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Abstract 

Three-way trilinear data is increasingly used in chemical and biochemical applications. This 

type of data is composed of three-way structures representing two different signal responses 

and one sample dimension distributed among a 3D structure, such as the data represented by 

fluorescence excitation emission matrices (EMMs), spectral-pH responses, spectral-kinetic 

responses, spectral-electric potential responses, among others. Herein, we describe a new 

MATLAB toolbox for classification of trilinear three-way data using discriminant analysis 

techniques (linear discriminant analysis [LDA], quadratic discriminant analysis [QDA], and 

partial least squares discriminant analysis [PLS-DA]), termed “TTWD-DA”. These 

discrimination techniques were coupled to multivariate deconvolution techniques by means 

of parallel factor analysis (PARAFAC) and Tucker3 algorithm. The toolbox is based on a 

user-friendly graphical interface, where these algorithms can be easily applied. Also, as 

output, multiple figures of merit are automatically calculated, such as accuracy, sensitivity 

and specificity. This software is free available online. 

Keywords: Discriminant analysis; three-way data; EEM; MATLAB; software; GUI 
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1. Introduction 

 Molecular fluorescence spectroscopy is an analytical technique based on the 

fluorescence capacity of a sample, where a beam of high energy light (e.g., in the ultraviolet 

region) is incident on a sample which, after excitation to a higher electronic state, will rapidly 

lose energy through internal conversion and return to the lowest vibrational state of the 

lowest electronic excited state. The molecule remains in this excited vibronic level for a short 

period of time known as fluorescence lifetime and then returns to the fundamental electronic 

state emitting a photon with energy lower that the one used for excitation. This process is 

called emission. The excitation and emission spectra can be combined by computer software 

generating a three-way data structure termed excitation-emission (EEM) matrix [1,2]. The 

advantages of molecular fluorescence spectroscopy are its high sensitivity and relatively low-

cost instrumentation [2]. In addition, the EEM data generated is contemplated by the 

“second-order advantage” [3], a property that allows concentrations and spectral profiles of 

the components of a sample to be extracted in the presence of unknown interferences using 

second-order chemometric methods [4,5]. 

EEM data is an example of trilinear three-way array, in which a three-way structure 

representing two different signal responses and one sample dimension are distributed among 

a 3D structure. This type of data, mainly characterized by fluorescence EEM spectroscopy, 

also can be generated by combinations of different instrumental responses, such as spectral-

pH, spectral-kinetic and spectral-electric potential responses. Common second-order 

algorithms for decomposition of trilinear three-way data are the parallel factor analysis 

(PARAFAC) [6] and Tucker3 algorithm [7]. Both PARAFAC and Tucker3 decompose the 

three-way data into factors containing scores (information pertaining to the sample’s 

variability) and two different loadings, one for the 1st mode (e.g., emission) and another for 

the 2nd mode (e.g., excitation) profiles [6,8]. The difference between these techniques is that 
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the Tucker3 method also generates a core array containing the scores and loadings weights 

for each factor generated [7-9]. Both PARAFAC and Tucker3 significantly reduce the 

dataset, speeding up computational processing time, solving problems of ill-conditioned data 

and removing interference. The scores generated from these techniques can then be used as 

input variables for calibration and classification models. 

 Discriminant analysis (DA) is a supervised classification technique employed for 

differentiating classes based on a Mahalanobis distance calculation [10,11]. DA can be 

divided into linear discriminant analysis (LDA) or quadratic discriminant analysis (QDA). In 

LDA, the variance structures of the classes being analysed are considered similar, therefore 

the discriminant function is calculated using a pooled variance-covariance matrix among the 

classes. However, in QDA, each class is considered to have a different variance structure; 

therefore, the discriminant function is calculated using the variance-covariance matrix for 

each class individually [11]. This property increases the classification performance of QDA 

over LDA when classes exhibiting large within-category variances are being analysed. 

