤ i, j ≤ nα ,

Δu(u
α
i j ) =

nα
∑

k=1

uαik ⊗ uαk j . (2.6)

The span of all coefficients uαi j is a dense (Hopf) ∗-subalgebra of Cu(G), denoted Pol(G).
The algebra of (vanishing at infinity) functions on the dual discrete quantum group is
given by the equality c0(̂G) = ⊕

α∈Irr(G) Mnα . Thus the elements affiliated to c0(̂G)
can be identified with functionals on Pol(G). Note that as the Haar state of G is faithful
on Pol(G) we can also view the latter algebra as a subalgebra of C(G). The universal
multiplicative unitary of G is then given by the formula

W =
∑

α∈Irr(G)
uαi j ⊗ eαi j ∈

∏

α∈Irr(G)
Cu(G)⊗ Mnα = M(Cu(G)⊗ c0(̂G)). (2.7)

The following definition will play an important role later on: a compact quantum
group G is low if the set {nα : α ∈ Irr(G)} is bounded in N. The dual of every discrete
group satisfies this trivially. Finally note that a compact quantum group G is second
countable if and only if Irr(G) is countable.

Remark 2.6. A classical locally compact group is low if and only if it has an abelian
subgroup of finite index, as shown by Moore ([Moo]). We do not know if an analogous
result holds for quantum groups: one would of course need to replace the ‘abelian group’
in the statement above by a ‘cocommutative quantum group’. In Sects. 7–9 of our paper a
key role will be played by ‘second countable discrete unimodular quantum groups with
low duals’. Non-trivial examples of such objects can be produced via the bi-crossed
product construction of [FMP]. Indeed, if we start with a matched pair of a finite group
G and a countable discrete group �, Theorem 3.4 of [FMP] produces a quantum group
G in the class above (and Theorem 4.3 of the same paper shows that G has Property
(T)—to be discussed in Sect. 5—if and only if � has Property (T)). Another construction
of the quantum groups in the class above is as follows: take any discrete (quantum) group
G in the class (so for example the dual of a second countable compact group which has
an abelian subgroup of finite index) and an action of a countable discrete group � on
the dual of G by automorphisms. Then the crossed product construction of Wang gives
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another quantum group in the same class (see Theorem 6.1 of [FMP]). We refer for the
details to [FMP].

By a state on Pol(G) we mean a linear functional μ : Pol(G)→ C which is positive
in the sense that μ(a∗a) ≥ 0 for all a ∈ Pol(G). The algebra Cu(G) is the enveloping
C∗-algebra of Pol(G) and there is a bijection between states of Cu(G) and states of
Pol(G) by [BMT, Theorem 3.3]. Note that any functional μ on Pol(G) can be identified
with a sequence of matrices (μα)α∈Irr(G), with μα ∈ Mnα defined by (μ

α)i, j = μ(uαi j ),
i, j = 1, . . . , nα .

A generating functional on a compact quantumgroupG is a functional L : Pol(G)→
Cwhich is selfadjoint (L(a∗) = L(a) for all a ∈ Pol(G)), vanishes at1 and is condition-
ally negative definite, i.e. negative on the kernel of the counit (formally: ifa ∈ Pol(G) and
ε(a) = 0, then L(a∗a) ≤ 0). Note a sign difference with, for example, [DFKS]—here
we choose to work with conditionally negative definite functions, as in [Kye,DFSW]. A
(weakly continuous) convolution semigroup of states on Cu(G) is a family (μt )t≥0 of
states of Cu(G) such that

(i) μs+t = μs ∗ μt for all s, t ≥ 0;
(ii) μ0 = ε;
(iii) μt

t→0+−−−→ ε in the weak∗ topology of Cu(G)∗.
We will need at some point the next lemma (following from [LS1]—see also [Sch]).

Lemma 2.7. Let G be a compact quantum group. There is a one-to-one correspondence
between

(a) convolution semigroups of states (μt )t≥0 of Cu(G);
(b) generating functionals L on G.

It is given by the following formulas: for each a ∈ Pol(G) ⊆ Cu(G) we have

L(a) = lim
t→0+

ε(a)− μt (a)

t
,

μt (a) = exp∗(−t L)(a) :=
∞
∑

n=0

(−t)n

n! L∗n(a).

Wesay that a generating functional L : Pol(G)→ C is strongly unbounded if for each
M > 0 there exists α ∈ Irr(G) such that Lα is a positive matrix of norm larger than M .
Note that if L is strongly unbounded then it is also unboundedwith respect to the universal
norm on Cu(G) (if L were bounded we could identify L = (Lα)α∈Irr(G) ∈ M(c0(̂G))
with l = (L ⊗ id)(W); but then l would have to be bounded).

2.4. Morphisms of quantum groups. Let G,H be locally compact quantum groups.
As shown in [MRW] (see also [Ku1]), there is a natural correspondence between the
following classes of objects, each of which should be thought of as representing a
quantum group morphism from H to G:

(a) morphisms
π ∈ Mor

(

Cu
0(G),C

u
0(H)

)

such that
(π ⊗ π) ◦Δu

G
= Δu

H
◦ π;
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(b) bicharacters (from H to G), i.e. unitaries

V ∈ M
(

C0(H)⊗ C0(̂G)
)

such that

(idC0(H) ⊗Δ̂G)(V ) = V13V12,

(ΔH ⊗ idC0(̂G)
)(V ) = V13V23.

The correspondence is given by

V = (ΛHπ ⊗ id)(WG). (2.8)

The apparent difference with [MRW] stems from the fact that we are using the conven-
tions of [Ku1] and [DFSW] rather than these of [MRW] or [DKSS].

To each morphism from H to G as above corresponds a dual morphism from ̂G

to ̂H, described (for example) by the morphism π̂ ∈ Mor(Cu
0(
̂H),Cu

0(
̂G)) determined

uniquely by the equality

(π ⊗ id)(V VG) = (id ⊗ π̂)(V VH). (2.9)

Definition 2.8. LetG andH be locally compact quantum groups. Amorphism fromH to
G is said to have dense image if the map L1(̂G)→ M(Cu

0(H)) induced by the restriction
of the associated morphism π ∈ Mor(Cu

0(G),C
u
0(H)), namely ω �→ π((id ⊗ ω)WG),

is injective.

For a detailed discussion of this notion and several equivalent formulations we refer
to the Appendix.

3. Invariant and Almost Invariant Vectors for Representations

In this section we recall and expand some facts concerning the notions of invariant and
almost invariant vectors (as defined for example in [DFSW]) and connect these to the
classical Hilbert space convexity arguments. In particular, we extend a classical result of
Godement about an invariant mean on the Fourier–Stieltjes algebra of a locally compact
group.

LetU ∈ M(C0(G)⊗K(H)) be a representation of a locally compact quantum group
G on a Hilbert space H.

Lemma 3.1 ([DFSW, Proposition 3.4]). For ζ ∈ H, the following conditions are equiv-
alent:

(a) U (η⊗ζ ) = η⊗ζ for every η ∈ L2(G), when consideringU as acting on L2(G)⊗H;
(b) (ω ⊗ id)(U )ζ = ω(1)ζ for every ω ∈ L1(G);
(c) φU (·)ζ = ε̂(·)ζ .
Remark 3.2. Conditions (a) and (b) are clearly equivalent for everyU ∈ B(L2(G)⊗H).
When U is unitary, they are thus equivalent to the same conditions with U∗ in place
of U .

Definition 3.3. A vector that satisfies the equivalent conditions of the previous lemma
is said to be invariant under U . Denote by Inv(U ) the closed subspace of all vectors in
H that are invariant under U , and by pU the projection of H onto Inv(U ). If U has no
non-zero invariant vectors, it is called ergodic.
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Note that the restriction U (1⊗ (1− pU )) of U to Inv(U )⊥ is a representation of G on
Inv(U )⊥.

Lemma 3.4. For a net (ζi )i∈I of unit vectors in H, the following conditions are equiv-
alent:

(I.a) for every η ∈ L2(G), ‖U (η ⊗ ζi )− η ⊗ ζi‖ i∈I−→ 0;
(I.b) the net (id ⊗ ωζi )(U ) converges in the weak∗ topology of L∞(G) to 1;
(I.c) for every a ∈ C0(G), ‖U(a ⊗ ζi )− a ⊗ ζi‖ i∈I−→ 0;

(I.d) for every a ∈ Cu
0(
̂G), ‖φU (a)ζi − ε̂(a)ζi‖ i∈I−→ 0.

Furthermore, the following conditions are equivalent:

(II.a) there exists a net satisfying the above equivalent conditions;
(II.b) the trivial representation of G is weakly contained in U, that is, there exists a state

Ψ on Im φU such that Ψ ◦ φU = ε̂;
(II.c) there exists a state Ψ on B(H) such that (id ⊗ Ψ )(U ) = 1, or equivalently,

(Ψ |Im φU ) ◦ φU = ε̂.
A state Ψ as in (II.b) or (II.c) satisfies xpU = Ψ (x)pU for all x ∈ Im φU .

Proof. Apart from the last sentence, everything is taken from[DFSW,Proposition3.7 and
Corollary 3.8].

As for all a ∈ Cu
0(
̂G) and ζ ∈ Inv(U ), we have φU (a)ζ = ε̂(a)ζ , if Ψ is as in (II.b)

or (II.c), so that Ψ ◦ φU = ε̂, we get xpU = Ψ (x)pU for all x ∈ Im φU . ��
Definition 3.5. A net satisfying the equivalent conditions (I.a)–(I.d) of the previous
lemma is said to be almost invariant under U . If such a net exists (namely, (II.a)–(II.c)
are fulfilled), U is said to admit almost-invariant vectors.

The next corollary will not be required later, but should be mentioned in this context.
For analogous results in the classical context see [LiN], [Pet, Proposition 1.5.5], and for
quantum groups see [BMT, Theorem 2.3].

Corollary 3.6. Let U be a representation of a discrete quantum group G on a Hilbert
space H and φU be the associated representation of Cu(̂G). The following conditions
are equivalent:

(a) U has almost-invariant vectors;
(b) there exists a state Ψ of B(H) such that

Ψ (φU (u
γ

ik)) = δik ∀γ∈Irr(̂G) ∀1≤i,k≤nγ ;
(c) for every finite F ⊆ Irr(̂G), the operator aF := 1

|F |
∑

γ∈F 1
nγ

∑nγ
i=1 φU (u

γ

i i ) satisfies

1 ∈ σ(Re aF ).
Proof. (a) ⇐⇒ (b) is immediate from Lemma 3.4 because the operators of the form
φU (u

γ

ik) are linearly dense in φU (Cu(̂G)).
(a) �⇒ (c): let (ζι)ι∈I be a net of unit vectors that is almost-invariant underU . Then

for every finite F ⊆ Irr(̂G), we have aFζι − ζι ι∈I−→ 0 and (Re aF )ζι − ζι ι∈I−→ 0. Hence
1 ∈ σ(Re aF ).

(c) �⇒ (a): suppose that a finite F ⊆ Irr(̂G) satisfies 1 ∈ σ(Re aF ). Then there

is a sequence (ζn)n∈N of unit vectors in H such that (Re aF )ζn − ζn n→∞−→ 0. Since
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each φU (u
γ

i i ) is contractive, by uniform convexity we get φU (u
γ

i i )ζn − ζn n→∞−→ 0 for

every γ ∈ F, 1 ≤ i ≤ nγ . Since φ
(nγ )
U (uγ ) is unitary, thus contractive, we infer that

φU (u
γ

ik)ζn − δikζn n→∞−→ 0 for γ ∈ F, 1 ≤ i, k ≤ nγ . As F was arbitrary, U has
almost-invariant vectors. ��
Definition 3.7. Let G be a locally compact quantum group.

– A finite-dimensional representation u ∈ M(C0(G) ⊗ Mn) of G is admissible [Sol,
Definition 2.2] if, when viewed as a matrix

(

ui j
)

1≤i, j≤n of elements in M(C0(G)),

its transpose
(

u ji
)

1≤i, j≤n is invertible.
– A unitary representationU of G is weakly mixing [Vis, Definition 2.9] if it admits no
non-zero admissible finite-dimensional sub-representation.

Let G be a locally compact quantum group with trivial scaling group. The char-
acterisations of weak mixing in [Vis, Theorem 2.11] become much simpler under this
assumption, as follows. For starters, every finite-dimensional (unitary) representation of
G is admissible. In [Vis], a ‘(unitary) representation of G on H’ (called there a ‘corep-
resentation’) is a unitary X ∈ B(H)⊗ L∞(G) such that (id ⊗Δ)(X) = X12X13. Such
X is weakly mixing (namely, it has no non-zero finite-dimensional sub-representation)
if and only if (� ⊗ R)(X)13X23 is ergodic, if and only if Y13X23 is ergodic for all
representations Y of G as above. Let U ∈ L∞(G) ⊗ B(H) be unitary. Then U is a
representation of G in our sense if and only if X := σ(U∗) is a representation of the
opposite locally compact quantum group G

op [KV2, Section 4] in the above sense. In
this case, since Rop = R, we have (� ⊗ Rop)(σ (U∗)) = σ(Uc∗). Also, for any other
representation V ∈ L∞(G)⊗ B(K) of G on a Hilbert space K, setting Y := σ(V ∗) we
get σ12,3(Y13X23)

∗ = U13V12 = V �������	⊥ U . Notice also that a representation is ergodic,
respectively weakly mixing, if and only if its contragradient has this property. Putting all
this together, weak mixing of U is equivalent to ergodicity of any of Uc �������	� U , U �������	� Uc,
Uc �������	⊥ U andU �������	⊥ Uc, and also to ergodicity—and thus, a posteriori, to weakmixing—of
any of V �������	� U ,U �������	� V , V �������	⊥ U andU �������	⊥ V for every unitary representation V of G (for
instance, V �������	�U is weaklymixing because (V �������	�U )c �������	� (V �������	�U ) = ((V �������	�U )c �������	� V ) �������	�U
is ergodic). Similar results can be also found in [ChN].

The notions of (almost-) invariant vectors discussed above are framed in terms of the
algebra C0(G) and not Cu

0(G). Recall from [Ku1, Proposition 6.6] that there is a bijection
between representationsU ∈ M(C0(G)⊗K(H)) and unitariesUu ∈ M(Cu

0(G)⊗K(H))
satisfying the ‘representation equation’ (Δu ⊗ id)Uu = Uu

13U
u
23. The bijection is given

by the relation (ΛG ⊗ id)(Uu) = U ; thus we have Uu = (id ⊗ φU )(V V).

Definition 3.8. Let V ∈ M(Cu
0(G)⊗K(H)) be a representation in the sense discussed

above. Then ξ ∈ H is invariant for V if (μ⊗ id)(V )ξ = μ(1)ξ for all μ ∈ Cu
0(G)

∗. A
net of unit vectors (ξi )i∈I in H is almost invariant for V if ‖(μ⊗ id)(V )ξi − ξi‖ i∈I−→ 0
for each state μ ∈ Cu

0(G)
∗.

Proposition 3.9. With notation as above, Inv(U ) = Inv(Uu) and a net (ξi )i∈I of unit
vectors in H is almost invariant for U if and only if it is almost invariant for Uu.

Proof. Applying the reducing morphism shows that Inv(Uu) ⊆ Inv(U ). Conversely, let
ξ be invariant for U . By (2.2)

Uu
13U23 = ((id ⊗ΛG)Δu ⊗ id)(Uu) = W∗

12U23W12.
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Fix a state ω ∈ L1(G) , and let μ ∈ Cu
0(G)

∗. Then

(μ⊗ ω ⊗ id)(Uu
13U23)ξ = (μ⊗ id)(Uu)(ω ⊗ id)(U )ξ = (μ⊗ id)(Uu)ξ,

as ξ is invariant. Let π : Cu
0(G)→ B(K) be a representation such that there are α, β ∈ K

with μ = ωα,β ◦ π . Let ω = ωγ for some γ ∈ L2(G). Then, with X = (π ⊗ id)(W)
and ζ ∈ H,

〈ζ, (μ⊗ id)(Uu)ξ 〉 = 〈ζ, (μ⊗ ω ⊗ id)(W∗
12U23W12)ξ 〉

= 〈α ⊗ γ ⊗ ζ, X∗
12U23X12(β ⊗ γ ⊗ ξ)〉

= 〈α ⊗ γ ⊗ ζ, X∗
12X12(β ⊗ γ ⊗ ξ)〉 = 〈ζ, μ(1)ξ 〉,

using that ξ is invariant, so U (η⊗ ξ) = η⊗ ξ for all η ∈ L2(G), and that X is unitary.
Thus ξ is invariant for Uu as claimed.

If (ξi )i∈I is a net of almost invariant vectors forUu , then letω ∈ L1(G) be a state and

set μ = ω ◦ΛG. It follows that ‖(ω⊗ id)(U )ξi − ξi‖ = ‖(μ⊗ id)(Uu)ξi − ξi‖ i∈I−→ 0.

By linearity ‖(ω ⊗ id)(U )ξi − ω(1)ξi‖ i∈I−→ 0 for all ω ∈ L1(G) and so it follows that

(id ⊗ ωξi )(U ) i∈I−→ 1 in the weak∗ topology of L∞(G), thus verifying condition (I.b)
of Lemma 3.4. So (ξi )i∈I is almost invariant for U .

Conversely, we use the same argument as above, but with more care. Let μ = ωβ ◦π
be a state of Cu

0(G), and ω = ωγ a state in L1(G), with π : Cu
0(G) → B(K) a

representation, β ∈ K and γ ∈ L2(G). If (ξi )i∈I is almost invariant for U ,

lim
i∈I

‖(μ⊗ ω ⊗ id)(Uu
13U23)ξi − ξi‖ = lim

i∈I
‖(μ⊗ id)(Uu)(ω ⊗ id)(U )ξi − ξi‖

= lim
i∈I

‖(μ⊗ id)(Uu)ξi − ξi‖.

Let (e j ) j∈J be an orthonormal basis for K, let X be as above and let X (β ⊗ γ ) =
∑

j∈J e j ⊗ γ j , so∑ j∈J ‖γ j‖2 = 1. Then, for η ∈ H,

∣

∣〈η, (μ⊗ ω ⊗ id)(W∗
12U23W12)ξi 〉 − 〈η, ξi 〉

∣

∣

= ∣

∣〈β ⊗ γ ⊗ η, X∗
12U23X12(β ⊗ γ ⊗ ξi )〉 − 〈η, ξi 〉

∣

∣

=
∣

∣

∣

∑

j∈J
〈γ j ⊗ η,U (γ j ⊗ ξi )〉 − 〈η, ξi 〉

∣

∣

∣.
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For ε > 0 there is a finite set F ⊆ J with
∑

j  ∈F ‖γ j‖2 < ε, and then there is i0 ∈ I so
that if i ≥ i0 and j ∈ F then ‖U (γ j ⊗ ξi )− γ j ⊗ ξi‖ < ε/√|F |. Thus for such i ,

∣

∣

∣

∑

j∈J
〈γ j ⊗ η,U (γ j ⊗ ξi )〉 − 〈η, ξi 〉

∣

∣

∣

≤
∣

∣

∣

∑

j∈F
〈γ j ⊗ η,U (γ j ⊗ ξi )〉 −

∑

j∈F
〈γ j ⊗ η, γ j ⊗ ξi 〉

∣

∣

∣

+
∣

∣

∣

∑

j∈F
〈γ j ⊗ η, γ j ⊗ ξi 〉 − 〈η, ξi 〉

∣

∣

∣

+
∣

∣

∣

∑

j  ∈F
〈γ j ⊗ η,U (γ j ⊗ ξi )〉

∣

∣

∣

≤
∑

j∈F
ε|F |−1/2‖γ j ⊗ η‖ + |〈η, ξi 〉|

∣

∣

∣1−
∑

j∈F
‖γ j‖2

∣

∣

∣

+
∑

j  ∈F
‖γ j‖2‖η‖

≤ ‖η‖
(

ε + ε + ε
)

≤ 3ε‖η‖.

