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64

65 ABSTRACT:

66 The occurrence of lung cancer is linked with tobacco smoking, mainly through the 

67 generation of polycyclic aromatic hydrocarbons (PAHs). Elevated activity of cytochrome 

68 P4501A1 (CYP1A1) plays an important role in the metabolic processing of PAHs and its 

69 carcinogenicity. The present work aimed to investigate the role of CYP1A1 gene in PAH-

70 mediated growth and tumor development in vitro and using an in vivo animal model. RNAi 

71 strategy was utilized to inhibit the overexpression of CYP1A1 gene using cationic 

72 liposomes generated using a lipid film-coated proliposome microparticles. Treatment of 

73 PAH-induced human alveolar adenocarcinoma cell line with cationic liposomes carrying 

74 CYP1A1 siRNA resulted in down regulation of CYP1A1 mRNA, protein as well as its 

75 enzymatic activity, triggering apoptosis and inhibiting multicellular tumor spheroids 

76 formation in vitro. Furthermore, silencing of CYP1A1 gene in BALB/c nude xenografts 

77 inhibited tumor growth via down regulation of CYP1A1 expression. Altogether, our 

78 findings showed that liposome-based gene delivery technology is a viable and stable 

79 approach for targeting cancer causing genes such as CY1PA1. This technology facilitated 

80 by the use of sugar particles coated with lipid films has demonstrated ability to generate 

81 anticancer effects that might be used in the future for therapeutic intervention and treatment 

82 of lung cancer.
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84 1. INTRODUCTION

85 Lung cancer has become a leading cause of death worldwide due to the increased 

86 environmental contamination with inhalable carcinogens occurring as byproducts of 

87 combustion processes and unhealthy habits such as tobacco smoking (Field and Withers, 

88 2012). Despite the efforts made to improve the life quality of cancer patients, a proper 

89 understanding of the pathogenesis of lung cancer is still missing, resulting in poor treatment 

90 outcomes and severe adverse effects of chemotherapy and radiotherapy (Brambilla and 

91 Gazdar, 2009). Susceptibility of lung to carcinogenesis is based on the metabolic imbalance 

92 between induction and detoxification pathways, with a significant role of external inducing 

93 factors (Hecht, 1999).

94 Polycyclic aromatic hydrocarbons (PAHs) produced by tobacco smoking are involved in 

95 the activation and development of lung cancer (Armstrong et al., 2004; Hecht, 1999). 

96 Although the detailed mechanism of how this group of carcinogens disrupts the 

97 homeostasis of lung cells is still unclear, studies have concluded that PAHs can induce the 

98 overexpression of cytochrome P4501A1 gene (CYP1A1), an important member of a large 

99 family of cytochrome P450 enzymes involved in the metabolism of PAHs (Shimada and 

100 Fujii-Kuriyama, 2004). Consequently, many highly electrophilic metabolic intermediates 
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101 can be produced, causing irreversible damage to human tissues and inducing cancer 

102 occurrence (Shimada and Fujii-Kuriyama, 2004). Therefore, targeting of CYP1A1 gene 

103 may be a promising therapeutic strategy especially for smoking-related lung cancer 

104 (Androutsopoulos et al., 2009; Bruno and Njar, 2007). The induction of CYP1A1 primarily 

105 occurs when the inducer binds to the ligand-activated transcriptional factor aryl 

106 hydrocarbon receptor (AhR) (Guigal et al., 2000). Flavonoid galangin, an antagonist 

107 against AhR, has been considered as an inhibitor candidate to decrease the CYP1A1 

108 expression (Ciolino and Yeh, 1999). However, multi-targeted properties of this drug may 

109 lead to non-specific inhibition of the other members of the P450 gene family (Murakami et 

110 al., 2008; Sak and Everaus, 2015), suggesting a better and specific strategy is needed to 

111 target CYP1A1 gene for therapeutic intervention and treatment of lung cancer. 

112 RNA interference (RNAi) is a gene silencing technology at the transcriptional level and 

113 works through specifically targeting mRNA via sequence-specific matches, resulting in 

114 degradation of the target mRNA (Agrawal et al., 2003). siRNA technology promises 

115 greater advantages over conventional drugs currently in the market for its high targeting 

116 selectivity and low toxicity; however, pharmacokinetic properties of siRNA are 

117 unpredictable and its cellular uptake is poor (Lorenzer et al., 2015). Accordingly, specific 
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118 siRNA-mediated silencing of CYP1A1 expression with improved kinetics and uptake by 

119 target cells is urgently warranted.  

120 As widely used vehicles in nucleic acid delivery, non-viral vectors such as cationic 

121 liposomes are much safer than viral vectors (Khurana et al., 2013). Furthermore, compared 

122 to polymeric vectors, cationic liposomes may offer higher transfection and greater 

123 biocompatibility (Ruozi et al., 2003). Novel cationic lipids conjugated with functional 

124 targeting groups may offer a great potential for use in the preparation of cationic liposomes 

125 ( Ruozi et al., 2003; Kim et al., 2010b; Sun et al., 2018). 