 Another common algorithm for discrimination of three-way data is the partial least 

squares discriminant analysis (PLS-DA), where the data is decomposed by partial least 

squares (PLS) followed by a linear discriminant function [12]. There are many applications 

for which chemometric techniques are employed for analysing three-way data, such as for 

assessing food quality [13-15], detection of substances in the atmosphere [16], and 

differentiation of fungi [17] using EEM spectroscopy; analysis of heavy metal ions using 

spectral-kinematic responses [18]; and evaluation of different juices colorants via spectral-pH 

responses [19]. However, despite the possible advantages of QDA for complex datasets, the 

number of applications using this approach with fluorescence spectroscopy are fewer 

compared to LDA [17, 20-22]. This is possibly the result of a lack of user-friendly or 

accessible algorithms for building QDA-based models towards analysing fluorescence data. 
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Herein, a new user-friendly graphical user interface (GUI) was developed containing LDA 

and QDA routines combined with PARAFAC and Tucker3 for discrimination of fluorescence 

data. In addition, PLS-DA algorithm is also present for class discrimination. The software, 

named TTWD-DA (Trilinear Three-way Data – Discriminant Analysis) is free available and 

described hereafter. 

 

2. Software 

2.1 System requirements and installation 

 This software was developed in MATLAB R2014b environment (The MathWorks, 

Inc., USA). It makes use of MATLAB functions and lab-made routines, as well as the N-way 

toolbox for MATLAB version 3.30 (http://www.models.life.ku.dk/nwaytoolbox) [23] for 

building PARAFAC and Tucker3 models. The software is an open-source toolbox for 

MATLAB users only. It is freely available under the University of Central Lancashire 

(UCLan) license using the following address: 

https://uclanip.co.uk/discriminant_analysis_fluorescence_data/5af2ba83c6b8fb6d28d76291. 

It has been tested on MATLAB R2014b version 8.4.0 only, but it should work in any 

subsequent version. The authors are not responsible for misfunctioning in older MATLAB 

versions. For installation, the download file should be unzipped and added to the path within 

MATLAB. The main GUI can be accessed by typing the command ‘startup’ on MATLAB 

command window. For usage instructions, please refer to this paper or to the manual present 

in the software webpage. 

2.2 Theory 

http://www.models.life.ku.dk/nwaytoolbox
http://www.models.life.ku.dk/nwaytoolbox
https://uclanip.co.uk/discriminant_analysis_fluorescence_data/5af2ba83c6b8fb6d28d76291
https://uclanip.co.uk/discriminant_analysis_fluorescence_data/5af2ba83c6b8fb6d28d76291


6 
 

 The following classification algorithms are included in the toolbox: PARAFAC-LDA, 

PARAFAC-QDA, Tucker3-LDA, Tucker3-QDA and PLS-DA. PARAFAC is a multivariate 

deconvolution approach of high-order data based on a trilinear system [6]. It decomposes the 

three-way data 𝐗 as follows [17]: 

𝐗 = 𝐀(𝐂|⨂|𝐁)T + 𝐄          (01) 

where 𝐀 is the PARAFAC scores matrix representing the sample direction; 𝐁 is the 

PARAFAC loadings matrix representing the excitation direction; 𝐂 is the PARAFAC 

loadings matrix representing the emission direction; 𝐄 is a residual three-way array; and |⨂| 

represents the Khatri-Rao product [24]. 

 Tucker3 is another multivariate deconvolution method for higher-order data also 

known as “3-way principal component analysis (PCA)” [25]. It decomposes the three-way 

data 𝐗 as follows [9]: 

𝐗 = 𝐀𝐆(𝐂⨂𝐁)T + 𝐄          (02) 

where 𝐀 is the Tucker3 scores matrix representing the sample direction; 𝐁 is the Tucker3 

loadings matrix representing the excitation direction; 𝐂 is the Tucker3 loadings matrix 

representing the emission direction; 𝐄 is a residual three-way array; 𝐆 is the core matrix; and 

⨂ represents the Kronecker product [26]. 