So limi∈I ‖(μ⊗ω⊗id)(W∗
12U23W12)ξi−ξi‖ = 0 and hence limi∈I ‖(μ⊗id)(Uu)ξi−

ξi‖ = 0, as required. ��
Wewill later need to see invariant vectors of a given representationU as arising from

a version of an averaging procedure. Similar arguments can be found in [DaD, Section
4].

Definition 3.10. Let U be representation of a locally compact quantum group G on a
Hilbert spaceH. A subsetS ⊆ B(H) is an averaging semigroup forU ifS is a semigroup
of contractions such that

(a) each T ∈ S leaves Inv(U ) pointwise invariant;
(b) each T ∈ S leaves Inv(U )⊥ invariant;
(c) if ξ ∈ H is such that T (ξ) = ξ for all T ∈ S, then ξ ∈ Inv(U ).

Given such a semigroup, the S-average of ξ ∈ H is the unique vector of minimal norm
in the closed convex hull of {T (ξ) : T ∈ S}.

We will now give two examples of averaging semigroups.

Lemma 3.11. For any representation U of G the family S = {(ω ⊗ id)(U ) : ω ∈
L1(G) is a state} is an averaging semigroup for U.

Proof. The fact thatU is a representation shows thatS is a semigroup of contractions.We
now check the conditions: (a) and (c) hold more or less trivially. Now let β ∈ Inv(U )⊥
and ω ∈ L1(G). For α ∈ Inv(U ), we find that

〈α, (ω ⊗ id)(U )β〉 = 〈(ω ⊗ id)(U∗)α, β〉 = 〈ω(1)α, β〉 = 〈α, β〉ω(1) = 0

using that α is invariant, so that (ω⊗ id)(U∗)α = ω(1)α by Remark 3.2. It follows that
(ω ⊗ id)(U )β ∈ Inv(U )⊥, as required to show (b). ��
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Lemma 3.12. For any representation U of G the family S = {(ω ⊗ id)(U∗) : ω ∈
L1(G) is a state} is an averaging semigroup for U.

Proof. As ω �→ (ω ⊗ id)(U∗) is an anti-homomorphism, S is a semigroup of contrac-
tions. Conditions (a) and (c) hold by Remark 3.2, and the argument used in the previous
proof is easily adapted to show (b). ��
Proposition 3.13. Let U be a representation of G on a Hilbert space H, and let S be an
averaging semigroup for U. Then:

(a) U is ergodic if and only if, for all ξ ∈ H, the closed convex hull of {T (ξ) : T ∈ S}
contains 0;

(b) for ξ ∈ H, theS-average of ξ , the unique vector of minimal norm in the closed convex
hull of {T (ξ) : T ∈ S}, is equal to the orthogonal projection of ξ onto Inv(U ).

Proof. For (b), let ξ ∈ H and letC be the closed convex hull of {T (ξ) : T ∈ S}. AsS is a
semigroup, it follows thatT (C) ⊆ C for eachT ∈ S. Ifη denotes theS-averageof ξ , then
as each T ∈ S is a contraction, ‖T (η)‖ ≤ ‖η‖ and so by uniqueness, T (η) = η. By the
assumptions on S, it follows that η ∈ Inv(U ). Now let ξ = ξ0 + ξ1 ∈ Inv(U )⊕ Inv(U )⊥
be the orthogonal decomposition of ξ . For T ∈ S, we have T (ξ0) = ξ0, and so

{T (ξ) : T ∈ S} = {ξ0 + T (ξ1) : T ∈ S}.
If we denote by C0 the closed convex hull of {T (ξ1) : T ∈ S}, then C = ξ0 + C0
and so η = ξ0 + η0 for some η0 ∈ C0. As Inv(U )⊥ is invariant for S, it follows
that C0 ⊆ Inv(U )⊥, and so η0 ∈ Inv(U )⊥. We hence conclude that η − ξ0 = η0 ∈
Inv(U ) ∩ Inv(U )⊥ = {0}, and so η = ξ0 as required. (We remark that actually, by
Pythagoras’s Theorem, η0 is the unique vector of minimal norm in C0. It follows that
0 ∈ C0.)

(a) now follows immediately, as U is ergodic if and only if Inv(U ) = {0}. ��
From the last result we obtain the following quantum analogue of the ergodic theorem

in [RSN, Section 146].

Proposition 3.14. For a representation U of G and an averaging semigroup S for U,
the orthogonal projection onto Inv(U ) belongs to the strong closure of the convex hull
of S.
Proof. The convex hull of S is also an averaging semigroup forU . Thus, we can and do
assume the S is convex. Endow S with a preorder ‘#’ by saying that T1 # T2 if T1 = T2
or there exists T ∈ S such that T2 = T T1.

Let ζ ∈ Inv(U )⊥ and ε > 0. By Proposition 3.13 there exists T0 ∈ S such that
‖T0ζ‖ < ε. Since S consists of contractions, it follows that ‖T ζ‖ < ε for all T0 # T ∈
S.

Fix ζ1, . . . , ζn ∈ Inv(U )⊥ and ε > 0. By the foregoing, there is T1 ∈ S such that
‖T ζ1‖ < ε for all T1 # T ∈ S. Since T1ζ2 ∈ Inv(U )⊥ there is, again by the foregoing,
T ′
2 ∈ S such that ‖T T1ζ2‖ < ε for all T ′

2 # T ∈ S. Setting T2 := T ′
2T1, we have

∥

∥T ζ j
∥

∥ < ε for all j ∈ {1, 2} and T2 # T ∈ S. Proceeding by induction, there is Tn ∈ S
such that

∥

∥T ζ j
∥

∥ < ε for all j ∈ {1, . . . , n} and Tn # T ∈ S, and in particular for
T = Tn . This proves the assertion because S leaves Inv(U ) pointwise invariant. ��

As another consequence of Proposition 3.13, we generalise a classical result of Gode-
ment [G, Section 23] about the existence of an invariant mean on the Fourier–Stieltjes
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algebra of an arbitrary (not necessarily amenable) locally compact group. This should
be compared with Section 4, and in particular Theorem 4.4, of [DaD].

Recall that the module actions of the Banach algebra L1(G) on its dual L∞(G) are
given by

ω · a = (id ⊗ ω)(Δ(a)), a · ω = (ω ⊗ id)(Δ(a)) (a ∈ L∞(G), ω ∈ L1(G)).

Write E for the set of all a ∈ L∞(G) such that each of the sets

{

ω · a : ω ∈ L1(G) is a state
}‖·‖
,
{

a · ω : ω ∈ L1(G) is a state
}‖·‖

intersects C1.
For a ∈ E , the intersections of the above sets with C1 are equal, and are a singleton.

Indeed, if
(

ω1n
)∞
n=1,

(

ω2n
)∞
n=1 are states in L

1(G) andω1n ·a n→∞−−−→ λ11, a ·ω2n n→∞−−−→ λ21
for some λ1, λ2 ∈ C, then

λ11
n→∞←−−− (ω1n · a) · ω2n = ω1n · (a · ω2n) n→∞−−−→ λ21,

so that λ1 = λ2. Let us denote this common scalar by M(a). It follows readily that
E is norm closed and selfadjoint, and that for every a ∈ E and λ,μ ∈ C, we have
λa + μ1 ∈ E , M(λa + μ1) = λM(a) + μ, M(a∗) = M(a), |M(a)| ≤ ‖a‖, and if
ρ ∈ L1(G) is such that ρ · a ∈ E (respectively, a · ρ ∈ E), then M(ρ · a) = ρ(1)M(a)
(respectively, M(a · ρ) = ρ(1)M(a)).

Denote by B(G) the Fourier–Stieltjes algebra of G, namely the subalgebra of M
(C0(G)) consisting of the coefficients of all representations of G:

B(G) := {(id ⊗ ω)(U ) : U is a representation of G on a Hilbert space H and ω ∈ B(H)∗}
= {

(id ⊗ ωζ,η)(U ) : U is a representation of G on a Hilbert space H and ζ, η ∈ H
}

.

Write B(G)∗ for {a∗ : a ∈ B(G)}. We were informed that a result essentially equivalent
to the following proposition had been recently obtained by B. Das.

Proposition 3.15. The subalgebras B(G)
‖·‖

and B(G)∗‖·‖ of M(C0(G)) are contained
in E , and M is linear on each of them. Thus, M restricts to an invariant mean on both

B(G)
‖·‖

and B(G)∗‖·‖.

Proof. Let U be a representation of G on a Hilbert space H. Fix ζ, η ∈ H, and consider
a := (id ⊗ ωη,ζ )(U ). For every ρ ∈ L1(G),

ρ · a = (id ⊗ ρ)(Δ(a)) = (id ⊗ ρ)(id ⊗ id ⊗ ωη,ζ )(U13U23)

= (id ⊗ ωη,(ρ⊗id)(U )ζ )(U )

and

a · ρ = (ρ ⊗ id)(id ⊗ id ⊗ ωη,ζ )(U13U23) = (id ⊗ ω(ρ⊗id)(U∗)η,ζ )(U ).

Denote by p the orthogonal projection onto Inv(U ). By Lemmas3.11, 3.12 and Propo-
sition 3.13, there are sequences

(

ρ1n
)∞
n=1,

(

ρ2n
)∞
n=1 of states in L1(G) such that (ρ1n ⊗

id)(U )ζ
n→∞−−−→ pζ and (ρ2n ⊗ id)(U∗)η n→∞−−−→ pη. Consequently,

ρ1n · a n→∞−−−→ (id ⊗ ωη,pζ )(U ) = 〈η, pζ 〉1



Around Property (T) for Quantum Groups 85

and

a · ρ2n n→∞−−−→ (id ⊗ ωpη,ζ )(U ) = 〈pη, ζ 〉1
in norm. This implies that a ∈ E . Hence, B(G) ⊆ E . Furthermore, the above calculation
shows that ρ · a, a · ρ ∈ B(G) ⊆ E , and thus M(ρ · a) = M(a) = M(a · ρ), for every
a ∈ B(G) and every state ρ ∈ L1(G).

Let a1, a2 ∈ B(G). Given ε > 0, find states ρ1, ρ2 ∈ L1(G) such that
∥

∥ρ1 · a1 − M(a1)1
∥

∥ ≤ ε and ∥∥a2 · ρ2 − M(a2)1
∥

∥ ≤ ε. Then
M(a1 + a2) = M(ρ1 · (a1 + a2) · ρ2),

so that

M(a1 + a2)− (M(a1) + M(a2))

= M
(

(ρ1 · a1 − M(a1)1) · ρ2 + ρ1 · (a2 · ρ2 − M(a2)1)
)

.

But the norm of the element to whichM is applied on the right-hand side does not exceed
2ε. As a result, |M(a1 + a2)− (M(a1) + M(a2))| ≤ 2ε. Therefore, M is additive, hence

linear, on B(G). This entails that M is norm-continuous, and so linear, on B(G)
‖·‖

, thus

also on B(G)∗‖·‖. ��
The set of all representations of a second countable locally compact quantum groupG

on a fixed infinite-dimensional separable Hilbert spaceH, denoted RepGH, has a natural
Polish topology. This is the topology it inherits as a closed subset from the unitary group
of M(C0(G) ⊗ K(H)) equipped with the strict topology, which itself is a Polish space
since C0(G) ⊗ K(H) is a separable C∗-algebra. For more details, see [DFSW, Section
5].

Once we fix a unitary u : H → H⊗ H, we can equip RepGH with the product

U � V = (1⊗ u∗)(U �������	� V )(1⊗ u).

The lemmas below will be needed in Sect. 7.

Lemma 3.16. ThemapsRepGH×RepGH → RepGH, (U, V ) �→ U�V andRepGH →
RepGH, U �→ Uc are continuous (here Uc is formed using some fixed anti-unitary from
H onto itself). Hence, so is the map RepGH → RepGH, U �→ U �Uc.

Proof. The second map is continuous by the definitions ofUc and of the strict topology.

Notice that ifUn
n∈N−→ U inRepGH, that is, in the strict topologyonM(C0(G)⊗K(H)),

then (Un)12 −U12 → 0 in the strict topology on M(C0(G)⊗K(H⊗H)) as (Un)n∈N is

a sequence of unitaries, so that in particular it is bounded. LetUn
n∈N−→ U and Vn

n∈N−→ V

in RepGH. To prove that Un � Vn
n∈N−→ U � V , we should show that

∥

∥(Un �������	� Vn)A − (U �������	� V )A
∥

∥

n∈N−→ 0

for all A ∈ C0(G)⊗K(H⊗ H). However, this follows from the inequality
∥

∥(Un �������	� Vn)A − (U �������	� V )A
∥

∥

≤ ∥∥(Un)12(Vn)13A − (Un)12V13A
∥

∥ +
∥

∥(Un)12V13A −U12V13A
∥

∥

= ∥

∥

(

(Vn)13 − V13
)

A
∥

∥ +
∥

∥

(

(Un)12 −U12
)

V13A
∥

∥,

where both summands tend to zero as explained above. ��
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Lemma 3.17. The collection of all ergodic representations is a Gδ subset of RepGH. If
the scaling group ofG is trivial, so is the collection of all weakly mixing representations.

Proof. By Lemma3.11 and Proposition3.13 if S denotes the collection of states in
L1(G), then U is ergodic if and only if for every non-zero ξ ∈ H the closure of {(ω ⊗
id)(U )ξ : ω ∈ S} contains 0. Let (ξn)n∈N be a dense sequence in the unit ball of H. As
each operator (ω ⊗ id)(U ) is a contraction, we see that U is ergodic if and only if

U ∈
⋂

n,m∈N

⋃

ω∈S

{

V ∈ RepGH : ‖(ω ⊗ id)(V )ξn‖ < 1/m
}

.

So the proof of the assertion on ergodic representations will be complete if we show
that for each n,m ∈ N and ω ∈ S the set {V ∈ RepGH : ‖(ω ⊗ id)(V )ξn‖ <
1/m} is open, equivalently, if {V ∈ RepGH : ‖(ω ⊗ id)(V )ξn‖ ≥ 1/m} is closed.
However, if (Vn)n∈N is a sequence in this set converging strictly to V , then, as slice maps
are strictly continuous, (ω ⊗ id)(Vn) → (ω ⊗ id)(V ) strictly in B(H) = M(K(H)),
and hence converges strongly, showing the result. Combining the foregoing with the
discussion after Definition3.7 and with Lemma 3.16 implies the assertion on weakly
mixing representations. ��
Lemma 3.18. There exists U ∈ RepGH whose equivalence class in RepGH, namely{(1⊗ u∗)U (1⊗ u) : u ∈ B(H) is unitary}, is dense in RepGH.
Proof. Choose a sequence (Un)

∞
n=1 that is dense in RepGH. One can view

⊕∞
n=1Un

as an element U in RepGH by fixing a unitary v : H → H ⊗ �2(N) and letting U :=
(1⊗v∗)⊕∞

n=1Un(1⊗v), where the direct sum is calculated according to an orthonormal
basis (ηi )∞i=1 of �

2(N). Let V ∈ RepGH, ε > 0, a1, . . . , am ∈ C0(G) and k1, . . . , km ∈
K(H) be such that the operators ki are of finite rank. By definition, there is n ∈ N such
that ‖(Un − V )(

∑m
i=1 ai ⊗ ki )‖ < ε/3. Since Un(

∑m
i=1 ai ⊗ ki ) ∈ C0(G)⊗K(H), we

can find finite collections
(

b j
)

j in C0(G) and
(

k′j
)

j
of finite rank operators in K(H)

such that
∥

∥

∥Un(
∑

i ai ⊗ ki )−∑ j b j ⊗ k′j
∥

∥

∥ < ε/3.WriteH1 for the (finite-dimensional)

linear span of the ranges of all operators k j and k′j . Let u be a unitary on H such that
uζ = v∗(ζ ⊗ ηn) for all ζ ∈ H1. Then

∥

∥

∥

[

(1⊗ u∗)U (1⊗ u)−Un
]

(

m
∑

i=1

ai ⊗ ki )
∥

∥

∥ < 2ε/3,

and so

∥

∥

∥

[

(1⊗ u∗)U (1⊗ u)− V
]

(

m
∑

i=1

ai ⊗ ki )
∥

∥

∥ < ε.

The same technique works also for finite families of the form
∑m

i=1 ai ⊗ ki , applied to
the left and to the right of U, V . We deduce that the equivalence class of U is dense in
RepGH. ��
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4. Actions of Locally Compact Quantum Groups on Von Neumann Algebras

In this sectionwe discuss actions of locally compact quantumgroups and their properties.
After quoting the basic definitions we discuss the canonical unitary implementation of
such actions due to Vaes, various notions of ergodicity, and (almost) invariant states.
We obtain in particular a new characterisation of the canonical unitary implementation
of discrete quantum group actions (Proposition 4.11, (c) and Corollary 4.12). These
technical results will be of crucial use in Sects. 8 and 9.

Let G be a locally compact quantum group and let N be a von Neumann algebra.
By an action of G on N we understand an injective normal unital ∗-homomorphism
α : N → L∞(G)⊗ N satisfying the action equation

(Δ⊗ idN ) ◦ α = (idL∞(G) ⊗ α) ◦ α.
The crossed product of N by the action α is then the von Neumann subalgebra of
B(L2(G))⊗ N generated by L∞(̂G)⊗ 1 and α(N ).

We say that α is implemented by a unitary V ∈ B(L2(G)⊗ K) if N ⊆ B(K) and

α(x) = V ∗(1⊗ x)V, x ∈ N .

In [Va1]Vaes shows that every action of a locally compact quantumgroup is implemented
in a canonical way. We use the notation of that paper, but our version of a representation
(so also what we call the unitary implementation of an action) is the adjoint of the one
in [Va1]. Let us then fix an n.s.f. weight θ on N . Define

D0 := span
{

(̂a ⊗ 1)α(x) : â ∈ Nϕ̂ , x ∈ Nθ
}

,

and consider the linear map η̃0 : D0 → L2(G)⊗ L2(N , θ) given by

η̃0((̂a ⊗ 1)α(x)) := η̂(̂a)⊗ ηθ (x) (̂a ∈ Nϕ̂ , x ∈ Nθ ).