126 Liposomes manufactured using the traditional thin-film hydration technique with 

127 subsequent prepartion as liquid dispersions are unstable during storage owing to the 

128 liability of phospholipids to hydrolysis and oxidation, with subsequent compromise of the 

129 validity of liposomes as drug carriers (Grit and Crommelin, 1993). Alternatively, 

130 proliposomes are stable powdered phospholipid formulations prepared by coating 

131 carbohydrate carrier particles with thin phospholipid films using modified rotary 

132 evaporators (Elhissi et al., 2006; Gala et al., 2015). Liposomes can be generated from 

133 proliposomes via the addition of aqueous phase and shaking (Elhissi et al., 2006; Gala et 

134 al., 2015). Several reports have established the suitability of manufacturing thin-film-based 

135 proliposome powders on a large scale, for instance by using fluidized-bed coating (Chen 

136 and Alli, 1987; Kumar et al., 2001; Gala et al., 2015). Liposomes generated from lipid film 
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137 coated sugars (i.e. proliposomes) have been widely investigated for drug delivery. For 

138 example, early reports have shown that oral delivery of non-steroidal anti-inflammatory 

139 drugs in liposomes generated from proliposomes can protect against gastric ulceration in 

140 experimental animals (Katare et al., 1990). Proliposomes have also been investigated for 

141 nasal delivery of propranolol hydrochloride and nicotine (Ahn et al., 1995; Jung et al., 

142 2000a), and for parenteral administration of antifungal drugs (e.g. amphotericin B) (Payne 

143 et al., 1987), and anticancer agents such as methotrexate (Park et al., 1994) and doxorubicin 

144 (Wang et al., 2000), and for transdermal delivery of nicotine (Hwang et al., 1997; Jung et 

145 al., 2000b). We have previously shown that proliposomes made by coating sucrose with 

146 lipid films can generate inhalable liposomes when hydrated in situ within medical 

147 nebulizers (Elhissi et al., 2012). More recent investigators have shown that diltiazem HCL 

148 liposomes generated from proliposomes could be used for topical treatment of glioma 

149 (Mokhtar Ibrahim et al., 2013) and dermatitis (Jahn et al., 2014) using animal models. 

150 Proliposomes made by film-ciating of sugar particles have recently been demonstrated to be 

151 compressible into tablets, with properties being dependent on formulation (Khan et al., 

152 2018). 

153

154 In this study, lipid film-based proliposome technology was employed for the preparation of 

155 cationic liposomes-siRNA (CL-siRNA) formulations for targeting the CYP1A1 gene. AhR-
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156 mediated induced expression of CYP1A1 in A549 adenocarcinoma cell line was used to 

157 model smoking induction of CYP1A1 expression. The effects of CYP1A1 silencing with 

158 CYP1A1 CL-siRNA on CYP1A1 expression, CYP1A1enzyme activity, cell apoptosis and 

159 tumor spheroids formation were verified in induced A549 cell lines. The effect of CYP1A1 

160 silencing on tumor regression was further investigated in the induced A549 tumors in 

161 xenograft BALB/c-nude mice. 

162

163 2. MATERIALS AND METHODS

164

165 2.1. Materials

166 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and dioleoyl-

167 phosphatidylethanolamine (DOPE) were purchased from Avanti Polar-Lipids Inc. 

168 (Alabaster, AL, USA). Cholesterol was obtained from Biotech Co. Ltd (Shanghai, China), 

169 and 3-methylcholanthrene (3-MC) was purchased from SUPELCO Co. 

170 (Pennsylvania ,USA). Human CYP1A1 siRNA was chemically synthesized and purified 

171 via HPLC by RiboBio (Guangzhou, China). Goldview staining was purchased from 

172 Guangzhou Geneshun Biotech Ltd (Shanghai, China). RNA prep pure cell kit was 

173 purchased from TIANGEN (Beijing, China). The sequence for siRNA was as follows: 

174 siRNA against CYP1A1: sense, 5’-GGCCUGAAGAAUCCACCAG-3’; antisense, 3’-
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175 CUGGUGGAUUCUUCAGGCC-5’. FAM-siRNA and the same sequence was obtained 

176 from Sangon Biotech (Shanghai, China). Lipofectamine2000 was obtained from Invitrogen 

177 (USA).

178 2.2. Preparation of liposome-siRNA complexes using lipid-coated particulate-based 

179 proliposomes

180 Sorbitol particles (300-500 μm) were placed in 50 ml pear-shaped flask and attached to a 

181 modified rotary evaporator with a feed-line tube. The flask was partially immersed in a 

182 water bath (37°C). A chloroform solution containing DOTAP, DOPE and Cholesterol 

183 (3:4:3 mole ratio) was injected in portions (0.5 mL each) via the feed-line using a syringe 

184 and by releasing the vacuum for a few seconds using a valve fitted on top of the condenser 

185 to allow lipid solution to be drawn through the feed-line and be sprayed onto the sorbitol 

186 carrier particles. After each addition, complete evaporation of chloroform was allowed 

187 before injecting the next portion. After solvent was completely evaporated, the solid 

188 particles of proliposomes were collected and stored in glass vials in the freezer (-18⁰C). 