 After these decompositions, the scores matrix from PARAFAC and Tucker3 are used 

as input variables for LDA and QDA algorithms. LDA and QDA classification scores can be 

calculated in a non-Bayesian form using the Mahalanobis distance as follows [10,11]: 

𝐿𝑖𝑘 = (𝐱𝑖 − 𝐱̅𝑘)T𝐂𝑝𝑜𝑜𝑙𝑒𝑑
−1 (𝐱𝑖 − 𝐱̅𝑘)        (03) 

𝑄𝑖𝑘 = (𝐱𝑖 − 𝐱̅𝑘)T𝐂𝑘
−1(𝐱𝑖 − 𝐱̅𝑘)        (04) 
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where 𝐿𝑖𝑘 is the LDA classification score for sample 𝑖 of class 𝑘; 𝑄𝑖𝑘 is the QDA 

classification score for sample 𝑖 of class 𝑘; 𝐱𝑖 is the vector containing the classification 

variables for sample 𝑖 (e.g., scores from PARAFAC or Tucker3);  𝐱̅𝑘 is the mean vector for 

class 𝑘;  𝐂𝑝𝑜𝑜𝑙𝑒𝑑 is the pooled covariance matrix; and 𝐂𝑘 is the variance-covariance matrix of 

class 𝑘. 𝐂𝑝𝑜𝑜𝑙𝑒𝑑 and 𝐂𝑘 are calculated as: 

𝐶𝑝𝑜𝑜𝑙𝑒𝑑 =
1

𝑛
∑ 𝑛𝑘𝐂𝑘

𝐾
𝑘=1          (05) 

𝐂𝑘 =
1

𝑛𝑘−1
∑ (𝐱𝑖 − 𝐱̅𝑘)𝑛𝑘

𝑖=1 (𝐱𝑖 − 𝐱̅𝑘)T       (06) 

in which 𝑛 is the number of objects in the training set; 𝐾 is the number of classes; and 𝑛𝑘 is 

the number of objects in class 𝑘. 

 PLS-DA performs a partial least squares (PLS) decomposition of the reshaped 

spectral array [𝐗(𝑛 × 𝑚 × 𝑘) → 𝐗(𝑛 × 𝑚 ∗ 𝑘)] followed by a linear discriminant classifier 

[12]. PLS decomposition takes the form [12]: 

𝐗 = 𝐓𝐏 + 𝐄           (07) 

𝐲 = 𝐓𝐪 + 𝐟           (08) 

where 𝐓 is a common scores matrix; 𝐏 are the spectral loadings; 𝐄 are the spectral residuals; 

y is the response vector (e.g., 0 or 1); 𝐪 is the response loadings; and 𝐟 the response residuals. 

This decomposition can be performed in an interactive process according to the number of 

selected components, as described by Brereton and Lloyd [12]. After the model is built, it is 

possible to predict the value of 𝐲 for the original training data or future test samples as 

follows [12]: 

𝐛 = 𝐖(𝐏𝐖)−𝟏𝐪          (09) 

𝐲̂ = 𝐗𝐛           (10) 
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where 𝐛 are PLS coefficients; 𝐖 is a weight matrix; and  𝐲̂ is the predicted response vector. 

2.3 Figures of merit 

 Different quality parameters are used to evaluate the performance of LDA- and QDA-

based models. These figures of merit were: correction classification rate (CC%), accuracy 

(AC), sensitivity (SENS), specificity (SPEC) and F-score. The CC% represents the 

percentage of samples correctly classified considering their true classes; the AC represents 

the total number of samples correctly classified considering true and false negatives; the 

SENS represents the proportion of positives that are correctly identified; the SPEC represents 

the proportion of negatives that are correctly identified; and, the F-score represents the 

overall classification performance considering imbalanced data [20]. These parameters are 

calculated as follows: 

CC% = 100 −
(𝜀1−𝜀2)

𝑁
× 100         (11) 

AC(%) = (
TP+TN

TP+FP+TN+FN
) × 100        (12) 

SENS(%) = (
TP

TP+FN
) × 100         (13) 

SPEC(%) = (
TN

TN+FP
) × 100         (14) 

F − score =
2×SENS×SPEC

SENS+SPEC
         (15) 

where TP stands for true positive, TN for true negative, FP for false positive, FN for false 

negative; and 𝜀1 and 𝜀2 represents the number of errors in the test set for class 1 and 2, 

respectively. 