Then η̃0 is indeed well-defined, and is ∗-ultrastrong–norm closable. Denote its clo-
sure by η̃ : D → L2(G) ⊗ L2(N , θ). Now D is a weakly dense left ideal in the
crossed product G α�N , and there exists a (unique) n.s.f. weight θ̃0 onG α�N such that
(L2(G)⊗L2(N , θ), id, η̃) is aGNSconstruction for θ̃0 (see [Va1, Lemma3.3 and the pre-
ceding discussion, as well as Definition 3.4]). We let J̃ , ∇̃ stand for the corresponding
modular conjugation and modular operator, respectively, and set T̃ := J̃ ∇̃1/2. The uni-
tary implementation of α is then the unitary U := (̂J ⊗ Jθ ) J̃ . It satisfies

α(x) = U∗(1⊗ x)U ∀x∈N (4.1)

and

U (̂J ⊗ Jθ ) = (̂J ⊗ Jθ )U
∗. (4.2)

Furthermore,U ∈ M(C0(G)⊗K(L2(N , θ))) is a representation ofG on L2(N , θ) [Va1,
Definition 3.6, Proposition 3.7, Proposition 3.12 and Theorem 4.4]. The choice of the
weight θ is of no importance up to unitary equivalence by [Va1, Proposition 4.1]. It is
easy to see that U satisfies condition R of Definition 2.3 with respect to Jθ .
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Lemma 4.1 ([Va1, Lemma 3.11]). Denoting by ̂T the closure of the anti-linear map
η̂(̂x) �→ η̂(̂x∗), x̂ ∈ Nϕ̂ ∩N ∗̂

ϕ , we see that the subspace

span
{

α(x∗)(η ⊗ ηθ (y)) : x, y ∈ Nθ , η ∈ D(̂T )
}

is a core for T̃ and for every x, y ∈ Nθ and η ∈ D(̂T ),

T̃α(x∗)(η ⊗ ηθ (y)) = α(y∗)(̂Tη ⊗ ηθ (x)). (4.3)

Definition 4.2. Let α : N → L∞(G) ⊗ N be an action of a locally compact quantum
group G on a von Neumann algebra N . A (not necessarily normal) state θ of N is
invariant under α if (id ⊗ θ)α = θ(·)1, or equivalently, if θ(ω ⊗ id)α = ω(1)θ(·) for
every ω ∈ L1(G).

Remark 4.3. Suppose that G = G, a locally compact group. The above notion of invari-
ance, which perhaps should have been called topological invariance, is stronger than the
classical one, i.e., θ ◦ αt = θ for all t ∈ G. Indeed, it is not difficult to observe that the
former entails the latter. The converse, however, is not always true: for every compact
(quantum) group G, there exists only oneΔ-invariant state of L∞(G), namely the Haar
state h, as anyΔ-invariant state θ satisfies h(·) = θ(h(·)1) = θ(h⊗id)Δ = θ(·); but, for
instance, taking G to be the complex unit circle, h is not the only state that is classically
invariant under the translation action, represented in our context byΔ [Lub, Proposition
2.2.11]. Nevertheless, if G is discrete or θ is normal the two notions of invariance are
easily seen to be equivalent.

When α is an action ofG on a von Neumann algebra N that leaves invariant a faithful
normal state θ , its unitary implementation takes a particularly simple form. To elaborate,
one verifies that the formula

(id ⊗ ωηθ (y),ηθ (x))(U
∗) = (id ⊗ θ)((1⊗ y∗)α(x)) (x, y ∈ N ), (4.4)

or equivalently

(ω ⊗ id)(U∗)ηθ (x) = ηθ ((ω ⊗ id)(α(x))) (x ∈ N , ω ∈ L1(G)), (4.5)

defines (uniquely) an isometry U∗, and that its adjoint U is a representation of G on
L2(N , θ), which is indeed a unitary by [BDS, Corollary 4.15], and which satisfies (4.1).
One can essentially repeat the argument in the proof of [Va1, Proposition 4.3], with 1
in place of δ−1 and the fact that ̂∇ ⊗ ∇θ commutes with U (see the proof of [RuV1,
Theorem A.1], and take into account the difference in the terminology) in lieu of [Va1,
Proposition 2.4, last formula], to infer that U is the unitary implementation of α.

Definition 4.4. Let α : N → L∞(G) ⊗ N be an action of a locally compact quantum
group G on a von Neumann algebra N leaving invariant a faithful normal state θ of N .
We say that α is ergodic (respectively, weakly mixing) if its implementing unitary, when
restricted to L2(N , θ)& Cηθ (1), is ergodic (respectively, weakly mixing).

For an arbitrary action α of G on N , one normally defines ergodicity of α as the
equality of its fixed-point algebra Nα := {a ∈ N : α(a) = 1⊗ a} andC1. In the context
of Definition 4.4, this definition is known to be equivalent to ours when G is a group:
see [Jad, Lemma 2.2] or [HeT, Section 2, Theorem], where the abelianness assumption
is unnecessary. We now show that this holds for all locally compact quantum groups
(Corollary 4.6).

The next result is inspired by [KS] as presented in [DKS, Theorem 1] and [Jad,
Section 2]; compare [Duv] and [RuV1, Theorem 2.2].
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Proposition 4.5. Let α : N → L∞(G) ⊗ N be an action of G on a von Neumann
algebra N. Assume that α preserves a faithful normal state θ of N. Write U ∈ L∞(G)⊗
B(L2(N , θ)) for the unitary implementation of α, and p for the orthogonal projection
of L2(N , θ) onto Inv(U ). Then using the notation of Proposition 3.15, there exists a
faithful normal conditional expectation E of N onto Nα given by

ω(E(a)) = M ((id ⊗ ω)α(a)) (a ∈ N , ω ∈ N∗). (4.6)

Moreover, E satisfies E(a)p = pap for all a ∈ N. This identity determines E uniquely.
Additionally, E is α-invariant: E ((ω ⊗ id)α(a)) = E(a) for every a ∈ N and every
state ω ∈ L1(G).

Proof. First, let us explain why the right-hand side of (4.6) makes sense by proving

that (id ⊗ ω)α(a) ∈ B(G)∗‖·‖ for each a ∈ N , ω ∈ N∗. It suffices to prove that (id ⊗
ωJθηθ (c),Jθηθ (b))α(a) ∈ B(G)∗ for every b, c ∈ N . But since Jθηθ (b) = JθbJθηθ (1),
JθbJθ ∈ N ′ and α(a) ∈ L∞(G) ⊗ N , we get (id ⊗ ωJθηθ (c),Jθηθ (b))α(a) = (id ⊗
ωJθηθ (b∗c),ηθ (1))α(a), which by (4.4) equals (id ⊗ ωJθηθ (b∗c),ηθ (a))(U

∗) ∈ B(G)∗.
By Proposition 3.15, M is a linear contraction on B(G)∗‖·‖. Hence, (4.6) determines

a well-defined contraction E : N → N . To show that E maps into Nα , pick a ∈ N
and states ω ∈ L1(G), ρ ∈ N∗. We should show that (ω ⊗ ρ)α(E(a)) = ρ(E(a)).
Setting ν := (ω⊗ρ)◦α, we have (ω⊗ρ)α(E(a)) = M ((id ⊗ ν)α(a)) and ρ(E(a)) =
M ((id ⊗ ρ)α(a)) by the definition of M . However,

(id ⊗ ν)(α(a)) = (id ⊗ ω ⊗ ρ)(id ⊗ α)(α(a)) = (id ⊗ ω ⊗ ρ)(Δ⊗ id)(α(a))

= (id ⊗ ω)Δ((id ⊗ ρ)α(a)) = ω · ((id ⊗ ρ)α(a)).
As a result, (ω ⊗ ρ)α(E(a)) = M ((id ⊗ ν)α(a)) = M ((id ⊗ ρ)α(a)) = ρ(E(a)),
proving that E(a) ∈ Nα . It is also clear that E(b) = b for every b ∈ Nα . In conclusion,
E is a conditional expectation of N onto Nα .

Notice that Nα commutes with p. Indeed, it suffices to show that if b ∈ Nα then
pbp = bp. But α(b) = 1 ⊗ b if and only if 1 ⊗ b commutes with U , if and only
if b commutes with (ω ⊗ id)(U ) for every ω ∈ L1(G). Let ζ ∈ L2(N , θ). Then
pbpζ is in the closure of

{

(ω ⊗ id)(U )bpζ : ω ∈ L1(G) is a state
}

by Lemma 3.11
and Proposition 3.13. Now (ω ⊗ id) (U )bpζ = b (ω ⊗ id) (U )pζ = bpζ for every ω,
showing that pbpζ = bpζ .

Let a ∈ N . To observe that E(a)p = pap, take ζ, η ∈ L2(N , θ). Then

ωζ,η(E(a)p) = ωpζ,pη(E(a)) = M
(

(id ⊗ ωpζ,pη)α(a)
)

= M
(

(id ⊗ ωpζ,pη)(U
∗(1⊗ a)U )

)

= M(ωζ,η(pap)1) = ωζ,η(pap),
proving the desired equality. Since pηθ (1) = ηθ (1) and this vector is separating for N ,
the equality E(a)p = pap determines E uniquely, and E is faithful and normal.

Let a ∈ N and let ω ∈ L1(G), ρ ∈ N∗ be states. Then

(id ⊗ ρ)α ((ω ⊗ id)α(a)) = (ω ⊗ id ⊗ ρ)(id ⊗ α)α(a) = (ω ⊗ id ⊗ ρ)(Δ⊗ id)α(a)

= ((id ⊗ ρ)α(a)) · ω.
Hence

ρ [E ((ω ⊗ id)α(a))] = M [(id ⊗ ρ)α ((ω ⊗ id)α(a))]

= M (((id ⊗ ρ)α(a)) · ω) = M ((id ⊗ ρ)α(a)) = ρ(E(a)),
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implying that E ((ω ⊗ id)α(a)) = E(a). That is, E is α-invariant. ��
We now present an alternative proof of the existence and properties of E not using
the mean M . By Lemma 3.12 and Proposition 3.14, there is a net (ωi )i∈I of states in
L1(G) such that ((ωi ⊗ id)(U∗))i∈I converges strongly to p. Let a ∈ N . Then since
U (1⊗ p) = 1⊗ p by Lemma 3.1, we have

pap = lim
i∈I
(ωi ⊗ id)(U∗)ap = lim

i∈I
(ωi ⊗ id)

(

U∗(1⊗ a)U
)

p

= lim
i∈I
(ωi ⊗ id) (α(a)) p (4.7)

strongly.Theboundednet [(ωi ⊗ id) (α(a))]i∈I in N has a subnet
[

(ω j ⊗ id) (α(a))
]

j∈J
that converges in the weak∗ topology to an element b ∈ N . By (4.7), pap = bp. This
equality determines b uniquely in N since pηθ (1) = ηθ (1) and this vector is separating
for N . Moreover, as pηθ (a) = ηθ (b), it follows from (4.4) that b ∈ Nα . Consequently,
there exists a linear map E : N → Nα given by E(a)p = pap. From (4.7) it is clear
that E is a contractive projection, thus a conditional expectation, which is faithful and
normal as in the first proof. Also, similarly to (4.7),

E((ω ⊗ id)α(a))p = p(ω ⊗ id)α(a)p = pap = E(a)p, thus E((ω ⊗ id)α(a)) = E(a),

for every a ∈ N and every state ω ∈ L1(G), so E is α-invariant. ��
Corollary 4.6. Under the assumptions of Proposition 4.5, α is ergodic (namely: the
restriction of U to L2(N , θ)& Cηθ (1) is ergodic) if and only if Nα = C1.

Proof. The implication ( �⇒ ) is trivial by (4.4). To prove the converse, suppose that
0  = ζ ∈ L2(N , θ) & Cηθ (1) is invariant under U . Let (an)∞n=1 be a sequence in

N such that ηθ (an)
n→∞−−−→ ζ . Then ηθ (E(an)) = pηθ (an)

n→∞−−−→ pζ = ζ . Since
〈ηθ (1), ζ 〉 = 0, we necessarily have Nα � C1. ��
Definition 4.7. Let α be an action of a locally compact quantum group G on a von
Neumann algebra N with an invariant faithful normal state θ . A bounded net (xi )i∈I in N
is called asymptotically invariant under α if for every normal stateω of L∞(G), we have
(ω⊗ id)α(xi )− xi

i∈I−→ 0 strongly. Such a net is said to be trivial if xi − θ(xi )1 i∈I−→ 0
strongly. We say that α is strongly ergodic if all its asymptotically invariant nets are
trivial.

Strong ergodicity evidently implies ergodicity.
In the setting of Definition 4.7, denote byU ∈ M(C0(G)⊗K(L2(N , θ))) the unitary

implementation of α. Observe that when (xi )i∈I is asymptotically invariant and does
not converge strongly to 0, we may assume, by passing to a subnet if necessary, that
(‖ηθ (xi )‖)i∈I is bounded from below, and the normalised net ( 1

‖ηθ (xi )‖ηθ (xi ))i∈I is
then almost invariant under U , because by (4.5), for every normal state ω of L∞(G),
since α preserves θ ,

(ω ⊗ id)(U∗)ηθ (xi )− ηθ (xi ) = ηθ ((ω ⊗ id)α(xi )− xi )
i∈I−→ 0.

For the next definition, let N be a von Neumann algebra in standard form on L2(N )
withmodular conjugation J and let n ∈ N.Wewill considerMn⊗N as acting standardly
on L2(Mn, tr)⊗ L2(N )which, as a vector space, is just Mn ⊗ L2(N ). The positive cone
[Haa] of Mn ⊗ N in this representation is the closure of the set of sums of vectors of the
form

(

ξi Jξ j
)n
i, j=1 for ξ1, . . . , ξn in the left Hilbert algebra of N inside L2(N ).
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Definition 4.8 ([Sau, 2.5]). Let N be a von Neumann algebra and u = (

ui j
)n
i, j=1 ∈

Mn⊗B(L2(N )).We say that u preserves the positive cone if for everymatrix
(

ζi j
)n
i, j=1 ∈

L2(Mn, tr)⊗L2(N ) in the positive cone ofMn⊗N , thematrix
(

ui jζi j
)n
i, j=1 also belongs

to the positive cone of Mn ⊗ N .

Remark 4.9. By self-duality of the positive cone,
(

ui j
)n
i, j=1 inMn⊗B(L2(N )) preserves

it if and only if
(

u∗i j
)n

i, j=1
preserves it.

We will require a generalisation of several results of Sauvageot [Sau]. Since the proof
of [Sau, Remarque 4.6, 2] is not explicit, and, as mentioned in [Va1], [Sau, Lemme 4.1]
is incorrect, we provide full details.

Proposition 4.10. Let G be a locally compact quantum group acting on a von Neumann
algebra N by an action α : N → L∞(G) ⊗ N. Let U ∈ M(C0(G) ⊗ K(L2(N ))) be
the unitary implementation of α. Then for every ξ1, . . . , ξn ∈ D(̂∇−1/2), the matrices
((ω

̂∇−1/2ξi ,ξ j
⊗ id)(U∗))1≤i, j≤n and ((ωξ j ,̂∇−1/2ξi

⊗ id)(U ))1≤i, j≤n preserve the positive
cone.

Proof. Fix a ∈ N , b, c, d ∈ Nθ , ξ ∈ D(̂∇−1/2) and η ∈ L2(G). Note that bJθηθ (d) =
Jθd Jθηθ (b) with Jθd Jθ ∈ N ′. By (4.1), we have
〈

η ⊗ bJθηθ (d),U
∗(ξ ⊗ aJθηθ (c))

〉 = 〈

η ⊗ Jθd Jθηθ (b), α(a)U
∗(ξ ⊗ Jθηθ (c))

〉

= 〈

α(a∗)(η ⊗ ηθ (b)),

(1⊗ Jθd
∗ Jθ )U∗(ξ ⊗ Jθηθ (c))

〉

. (4.8)

Using (4.1), (4.2) and (4.3) we obtain, as ̂Jξ = ̂T̂∇−1/2ξ ,

(1⊗ Jθd
∗ Jθ )U∗(ξ ⊗ Jθηθ (c)) = (̂J ⊗ Jθ )(1⊗ d∗)U (̂Jξ ⊗ ηθ (c))

= (̂J ⊗ Jθ )Uα(d
∗)(̂Jξ ⊗ ηθ (c))

= J̃ T̃α(c∗)(̂∇−1/2ξ ⊗ ηθ (d))

= ∇̃1/2α(c∗)(̂∇−1/2ξ ⊗ ηθ (d)). (4.9)

To conclude,
〈

η ⊗ bJθηθ (d),U
∗(ξ ⊗ aJθηθ (c))

〉

=
〈

α(a∗)(η ⊗ ηθ (b)), ∇̃1/2α(c∗)(̂∇−1/2ξ ⊗ ηθ (d))
〉

. (4.10)

Take now a1, . . . , an, b1, . . . , bn ∈ Nθ and ξ1, . . . , ξn ∈ D(̂∇−1/2). From (4.10),
n
∑

i, j=1

〈

bi Jθηθ (b j ), (ω̂∇−1/2ξi ,ξ j
⊗ id)(U∗)ai Jθηθ (a j )

〉

=
n
∑

i, j=1

〈

̂∇−1/2ξi ⊗ bi Jθηθ (b j ),U
∗(ξ j ⊗ ai Jθηθ (a j ))

〉

=
n
∑

i, j=1

〈

α(a∗i )(̂∇−1/2ξi ⊗ ηθ (bi )), ∇̃1/2α(a∗j )(̂∇−1/2ξ j ⊗ ηθ (b j ))
〉

=
∥

∥

∥

∥

∥

∇̃1/4
n
∑

i=1

α(a∗i )(̂∇−1/2ξi ⊗ ηθ (bi ))

∥

∥

∥

∥

∥

2

≥ 0.
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The desired conclusion follows from the self-duality of the positive cone and Remark
4.9. ��
Proposition 4.11. Let α : N → �∞(G)⊗ N be an action of a discrete quantum group
G on a von Neumann algebra N. Denote its unitary implementation by U.

(a) Assume that a state m of N is invariant under α. Then there exists a net of unit
vectors (ζι)ι∈I in the positive cone P of N in L2(N ) that is almost invariant under

U and such that ωζι
ι∈I−→ m in the weak∗ topology of N∗.

(b) If a normal positive functional ρ of N is invariant under α, then the unique vector
ζ ∈ P with ρ = ωζ is invariant under U.

(c) The unitary implementation of α is the unique unitary U inM(c0(G)⊗K(L2(N )))
that satisfies (4.1) and such that for every ξ1, . . . , ξn ∈ D(̂∇−1/2), the matrix
((ωξ j ,̂∇−1/2ξi

⊗ id)(U ))1≤i, j≤n preserves the positive cone.