189 Proliposomes were hydrated with water to form liposomes (1 mg/mL) followed by probe-

190 sonication. The sonicated cationic liposomes (CL) were mixed with siRNA in RNase-free 

191 water using vortex-mixing and incubated for 30 min at room temperature to form CL-

192 siRNA complexes. 

193
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194 2.3.  Scanning electron microscopy (SEM) of lipid film coated proliposomes

195 Microparticles made by coating sorbitol carrier with lipid film were positioned onto a 

196 carbon pad (Agar Scientific, UK), and coated with a thin film of gold using the sputter 

197 coater of the microscope (Bio-Rad, England). The morphology of the resultant 

198 microparticles was investigated under vacuum using the Quanta 200 scanning electronic 

199 microscope.

200

201 2.4.  Size analysis and zeta potential studies of CL-siRNA

202 Size analysis and zeta-potential studies of CL and CL-siRNA complexes were conducted 

203 using Photon Correlation Spectroscopy (PCS) and laser Doppler velocimetry, respectively. 

204 The studies were performed using the Malvern ZetaSizer Nano ZS90 (Malvern Instruments 

205 Ltd, UK) upon selecting the right software for each type of analysis. Size and size 

206 distribution were expressed by the instrument as the mean hydrodynamic diameter and 

207 polydispersity index (PDI), respectively.

208

209 2.5.  Cell Culture Studies

210 Human alveolar adenocarcinoma, A549 lung cancer cell line was obtained from American 

211 Type Culture Collection (Rockville, MD, USA). A549 cell line was cultured in RPMI 1640 

212 medium (HyClone, USA) supplemented with 10% fetal bovine serum (Minhai, China), 100 
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213 U/ml penicillin, 100 mg/ml streptomycin. Cell culture was performed in an incubator 

214 maintained at 37⁰C in a humidified environment containing 5% CO2.

215

216

217 2.6.  Agarose gel retardation assay 

218 To confirm formation of the complexes, the agarose gel retardation assay was employed to 

219 select the optimal charge ratio between cationic liposomes and negatively charged siRNA. 

220 CL-siRNA complexes were prepared at various molar ratios, and then run through a 2% 

221 agarose gel. The mobility of siRNA complexed with cationic liposomes was visualized by 

222 GoldView staining. 

223

224 2.7.  RNase protection assay of siRNA in cationic liposome complexes

225 An ideal siRNA delivery system is expected to protect siRNA against RNase enzymatic 

226 degradation. In order to monitor siRNA degradation by nuclease, firstly, siRNA-CL 

227 complexes were prepared at a final siRNA concentration of 5 μM and then incubated in the 

228 presence of 0.1mg/ml RNase for 30 min at 37⁰C. An aliquot (20 μl) was removed and snap-

229 frozen at -80⁰C at every time point. All samples were thawed on ice when they were 

230 collected and immediately mixed with 5 μl of a 100 mM Triton X100 solution and 25 μl of 

231 RNA-extraction mixture (phenol/chloroform/isoamyl alcohol; 25:24:1). The siRNA was 
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232 precipitated with ethanol, electrophoresis was performed on agarose gel (2%) and 

233 visualization took place by GoldView staining (Buyens et al., 2008).

234

235

236 2.8.  Cell model with high expression of CYP1A1

237 For the purpose of simulating the gene induction pathway to obtain a cell model with high 

238 CYP1A1 gene expression, an induction assay was carried out on A549 cells which are 

239 common for CYP1A1 gene research (Fazili et al., 2010). Cells were seeded in 12-well 

240 plates at a density of 1×104 cells per well, followed by 24 h incubation at 37⁰C in a 

241 humidified environment containing 5% CO2, and cells were treated with 3-MC with a final 

242 concentration of 5 μM for further 24 h (3-MC was dissolved in DMSO). 3-MC is one of the 

243 most potent PAH carcinogens, which is usually used in the induction of CYP1A1 via the 

244 AhR mechanism (Abdelrahim et al., 2003). After the induction, the induced cells were 

245 collected and used in the subsequent experiments. 

246

247 2.9.  Cellular uptake of siRNA in induced A549 lung cancer Cells 

248 Transfection of FAM-siRNA (what is FAM-siRNA) was performed in induced A549 cells. 

249 The induced A549 cells were seeded at a concentration of 5×105 cells per well in six-well 

250 plates. The cells were grown to a confluency between 60% and 80% and washed with pre-
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251 warmed (37℃ ) PBS, and then they were incubated with 100 nM liposome-free FAM-

252 siRNA or 100 nM FAM-siRNA-liposome complexes in serum-free medium. Following 

253 incubation for 4 h, the medium was replaced and the cells were washed with PBS twice, 

254 and then analyzed using flow cytometry (Beckman Coulter, USA) and examined under a 

255 fluorescence microscope. siRNA complexed with Lipofectamine2000 (Lipo2000) was used 

256 as a positive control in the experiments.  