2.4 Software overview 

The main GUI features of TTWD-DA are depicted in Figure 1. 
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[Insert Figure 1 here] 

 The main classification interface (Figure 1) contains four menu options (A, B, C and 

D). Menu (A) enables the user to open a new software window (A1); to load data from a .mat 

file (A2); load a pre-built training model in order to make new data predictions (A3); clear 

the training model (A4); save the training model in order to make further data predictions 

(A5); save prediction results into a .mat file (A6); to obtain information about the software 

(A7); and, exit (A8). Menu (B) contains constraint options: (B1) no constraints (default); 

(B2) constraints for PARAFAC and Tucker3 algorithms, which includes orthogonality, 

nonnegativity, unimodality and nonnegativity, L1 fitting, and L1 fitting and nonnegativity 

(these are applied for each mode individually using a new window with options that appears 

after clicking on B2).  (C) Scaling options: (C1) no scaling; (C2) mean-centring scaling 

(default); and, (C3) autoscaling. Menu (D) contains plotting options: (D1) three-way data 

plotting, including profiles in mode 1 and 2; (D2a) PARAFAC scores; (D2b) Tucker3 scores; 

(D2c) PLS-DA scores; (D3a) PARAFAC loadings; (D3b) Tucker3 loadings; (D3c) PLS-DA 

loadings and coefficients; and, (D4) canonical scores and predicted class. Menu (E) contains 

viewing options, including figures of merit (E1), which contains correct classification rates, 

accuracy, sensitivity, specificity and F-score; and, the predicted classification indexes (E2) 

using the chemometric method selected to build the model. The button (F) loads the data 

(same in A2); in the region (G), the user chooses the training, validation and test sets with 

their respective classes labels (the use of a validation set is optional, but recommended for 

optimization of the number of components); in the region (H), the user chooses the 

multivariate deconvolution method (PARAFAC or Tucker3); region (I) contains the type of 

discriminant analysis technique (LDA, QDA or PLS-DA); in button (J), the user can use 

singular value decomposition (SVD) [20] in order to select the number of components for 

PARAFAC and Tucker3, or training and validation misclassification errors for selecting the 
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number of latent variables for PLS-DA; in (K), the user has to insert the number of 

components for PARAFAC or PLS-DA algorithms; the button (L) calculates the discriminant 

analysis model; in (M), the user can save a file to use as a training model for further 

predictions (same in A5); and, in (N), the user can export all prediction results in a .mat file, 

including PARAFAC scores and loadings; Tucker3 scores, loadings, and core matrix; PLS-

DA scores and loadings; figures of merit; and the predicted class indexes for the samples in 

the training, validation and test set. 

3. Test dataset 

 The dataset tested herein is composed of fluorescence EEM data collected from cod 

(Gadus morhua) fillets. This dataset is publicly available at 

http://www.models.life.ku.dk/datasets by Andersen et al. [27]. Aqueous extracts containing 

fish muscle were measured in the range of 250–370 nm (resolution of 10 nm) for excitation 

and 270–600 nm (resolution of 1 nm) for emission using a Perkin-Elmer LS50B 

spectrofluorimeter. The data were divided into 3 classes: class 1 containing 63 cod samples 

stored up to 1 week (0–7 days); class 2 containing 21 cod samples stored for 2 weeks (14 

days); and, class 3 containing 21 cod samples stored for 3 weeks (21 days). The average EEM 

for each class are depicted in Figure 2. More details about the experimental procedure for 

data acquisition can be found at Andersen et al. [27]. 