Proof. (a) From the standard convexity argument it follows that one can find a net
(mι)ι∈I of normal states of N converging in the weak∗ topology to the state m such that

∥

∥(ωη′,η ⊗ mι)α − 〈η′, η〉mι
∥

∥

ι∈I−→ 0 ∀η,η′∈�2(G). (4.11)

For every ι ∈ I, write ζι for the unique vector in P such that mι = ωζι .
Recall that �2(G) decomposes as

⊕

γ∈Irr(̂G) �2(G)γ . Moreover, for every γ ∈ Irr(̂G),

the operator̂∇ restricts to a bijection over �2(G)γ . Fix a non-empty finite set F ⊆ Irr(̂G)
and ε > 0. Let (ηi )ni=1 be an orthonormal basis of �2(G)F := ⊕

γ∈F �2(G)γ and set

u := ((ωη j ,̂∇−1/2ηi
⊗ id)(U ))1≤i, j≤n and c := ‖̂∇1/2|�2(G)F ‖. Assume that ρ is a normal

state of N with
∥

∥

∥(ω
̂∇−1/2η j ,̂∇−1/2ηi

⊗ ρ)α − 〈̂∇−1/2η j ,̂∇−1/2ηi 〉ρ
∥

∥

∥ ≤ ε2

n4c2
∀1≤i, j≤n, (4.12)

and write ζ for the unique vector in P such that ρ = ωζ . For every η ∈ �2(G)F ,

U (η ⊗ ζ ) =
n
∑

k=1

ηk ⊗ (ωηk ,η ⊗ id)(U )ζ.

Therefore, for every 1 ≤ i, j ≤ n and x ∈ N ,

(ω
̂∇−1/2η j ,̂∇−1/2ηi

⊗ ρ)α(x) =
〈

U (̂∇−1/2η j ⊗ ζ ), (1⊗ x)U (̂∇−1/2ηi ⊗ ζ )
〉

=
n
∑

k=1

〈

u jkζ, xuikζ
〉

,

so that
∣

∣

∣

∣

∣

n
∑

k=1

〈

u jkζ, xuikζ
〉− 〈̂∇−1/2η j ,̂∇−1/2ηi 〉 〈ζ, xζ 〉

∣

∣

∣

∣

∣

≤ ε2

n4c2
‖x‖ . (4.13)

Set Z1 := (〈η j ,̂∇−1/2ηi 〉ζ )1≤i, j≤n and Z2 := (

ui jζ
)

1≤i, j≤n . Both belong to the

positive cone ofMn⊗N in L2(Mn, tr)⊗L2(N ), the secondbyProposition 4.10.Consider
the functionals ωZ1 , ωZ2 over Mn⊗N . For every X = (

xi j
)

1≤i, j≤n ∈ Mn⊗N , we have
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ωZ1(X) =
n
∑

i, j,k=1

〈

〈ηk,̂∇−1/2η j 〉ζ, x ji 〈ηk,̂∇−1/2ηi 〉ζ
〉

=
n
∑

i, j=1

〈̂∇−1/2η j ,̂∇−1/2ηi 〉
〈

ζ, x jiζ
〉

and ωZ2(X) =
∑n

i, j,k=1

〈

u jkζ, x ji uikζ
〉

. Hence, by (4.13),

∣

∣(ωZ1 − ωZ2)(X)
∣

∣ ≤
n
∑

i, j=1

ε2

n4c2
∥

∥x ji
∥

∥ ≤ ε2

n2c2
‖X‖ .

In conclusion,
∥

∥ωZ1 − ωZ2

∥

∥ ≤ ε2

n2c2
. By the Powers–Størmer inequality [Haa, Lemma

2.10], it follows that ‖Z1 − Z2‖ ≤ ε
nc . As a result, for each 1 ≤ i, j ≤ n,

∥

∥

∥(ωη j ,̂∇−1/2ηi
⊗ id)(U − 1L∞(G) ⊗ 1B(L2(N )))ζ

∥

∥

∥ = ∥

∥(Z1)i j − (Z2)i j
∥

∥ ≤ ε

nc
.

A simple calculation thus shows that for every α, β ∈ �2(G)F ,
∥

∥(ωα,β ⊗ id)(U − 1L∞(G) ⊗ 1B(L2(N )))ζ
∥

∥ ≤ ε

nc
nc ‖α‖ ‖β‖ = ε ‖α‖ ‖β‖ .

To complete the proof, notice that by (4.11), there exists ι0 ∈ I such that ρ := mι
satisfies (4.12) for every ι0 ≤ ι ∈ I. Since ε was arbitrary, we get

lim
ι∈I
(ωα,β ⊗ id)(U − 1L∞(G) ⊗ 1B(L2(N )))ζι = 0

for all α, β ∈ �2(G)F . Letting F vary, this holds for all α, β ∈ �2(G) by density. From
Lemma 3.4, (I.b), the net (ζι)ι∈I is almost invariant under U .

(b) Repeat the proof of (a) with ε = 0.
(c) Suppose that U, V ∈ �∞(G) ⊗ B(L2(N )) satisfy the given requirements. Fix

γ ∈ Irr(̂G), let (ηi )ni=1 be an orthonormal basis of �2(G)γ , and set u := ((ωη j ,̂∇−1/2ηi
⊗

id)(U ))1≤i, j≤n , v := ((ωη j ,̂∇−1/2ηi
⊗ id)(V ))1≤i, j≤n . As in the proof of (a), for every

x ∈ N and ζ ∈ L2(N ),

n
∑

k=1

〈

u jkζ, xuikζ
〉 = (ω

̂∇−1/2η j ,̂∇−1/2ηi
⊗ ωζ )α(x) =

n
∑

k=1

〈

v jkζ, xvikζ
〉

.

Consequently, if ζ ∈ P and we put Zu := (

ui jζ
)

1≤i, j≤n and Zv :=
(

vi jζ
)

1≤i, j≤n , then

for all X = (

xi j
)

1≤i, j≤n we have ωZu (X) =
∑n

i, j,k=1

〈

u jkζ, x ji uikζ
〉

= ∑n
i, j,k=1

〈

v jkζ, x jivikζ
〉 = ωZv (X). Since Zu, Zv belong to the positive cone of

Mn ⊗ N in L2(Mn, tr)⊗ L2(N ) by assumption, this entails Zu = Zv . As P is total in
L2(N ), we get u = v. Then it is easy to see that in fact U = V , as γ ∈ Irr(̂G) was
arbitrary and (ηi )ni=1 was a basis of �

2(G)γ . Proposition4.10 ends the proof. ��
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Corollary 4.12 (cf. [Sau, Lemme 4.4 and Remarque 4.6]). Let G be a locally compact
quantum group with trivial scaling group, acting on a von Neumann algebra N by an
action α : N → L∞(G)⊗N. LetU ∈ M(C0(G)⊗K(L2(N ))) be the unitary implemen-
tation of α. Then for every ξ1, . . . , ξn ∈ L2(G), the matrices ((ωξi ,ξ j ⊗ id)(U∗))1≤i, j≤n
and ((ωξ j ,ξi ⊗id)(U ))1≤i, j≤n preserve the positive cone. IfG is discrete, then the unitary
implementation of α is the unique unitary U in M(c0(G) ⊗ K(L2(N ))) that satisfies
(4.1) and such that for every ξ1, . . . , ξn ∈ �2(G), the matrix ((ωξ j ,ξi ⊗ id)(U ))1≤i, j≤n
preserves the positive cone.

Proof. Let ξ1, . . . , ξn ∈ D(̂∇−1/2). Since the scaling group ofG is trivial,̂∇ is affiliated
with the commutant L∞(G)′.Hence, asU ∈ L∞(G)⊗B(L2(N )),we have (ω

̂∇−1/2ξi ,ξ j
⊗

id)(U∗) = (ω
̂∇−1/4ξi ,̂∇−1/4ξ j

⊗ id)(U∗) for every i, j . Thus ((ω
̂∇−1/4ξi ,̂∇−1/4ξ j

⊗ id)

(U∗))1≤i, j≤n preserves the positive cone by Proposition 4.10. Since ̂∇−1/4D(̂∇−1/2) is
dense in L2(G), ((ωξi ,ξ j⊗id)(U∗))1≤i, j≤n preserves thepositive cone for all ξ1, . . . , ξn ∈
L2(G). The second statement follows similarly by using Proposition 4.11, (c). ��
For the next lemma, recall that for a Hilbert space K, B(K) is standardly represented
(e.g., by using the trace onB(K)) onK⊗K by πK : B(K) ' x �→ x⊗1with conjugation
J : K⊗K → K⊗K, ζ ⊗ η �→ η⊗ ζ . The positive cone of Mn ⊗B(K) in Mn ⊗K⊗K

is the closure of the set of vectors of the form (
∑m

k=1 ζ
i
k ⊗ ζ j

k )1≤i, j≤n with ζ ik ∈ K
(1 ≤ i ≤ n, 1 ≤ k ≤ m).

Lemma 4.13. Let V ∈ M(c0(G) ⊗ K(K)) be a representation of a discrete quantum
group G on a Hilbert space K. The unitary implementation of the action α of G on B(K)
given by α(x) := V ∗(1⊗ x)V , x ∈ B(K), on K ⊗ K is V �������	⊥ V c.

Proof. Observe that by the definition of V c and (2.1), the operator V �������	⊥ V c = V c
13V12

acting on �2(G)⊗K⊗K is equal to (̂J ⊗J )V ∗(̂J ⊗J )V , where V ∈ �∞(G)⊗B(K)
is represented on �2(G)⊗ K ⊗ K using id ⊗ πK.

The representation V �������	⊥ V c obviously implements α. By Proposition4.11, (c) it
suffices to prove that for every α1, . . . , αn ∈ D(̂∇−1/2), the matrix ((ωα j ,̂∇−1/2αi

⊗
id)(V �������	⊥ V c))1≤i, j≤n preserves the positive cone. For α ∈ D(̂∇−1/2), β ∈ �2(G) and
ζ1, ζ2, η1, η2 ∈ K, we have

〈

β ⊗ ζ2 ⊗ η2, (V �������	⊥ V c)(̂∇−1/2α ⊗ ζ1 ⊗ η1)
〉

=
〈

β ⊗ ζ2 ⊗ η2, (̂J ⊗ J )V ∗(̂J ⊗ J )V (̂∇−1/2α ⊗ ζ1 ⊗ η1)
〉

=
〈

(̂J ⊗ J )V (̂Jβ ⊗ η2 ⊗ ζ2), V (̂∇−1/2α ⊗ ζ1 ⊗ η1)
〉

=
〈

̂J (id ⊗ ωη1,η2)(V )̂Jβ, (id ⊗ ωζ2,ζ1)(V )̂∇−1/2α
〉

.

Thus further, by (2.4),
〈

β ⊗ ζ2 ⊗ η2, (V �������	⊥ V c)(̂∇−1/2α ⊗ ζ1 ⊗ η1)
〉

= 〈

̂J (id ⊗ ωη1,η2)(V )̂Jβ,̂T (id ⊗ ωζ1,ζ2)(V )̂Jα
〉

=
〈

̂∇1/2(id ⊗ ωζ1,ζ2)(V )̂Jα, (id ⊗ ωη1,η2)(V )̂Jβ
〉

. (4.14)
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Take n,m ∈ N, α1, . . . , αn ∈ D(̂∇−1/2) and ζ ik , ξ
i
k ∈ K (1 ≤ i ≤ n, 1 ≤ k ≤ m). By

(4.14), applying ((ωα j ,̂∇−1/2αi
⊗id)(V �������	⊥ V c))1≤i, j≤n to (

∑

k ζ
i
k⊗ζ j

k )1≤i, j≤n component-

wise and taking the inner product with (
∑

� ξ
i
� ⊗ ξ j� )1≤i, j≤n , we obtain

∑

i, j,k,�

〈

α j ⊗ ξ i� ⊗ ξ j� , (V �������	⊥ V c)(̂∇−1/2αi ⊗ ζ ik ⊗ ζ j
k )

〉

=
∑

i, j,k,�

〈

̂∇1/2(id ⊗ ωζ ik ,ξ i� )(V )̂Jαi , (id ⊗ ωζ jk ,ξ j� )(V )̂Jα j

〉

=
m
∑

k,�=1

〈

̂∇1/2

(

n
∑

i=1

(id ⊗ ωζ ik ,ξ i� )(V )̂Jαi
)

,

n
∑

j=1

(id ⊗ ω
ζ
j
k ,ξ

j
�

)(V )̂Jα j

〉

≥ 0

by the positivity of ̂∇1/2. By the self-duality of the positive cone, it is preserved by
((ωα j ,̂∇−1/2αi

⊗ id)(V �������	⊥ V c))1≤i, j≤n , and the proof is complete. ��

5. Property (T)

In this section we recall the fundamental notion of Property (T) for locally compact
quantum groups. We define different notions of having a ‘Kazhdan pair’ in this setting,
and show that they are all equivalent to Property (T). We also show that if a locally
compact quantum group G admits a morphism with a dense image from a quantum
group with Property (T), then also G itself has Property (T).

Definition 5.1. A locally compact quantum group has Property (T) if each of its repre-
sentations which has almost-invariant vectors has a non-trivial invariant vector.

Definition 5.2. A locally compact quantum group G has Property (T)1,1 if for every
representationU ofGwith almost invariant vectors the representationU �������	�Uc has a non-
zero invariant vector. Further if r, s ∈ N thenwe say thatG hasProperty (T)r,s if for every
representation U of G with almost invariant vectors the representation U


��
����� r �������	� (Uc)

��
����� s

has a non-zero invariant vector.

Note that by the discussion after Definition3.7 if G has a trivial scaling group, then it
has Property (T)1,1 if and only if each of its representations which has almost-invariant
vectors is not weakly mixing.

Proposition 5.3. If a locally compact quantum group G has Property (T), then it also
has Property (T)r,s for every r, s ∈ N.

Proof. This is trivial, for if a representation U admits a non-zero invariant vector, so
does U


��
����� r �������	� (Uc)

��
����� s . ��

Definition 5.4. Let G be locally compact quantum group.

(a) A Kazhdan pair of type 1 for G is a finite set Q ⊆ L2(G) and ε > 0, such that
for any representation U ∈ M(C0(G)⊗ K(H)), if there is a unit vector ξ ∈ H with
‖U (η ⊗ ξ)− η ⊗ ξ‖ < ε for each η ∈ Q, then U has a non-zero invariant vector.

(b) A Kazhdan pair of type 2 for G is a finite set Q ⊆ C0(G) and ε > 0, such that
for any representation U ∈ L(C0(G) ⊗ H), if there is a unit vector ξ ∈ H with
‖U(a ⊗ ξ)− a ⊗ ξ‖ < ε for each a ∈ Q, then U has a non-zero invariant vector.
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(c) A Kazhdan pair of type 3 for G is a finite set Q ⊆ Cu
0(
̂G) and ε > 0, such that

for any representation φ : Cu
0(
̂G) → B(H), if there is a unit vector ξ ∈ H with

‖φ(x)ξ − ε̂(x)ξ‖ < ε for each x ∈ Q, then there is a non-zero vector ξ ′ with
φ(y)ξ ′ = ε̂(y)ξ ′ for all y ∈ Cu

0(G).

For a Kazhdan pair of any type (Q, ε), a vector ξ ∈ H that satisfies the inequalities in
the respective definition above is said to be (Q, ε)-invariant.

Theorem 5.5. G has Property (T) if and only if G has a Kazhdan pair of any (or equiv-
alently, all) type(s).

Proof. By the various equivalent notions of having almost-invariant vectors in Lemma
3.4, it is clear that if G has a Kazhdan pair of any type, then it has Property (T).

Conversely, supposeG does not have aKazhdan pair of type 2, but thatG has Property
(T). Denote byF the family of all finite subsets of the unit ball of C0(G). For each F ∈ F
and ε > 0, we can find a representationUF,ε with no non-zero invariant vector, but which
admits a unit vector ξF,ε with ‖UF,ε(a ⊗ ξF,ε) − a ⊗ ξF,ε‖ < ε for a ∈ F . Ordering
F × (0,∞) in the obvious way, we find that

lim
(F,ε)

∥

∥UF,ε(a ⊗ ξF,ε)− a ⊗ ξF,ε
∥

∥ = 0.

It follows easily thatU =⊕UF,ε has almost invariant vectors, and hence has a non-zero
invariant vector, say η = (ηF,ε). However, then if ηF,ε  = 0, then ηF,ε is a non-zero
invariant vector for UF,ε, a contradiction.

Exactly the same argument applies to Kazhdan pairs of type 1; and a very similar
argument applies to Kazhdan pairs of type 3. ��

The following is valid for a Kazhdan pair of any type; we prove the version most
suited to our needs. If we fix a representation φ : Cu

0(
̂G) → B(H), we will define the

space Inv(U ) ⊆ H via the associated representationU = (id⊗ φ)( W). By Lemma 3.1,
ξ ∈ Inv(U ) if and only if φ(x)ξ = ε̂(x)ξ for all x ∈ Cu

0(
̂G).

Lemma 5.6. Let (Q, ε) be a Kazhdan pair of type 3 for G, and let δ > 0. For any
representation φ of Cu

0(
̂G) on H, if ξ ∈ H is (Q, εδ)-invariant, then ‖ξ − Pξ‖ ≤ δ‖ξ‖

where P : H → Inv(U ) is the orthogonal projection.

Proof. Let α ∈ Inv(U )⊥ and β ∈ Inv(U ). For x ∈ Cu
0(
̂G),

〈β, φ(x)α〉 = 〈φ(x∗)β, α〉 = ε̂(x∗)〈β, α〉 = 0,

so φ(x)α ∈ Inv(U )⊥. Thus φ restricts to the subspace Inv(U )⊥.
Let ξ = P(ξ) + ξ0 where ξ0 ∈ Inv(U )⊥. As Inv(U )⊥ contains no non-zero invariant

vectors, there is x ∈ Q with ‖φ(x)ξ0 − ε̂(x)ξ0‖ ≥ ε‖ξ0‖. By assumption, ‖φ(x)ξ −
ε̂(x)ξ‖ ≤ εδ‖ξ‖, and as P(ξ) is invariant, φ(x)P(ξ) = ε̂(x)P(ξ). Thus
‖φ(x)ξ0 − ε̂(x)ξ0‖ = ‖φ(x)ξ0 − φ(x)ξ + φ(x)ξ − ε̂(x)ξ0‖

= ‖ − φ(x)P(ξ) + φ(x)ξ − ε̂(x)ξ0‖
= ‖ − ε̂(x)P(ξ) + φ(x)ξ − ε̂(x)ξ0‖ = ‖φ(x)ξ − ε̂(x)ξ‖ ≤ εδ‖ξ‖.

We conclude that ε‖ξ0‖ ≤ εδ‖ξ‖, showing that ‖ξ − Pξ‖ = ‖ξ0‖ ≤ δ‖ξ‖ as claimed.
��



Around Property (T) for Quantum Groups 97

5.1. Hereditary property. Classically if a locally compact groupG has Property (T) and
K is a closed normal subgroup of G then G/K has Property (T). In fact even if there is
only a morphism G → H with dense range, where H is another locally compact group,
then Property (T) passes from G to H .

In [ChN] it is shown under some additional assumptions that the existence of a
surjective ∗-homomorphism fromCu

0(
̂G) to Cu

0(
̂H) implies that Property (T) passes from

G to H. Here we strengthen this result, at the same time dropping the extra assumptions.

Theorem 5.7. LetH,G be locally compact quantum groups. If there is a morphism from
H to G with dense image, and H has Property (T), then so does G.