257  

258 2.10.  Silencing of 3-MC induced CYP1A1 gene in A549 lung cancer cell line

259 For evaluation of the mRNA of CYP1A1 gene in vitro and in vivo, RNA was extracted 

260 from cells 24 h after transfection with CYP1A1-specific siRNA (n = 3) or from A549 lung 

261 tumor (n = 3), respectively, using RNA prep Pure cell kit. cDNA was then obtained by 

262 reverse transcription of the total RNA using the TIANscript RT kit and the CYP1A1 (sense, 

263 5’-GGCCUGAAGAAUCCACCAG-3’; antisense, 3’-CUGGUGGAUUCUUCAGGCC-5’). 

264 mRNA levels were analyzed using the SosoFastTM EvaGreen Supermix on iCycler iQTM 5 

265 system (Bio-Rad, USA) and β-actin was used as internal control. The PCR reaction was 

266 conducted at 95°C for 3 min followed by 40 cycles of 95°C for 5 s, and 56°C for 10 s in the 

267 iQ™5 Real-Time PCR Detection System. The expression of CYP1A1 was analyzed and 

268 normalized using the 2ΔCt method relative to the expression of β-actin. 

269
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270 2.11. CYP1A1 enzyme assays

271 To further study the silencing effect of siRNA on CYP1A1, the enzyme activity as well as 

272 the content of CYP1A1 was assessed. The CYP1A1 enzyme activity was determined by 

273 Human CYP1A1 fluorescence quantitative detection kits (Genmed Scientifics INC.USA). 

274 The CYP1A1 enzyme content was measured using Human CYP1A1 ELISA kits (R&D 

275 systems, USA). Both assays were performed following the relevant suppliers’ instructions.

276

277 2.12. Apoptotic assays

278 To examine the interactions between CYP1A1 gene regulation and the induced growth of 

279 tumor cells, different groups were designed in the cell apoptosis experiment. Induced A549 

280 cells were treated with CYP1A1-specific siRNA (100 nM) or complexed with cationic 

281 liposome in serum-free medium for 4 h and then further incubated in fresh completed 

282 medium. Cells were washed with PBS and digested in trypsin for suspension after 

283 incubation for 48 h, followed by double staining with FITC-Annexin V and propidium 

284 iodide using the cell apoptotic analysis kit (Beyotime, China) following the manufacturer’s 

285 instructions. Flow cytometry was used for investigation of cell apoptosis (n = 3). Further 

286 studies were performed to investigate the apoptosis mechanism. Caspases are the critical 

287 proteins responsible for apoptosis. These proteins are classified as initiators or executioners 

288 depending on their point of entry into the apoptotic cascade. It has been confirmed that 
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289 there were two main apoptosis pathways mediated by caspases (Boatright and Salvesen, 

290 2003). Among all the family members in this pathway, caspase 3 was considered as the 

291 final executioner, and meanwhile, caspase 8 and caspase 9 are the key initiator proteins 

292 which exist in the extrinsic and intrinsic apoptotic pathways, respectively. The three 

293 caspases were firstly detected with Caspase Activity Assay Kits (Beyotime, China). 

294

295 2.13. Multicellular tumor spheroids (MCTSs) assays

296 Multicellular tumor spheroids (MCTSs) may provide an appropriate model to identify the 

297 drug effect in vitro for its similarity to the tumor formation in vivo (Friedrich et al., 2009). 

298 A549 cells were cultured in a modified tumor sphere medium. The medium is comprised of 

299 recombinant fibroblast growth factor (EGF) (10ng/ml), basic fibroblast growth factor 

300 (bFGF) (10ng/ml) and insulin (4U/L), and plated at a density of 2×103 cells per well in 6-

301 well plates. Spheres were formed after 8-10 days incubation. After 24 h 3-MC induction, 

302 spheres were treated with different groups of siRNA which were described in the gene 

303 silence study at a siRNA final dose of 100 nM for 4 h. After further 72 h incubation, the 

304 results were observed by microscope. 