[Insert Figure 2 here] 

4. Software Application 

4.1 Before loading the data 

 Before loading the dataset into TTWD-DA, the dataset can be pre-processed and must 

be organized in a three-dimensional manner and separated into Training, Validation and Test 

or Training and Test sets. Pre-processing and sample splitting techniques are not covered by 

http://www.models.life.ku.dk/datasets
http://www.models.life.ku.dk/datasets
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this software; thus, it should be performed separately employing other routines available 

elsewhere. Herein, the dataset is already pre-processed by removing Rayleigh and Raman 

scatterings using the ‘EEMscat’ algorithm [28], which is of fundamental importance for EEM 

data; and the sample splitting was made with the Training (n = 59), Validation (n = 23) and 

Test (n = 23) sets separated using the Kennard-Stone algorithm [29]. Each three-way array 

size should be in the format: 𝑛 × 𝑚 × 𝑘, where n is the number of samples; m is the number 

of emission wavelengths; and k the number of excitation wavelengths. Figure 3 depicts these 

type of data in MATLAB. 

4.2 Loading the data 

 To load the data, the user should select the .mat file containing the three-way array for 

analysis and select the Training set, Training Labels, Validation set, Validation Labels, Test 

set and Test Labels (Figure 3). Only previously saved .mat files can be used as input. 

[Insert Figure 3 here] 

4.3 Model construction 

 The user must select the deconvolution method (either PARAFAC or Tucker3) and 

type of discriminant technique to be employed (either LDA or QDA). PLS-DA can be chosen 

as feature extraction and discriminant method combined. Herein, all of them are tested. Next, 

the number of components for data deconvolution should be selected by clicking on “Find” 

button. This is performed based on a SVD model of the unfolded three-way array for 

PARAFAC and Tucker3 options, where the number of components (i.e., factors) should be 

selected as the minimum singular value before it becomes constant while varying the 

components; and based on the training and validation misclassification errors for PLS-DA, 

where the number of components (i.e., latent variables) that provides the minimum error 

should be selected. The number of components ≤10 should be preferred to avoid addition of 
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random noise. However, this can be optimized by using the validation set. For this test 

dataset, 8 components were selected based on SVD (Figure 3). 

The number of classes for which there is capability to analyse within this toolbox 

varies from 2 to 10. The software is limited by 10 classes for two reasons: (1) the use of >10 

classes for classification implies the need for >10 components; (2) for a multi-class system, 

the classification is performed on a binary basis of one-against-the-others; thus, the size of 

the second relative class is enlarged by K-1 times, where K is the number of classes. Such a 

difference in size might greatly affect the classifier performance. In addition, the user has the 

option to include constraints in either PARAFAC or Tucker3 models by selecting the menu 

“Constraints > Apply constraints”. The user can choose between orthogonality, 

nonnegativity, unimodality and nonnegativity, L1 fitting, and L1 fitting and nonnegativity to 

be applied independently in each mode of the three-way data array. Finally, the model is built 

by clicking in “Build Model”. The data was mean-centred (default option) before analysis in 

the menu “Scaling”. 

4.3 Results 

 After the model is built, a new window appears showing the correct classification 

rates for each dataset and the figures of merit for the test set (Figure 4). This window also can 

be accessed by clicking on View > Figures of Merit. 

[Insert Figure 4 here] 

Cod fillets are used in this test dataset. The samples were divided into 3 classes 

according to their storage time (class 1 - relatively new samples stored up to 1 week; class 2 - 

samples stored for 2 weeks; and, class 3 - relatively old samples stored for 3 weeks). 

Freshness is an important parameter to assess fish quality, since the fish retains its original 

characteristics closer to the harvest and the aging process leads to changes such as 
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microbiological growth and alterations in biochemical, chemical and physical properties 

[20,30]. For this dataset, the CC% for LDA-based methods were much higher compared to 

the QDA-based methods in the training (n=59), validation (n=23) and test (n=23) sets. 

PARAFAC, Tucker3 and PLS-DA models were built using 8 components based on SVD. 

The model with best correct classification overall was the PARAFAC-LDA, showing 100% 

correct classification for all classes in the training, validation and test sets (Figure 4A). The 

predictive classification performance of PARAFAC-QDA was inferior than PARAFAC-

LDA, in which the accuracy and F-score for PARAFAC-QDA were equal to 91.3–100% and 

75.0–100%, respectively; and, for PARAFAC-LDA they were both equal to 100%. The same 

trend was observed for Tucker3-LDA, where the accuracy and F-score were equal to 100%, 

compared to 91.3–100% and 75.0–100% in Tucker3-QDA. QDA-based models perform 

better than LDA in systems containing different variance structures [11], however it has an 

inferior performance compared to LDA for datasets with small number of samples [31]. 