Proof. Let the relevant morphism be given by π ∈ Mor(Cu
0(G),C

u
0(H)). Let U be a

representation of G on a Hilbert space H which has almost-invariant vectors, (ξi )i∈I .
They are also almost invariant forUu by Proposition3.9. Then V := (ΛH ◦π⊗ id)(Uu)

is a representation of H. Let ω ∈ L1(H), and note that

lim
i∈I
ω((id ⊗ ωξi )(V )) = lim

i∈I
〈

ξi , (ω ◦ΛH ◦ π ⊗ id)(Uu)ξi
〉 = ω(1)

by the definition of what it means for (ξi )i∈I to be invariant for Uu . Hence (id ⊗
ωξi )(V )

i∈I−−→ 1 in the weak∗ topology of L∞(H), so by Lemma 3.4 the net (ξi )i∈I is
almost invariant for V . As H has Property (T), V has a non-zero invariant vector, say
ξ0 ∈ H. Thus, Lemma 3.1 implies that φV (a)ξ0 = ε̂(a)ξ0 for all a ∈ Cu

0(
̂H).

Let ω ∈ L1(H) and y = (ω ⊗ id)( WH). Then using (2.9) we see that

φU (π̂(y)) = φU
(

(ω ⊗ π̂)( WH)
) = φU

(

(ωΛHπ ⊗ id)(V VG)
) = (ωΛHπ ⊗ id)(Uu)

= (ω ⊗ id)(V ) = φV
(

(ω ⊗ id)( WH)
) = φV (y).

By density, this holds for all y ∈ Cu
0(
̂H). The same calculation yields that ε̂G ◦ π̂ = ε̂H.

Hence φU (π̂(y))ξ0 = φV (y)ξ0 = ε̂H(y)ξ0 = ε̂G(π̂(y))ξ0 for all y ∈ Cu
0(
̂H). By

condition (d) in TheoremA.1, π̂ has strictly dense range. In addition, φU : Cu
0(
̂G) →

B(H) = M(K(H)) is strictly continuous, hence strictly-strongly continuous. It follows
that φU (x)ξ0 = ε̂G(x)ξ0 for all x ∈ M(Cu

0(
̂G)). In particular, ξ0 is invariant for U , as

required. ��

6. Applications of Kazhdan Pairs

Themain aim of this section is to apply the results onKazhdan pairs to give an alternative
proof and strengthen in a crucial wayTheorem3.1 of [Kye]. In connectionwith the recent
results of [Ara] this will enable us in the next section to establish equivalence of Property
(T) and Property (T)1,1 for a class of discrete quantum groups.

The equivalence of (a) and (b) of the next result was established in [Kye, Theorem
3.1] under the additional assumption that G is a second countable discrete quantum
group. However, the following proof, and especially (c) �⇒ (a), is quite different: not
having the particular structure of discrete quantum groups at our disposal, we use the
averaging semigroups machinery of Sect. 3. Note that outside of the Property (T) context
[RuV2, Theorem 4.6] provides an equivalence between various modes of convergence
of normalised positive-definite elements on locally compact quantum groups.

Theorem 6.1. LetG be a locally compact quantum group. The following are equivalent:
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(a) G has Property (T);
(b) if (μi )i∈I is a net of states of Cu

0(
̂G) converging in the weak∗ topology to the counit

ε̂, then (μi )i∈I converges in norm to ε̂;
(c) if (ai )i∈I is a net of normalised positive-definite functions in M(C0(G)), which

converges strictly to 1, then limi∈I ‖ai − 1‖ = 0.

Proof. (a) �⇒ (b): IfG has Property (T) then for each i ∈ I let (φi ,Hi , ξi ) be the GNS
construction forμi . Then letφ :=⊕

i∈I φi , a representation ofCu
0(
̂G) onH =⊕

i∈I Hi .
By a slight abuse of notation, we treat each ξi as a vector in H. Then for a ∈ Cu

0(
̂G),

lim
i∈I

‖φ(a)ξi − ε̂(a)ξi‖2 = lim
i∈I

‖φi (a)ξi − ε̂(a)ξi‖2

= lim
i∈I

[〈ξi , φi (a∗a)ξi 〉 + ε̂(a∗a)− 2Re
〈

ε̂(a)ξi , φi (a)ξi
〉]

= lim
i∈I

[

μi (a
∗a) + ε̂(a∗a)− 2Re

(

ε̂(a∗)μi (a)
)]

= 2̂ε(a∗a)− 2Re ε̂(a∗a) = 0.

Let (Q, ε) be a Kazhdan pair of type 3 for G. For δ > 0, if i ∈ I sufficiently large, ξi
is (Q, δε)-invariant. By Lemma 5.6 it follows that ‖ξi − P(ξi )‖ ≤ δ, and ηi = P(ξi ) is
invariant. Then, for a ∈ Cu

0(
̂G),

|μi (a)− ε̂(a)| = |〈ξi , φ(a)ξi − ε̂(a)ξi 〉| = |〈ξi − ηi , φ(a)ξi 〉 − 〈ξi − ηi , ε̂(a)ξi 〉| ,
which follows as φ(a)∗ηi = φ(a∗)ηi = ε̂(a∗)ηi . Thus

|μi (a)− ε̂(a)| ≤ 2δ‖a‖,

so μi
i∈I−→ ε̂ in norm.

(b) �⇒ (c): Let (ai )i∈I be as in the hypotheses, so for each i ∈ I there is a state
μi on Cu

0(
̂G) with ai = (id ⊗ μi )( W∗). Let ω ∈ L1(G) and set a = (ω ⊗ id)( W∗);

we note that a ∈ Cu
0(
̂G) and that such elements are norm dense in Cu

0(
̂G). By Cohen’s

factorisation theorem, there are elements ω′ ∈ L1(G) and x ∈ C0(G) with ω = xω′.
Thus

lim
i∈I
μi (a) = lim

i∈I
ω(ai ) = lim

i∈I
ω′(ai x) = ω′(x) = ω(1) = ω((id ⊗ ε̂)( W∗)) = ε̂(a).

As {μi : i ∈ I} is a bounded net, this shows that μi → ε̂ in the weak∗ topology, and
hence by hypothesis, μi → ε̂ in norm. It follows immediately that ai → 1 in norm, as
claimed.

(c) �⇒ (a): LetU be a representation of G onHwhich has almost-invariant vectors.
Let U ∈ L(C0(G)⊗ H) be the associated adjointable operator. By Lemma 3.4, there is
a net (ξi )i∈I of unit vectors with

lim
i∈I

∥

∥U(a ⊗ ξi )− a ⊗ ξi
∥

∥ = 0 ∀a∈C0(G).

For ξ ∈ H let (id⊗ξ∗) : C0(G)⊗H → H be the adjointable map defined on elementary
tensors by (id ⊗ ξ∗) : a ⊗ η �→ 〈ξ, η〉a. As each ξi is a unit vector and U is unitary, it
follows that

lim
i∈I

∥

∥(id ⊗ ξ∗i )U∗(a ⊗ ξi )− a
∥

∥ = 0 ∀a∈C0(G).
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Now, the relation betweenU and U implies that (id⊗ξ∗i )U∗(a⊗ξi ) = (id⊗ωξi )(U∗)a.
Thus, if ai := (id⊗ωξi )(U∗), then ai is a normalised positive-definite element, and the
net (ai )i∈I is a left approximate identity for C0(G). By repeating the same argument
with U instead of U∗ and then taking adjoints, we deduce that (ai )i∈I is also a right
approximate identity for C0(G). Thus by hypothesis, ai → 1 in norm.

For each i ∈ I let ηi be the orthogonal projection of ξi onto Inv(U ). By combining
Lemma 3.12 with Proposition 3.13, we see that ηi is the unique vector of minimal norm
in the closed convex hull of

C = {(ω ⊗ id)(U∗)ξi : ω ∈ L1(G) is a state}.
For ε > 0 choose i ∈ I sufficiently large so that ‖ai − 1‖ < ε. Then, for ω a state in
L1(G), we see that as ξi is a unit vector,

∣

∣〈ξi , ξi − (ω ⊗ id)(U∗)ξi 〉
∣

∣ = |〈1− ai , ω〉| < ε.
Thus

∥

∥(ω ⊗ id)(U∗)ξi − ξi
∥

∥

2 = ∥

∥(ω ⊗ id)(U∗)ξi
∥

∥

2 + 1− 2Re〈ξi , (ω ⊗ id)(U∗)ξi 〉
≤ 2

(

1− Re〈ξi , (ω ⊗ id)(U∗)ξi 〉
)

≤ 2
∣

∣〈ξi , ξi − (ω ⊗ id)(U∗)ξi 〉
∣

∣ < 2ε.

So every vector inC is atmost
√
2ε from ξi , and hence the same is true of ηi . In particular,

if ε < 1/2 then ηi is non-zero, and invariant, showing that U has non-zero invariant
vectors, as required. ��

Wewill now show that in fact we can have better control over the elements appearing
in the above theorem.

Lemma 6.2. Let (ai )i∈I be a net of Hilbert space contractions which does not converge
to 1. Then (Re(ai ))i∈I also does not converge to 1.

Proof. It is enough to show the statement for sequences, as its sequential version is
easily seen to be equivalent to the following fact:

∀ε>0 ∃δ>0 ∀a∈B(H) (‖a‖ ≤ 1, ‖a − 1‖ > ε) �⇒ ‖Re(a)− 1‖ > δ.
So suppose then that the sequential statement fails, so that we have ε > 0 and (an)∞n=1 a
sequence of contractions such that ‖an − 1‖ > ε and ‖Re(an)− 1‖ ≤ 1

n for all n ∈ N.
Then

ε < ‖an − 1‖ = ‖Re(an)− 1 + iIm(an)‖ ≤ 1

n
+ ‖Im(an)‖

so for n big enough ‖Im(an)‖ > ε
2 . Thus there are vectors ξn ∈ H of norm 1 such that

|〈ξn, Im(an)ξn〉| > ε
2 . But then

1 ≥ |〈ξn, anξn〉| = |〈ξn, ξn〉 + 〈ξn, (Re(an)− 1)ξn〉 + i〈ξn, Im(an)ξn〉| = |1 + αn + iβn|,
where αn, βn are real numbers, |αn| ≤ 1

n , |βn| > ε
2 . This is clearly contradictory and

the proof is finished. ��
Of course for normal operators it would have been enough to use the functional

calculus. This is how one can prove in elementary fashion the next lemma.
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Lemma 6.3. Let (ai )i∈I be a net of selfadjoint Hilbert space contractions which does
not converge to1. Then the net (of positive operators) (exp(ai−1))i∈I does not converge
to 1.

Proof. Via the spectral theorem it suffices to note the following elementary fact:

∀ε>0 ∃δ>0 ∀a∈R (|a| ≤ 1, |a − 1| > ε) �⇒ | exp(a − 1)− 1| > δ.
��

We are now able to strengthen Theorem6.1 under the assumption of triviality of the
scaling group.

Proposition 6.4. Let G be a locally compact quantum group with trivial scaling group.
Then the following conditions are equivalent:

(a) G has Property (T);
(b) if (ai )i∈I is a net of normalised positive-definite elements in M(C0(G))+ which

converges strictly to 1, then limi∈I ‖ai − 1‖ = 0.

Proof. The implication (a)�⇒(b) is contained in Theorem6.1.
For the converse direction we begin by observing the following: if a is a normalised

positive-definite element ofM(C0(G)), then so is a∗—this follows from the fact that ifμ
is a state of Cu

0(
̂G), and̂G has a bounded antipode (as we assume here), then so isμ◦̂Su .

Further also Re(a) is a normalised positive-definite element, as a convex combination
of elements of this type. Additionally, if a ∈ M(C0(G)) is a normalised positive-definite
element, then so is exp(a−1)—this time we use [LS3, Theorem 6.3] and [LS2, Theorem

3.7], which imply that if μ is a state of Cu
0(
̂G), then so is exp∗(μ− ε̂) =∑∞

k=0
(μ−ε̂)∗k

k! .
Assume then that G does not have Property (T). By Theorem 6.1 there exists a net

(ai )i∈I of normalised positive-definite elements of M(C0(G)) which converges strictly
to 1, but does not converge to 1 in norm. By the considerations above and Lemmas6.2
and 6.3 the net (exp(Re(ai ) − 1))i∈I is a net of normalised positive-definite elements
of M(C0(G))+ which does not converge to 1 in norm. It is elementary to verify that it
converges to 1 strictly. ��

The following definition appears in [Ara] (for discrete quantum groups). Recall that
a functional in Cu

0(
̂G)∗ is said to be central if it commutes with all elements of Cu

0(
̂G)∗

with respect to the convolution product.

Definition 6.5. A locally compact quantum group G has Central Property (T) if for any
net (μi )i∈I of central states of Cu

0(
̂G) converging in the weak∗ topology to the counit ε̂,

the net (μi )i∈I actually converges in norm to ε̂.

It is clear from Theorem6.1 that Property (T) implies Central Property (T). The
following result of Arano establishes the converse implication for discrete unimodular
quantum groups.

Theorem 6.6 ([Ara, Proposition A.7]). A discrete unimodular quantum group has Prop-
erty (T) if and only if it has Central Property (T).

Note that for a discrete G a state μ ∈ Cu(̂G)∗ is central if and only if all the matrices
μα (α ∈ Irr(̂G)—see comments after Remark2.6) are scalar multiples of the identity, if
and only if the corresponding normalised positive-definite element (which in this case
can be identified simply with (μα)α∈Irr(G) ∈ M(c0(G))) is in the centre of M(c0(G)).
Using this fact we can easily show, following the lines above, the next corollary.
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Corollary 6.7. Let G be a unimodular discrete quantum group. Then the following con-
ditions are equivalent:

(a) G has Property (T);
(b) if (ai )i∈I is a net of central normalised positive-definite elements in M(c0(G))+

which converges strictly to 1, then limi∈I ‖ai − 1‖ = 0.

The following result now extends [Kye, Theorem 5.1] by adding to it another equiv-
alent condition, namely (c) below.

Theorem 6.8. Let G be a second countable discrete quantum group. The following are
equivalent:

(a) G has Property (T);
(b) G is unimodular and Pol(̂G) admits no unbounded generating functional;
(c) G is unimodular and Pol(̂G) admits no central strongly unbounded ̂Su-invariant

generating functional.

Proof. (a) �⇒ (b): this is the implication (a) �⇒ (b) in [Kye, Theorem 5.1]; the first
part dates back to [Fim].

(b) �⇒ (c): trivial.
(c) �⇒ (a): suppose that (c) holds and yet (T) fails. Let (Kn)

∞
n=1 be an increasing

family of finite subsets of Irr(̂G) such that
⋃∞

n=1 Kn = Irr(̂G). We will argue as in the
proof of the implication (a4)�⇒(b3) in [Jol2], attributed there to [AkW].

Corollary 6.7 implies the existence of a net of central normalised positive-definite
contractions (ai )i∈I in M(c0(G))+ which is strictly convergent to 1, but not norm con-
vergent to 1. As Irr(̂G) is assumed to be countable, we can replace this net by a sequence
with the same properties. Consider the corresponding positive scalar matrices aαk ∈ Mnα .
There exists ε > 0 such that for each k ∈ N there exists l ≥ k and αl ∈ Irr(̂G) such
that ‖Inαl − aαll ‖ ≥ ε. Similarly for each p ∈ N there exists N ∈ N such that for all
k ≥ N we have supα∈Kp

‖Inα − aαk ‖ ≤ ε
4p . Using these two facts we can, by passing

to a subsequence constructed inductively, assume that in fact for each l ∈ N there exists
αl ∈ Irr(̂G) such that

‖Inαl − aαll ‖ ≥ ε, (6.1)

sup
α∈Kl

‖Inα − aαl ‖ ≤ ε

4l
. (6.2)

Define for each α ∈ Irr(̂G)

Lα =
∞
∑

l=1

2l(Inα − aαl ).

Condition (6.2) assures that each Lα is well defined. For each l ∈ N we have Lαl ≥
2l(Inαl − aαll ) ≥ 0, and thus condition (6.1) implies that ‖Lαl‖ ≥ 2lε. Finally it is

easy to verify that the functional L induced on Pol(̂G) via matrices Lα is a generating
functional, as it is defined via (pointwise convergent) series

L =
∞
∑

l=1

2l (̂ε − μl),

where μl denotes the state of Pol(̂G) corresponding to al , which satisfies μl ◦̂Su = μl .
This ends the proof, as L is clearly strongly unbounded, central and ̂Su-invariant. ��
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7. Implication (T)1,1 ⇒ (T) for Discrete Unimodular Quantum Groups with Low
Duals

In this section we establish one of the main results of the whole paper, that is we show
that for discrete unimodular quantum groups with low duals Property (T) is equivalent
to Property (T)1,1 (and in fact to Property (T)r,s for any r, s ∈ N). The key tool will be
Theorem 6.8, and we begin with a series of technical lemmas regarding the behaviour of
convolution semigroups of states at infinity implied by the properties of their generators.

Lemma 7.1. Let G be a discrete unimodular quantum group and let L be a central
strongly unbounded ̂Su-invariant generating functional on Pol(̂G) (so that we have
Lα = cα Inα for all α ∈ Irr(̂G), where cα ∈ R+) and suppose that (γl)l∈N is a sequence
of elements of Irr(̂G) such that we have Lγl = dl IMnγl

(l ∈ N), with (dl)∞l=1 a sequence

of positive numbers increasing to infinity. Let α, β ∈ Irr(̂G) and define for each l ∈ N

the matrix V (l) ∈ Mnα ⊗ Mnγl
⊗ Mnβ by the formula

V (l)(i, j,k),(p,r,s) = L
(

(uαi p)
∗uγljr u

β
ks

)

,

i, p = 1, . . . , nα, j, r = 1, . . . , nγl , k, s = 1, . . . , nβ . Then all matrices V (l) are self-
adjoint, and there exists a sequence (el)∞l=1 of positive numbers converging to infinity
such that for each l ∈ N

σ(V (l)) ⊆ {λ ∈ C : Re λ ≥ el}.
Proof. The matrices V (l) are selfadjoint, because L being ̂Su-invariant and ̂G being of
Kac type imply that for all suitable i, j, k, p, r, s,

(V (l)∗)(i, j,k),(p,r,s) = (V (l)(p,r,s),(i, j,k)) = L((uαpi )
∗uγlr j u

β
sk) = L((uβsk)

∗(uγlr j )
∗uαpi )

= (L ◦̂Su)((uβsk)∗(uγlr j )∗uαpi ) = L((uαi p)
∗uγljr u

β
ks) = V (l)(i, j,k),(p,r,s).

Recall that if ρ is a representation of Cu(̂G) on a Hilbert space H, a linear map
c : Pol(̂G)→ H is a cocycle for ρ if it is a ρ − ε̂-derivation, i.e., for all a, b ∈ Pol(̂G),

c(ab) = ρ(a)c(b) + c(a)̂ε(b).