305

306 2.14. In vivo efficacy of targeting CYP1A1 gene using liposomes generated from lipid 

307 film-coated proliposomes
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308 The animal study protocol was approved by Institutional Animal Care and Use Committee 

309 of the Sichuan University in China. Male BALB/c nude mice (weighing 20-23 g) were used 

310 to investigate the antitumor efficacy of targeting CYP1A1 gene in vivo. Briefly, 1×107 

311 A549 cells were re-suspended in 200 µl serum-free RPMI 1640 medium and injected 

312 subcutaneously into the right flank of the nude mice. After 5 weeks tumor-bearing mice 

313 were randomly divided into four treatment groups (5 animals each). At days 1, 4, 7, 10, 13 

314 and 16, mice were intratumorally injected with 100 µl 10% 3-MC solution. Then at days 2, 

315 5, 8, 11, 14 and 17, mice were intratumorally injected again but with PBS, free siRNA or 

316 CL-siRNA. Every treatment was based on the dose of 40 µg siRNA per mouse. Calipers 

317 were used in this work to measure the tumor progression of every mouse. Tumor volumes 

318 were calculated as length×width×width×0.5(mm3). At the day 18, three animals from each 

319 group including control were sacrificed, and the tumors were excised. The measurements of 

320 CYP1A1 gene silencing effect were conducted as described earlier. 

321

322 2.15. Statistical analysis

323 Values were presented as mean (± SD) unless otherwise stated. The differences between 

324 groups were analyzed using the Student’s t-tests and one-way analysis of variance 

325 (ANOVA) with Bonferroni tests for multiple-group analysis. A probability level of P < 

326 0.05 was considered to indicate significant difference between the groups. 



  

17

327

328

329

330 3. RESULTS

331 3.1.  Physical characterization of proliposomes, cationic liposomes (CL) and CL-

332 siRNA complexes

333 The surface morphology of proliposome powders prepared through coating sorbitol 

334 particles with lipid film was examined by scanning electron microscopy (SEM) (Figure 1). 

335 The high porosity of sorbitol (Figure 1a) facilitated coating of the lipid on the carrier 

336 surfaces (Figure 1b). Our SEM observations using cationic lipids to coat sorbitol particles 

337 is in concordance  with the previous findings using neutral lipids such as 

338 dimyristoylphosphatidylcholine coated onto sorbitol particles (Payne et al., 1986). Our 

339 study also further confirms that sorbitol is a highly suitable carrier for coating with lipid 

340 films and preparation of proliposomes because of its microporous structure. In another 

341 study, we demonstrated that the film coating proliposome technology can be scaled up 

342 using fluid-bed coating equipment that can deposit a lipid film on carbohydrate particles 

343 (e.g. sucrose), generating liposomes that can successfully entrap conventional small 

344 molecules, such as the antiasthma steroid beclometasone dipropionate (Gala et al., 2015). In 
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345 the present investigation, through a smaller scale of manufacturing using a modified rotary 

346 evaporator equipped with a feed tubeline, proliposomes made by coating sorbitol with 

347 cationic lipids were prepared. Upon hydration (including or excluding siRNA) and probe-

348 sonication, cationic liposomes were generated. The measured size of the siRNA-free 

349 vesicles was as small as 85±3.2 nm and the size distribution, expressed by PDI, was as low 

350 as 0.165. The uniform coating of sorbitol particles (Figure 1b) justifies the facilitated 

351 generation of liposomes in the nano-size range and the narrow size distribution (i.e. low 

352 PDI) (Figure 1d). Transmission electron microscopy (TEM) images confirmed the uniform 

353 round shape of the gene-free cationic liposomes, which were also similar to those 

354 incorporating siRNA, suggesting that the genetic material was complexed with the 

355 liposomes, with no apparent formation of siRNA aggregates (Figure 1c). 1,2-dioleoyl-3-

356 trimethylammonium-propane (DOTAP) in the formulation conferred the liposomes with a 

357 positive surface charge of about +43 mV (sorbitol solution pH=7.5) (Figure 1d). For 

358 formulations incorporating siRNA, the integrity of siRNA was studied (Figure 1e). Varying 

359 charge ratios of CL to siRNA (N/P ratio) were prepared at fixed siRNA concentration (100 

360 nM). With the N/P ratio higher than 4, the migration of siRNA was completely retarded, 

361 indicating good binding efficiency of CL with siRNA and successful formation of the 

362 complexes (Figure 1e, f). On the other hand, size and zeta potential of CL-siRNA 

363 complexes were 90 nm and +30 mV, respectively at the N/P mole ratio of 4:1 (Figure 1d), 
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364 which contributed to the good dispersion properties and stability of CL-siRNA complexes. 

365 Considering all the results above, N/P = 4:1 was chosen as the optimal charge ratio for CL-

366 siRNA complex formation.

367

368 Agarose gel assay is an established technique for checking the formation of complexes 

369 between liposomes and genetic materials (e.g. siRNA) (Kim et al., 2010a). To assess the 

370 ability of liposomes to protect siRNA from degradation, the stability of siRNA in RNase 

371 solution was tested. As shown in Figure 1f, free siRNA was completely degraded upon 

372 exposure to RNase. By contrast, when siRNA was incorporated into cationic liposomes, the 

373 genetic material was intact for at least 4 h, indicating that liposomes have provided short-

374 term protection for siRNA against enzymatic degradation. In this study, we made powdered 

375 cationic formulations of proliposomes by film coating the sorbitol sugar with cationic lipid. 

376 This can readily generate liposomes complexing with siRNA via addition of aqueous phase 

377 and sonication just on the day of administration; hence, storage instability of liposome 

378 dispersions is avoided.