Comparing the variance among the three classes in dataset 3 (Figure 5), classes 1 and 2 have 

similar variance structures, whereas class 3 exhibits a different pattern with lower variance in 

the region of 330 nm in the excitation direction. The main disadvantage of QDA in relation to 

LDA is that QDA is more affected by classes having a small number of samples, since the 

variance structures of the classes are not well represented, which can lead to overfitting 

problems. Therefore, QDA usually achieves better classification performance when the 

number of samples in the dataset is relatively large [31]. 

In comparison with the LDA- and QDA-based models, PLS-DA generated the poorer 

discriminant performance, with accuracies ranging from 46.7-61.9% and F-scores ranging 

from 30.0-47.5%. Class 1 seems to be well fitted in PLS-DA, with good correct classification 

values; however, for class 2 and 3, the prediction performance is greatly affected. Figure 6 

shows the PLS-DA canonical scores of latent variables 1 and 2, and the predicted class 
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values. In this figure, it is clearly shown that class 2 and 3 are mixed together, while class 1 

distinguishes from them. 

[Insert Figure 5 here] 

[Insert Figure 6 here] 

After the model is built, the measured and predicted sample indexes for each class can 

be viewed in the Menu: View > Classification Index (Figure 6). These results can be saved in 

a .xls file by clicking on “Export”. Also, all the results and matrices generated during analysis 

can be saved by clicking on “Save Prediction” in the main window, or in the Menu: File > 

Save Prediction. The training model also can be saved by clicking on “Save Training” in the 

main window, or in the Menu: File > Save Training for further predictions of new test sets. 

[Insert Figure 6 here] 

5. Conclusion 

 TTWD-DA is a user-friendly GUI for building discriminant analysis models (LDA, 

QDA and PLS-DA) for three-way data. The software makes use of PARAFAC and Tucker-3 

algorithms as multivariate deconvolution techniques, followed by LDA and QDA 

discrimination functions; or PLS-DA as joined feature extraction and discrimination 

techniques. Parameters such as accuracy, sensitivity and specificity are automatically 

calculated. The software is based on MATLAB environment, being open source and freely 

available online. It can be applied in any three-way array, in particular fluorescence EEM 

data. There is room for evolving the software by adding new classification algorithms and 

pre-processing options, thus having the potential to be a standard tool for analysing trilinear 

three-way data. 

6. Independent Testing 
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 TTWD-DA was independently tested by Prof. Héctor C. Goicoechea at the 

Laboratorio de Desarrollo Analítico y Quimiometría-LADAQ, Cátedra de Química Analítica 

I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 

CONICET, Ciudad Universitaria 3000 Santa Fe, Argentina (hgoico@fbcb.unl.edu.ar). It was 

reported that the software worked correctly in a user-friendly fashion: “This program allows 

implementation of classification using second-order data applying PARAFAC o Tuker3 (as 

compression tools) followed by LDA or QDA. I installed the files provided by the authors 

and used it not only with the data provided by them, but also with data generated in our lab. 

The program works as described in the user manual in a user friendly way”. 
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Captions for Figures 

Figure 1: EEM-DA main interface overview. Insets (A)-(N) refer to the text. 

Figure 2: Average EEM for the test dataset. 

Figure 3: A) Main intertace with the dataset loaded and the number of components selected; 

B) workspace variables containing the dataset used; C) singular values varying the number of 

components. 

Figure 4: Figures of merit for A) PARAFAC-LDA, B) PARAFAC-QDA, C) Tucker3-LDA, 

D) Tucker3-QDA, E) PLS-DA. 

Figure 5: Variance calcualted for the test dataset. 

Figure 6: PLS-DA canonical scores (left) and predicted class (right). 

Figure 7: Classification indexes predicted by the toolbox for the PARAFAC-LDA model. 
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