The ‘conditional’ GNS construction for the generating functional L (originally due to
Schürmann, we refer for example to [DFSW, Subsection 7.2] for details) yields the
existence of a Hilbert space H, a representation ρ : Cu(̂G) → B(H), and a cocycle
c : Pol(̂G)→ H for ρ such that for all a, b ∈ Pol(̂G) we have

L(a∗b) = L(a)̂ε(b) + ε̂(a)L(b)− 〈c(a), c(b)〉.
(Remark that the scalars cl from the lemma’s statement are indeed non-negative since
c is real as L is ̂Su-invariant, see [DFSW, Proposition 7.21, (7.10), and the succeed-
ing paragraph].) Expanding this equality and using the ρ − ε̂ derivation property yields
for all a, b, d ∈ Pol(̂G)
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L(a∗bd) = L(a)̂ε(bd) + ε̂(a)L(bd)− 〈c(a), c(bd)〉
= L(a)̂ε(bd) + ε̂(a)

(

L(b∗)̂ε(d) + ε̂(b∗)L(d)− 〈c(b∗), c(d)〉
)

− 〈c(a), ρ(b)c(d)〉 − ε̂(d)〈c(a), c(b)〉
= L(a∗)̂ε(bd) + L(b)̂ε(a∗d) + L(d )̂ε(a∗b)− ε̂(a∗)〈c(b∗), c(d)〉
− 〈c(a), ρ(b)c(d)〉 − ε̂(d)〈c(a), c(b)〉.

Using now the fact that L is central and properties of the counit we obtain

V (l)(i, j,k),(p,r,s) = δi,pδ j,rδk,s(cα+cl+cβ)−δi,p〈c((uγljr )∗),
c(uβks)〉−δk,s〈c(uαi p), c(uγljr )〉 − 〈c(uαi p), ρ(uγljr )c(uβks)〉.

The trick is now based on expressing the last equality in a matrix form. We will do it
step by step. Define the following Hilbert space operators: Tl ,˜Tl : C

nγl → H ⊗ C
nγl ,

˜Tα : C
nα → H⊗ C

nα , and Tβ : C
nβ → H⊗ C

nβ :

Tl(e j ) =
nγl
∑

a=1

c(uγlja)⊗ ea,

˜Tl(e j ) =
nγl
∑

a=1

c((uγla j )
∗)⊗ ea,

˜Tα(ei ) =
nα
∑

b=1

c(uαbi )⊗ eb,

Tβ(ek) =
nβ
∑

b=1

c(uβkb)⊗ eb,

for j ∈ {1, . . . , nγl }, i ∈ {1, . . . , nα}, k ∈ {1, . . . , nβ}, where (e j )nγlj=1, (ei )
nα
i=1 and

(ek)
nβ
k=1 are orthonormal bases of the respective spaces.
To simplify the notation we will now write Iα for IMnα

, Il for IMnγl
and Iβ for IMnβ

and denote the Hilbert space tensor flips by� (with the position of the flipped arguments
understood from the context). Then we claim the following:

V (l) = (cα + cl + cβ)Iα ⊗ Il ⊗ Iβ − Iα ⊗
(

(˜Tl
∗ ⊗ Iβ)�(Il ⊗ Tβ)

)t

−
(

(˜Tα
∗ ⊗ Il)�(Iα ⊗ Tl)

)t ⊗ Iβ

−
[

(˜Tα
∗ ⊗ Il ⊗ Iβ)�(Iα ⊗ ρ(nγl )(uγl )t ⊗ Iβ)(Iα ⊗ Il ⊗ Tβ)

]t
,

where ρ(nγl )(uγl ) is the unitary operator in Mnγl
⊗ B(H) obtained via the matrix lifting

of the representation ρ and interpreted as an operator from C
nγl ⊗H to C

nγl ⊗H, and t
denotes matrix transposition. Note that (uγl )t is unitary because G is of Kac type.
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Analyse for example the expression
(

(˜Tl
∗ ⊗ Iβ)�(Il ⊗ Tβ)

)t

( j,k),(r,s)
. It is equal to

〈er ⊗ es, (˜Tl
∗ ⊗ Iβ)�(Il ⊗ Tβ)(e j ⊗ ek)〉

= 〈(˜Tl ⊗ Iβ)(er ⊗ es),�(Il ⊗ Tβ)(e j ⊗ ek)〉
=
∑

a,b

〈c((uγlar )∗)⊗ ea ⊗ es, �(e j ⊗ c(uβkb)⊗ eb)〉

=
∑

a,b

〈c((uγlar )∗)⊗ ea ⊗ es, c(u
β
kb)⊗ e j ⊗ eb〉

= 〈c((uγljr )∗), c(uβks)〉,
and similar computations allow us to verify the ‘matricial’ formula for V (l) given above.

Recalling that the sequence (cl)∞l=1 converges monotonically to infinity, to finish the

proof of the lemma it suffices to note that the norms of Tl and ˜Tl are equal to (2cl)
1
2 .

Indeed, compute for example

(T ∗
l Tl)i, j = 〈Tlei , Tle j 〉 =

nγl
∑

a,b=1

〈c(uγlia)⊗ ea, c(u
γl
jb)⊗ eb〉

=
nγl
∑

a=1

〈c(uγlia), c(uγlja)〉

=
nγl
∑

a=1

(−L((uγlia)
∗uγlja) + ε̂(u

γl
ja)L(u

γl
ia) + L(uγlja )̂ε(u

γl
ia))

= −L(δi j1) + L(uγli j ) + L(uγlj i ) = 2clδi, j ,

where we use the unitarity of (unγ )t and the fact that L(1) = 0. Similarly we compute

(˜Tl
∗
˜Tl)i, j = 〈˜Tlei ,˜Tle j 〉 =

nγl
∑

a,b=1

〈c((uγlai )∗)⊗ ea, c((u
γl
bj )

∗)⊗ eb〉

=
nγl
∑

a=1

〈c((uγlai )∗), c((uγla j )∗)〉

=
nγl
∑

a=1

(−L(uγlai (u
γl
a j )

∗) + ε̂(uγla j )L(u
γl
ai ) + L(uγla j )̂ε(u

γl
ai ))

= −L(δi j1) + L(uγlj i ) + L(uγli j ) = 2clδi, j .

��
Lemma 7.2. Let G be a second countable discrete unimodular quantum group with a
low dual and let L be a central strongly unbounded ̂Su-invariant generating functional
on Pol(̂G). Consider the convolution semigroup of states (μt )t≥0 onCu(̂G) generated by
L (see Lemma2.7). Let πt : Cu(̂G)→ B(Ht ) be the corresponding GNS representation.
Then for t > 0, πt � πt does not contain non-zero invariant vectors.



Around Property (T) for Quantum Groups 105

Proof. Fix t > 0. Denote the GNS triple of μt by (πt ,Ht ,Ωt ). Then the representation
πt � πt acts on the Hilbert space Ht ⊗ Ht and H0 := span{πt (a)Ωt ⊗ πt (b)Ωt : a, b ∈
Pol(̂G)} is a dense subspace of Ht ⊗Ht . It suffices then to show that the distance of the
unit sphere ofH0 from the set of invariant vectors forπt �πt of norm1 is non-zero (wewill
show it is in fact equal to 1). To this end consider ζ ∈ H0, ζ =∑k

i=1 πt (ai )Ωt⊗πt (bi )Ωt

for some k ∈ N, a1, . . . , ak, b1, . . . , bk ∈ Pol(̂G), ‖ζ‖ = 1.
Let (γl)l∈N be a sequence of elements of Irr(̂G) such that we have Lγl = cl IMnγl

(l ∈ N), with (cl)∞l=1 a sequence of positive numbers increasing to infinity. Define
zl := uγl11. We are interested in the following expression, calculated using Lemma 2.5
and (2.6):

‖(πt � πt )(zl)ζ − ε̂(zl)ζ‖2 = ‖(πt � πt )(zl)ζ − ζ‖2
= ‖ζ‖2 + ‖(πt � πt )(zl)ζ‖2 − 2Re〈ζ, (πt � πt )(zl)ζ 〉

≥ 1− 2
k
∑

i, j=1

Re〈πt (a j )Ωt ⊗ πt (b j )Ωt , (πt � πt )(zl)

[πt (ai )Ωt ⊗ πt (bi )Ωt ]〉

= 1− 2
k
∑

i, j=1

nγl
∑

r=1

Re〈πt (a j )Ωt ⊗ πt (b j )Ωt , (πt (u
γl
r1)

⊗ πt (uγl1r ))[πt (ai )Ωt ⊗ πt (bi )Ωt ]〉

= 1− 2
k
∑

i, j=1

nγl
∑

r=1

Re[μt (a
∗
j u
γl
r1ai )μt (b

∗
j u
γl
1r bi )].

The sum
∑nγl

r=1 μt (a∗j u
γl
r1ai )μt (b∗j u

γl
1r bi ) is a finite (independent of l, as we work with

fixed ai and bi ) linear combination of the terms of the form

nγl
∑

r=1

μt ((u
α
i p)

∗uγlr1u
β
ks)μt ((u

α′
i ′ p′)

∗uγl1r u
β ′
k′s′),

each of which can by (2.6) be in turn expressed as

nγl
∑

r=1

(e−tV (l) )(i,r,k),(p,1,s)(e
−t (V ′)(l) )(i ′,1,k′),(p′,r,s′),

where the matrices V (l) and (V ′)(l) are of the type introduced in the last lemma.
Here we can finally use the lowness assumption: as there exists N such that nγl ≤ N

for all l ∈ N, it suffices to show that in fact each suitable matrix entry of the matricial
sequence (e−tV (l) ) (indexed by l) tends to 0. We know however that this sequence even
converges to 0 in norm by Lemma 7.1. ��

We are now ready to formulate the main result of this section, generalising the result
of Bekka and Valette [BV1], [BHV, Theorem 2.12.9] to discrete unimodular quantum
groups with low duals.
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Theorem 7.3. Let G be a second countable discrete unimodular quantum group with a
low dual. Then G has Property (T) if and only if G has Property (T)1,1.

Proof. The forward implication does not require discreteness or unimodularity, and was
noted in Proposition 5.3.

Assume then that G does not have Property (T). We will show that there exists
a weakly mixing representation of G which has almost-invariant vectors. Indeed, by
Theorem6.8 there exists a central strongly unbounded̂Su-invariant generating functional
L on Pol(̂G). Let (μt )t≥0 be the convolution semigroup of states on Cu(̂G) generated
by L and for each t > 0 let πt : Cu(̂G)→ B(Ht ) denote the GNS representation of μt ,
and Ut the associated representation of G. Since L iŝSu-invariant, each of the states μt
is also ̂Su-invariant. By Lemma 2.4, each of the representations Ut satisfies condition
R of Definition 2.3, and is thus unitarily equivalent to its contragredient.

Choose a sequence (tn)∞n=1 of positive real numbers convergent to 0. Then using
pointwise convergence of μt as t −→ 0+ we can verify that the representation V :=
⊕

n∈NUtn has almost-invariant vectors (recall that the passage betweenU andπ respects
direct sums). We claim that V is weakly mixing. If that was not the case, V �������	� V c would
not be ergodic. This implies that for some n,m ∈ N the representation Utn

�������	� Uc
tm is

not ergodic. Hence, Utn is not weakly mixing, that is, Utn
�������	� Uc

tn
∼= Utn

�������	� Utn admits
a non-zero invariant vector (see Sect. 3 for all this), and thus so does φUtn

�������	�Utn
. By

Lemma2.5 the last map is exactly πtn � πtn , and Lemma7.2 yields a contradiction. ��
Remark 7.4. In the above proof, since each of the representations Ut , t > 0, satisfies
conditionR, the same is true for V . Therefore, for a discrete unimodular quantum group
that satisfies the assumptions of Theorem 7.3, Property (T) is equivalent to the following
weakening of Property (T)1,1: each of its representations which satisfies condition R
and has almost-invariant vectors is not weakly mixing.

Remark 7.5. Note that the low dual assumption was only used in the last part of the
proof of Lemma7.2, and that in fact an analogous proof shows that for second countable
discrete unimodular quantumgroupwith a lowdual Property (T) is equivalent to Property
(T)r,s for any (equivalently, all) r, s ∈ N.

Observe also that the original definition of Property (T)r,s for locally compact groups
in [BV1, p. 294] translates in our setting to the following condition: for every represen-
tation U of G such that U


��
����� r �������	� (Uc)

��
����� s has almost invariant vectors, U


��
����� r �������	� (Uc)

��
����� s

has a non-zero invariant vector. Clearly, if U has almost invariant vectors, so does Uc,
and thus so does U


��
����� r �������	� (Uc)

��
����� s . Consequently, if G has Property (T)r,s in the sense of

[BV1] as explained above, it has Property (T)r,s in the sense of Definition 5.2. Therefore,
for a discrete unimodular quantum group that satisfies the assumptions of Theorem 7.3
and r, s ∈ N, Property (T) is also equivalent to Property (T)r,s in the sense of [BV1].

As a corollary, we obtain the following generalisation of part of [KP, Theorem 2.5]
to discrete unimodular quantum groups with low duals. It says that lack of Property (T)
is equivalent to the genericity of weak mixing for representations on a fixed infinite-
dimensional separable Hilbert space.

Theorem 7.6. Let G be a second countable discrete unimodular quantum group with a
low dual. Then G does not have Property (T) if and only if the weakly mixing represen-
tations form a dense set in the space RepGH. If G has Property (T), then the ergodic
representations (hence also the weakly mixing ones) form a nowhere dense closed set in
RepGH.
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Proof. If G fails (T) then G fails (T)1,1 by Theorem7.3 and so there is a representation
U of G which has almost-invariant vectors but which is weakly mixing. Recall from
Subsection 2.2 that weak mixing of representations of G is stable under tensoring by ar-
bitrary representations. In conclusion, by [DFSW, Lemma 5.3], the collection of weakly
mixing representations is dense in RepGH.

Suppose that G has Property (T). Then the set of ergodic representations is closed
(thus, so is the set of weakly mixing representations, by Lemma 3.16). Indeed, let (Q, ε)
be a Kazhdan pair of type 1 for G (see Theorem 5.5). Suppose that (Un)

∞
n=1 and U are

in RepGH, Un → U and all Un are ergodic. If ξ is a unit vector invariant under U , then
since convergence in RepGH implies strong convergence on L2(G)⊗H, there is n such
that ‖Un(η ⊗ ξ)− η ⊗ ξ‖ < ε for every η ∈ Q, contradicting the ergodicity of Un .

Furthermore, using a suitable Kazhdan pair of type 2 for G, we deduce that there
exists a neighbourhood A1 of1 in RepGH all of whose elements are not ergodic. Assume
by contradiction that the set of ergodic representations in RepGH contains an open subset
A2. From Lemma 3.18 it follows that there exists U ∈ RepGH whose equivalence class
is dense in RepGH. In particular, it intersects both A1 and A2, which is absurd. ��

8. Spectral Gaps

In this section, we define the notion of a spectral gap for representations and actions
of locally compact quantum groups and relate it to ergodic properties of the relevant
actions. In conjunction with the results of the previous section it gives a characterisation
of Property (T) for a second countable discrete unimodular quantum group with a low
dual in terms of the relation between arbitrary invariant states and normal invariant states
for actions of G, which extends the analogous classical result of [LiN].

Definition 8.1. We say that a representation U of a locally compact quantum group has
spectral gap if the restriction of U to Inv(U )⊥ does not have almost-invariant vectors.
An action of a locally compact quantum group on a von Neumann algebra is said to have
spectral gap if its implementing unitary has spectral gap.

Evidently, a locally compact quantum group has Property (T) if and only if each of
its representations has spectral gap. Recall that given a representation U , pU denotes
the orthogonal projection onto the invariant vectors of U .

Lemma 8.2. Let U be a representation of a locally compact quantum group G on a
Hilbert space H and φU be the associated representation of Cu

0(
̂G). Then U does not

have spectral gap if and only if there exists a stateΨ ofB(H) satisfying (id⊗Ψ )(U ) = 1
and Ψ (pU ) = 0, and if pU  = 0, this is equivalent to the condition pU /∈ Im φU .

Proof. Write U1 for the restriction of U to Inv(U )⊥, and let φU1 = φU (·)|Inv(U )⊥ be
the associated representation of Cu

0(
̂G). Then U ∼= 1B(Inv(U )) ⊕ U1. By Lemma 3.4,

U does not have spectral gap if and only if there exists a state Ψ of B(Inv(U )⊥) with
(id⊗ Ψ )(U1) = 1L∞(G). This is plainly the same as the existence of a state Ψ of B(H)
with (id ⊗ Ψ )(U ) = 1L∞(G) and Ψ (pU ) = 0.

Assume now that such a state Ψ exists. If pU ∈ Im φU , then 0 = Ψ (pU )pU =
pU pU = pU by Lemma 3.4. Hence pU = 0.

Conversely, if pU /∈ Im φU , consider the linearmap j : Im φU → B(H), j (φU (a)) :=
φU (a)(1− pU ) = φU (a)− ε̂(a)pU , a ∈ Cu

0(
̂G). It is an injective ∗-homomorphism (in-

jectivity follows from pU /∈ Im φU ) whose image is (Im φU )(1− pU ), the subspace we
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identifywith Im φU1 . Therefore, fixing a unit vector ζ ∈ Inv(U ), the stateΨ1 := ωζ ◦ j−1

of Im φU1 satisfies Ψ1 ◦ φU1 = ε̂. Hence, from Lemma 3.4, φU1 has almost-invariant
vectors, namely, U does not have spectral gap. ��
Lemma 8.3. Letα be an action of a locally compact quantumgroupGona vonNeumann
algebra N ⊆ B(K). If α is implemented by a unitary V ∈ B(L2(G)⊗K) and a state Ψ
of B(K) satisfies (id ⊗ Ψ )(V ) = 1, then the restriction Ψ |N is invariant under α.

Proof. The argument is as in [BeT, Theorem 3.2]. Observe that for a state Ψ of B(K)
as above, V belongs to the multiplicative domain of the unital completely positive map
id ⊗ Ψ [Pau, Theorem 3.18]. Consequently,

(id ⊗ Ψ |N )α(x) = (id ⊗ Ψ )(V ∗(1⊗ x)V )

= (id ⊗ Ψ )(V ∗)(id ⊗ Ψ )(1⊗ x)(id ⊗ Ψ )(V ) = Ψ |N (x)1

for every x ∈ N . ��
We are ready for the first of the main results of this section.

Theorem 8.4. Let G be a locally compact quantum group acting on a von Neumann
algebra N by an action α : N → L∞(G)⊗ N. Write U ∈ M(C0(G)⊗K(L2(N ))) for
the implementing unitary of α, and let φU be the associated representation of Cu

0(
̂G).

Consider the following conditions:

(a) α has spectral gap;
(b) every state Ψ of B(L2(N )) with (id ⊗ Ψ )(U ) = 1 satisfies Ψ (pU )  = 0;
(c) pU ∈ Im φU ;
(d) every state of N that is invariant under α is the weak∗-limit of a net of normal states

of N that are invariant under α.

Then (a) is equivalent to (b), and they are equivalent to (c) when pU  = 0. If G is a
discrete quantum group, then (a) �⇒ (d), and (d) �⇒ (a) when d‖·‖(pU , N ) < 1

2 .