379

380 3.2.  Stimulation of CYP1A1 gene expression by 3-MC treatment in A549 lung cancer 

381 cell line
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382 After incubation with 3-MC (5 μM) for 24 h, the induced A549 cells were collected to 

383 investigate the target gene CYP1A1 expression level. All samples were analyzed by RT-

384 PCR, which suggested that the mRNA level of CYP1A1 in induced cells was about 7 times 

385 higher than that in the normal cells. Enhanced CYP1A1 expression was maintained for at 

386 least 48 h after single induction. 

387

388 CL were compared with Lipo2000, a commonly used positive control for siRNA delivery, 

389 for evaluation of the siRNA delivering ability. FAM-labeled siRNA was prepared alone or 

390 mixed with CL or Lipo2000 at a final concentration of 100 nM. Both flow cytometry and 

391 confocal microscopy were used to investigate the uptake efficiency of the liposomes in 

392 A549 cells. The results indicated that both CL and Lipo2000 effectively delivered siRNA to 

393 cells (Figure 2a), and significantly improved the uptake efficiency compared with free 

394 siRNA solution (Figure 2b).

395

396 3.3.  Silencing of CYP1A1 gene expression in A569 lung cancer cell line

397 Transfection of induced A549 cells with CL-CYP1A1-siRNA caused a 7-fold down-

398 regulation of CYP1A1 gene expression. Similar results were obtained with transfection 

399 using CYP1A1-siRNA Lipo2000 control. On the other hand, free (i.e. naked) CYP1A1-

400 siRNA and negative control siRNA (NC siRNA) did not show any marked silencing effect 
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401 on CYP1A1 gene expression (Figure 3a). All agents were tested in the induced cells, and 

402 the unstimulated A549 cells were used as a negative control. The silencing effects of CL-

403 CYP1A1-siRNA on CYP1A1 protein levels and enzymatic activity was also seen (Figure 

404 3b and 3c), confirming successful retardation of gene expression target. CL-siRNA 

405 prepared using the film-coating proliposome technology caused a similar knockdown 

406 efficiency compared to the positive control Lipo2000. This clearly demonstrates that the 

407 facile approach of generating CL-siRNA using the proliposome technology was successful 

408 at providing a more stable powdered formulation than conventional liposomes. It was also 

409 capable of retarding the gene expression in levels similar to those of the established 

410 Lipo2000 transfection reagent.  

411

412 3.4.  Knockdown of CYP1A1 gene induces apoptotic cell death in 3MC- treated A549 

413 cells 

414 The number of apoptotic cells was quantified by FITC-Annexin V and propidium iodide 

415 (PI) double-staining. CL-siRNA triggered apoptosis in induced A549 cells (Fig.4a). 3-MC 

416 induced cells without further treatment were used as the negative control in these 

417 experiments in order to eliminate the inducer influence on the results. Findings revealed 

418 that 3-MC induction had a little impact on the cellular growth, whereas the induced cells 
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419 tended to undergo apoptosis with CYP1A1 silencing through the intrinsic apoptotic 

420 pathway marked by elevated caspase 3 and caspase 9, but not caspase 8, activities (Figure 

421 4B), also confirmed by direct immunostaining (data not shown). 

422

423 3.5.  The Effect of CYP1A1 gene silencing on sphere formation in A549 lung cancer 

424 cell line

425 Sphere formation assay was performed to investigate the effect of CYP1A1 silencing on 

426 formation of spheroid colonies in vitro. Untreated induced A549 cells successfully 

427 produced spheroid colonies when cultured in a modified tumor sphere medium. On the 

428 other hand, spheres treated with CYP1A1 siRNA delivered by cationic liposomes or 

429 Lipo2000 formulation showed a suppressive effect on the formation of sphere colonies. The 

430 other groups including those untreated and mock did not exhibit this effect (Figure 5).

431

432 3.6.  Antitumor efficacy of gene silencing of CYP1A1 in tumor-bearing nude mice 

433 using particulate-based proliposome technology 

434 In order to investigate the impact of CYP1A1 silencing on tumor progression in vivo, we 

435 determined the antitumor efficacy of CL-siRNA in A549 xenograft nude mice model 

436 (Figure 6a). Results showed that growth rate of tumor with cationic liposome or Lipo2000 
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437 was significantly slower than that observed in the control groups including animals injected 

438 with PBS or naked (free) siRNA (Figure 6b/c). Moreover, the treatment caused down-

439 regulation of the expression of CYP1A1 gene in the tumors as detected by RT-PCR on the 

440 third day after giving the intratumoral dose (Figure 6d). Thus, the reduction of CYP1A1 

441 gene in induced A549 cells mediated by siRNA gave a significant tumor growth inhibition.

442

443 4. DISCUSSION 

444 In this study we report that liposome-based gene delivery technology is a viable and stable 

445 approach for targeting the cancer causing gene CY1PA1. A major issue for liposomes is 

446 their instability as liquid dispersion, commonly when prepared using the thin-film 

447 hydration technique (Grit and Crommelin, 1993). This was overcome in the present study 

448 by using the film-coating proliposome technology to prepare powdered lipid formulations 

449 that, when needed, can be used to generate CL-siRNA complexes.  

450 This technology, as demonstrated in our study, can potentially be considered for therapeutic 

451 intervention and treatment of lung cancer, one of the most common types of cancer and a 

452 leading cause of death (Torre et al., 2015). This approach comes as part of ongoing efforts 

453 to ameliorate the outcomes related to the undesirable pharmaceutical, pharmacokinetic and 

454 pharmacodynamic properties of lung cancer drugs, such as solubility, toxicity, stability, and 
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455 lack of selective effect on the cancerous cells (Tiwari et al., 2012). These properties can be 

456 enhanced by using drug vectors that are highly biocompatible and biodegradable 

457 (Zarogouldis et al., 2012). 

458 Continuous exposure to tobacco smoking can induce the expression of CYP1A1,  a  gene 

459 present in extra hepatic tissues (Androutsopoulos et al., 2009), that is involved in the 

460 metabolic activation of PAH produced from tobacco smoking. After the induction, high 

461 CYP1A1 gene expression can contribute to the carcinogenic derivatives production and 

462 may initiate neoplastic transformation (Whitlock, 1999). Stimulated bronchial epithelial 

463 cells express high levels of CYPT1A1 gene when induced by tobacco or environmental 

464 pollutants, predisposing them to lung cancer (Mercer et al., 2006). Hence, A549 human 

465 alveolar basal epithelial cell line represents a valuable model for the mechanistic studies 

466 involving induction of the pulmonary CYP system (Giard et al., 1973). In this study, we 

467 constructed a cell model on the basis of AhR mechanism through which CYP1A1 can be 

468 activated to a high level using 3-MC as previously reported (Hukkanen et al., 2000). In the 

469 induced cells, a high CYP1A1 gene expression was observed, similar to that seen in 

470 cancerous cells exposed to air contaminants. In our study, the 3-MC concentration was 

471 optimized to exhibit low toxicity and relatively high induction efficiency. 
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472 Limited studies have reported the relationship between inhibition of CYP1A1 gene and 

473 lung cancer therapy (Androutsopoulos et al., 2009). Flavonoid (such as quercetin), for 

474 example, was previously reported to inhibit CYP1A1 induction (Ciolino and Yeh, 1999). In 

475 the present work, we used RNAi as the inhibition strategy in lung cancer cells. Successful 

476 therapy using siRNA depends on effective delivery and protection against RNase. Owing to 

477 its large molecular weight and anionic nature, the uptake of siRNA by cancer cells is very 

478 poor, making the use of appropriate delivery systems highly advantageous (Gala et al., 

479 2015). To overcome these issues, we prepared cationic liposomes via the lipid-coating 

480 proliposome technology shown previously to be suitable for large scale production (Gala et 

481 al., 2015). Using fluidized bed coating, the solid proliposomes produced can be stored at -

482 18°C until needed for subsequent generation of liposomes, providing stability for several 

483 months (data not shown). In addition mass production and storage stability of proliposomes 

484 (as liposome precursors), the cationic liposomes were able to protect siRNA from nucleases 

485 and facilitated efficient transportation of siRNA into the cytoplasm, resulting in gene 

486 silencing effects similar to those exhibited by the commercially established Lipo2000. 

487 Indeed, both our in vitro and in vivo results indicated that CYP1A1 gene silencing by 

488 siRNA can regulate the cancer in the induced cells. Our data showed that the down-

489 regulation of CYP1A1 gene induced cellular apoptosis and interfered with the formation of 

490 tumor spheres in vitro and inhibited tumor development in BALB/c nude xenograft model. 
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491 Various murine models were established for the evaluation of novel therapeutics and 

492 examination of the molecular mechanisms underlying transformation, invasion and 

493 metastasis (Kellar et al., 2015). The A549 xenograft model was chosen in this study for the 

494 convenience of tumor measurement by making the cancer cells readily accessible (Kellar et 

495 al., 2015). Therefore in vivo results remain preliminary in nature and inconclusive. 

496 However, the emerging data confirm the validity of CL-siRNA-CYP1A1 as a proof of 

497 concept for targeting lung cancer, future experiments will explore different experimental 

498 designs including optimizing dosage and scheduling regimen to improve efficacy.