Proof. The statements about the implications between (a), (b) and (c) are just Lemma
8.2.

Assume henceforth that G is a discrete quantum group. For (a) �⇒ (d), suppose
that α has spectral gap and m is an α-invariant state of N . By Proposition 4.11, (a),
there is a net of unit vectors (ζi )i∈I in L2(N ) that is almost invariant under U and such

that ωζi
i∈I−→ m in the weak∗ topology of N∗. The net

(

(1− pU )ζi
)

i∈I in Inv(U )⊥
must converge to zero for U has spectral gap—otherwise, by normalising and passing
to a subnet, we get a net in Inv(U )⊥ that is almost invariant under U . Therefore, letting

ζ ′i := 1‖pU ζi‖ pU ζi for every i ,m is the weak∗-limit of the net
(

ωζ ′i

)

i∈I of normal states

of N that are invariant under α.
(d) �⇒ (b) when d‖·‖(pU , N ) < 1

2 : a vector ζ in the positive cone P of N in L2(N )
is invariant underU if and only ifωζ is invariant underα. Indeed, the forward implication
follows from the definitions for arbitrary ζ ∈ L2(N ), while the backward implication
follows from Proposition 4.11, (b). If Ψ is a state of B(L2(N )) with (id⊗ Ψ )(U ) = 1,
then from Lemma 8.3 and (d), Ψ |N is the weak∗-limit of a net of normal states of N
that are invariant under α, say

(

ωζi
)

i∈I with ζi ∈ P for every i ∈ I. So for every i ∈ I,
ζi is invariant under U , i.e., ωζi (p

U ) = 1. Let q ∈ N be such that
∥

∥pU − q
∥

∥ < 1
2 .



Around Property (T) for Quantum Groups 109

Since Ψ |N = weak∗ − limi∈I ωζi , we have Ψ (q) − 1 = limi∈I ωζi (q − pU ), hence
|Ψ (q)− 1| < 1

2 . We conclude that

∣

∣

∣Ψ (pU )
∣

∣

∣ ≥ 1−
∣

∣

∣Ψ (pU − q)
∣

∣

∣− |Ψ (q)− 1| > 1− 1

2
− 1

2
= 0,

yielding (b). ��
Remark 8.5. In the proof of (a) �⇒ (d) we were limited to discrete quantum groups
only because of Proposition 4.11. However, Proposition 4.11 holds more generally than
it is stated (although we do not know precisely to what extent). This does not contradict
the example at the top of [LiN, p. 4919], explaining that the analogue of (a) �⇒ (d) fails
when α is the left translation action of the circle group, because the notion of invariance
of (non-normal) states under an action used in [LiN] is weaker than ours; see Remark 4.3.
Using our terminology, (a) �⇒ (d) holds trivially whenever G is a compact quantum
group and α := Δ.

The next theorem characterises Property (T) of certain discrete unimodular quantum
groups in terms of their actions on von Neumann algebras.

Theorem 8.6. Let G be a second countable discrete unimodular quantum group with a
low dual. Then the following are equivalent:

(a) G has Property (T);
(b) for every action α of G on a von Neumann algebra N, every state Ψ of B(L2(N ))

with (id⊗Ψ )(U ) = 1 satisfies Ψ (pU )  = 0, where U is the unitary implementation
of α;

(c) for every action α of G on a von Neumann algebra N, every state of N that is
invariant under α is the weak∗-limit of a net of normal states of N that are invariant
under α;

(d) every actionα ofG onB(K), for someHilbert spaceK, having noα-invariant normal
states of B(K), has no α-invariant states of B(K).

Proof. By the definition of Property (T) and Theorem 8.4, we have (a) �⇒ (b) �⇒ (c).
Also (c) implies (d).

(d) �⇒ (a): If G does not have Property (T), then by Theorem 7.3, G does not have
Property (T)1,1. Let then V ∈ M(c0(G)⊗ K(K)) be a representation of G on a Hilbert
space K which has an almost-invariant net (ζi )i∈I of unit vectors but is weakly mixing.
Consider the action α of G on B(K) given by α(x) := V ∗(1 ⊗ x)V , x ∈ B(K). Then
any weak∗-cluster point of

(

ωζi
)

i∈I is an α-invariant state of B(K).
Nevertheless, α does not admit any normal invariant state. Indeed, by Lemma 4.13,

the (canonical) unitary implementation ofα onK⊗K is V �������	⊥ V c ∈ M(c0(G)⊗K(K⊗K)).
Weak mixing of V is equivalent to ergodicity of V �������	⊥ V c. By Proposition 4.11, (b), any
normal α-invariant state would give a V �������	⊥ V c-invariant unit vector in K ⊗ K. Hence,
such a state cannot exist. ��

9. A Non-commutative Connes–Weiss Theorem

In this short last section we provide a non-commutative version of a classical result of
Connes and Weiss [CoW], showing that for a certain class of discrete quantum groups
G, Property (T) may be characterised by the properties of the trace-preserving actions
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of G on the von Neumann algebra VN(F∞). The key role in this result is played by the
construction of ‘canonical actions’ of quantum groups on the free Araki–Woods factors,
due to Vaes.

Let us then recall the construction ofVaes [Va3, Section 3], yielding canonical actions,
induced by certain representations, of locally compact quantumgroups on the freeAraki–
Woods factors of Shlyakhtenko [Shl] (see also [Va2]). Let T be an involution on a Hilbert
spaceK, that is, a closed, densely-defined, injective anti-linear operator onK that satisfies
T = T−1, and let T = J Q1/2 be its polar decomposition. On the (full) Fock space

F(K) := CΩ ⊕
∞
⊕

n=1

K⊗n

(the unit vectorΩ is called the vacuum vector) consider the left creation (shift) operators
�(ζ ), ζ ∈ K, given by Ω �→ ζ and K⊗n ' η �→ ζ ⊗ η ∈ K⊗(n+1), and the operators

s(ζ ) := �(ζ ) + �(Tζ )∗, ζ ∈ D(T).

The von Neumann algebra �(KJ , Qit )′′ := {s(ζ ) : ζ ∈ D(T)}′′ on F(K ) is called
the free Araki–Woods von Neumann algebra associated with T. The vacuum vector Ω
is generating and separating for �(KJ , Qit )′′. Thus, the free quasi-free state ωΩ of
�(KJ , Qit )′′ is faithful, and the above representation of �(KJ , Qit )′′ on F(K) can be
seen as its GNS representation with respect to ωΩ .

When the dimension dimKJ of the real Hilbert space KJ := {ζ ∈ K : J ζ = ζ } is
at least 2, the von Neumann algebra �(KJ , Qit )′′ is a factor. In particular, when Q = 1

and n := dimKJ ≥ 2, we have (�(KJ , Qit )′′, ωΩ) ∼= (VN(Fn), τ ), where Fn is the
free group on n generators, VN(Fn) is its group von Neumann algebra and τ is the
(unique) tracial state of VN(Fn).

Proposition 9.1 ([Va3, Proposition 3.1]). In the above setting, letU ∈ M(C0(G)⊗K(K))
be a representation of the locally compact quantum group G on K that satisfies

(ω ⊗ id)(U∗)T ⊆ T(ω ⊗ id)(U∗) ∀ω∈L1(G). (9.1)

Then the representation of G on F(K) given by

F(U ) :=
∞
⊕

n=0

U

��
����⊥n,

where U

��
����⊥0 := 1 ∈ M(C0(G) ⊗ K(CΩ)) and U


��
����⊥n = U �������	⊥ · · · �������	⊥ U
︸ ︷︷ ︸

n times

= U1(n+1) · · ·

U13U12 ∈ M(C0(G) ⊗ K(K⊗n)), n ≥ 1, induces an action α of G on �(KJ , Qit )′′
given by

αU (x) := F(U )∗(1⊗ x)F(U ), x ∈ �(KJ , Qit )′′. (9.2)

Furthermore, the free quasi-free state is invariant under αU .

We will need the following simple observation: when the assumptions of Proposi-
tion 9.1 hold, the implementing unitary of α on F(K) with respect to the vacuum vector
Ω is F(U ). Indeed, by the foregoing and (4.4), one should show that

(id ⊗ ωyΩ,xΩ)(F(U )∗) = (id ⊗ ωyΩ,Ω)(α(x))

for every x, y ∈ �(KJ , Qit )′′. But this is clear from the definition of F(U ).
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Lemma 9.2. Let G be a locally compact quantum group with trivial scaling group and
U a representation of G on a Hilbert space K. Then for an involutive anti-unitary J on
K, U satisfies conditionR of Definition 2.3 with respect to J if and only if U fulfils the
assumptions of Proposition 9.1 with T := J .

Proof. As before, write j for the ∗-anti-isomorphism onK(K) given by j (x) := J x∗J ,
x ∈ K(K). Now (R ⊗ j)(U ) = U if and only if

(ω ⊗ ρ)(U ) = (ω ◦ R)[(id ⊗ (ρ ◦ j))(U )] ∀ω∈L1(G)∀ρ∈B(K)∗ ,
whileU satisfies (9.1) for T := J if and only if (ω⊗ id)(U ) = J (ω⊗ id)(U )J for all
ω ∈ L1(G), if and only if

(ω ⊗ ρ)(U ) = ω[(id ⊗ (ρ ◦ j))(U∗)] ∀ω∈L1(G)∀ρ∈B(K)∗ .
Since the scaling group of G is trivial, we have S = R, so by (2.3) the right-hand sides
of the last two equations are equal. ��

The following is a non-commutative analogue of the Connes–Weiss theorem on dis-
crete groups [CoW], [BHV, Theorem 6.3.4], in which VN(F∞) := VN(Fℵ0) substitutes
commutative von Neumann algebras. Recall Definitions4.4 and 4.7.

Theorem 9.3. Let G be a second countable discrete unimodular quantum group with a
low dual. Then the following conditions are equivalent:

(a) G has Property (T);
(b) for every von Neumann algebra N with a faithful normal state θ , every ergodic
θ -preserving action of G on N is strongly ergodic;

(b′) condition (b) is satisfied for (N , θ) = (VN(F∞), τ );
(c) for every von Neumann algebra N with a faithful normal state θ , every weakly

mixing θ -preserving action of G on N is strongly ergodic;
(c′) condition (c) is satisfied for (N , θ) = (VN(F∞), τ ).
Proof. (a) �⇒ (b): if (xι)ι∈I is a net of elements of N which is asymptotically invariant
and not trivial, then letting yι := xι − θ(xι)1, we get ηθ (yι) ∈ ηθ (1)

⊥ for all ι and

yι
ι∈I
�−→ 0 strongly. By the paragraph succeeding Definition 4.7, the restriction of the

implementing unitary of α to ηθ (1)
⊥, which is ergodic by assumption, has almost-

invariant vectors, contradicting Property (T).
(b) implies (b′) and (c), and either of them implies (c′).
(c′) �⇒ (a): suppose that G does not have Property (T). By Theorem 7.3, G does

not have Property (T)1,1. So there exists a representation U ∈ M(c0(G) ⊗ K(K)) of
G on a Hilbert space K that satisfies condition R, has a net (ζi )i∈I of unit vectors
that is almost-invariant under U and is weakly mixing (see Remark 7.4). Since G is
unimodular, the assumptions of Proposition 9.1 are fulfilled with T being a suitable
involutive anti-unitary J on K by Lemma 9.2. Consider the induced action α := αU
of G on the free Araki–Woods factor �(KJ , id)′′ ∼= VN(F∞) given by (9.2), and the
canonical free quasi-free state (the vector state ωΩ of the vacuum vector Ω), which is
invariant under α, and which, in this case, is just the canonical trace τ on VN(F∞).

Consider the bounded net (s(ζi ))i∈I in �(KJ , id)′′. For every i ∈ I we have

s(ζi )Ω = ζi , so that τ(s(ζi )) = 0 but s(ζi )
i∈I
�−→ 0 strongly. In the proof of [Va3,

Proposition 3.1] it is observed that for all ω ∈ �1(G) and ζ ∈ K,

(ω ⊗ id)α(s(ζ )) = s((ω ⊗ id)(U∗)ζ ).
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Therefore, by almost invariance of (ζi )i∈I under U , we have

(ω ⊗ id)α(s(ζi ))− s(ζi ) = s((ω ⊗ id)(U∗)ζi − ζi ) i∈I−→ 0

in norm for every normal state ω of L∞(G). In conclusion, (s(ζi ))i∈I is asymptotically
invariant under α and is non-trivial, and thus α is not strongly ergodic.

It is left to prove that the action α is weakly mixing. By the observation succeeding
Proposition 9.1, F(U ) is the implementing unitary of α. Restricting F(U ) to Ω⊥ ⊆
F(K),we get the operatorY :=⊕∞

n=1U

��
����⊥n .NowY �������	⊥ Y c =⊕∞

n=1U �������	⊥ (U 
��
����⊥ (n−1) �������	⊥ Y c).
But U is weakly mixing, which, since G is of Kac type, is equivalent to U �������	⊥ Z being
ergodic for every representation Z of G. Consequently, Y �������	⊥ Y c is ergodic, i.e., Y is
weakly mixing (again, G being of Kac type). ��

Note that to the best of our knowledge the equivalence between (a) and (c′) above is
new also for classical discrete groups.
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Appendix

In this appendix we discuss the notion of a morphism between locally compact quantum groups having dense
image, as proposed in Definition2.8. Begin by the following easy observation (see [DFSW, Theorem 1.1]):
for locally compact Hausdorff spaces X and Y , there is a one-to-one correspondence between continuous
maps φ : X → Y and morphisms Φ : C0(Y )→ Cb(X) given by Φ( f ) = f ◦ φ, f ∈ C0(Y ); a map φ has
dense image if and only if the associatedΦ is injective. Considering this fact one might expect that for locally
compact quantum groups G and H, a morphism from H to G should be viewed as having a dense image if the
associated morphism π ∈ Mor(Cu

0(G),C
u
0(H)) is injective. This is however not satisfactory, as there exists a

lattice � in a Lie group G such that the natural ‘inclusion’ morphism in Mor(C∗(�),C∗(G)) is not injective
([BV2]) (and we would like to view the natural morphism from ̂G tô� as having dense image; this is indeed
the case—see below).
This motivates the apparently more complicated Definition2.8; in this appendix we present its several equiv-
alent characterisations.

Theorem A.1. Let G, H be locally compact quantum groups and consider a morphism from H to G rep-
resented by π ∈ Mor(Cu

0(G),C
u
0(H)) intertwining the respective coproducts, with associated bicharacter

V ∈ M(C0(H)⊗ C0(̂G)). The following are equivalent:

(a) the morphism in question has a dense image in the sense of the Definition2.8, i.e. the map α : L1(̂G)→
M(Cu

0(H)), ω �→ π((id ⊗ ω)WG), is injective;

(b) the map β : L1(̂G)→ M(C0(H)), ω �→ ΛH(α(ω)) = (id ⊗ ω)(V ), is injective;
(c) AV := {(ζ ⊗ id)(V ) : ζ ∈ L1(H)} is dense in the weak∗ topology of L∞(̂G);
(d) the dual morphism π̂ : Cu

0(
̂H)→ M(Cu

0(
̂G)) has strictly dense range;

(e) the map γ : Cu
0(
̂G)∗ → M(C0(H)), μ �→ ΛHπ

(

(id ⊗ μ)V VG
)

is injective;

(f) the map Λ
̂G
π̂ : Cu

0(
̂H)→ M(C0(̂G)) has strictly dense range.

http://creativecommons.org/licenses/by/4.0/


Around Property (T) for Quantum Groups 113

Let G, H be locally compact groups. In the commutative case, let a morphism from H to G be represented
by π ∈ Mor(C0(G),C0(H)) with associated continuous map φ : H → G. As explained above, if φ
has dense image, then the morphism has dense image in our sense. Conversely, if φ does not have dense
image, let H ′ := φ(H), and view VN(H ′) as a proper weak∗-closed subspace (indeed, a von Neumann
subalgebra) ofVN(G) = L∞(̂G). ByHahn–Banach separation, there is a function f  = 0 in theFourier algebra
A(G) ∼= VN(G)∗ (see [Eym]), canonically embedded in C0(G), with f (H ′) = {0}. Henceπ( f ) = f ◦φ = 0.
Therefore, the morphism does not have dense image in our sense.
In the cocommutative case, let amorphism from ̂G to ̂H be represented byπ ∈ Mor(C∗(H),C∗(G)). The dual
morphism π̂ ∈ Mor(C0(G),C0(H)) is associated with a continuous map from H to G, which is injective if
and only if π̂ has strictly dense image (again, see [DFSW, Theorem 1.1]), if and only if the original morphism
has dense image in our sense by Theorem A.1.
We postpone the proof of Theorem A.1 to present first some technical results. Note that the condition (c) in
the above Theorem implies that the notion of the dense image is compatible with the concept of the closure of
the image of a quantum group morphism, as defined recently in [KKS]—indeed, according to (c) a morphism
between H and G has dense image in the sense of Definition2.8 if and only if the closure of its image in the
sense of [KKS] is equal to G.
Let us now turn to look at the strict topology on multiplier algebras.

Lemma A.2. Let A,B be C∗-algebras and let θ : A → B be a surjective ∗-homomorphism. Writing θ for the
strict extension of θ , if X ⊆ M(A) is a strictly dense C∗-algebra, then also θ(X) is strictly dense in M(B).

Proof. Easy consequence of the strict version of the Kaplansky density theorem. ��
Proposition A.3. Let G be a locally compact quantum group, let (xi )i∈I be a bounded net inM(Cu

0(G)), and

let x ∈ M(Cu
0(G)) be such thatΛG(xi )→ ΛG(x) in L∞(G) for the ∗-strong topology. Fix ω0 ∈ L1(G) and

set yi = (id⊗ω0 ◦ΛG)Δ
G
u (xi ) ∈ M(Cu

0(G)) and y = (id⊗ω0 ◦ΛG)Δ
G
u (x) ∈ M(Cu

0(G)). Then yi
i∈I−→ y

in the strict topology on M(Cu
0(G)).

Proof. Recall that by [Ku1, Proposition 6.2],

(id ⊗ΛG)Δ
G
u (x) = W∗(1⊗ΛG(x))W (x ∈ M(Cu

0(G))).

We may suppose that ω0 = ωξ0,η0 for some ξ0, η0 ∈ L2(G). Fix ε > 0, fix a ∈ Cu
0(G), and choose a norm

one compact operator θ0 ∈ K(L2(G)) with θ0(η0) = η0. As W ∈ M(Cu
0(G) ⊗ K(L2(G))) we can find

∑n
j=1 b j ⊗ θ j ∈ Cu

0(G)⊗K(L2(G)) with
∥

∥

∥W(a ⊗ θ0)−
n
∑

j=1

b j ⊗ θ j
∥

∥

∥ ≤ ε.

We may suppose that Cu
0(G) acts faithfully on a Hilbert space H. Then, for any ξ, η ∈ H with ‖ξ‖‖η‖ = 1,

i ∈ I,
〈ξ, (yi − y)aη〉 = 〈ξ ⊗ ξ0,W∗(1⊗ΛG(xi − x))W(aη ⊗ θ0η0)〉.