499

500 5. CONCLUSION

501 This study has shown that CYP1A1 gene can be a potential target for treatment of lung 

502 cancer. Cationic liposomes generated from film-coated proliposomes provided excellent 

503 siRNA carriers, with subsequent ability to silence the CYP1A1 gene both in vitro and in 

504 vivo. Further investigations to evaluate the aerosolization properties of CL-siRNA in animal 

505 models using the proliposome approach are warranted. This study will open the doors to 

506 further investigations in multiple therapeutic directions in the field of drug delivery and 

507 cancer treatment. 
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697 FiGURE LEGENDS

698

699 FIGURE 1. Characterization of lipososome-siRNA complex. (a) Scanning electron 

700 microscopy images of blank sorbitol and (b) Image of proliposome particles after coating 

701 with the lipid. (c) Transmission electron microscopy image of cationic liposomes generated 

702 from proliposomes. (d) Size and zeta potential of CL-siRAN complex at different cationic 

703 liposome to siRNA ratios. (e) The mobility of siRNA complexed with cationic liposomes at 

704 various molar ratios, ranging from 1-10 liposome to siRNA, by agarose gel retardation 

705 assay visualized by Goldview staining. (f) Stability of CL-siRNA complex against RNase. 

706 Cationic liposomes were complexed with siRNA at different molar ratios to study the 

707 degradation of siRNA by RNase by incubation with RNase at 37⁰C for up to 6 hours. The 

708 CL and siRNA N/P ratio was kept 4:1 in all samples and siRNA alone was used as negative 

709 control. 



  

33

710

711 FIGURE 2. Cellular uptake of CL-siRNA by A549 lung cancer cell line. (a)  

712 Representative images of A549 cells transfected with FAM-siRNA, CL-FAM-siRNA or 

713 Lipo2000-FAM-siRNA. Cells were treated with 5 μM 3-MC to induce CYP1A1 expression 

714 then incubated either with 100 nM liposome-free FAM-siRNA or 100 nM FAM-siRNA-

715 liposome complexes in serum-free medium. After transfection, cells were stained with 4’6-

716 diamidino-2-phenylindole (DAPI) and fluorescence images were taken by confocal 

717 microscope. (b) The cellular uptake efficiency of CL-siRNA in the induced cells was also 

718 measured by flow cytometry (n=3). 

719

720 FIGURE 3. Targeting of CYP1A1 gene using gene silencing approach. A549 lung 

721 cancer cells were treated with 3-MC then transfected with CYP1A1-siRNA using liposome 

722 (CL/siRNA) or Lipofectomine 2000 (Lipo2000/siRNA). Non-stimulated A549 cells were 

723 used as a negative control whereas 3-MC stimulated A549 transfected with naked siRNA 

724 were used as a positive control. (a) Expression of CYP1A1 gene of was analyzed by 

725 quantitative RT-PCR using β-actin as internal control. Data are shown as normalized fold 

726 expression relative to the untreated control (n = 3), * p<0.05. (b) CYP1A1 enzyme activity 

727 was measured by Human CYP1A1 enzyme activity fluorescence quantitative detection kits 
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728 (n=3), * p<0.05. (c) CYP1A1 enzyme content was detected with Human CYP1A1 ELISA 

729 kits (n=3), *p<0.05.  

730

731 FIGURE 4. Knockdown of CYP1A1 gene causes apoptosis in lung cancer cells. (a) 

732 A549 lung cancer cells were treated with 3-MC for 24 hours then transfected with CL-

733 CYP1A1-siRNA or CYP1A1 lipofectamine-2000. Cells were then stained with flourescein-

734 conjugated annexin-V and propidium iodide (PI) and analyzed by flow cytometry. 

735 Percentages of apoptotic cells are presented as mean ± SD (n = 3). (b) Quantification of the 

736 active caspase 3, caspase 8 and caspase 9 in 3-MC-induced A549 lung cells transfected 

737 with CL- CYP1A1-siRNA as performed by Flow Cytometry using caspase activity assay 

738 kits as described in the methods section. Data are presented as mean ± SD (n = 3). 

739

740 FIGURE 5. Effect of CYP1A1 gene silencing on A549-mediated spheroid colonies. 

741 Spheroid colonies were generated as described in the methods section. Sphere cells were 

742 treated with 3-MC for 24 h and subsequently then transfected with CL-CYP1A1-siRNA or 

743 CYP1A1 lipofectamine-2000 for 72 h. Representative images shown are from three 

744 different experiments. 

745
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746 FIGURE 6. Inhibition of tumor growth using CYP1A1-siRNA in mouse model system. 

747 BALB/c-nude mice were injected with 10 million A549 cells in serum free medium 

748 subcutaneously into right flank. The tumor bearing mice were divided into four treatment 

749 group (n=5). (a) All mice were injected with 3-MC and after 10 days were treated with (i) 

750 PBS (ii) CL-CYP1A1-siRNA (iii) Naked-siRNA and (iv) Lipofectamin-complxed 

751 CYP1A1-siRNA. (b) The volume of each tumor was measured at the indicated time points 

752 as described in methods. Results are expressed as mean, (n = 5), ± SD. (c) Mice were 

753 sacrificed after 18 days with six intratumoural injection of CYP1A1 siRNA and images of 

754 each tumors were taken as shown (n=5). (d) Total RNA were isolated from tumor of each 

755 mice. Expression of CYP1A1 gene were quantified by RT-PCR (Data expressed as mean ± 

756 SD; n=3).
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