Up to an error not greater than ε‖ξ0‖‖η0‖‖xi − x‖, this is
n
∑

j=1

〈ξ ⊗ ξ0,W∗(1⊗ΛG(xi − x))(b jη ⊗ θ jη0)〉.

If i is sufficiently large, then for each j = 1, . . . , n we have that ‖ΛG(xi − x)θ jη0‖ ≤ εn−1‖b j‖−1, and so
the absolute value of the sum is dominated by

n
∑

j=1

‖ξ0‖‖b j‖‖ΛG(xi − x)θ jη0‖ ≤ ‖ξ0‖ε.

Thus

|〈ξ, (yi − y)aη〉| ≤ ε‖ξ0‖(‖η0‖‖xi − x‖ + 1)

and so ‖(yi − y)a‖ is small for sufficiently large i , as required.

An analogous argument, using that ΛG(x
∗
i ) → ΛG(x

∗) strongly, shows that ‖a(yi − y)‖ i∈I−→ 0 as well.

Hence yi
i∈I−→ y in the strict topology, as required. ��
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Proof of Theorem A.1. The equivalence (b) ⇐⇒ (c) follows as for any element ω ∈ L1(̂G) we have that
(id⊗ω)(V ) = 0 if and only if ω|AV

= 0. The implication (b) �⇒ (a) is obvious. The canonical embedding

of L1(̂G) into Cu
0(
̂G)∗ is the composition of the restriction map with the adjoint of the reducing morphism

Λ
̂G

: Cu
0(
̂G) → C0(̂G). Thus β is the restriction of γ to L1(̂G) (see (2.8)), and hence (e) �⇒ (b). The

implication (d) �⇒ (f) follows from Lemma A.2.
If (d) holds, then as {(ω◦ΛH⊗id)V VH : ω ∈ L1(H)} is dense inCu

0(
̂H), and as (id⊗π̂ )V VH = (π⊗id)V VG,

we see that

{π̂((ω ◦ΛH ⊗ id)V VH) : ω ∈ L1(H)} = {(ω ◦ΛH ◦ π ⊗ id)V VG) : ω ∈ L1(H)}
is strictly dense in M(Cu

0(
̂G)), and thus also weak∗-dense as a subspace of Cu

0(
̂G)∗∗. So for non-zero μ ∈

Cu
0(
̂G)∗, there is ω ∈ L1(H) with

0  = μ
(

(ω ◦ΛH ◦ π ⊗ id)V VG
)

= γ (μ)(ω),

and so γ (μ)  = 0. Hence (d) �⇒ (e) (so by the earlier reasoning (d) �⇒ (a)). In a similar way we can prove
that (f) �⇒ (b), arguing via a ‘reduced’ version of the map γ appearing in (e).
Suppose now that (c) does not hold, so there is a non-zero ω0 ∈ L1(̂G) with (ζ ⊗ ω0)(V ) = 0 for all
ζ ∈ L1(H). As (WH

12)
∗V23WH

12 = (ΔH⊗ id)(V ) = V13V23 we see that for ζ ∈ L1(H) and ζ ′ ∈ B(L2(H))∗,

(ζ ⊗ ζ ′ ⊗ ω0)(V23WH

12V
∗
23) = (ζ ⊗ ζ ′ ⊗ ω0)(WH

12V13) = (ζ ⊗ ω0)((x ⊗ 1)V )

= (ζ x ⊗ ω0)(V ) = 0,

where in the above computation x = (id ⊗ ζ ′)(WH) ∈ C0(H).
Now let μ ∈ Cu

0(H)
∗ and set x̃ = (μ⊗ id)(WH) ∈ M(C0(̂H)) ⊆ L∞(̂H). Then we can find a net (ζi )i∈I

in L1(H) such that (ζi ⊗ id)(WH)→ x̃ in the weak∗ topology. It follows that for any ζ ′ ∈ B(L2(H))∗,

(μ⊗ ζ ′ ⊗ ω0)(V23WH

12V
∗
23) = (ζ ′ ⊗ ω0)(V (x̃ ⊗ 1)V ∗)

= lim
i∈I(ζi ⊗ ζ

′ ⊗ ω0)(V23WH

12V
∗
23) = 0.

As WH is a unitary, this also shows that for any μ ∈ Cu
0(H)

∗ and ζ ′ ∈ B(L2(H))∗ we have

(μ⊗ ζ ′ ⊗ ω0)((WH

12)
∗V23WH

12V
∗
23) = 0.

Let U = (π ⊗ id)(WG) so that V = (ΛH ⊗ id)(U ), and so

(WH

12)
∗V23WH

12 = (id ⊗ΛH ⊗ id)(ΔH
u ⊗ id)(U )

= (id ⊗ΛH ⊗ id)(U13U23) = U13V23.

Thus, for any state ζ ′ ∈ B(L2(H))∗, and any μ ∈ Cu
0(H)

∗,

0 = (μ⊗ ζ ′ ⊗ ω0)(U13) = (μ⊗ ω0)(U ) = μ((id ⊗ ω0)(U ))
= μ(π((id ⊗ ω0)(WG))) = μ(α(ω0)).

Hence α(ω0) = 0 and so (a) does not hold. Thus (a) �⇒ (c).
Thus it remains to show (c) �⇒ (d). We assume thatAV is weak∗-dense in L∞(̂G), and aim to show that the
morphism π̂ has strictly dense range. Let now

Ũ := (ΛHπ ⊗ id)(V VG) = (id ⊗ π̂)( WH)

denote the ‘other-sided’ (compared to U above) lift of the bicharacter V , so that Ũ ∈ M(C0(H) ⊗ Cu
0(
̂G))

and (id ⊗Λ
̂G
)(Ũ ) = V . As {(ζ ⊗ id)( WH) : ζ ∈ L1(H)} is dense in Cu

0(
̂H), we see that

AŨ := {(ζ ⊗ id)(Ũ ) : ζ ∈ L1(H)} ⊆ M(Cu
0(
̂G))
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is dense in the image of π̂ . We conclude that π̂ has strictly dense range if and only ifAŨ is strictly dense, and

that the (norm) closure of AŨ is a C∗-subalgebra of M(Cu
0(
̂G)). Notice also that AV = Λ

̂G
(AŨ ).

Now, (id⊗Δ̂Gu )(Ũ ) = Ũ13Ũ12, so applying (id⊗ id⊗Λ
̂G
) by (2.2) we see that V13Ũ12 = (ŴG

23)
∗V13ŴG

23,

so also Ũ12 = V ∗
13(W

̂G

23)
∗V13ŴG

23. It follows that

AŨ = {(ζ ⊗ id ⊗ μ)(V ∗
13(W

̂G

23)
∗V13W

̂G

23
) : μ ∈ B(L2(G))∗, ζ ∈ L1(H)}.

As V is unitary, the closure of AŨ equals the closed linear span of

{(ζ ⊗ id ⊗ μ)((ŴG

23)
∗V13W

̂G

23
) : μ ∈ B(L2(G))∗, ζ ∈ L1(H)}

= {(id ⊗ μ)((ŴG)∗(1⊗ x)W
̂G
) : μ ∈ B(L2(G))∗, x ∈ AV },

and further is equal to the closed linear span of

{(id ⊗ (ω ◦Λ
̂G
))Δ

̂G
u (y) : y ∈ M(Cu

0(
̂G)),Λ

̂G
(y) ∈ AV , ω ∈ L1(̂G)},

again using that (ŴG)∗(1⊗Λ
̂G
(·))ŴG = (id ⊗Λ

̂G
)Δ
̂G
u (·).

Pick ω1 ∈ L1(G) and set y = (ω1 ⊗ id)( WG) ∈ Cu
0(
̂G). As (c) holds, the norm closure of AV , which is a

C∗-algebra, is weak∗-dense in L∞(̂G). By the Kaplansky density theorem, we can find a bounded net (xi )i∈I
in AV with xi

i∈I−→ Λ
̂G
(y) in the ∗-strong topology. We can ‘lift’ (xi )i∈I to find a bounded net (yi )i∈I in

M(Cu
0(
̂G)) with Λ

̂G
(yi ) = xi for each i . For any ω0 ∈ L1(̂G), by Proposition A.3, we know that

(id ⊗ ω0 ◦Λ̂G)Δ
̂G
u (yi )

i∈I−→ (id ⊗ ω0 ◦Λ̂G)Δ
̂G
u (y)

in the strict topology on M(Cu
0(
̂G)).

By the above, we know that (id ⊗ ω0 ◦ Λ
̂G
)Δ
̂G
u (yi ) is a member of the closure of AŨ for each i ∈ I.

Furthermore,

(id ⊗ ω0 ◦Λ̂G)Δ
̂G
u (y) = (ω1 ⊗ id ⊗ ω0 ◦Λ̂G)(id ⊗Δ

̂G
u )( WG)

= (ω1 ⊗ id ⊗ ω0 ◦Λ̂G)( WG13 WG12)

= (ω1z ⊗ id)( WG),

say, where z = (id ⊗ ω0 ◦ Λ
̂G
)( WG) = (id ⊗ ω0)(WG) ∈ C0(G). Thus, as ω0 and ω1 vary, we see that

(id ⊗ ω0 ◦Λ̂G)Δ
̂G
u (y) takes values in a dense subset of Cu

0(
̂G).

We conclude that the strict closure of AŨ contains all of Cu
0(
̂G), and hence that AŨ is strictly dense in

M(Cu
0(
̂G)), as required.

References

[AkW] Akemann, C. A., Walter, M. E.: Unbounded negative definite functions. Can. J. Math. 33(4), 862–
871 (1981)

[AD] Anantharaman-Delaroche, C.: On Connes’ property T for von Neumann algebras. Math.
Jpn. 32(3), 337–355 (1987)

[Ara] Arano, Y.: Unitary spherical representations of Drinfeld doubles. J. Reine Angew. Math. doi:10.
1515/crelle-2015-0079. arXiv:1410.6238 (To appear)

[BCT] Bédos, E., Conti, R., Tuset, L.: On amenability and co-amenability of algebraic quantum groups
and their corepresentations. Can. J. Math. 57(1), 17–60 (2005)

[BMT] Bédos, E., Murphy, G.J., Tuset, L.: Co-amenability of compact quantum groups. J. Geom.
Phys. 40(2), 130–153 (2001)

[BeT] Bédos, E., Tuset, L.: Amenability and co-amenability for locally compact quantum groups. Int. J.
Math. 14(8), 865–884 (2003)

[Bek] Bekka, B.: Property (T) for C∗-algebras. Bull. Lond. Math. Soc. 38(5), 857–867 (2006)

http://dx.doi.org/10.1515/crelle-2015-0079
http://dx.doi.org/10.1515/crelle-2015-0079
http://arxiv.org/abs/1410.6238


116 M. Daws, A. Skalski, A. Viselter

[BHV] Bekka, B., Harpe, P. de la , Valette, A.: Kazhdan’s Property (T), Vol. 11 of New Mathematical
Monographs. Cambridge University Press, Cambridge (2008)

[BV1] Bekka, M.E.B., Valette, A.: Kazhdan’s property (T) and amenable representations. Math.
Z. 212(2), 293–299 (1993)

[BV2] Bekka, M.E.B., Valette, A.: Lattices in semi-simple Lie groups, and multipliers of group C∗-
algebras. Astérisque 232,67–79 (1995) (Recent advances in operator algebras (Orléans, 1992))

[BDS] Brannan, M., Daws, M., Samei, E.: Completely bounded representations of convolution algebras
of locally compact quantum groups. Münster J. Math. 6, 445–482 (2013)

[ChN] Chen, X., Ng, C.-K.: Property T for locally compact quantum groups. Int. J.
Math. 26(3), 1550024 (2015)

[Con1] Connes, A.: A factor of type II1 with countable fundamental group. J. Oper. Theory 4(1), 151–
153 (1980)

[Con2] Connes A.: Classification des facteurs. In: Operator Algebras and Applications, Part 2 (Kingston,
Ont., 1980), Volume 38 of Proceedings of the Symposium Pure Mathematics (pp. 43–109). Amer-
ican Mathematics Society, Providence (1982)

[CoJ] Connes, A., Jones, V.: Property T for von Neumann algebras. Bull. Lond. Math. Soc. 17(1), 57–
62 (1985)

[CoW] Connes, A., Weiss, B.: Property T and asymptotically invariant sequences. Isr. J. Math. 37(3), 209–
210 (1980)

[DaD] Das, B., Daws, M.: Quantum Eberlein compactifications and invariant means. Indiana Univ. Math.
J. 65(1), 307–352 (2016)

[DFKS] Das,B., Franz,U.,Kula,A., Skalski,A.:One-to-one correspondence betweengenerating functionals
and cocycles on quantum groups in presence of symmetry. Math. Z. 281(3-4), 949–965 (2015)

[Daw] Daws,M.: Completely positivemultipliers of quantum groups. Int. J. Math. 23(12), 1250132 (2012)
[DFSW] Daws, M., Fima, P., Skalski, A., White, S.: The Haagerup property for locally compact quantum

groups. J. Reine Angew. Math. 711, 189–229 (2016)
[DKSS] Daws, M., Kasprzak, P., Skalski, A., Sołtan, P. M.: Closed quantum subgroups of locally compact

quantum groups. Adv. Math. 231(6), 3473–3501 (2012)
[DaS] Daws, M., Salmi, P.: Completely positive definite functions and Bochner’s theorem for locally

compact quantum groups. J. Funct. Anal. 264(7), 1525–1546 (2013)
[DKS] Doplicher, S., Kastler, D., Størmer, E.: Invariant states and asymptotic abelianness. J. Funct.

Anal. 3, 419–434 (1969)
[Duv] Duvenhage, R.: A mean ergodic theorem for actions of amenable quantum groups. Bull. Aust.

Math. Soc. 78(1), 87–95 (2008)
[EfR] Effros, E. G., Ruan, Z.-J.: Discrete quantum groups. I. The Haar measure. Int. J. Math. 5(5), 681–

723 (1994)
[Eym] Eymard, P.: L’algèbre de Fourier d’un groupe localement compact. Bull. Soc. Math. Fr. 92, 181–

236 (1964)
[Fim] Fima, P.: Kazhdan’s property T for discrete quantum groups. Int. J. Math. 21(1), 47–65 (2010)
[FMP] Fima, P., Mukherjee, K., Patri I.: On compact bicrossed products. J. Noncommut. Geom.

arXiv:1504.00092 (To appear)
[G] Godement,R.:Les fonctions de typepositif et la theorie des groupes.Trans.Am.Math. Soc.63(1), 1–

84 (1948)
[Haa] Haagerup, U.: The standard form of von Neumann algebras. Math. Scand. 37(2), 271–283 (1975)
[Hal] Halmos, P.R.: In general a measure preserving transformation is mixing. Ann. Math. 45, 786–

792 (1944)
[HeT] Herman, R.H., Takesaki,M.: States and automorphismgroups of operator algebras. Commun.Math.

Phys. 19, 142–160 (1970)
[Jad] Jadczyk, A.Z.: On some groups of automorphisms of von Neumann algebras with cyclic and sepa-

rating vector. Commun. Math. Phys. 13, 142–153 (1969)
[Jol1] Jolissaint, P.: Property T for discrete groups in terms of their regular representation. Math.

Ann. 297(3), 539–551 (1993)
[Jol2] Jolissaint, P.: On property (T) for pairs of topological groups. Enseign.Math. 51(1–2), 31–45 (2005)
[KKS] Kasprzak, P., Khosravi, F., Sołtan, P.M.: Integrable actions and quantum subgroups. Int. Math. Res.

Not. IMRN. arXiv:1603.06084 (To appear)
[Kaz] Každan, D.A.: On the connection of the dual space of a group with the structure of its closed

subgroups. Funkcional Anal. i Priložen 1, 71–74 (1967)
[KP] Kerr, D., Pichot, M.: Asymptotic abelianness, weak mixing, and property T. J. Reine Angew.

Math. 623, 213–235 (2008)
[KS] Kovács, I., Szűcs, J.: Ergodic type theorems in von Neumann algebras. Acta Sci. Math.

(Szeged) 27, 233–246 (1966)
[Ku1] Kustermans, J.: Locally compact quantum groups in the universal setting. Int. J. Math. 12(3), 289–

338 (2001)

http://arxiv.org/abs/1504.00092
http://arxiv.org/abs/1603.06084


Around Property (T) for Quantum Groups 117

[Ku2] Kustermans, J.: Locally compact quantum groups. In: Quantum Independent Increment Processes.
I, Volume 1865 of Lecture Notes in Mathematics (pp. 99–180). Springer, Berlin (2005)

[KV1] Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. École Norm. Su-
per. 33(6), 837–934 (2000)

[KV2] Kustermans, J., Vaes, S.: Locally compact quantum groups in the von Neumann algebraic set-
ting. Math. Scand. 92(1), 68–92 (2003)

[Kye] Kyed, D.: A cohomological description of property (T) for quantum groups. J. Funct.
Anal. 261(6), 1469–1493 (2011)

[KyS] Kyed, D., Sołtan, P.M.: Property (T) and exotic quantum group norms. J. Noncommut.
Geom. 6(4), 773–800 (2012)

[Lan] Lance, E.C.: Hilbert C∗-Modules. A Toolkit for Operator Algebraists, Volume 210 of London
Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1995)

[LiN] Li, H., Ng, C.-K.: Spectral gap actions and invariant states. Int. Math. Res. Not. IMRN
2014(18):4917–4931 (2014)

[LS1] Lindsay, J.M., Skalski, A.G.: Quantum stochastic convolution cocycles. II. Commun. Math.
Phys. 280(3), 575–610 (2008)

[LS2] Lindsay, J.M., Skalski, A.G.: Convolution semigroups of states. Math. Z. 267(1-2), 325–339 (2011)
[LS3] Lindsay, J.M., Skalski, A.G.: Quantum stochastic convolution cocycles III. Math. Ann.

352(4), 779–804 (2012)
[Lub] Lubotzky, A.: Discrete Groups, ExpandingGraphs and InvariantMeasures, Volume 125 of Progress

in Mathematics. Birkhäuser Verlag, Basel (1994)
[MRW] Meyer, R., Roy, S.,Woronowicz, S.L.: Homomorphisms of quantum groups.Münster J. Math. 5, 1–

24 (2012)
[Moo] Moore, C.C.: Groups with finite dimensional irreducible representations. Trans. Am. Math.

Soc. 166, 401–410 (1972)
[NY] Neshveyev, S., Yamashita, M.: Drinfeld center and representation theory for monoidal cate-

gories. Commun. Math. Phys. 345(1), 385–434 (2016)
[Pau] Paulsen, V.: Completely Bounded Maps and Operator Algebras, Volume 78 of Cambridge Studies

in Advanced Mathematics. Cambridge University Press, Cambridge (2002)
[Pet] Peterson J.: Lecture notes on ergodic theory. http://www.math.vanderbilt.edu/~peters10/teaching/

Spring2011/math390Blecturenotes.html
[PeP] Peterson, J., Popa, S.: On the notion of relative Property (T) for inclusions of von Neumann alge-

bras. J. Funct. Anal. 219(2), 469–483 (2005)
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