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Abstract

The dependence of the polarization fraction p on total intensity / in polarized submillimeter emission
measurements is typically parameterized as p o< I “ (o < 1) and used to infer dust grain alignment efficiency in
star-forming regions, with an index o = 1 indicating near-total lack of alignment of grains with the magnetic field.
In this work, we demonstrate that the non-Gaussian noise characteristics of the polarization fraction may produce
apparent measurements of & ~ 1 even in data with significant signal-to-noise in Stokes Q, U, and I emission, and
so with robust measurements of polarization angle. We present a simple model demonstrating this behavior and
propose a criterion by which well-characterized measurements of the polarization fraction may be identified. We
demonstrate that where our model is applicable, v can be recovered by fitting the p—/ relationship with the mean of
the Rice distribution without statistical debiasing of the polarization fraction. We apply our model to JCMT
BISTRO Survey POL-2 850 pm observations of three clumps in the Ophiuchus molecular cloud, finding that in the
externally illuminated Oph A region, o ~ 0.34, while in the more isolated Oph B and C, despite their differing star
formation histories, o ~ 0.6-0.7. Our results thus suggest that dust grain alignment in dense gas is more strongly
influenced by the incident interstellar radiation field than by star formation history. We further find that grains may
remain aligned with the magnetic field at significantly higher gas densities than has previously been believed, thus
allowing investigation of magnetic field properties within star-forming clumps and cores.

Key words: dust, extinction — ISM: magnetic fields — submillimeter: ISM — stars: formation — techniques:
polarimetric

1. Introduction Ay ~ 20-30 mag (Whittet et al. 2008; Alves et al. 2014; Jones
et al. 2015). This inferred break in behavior is, in each case so
far reported, coincident with a change in tracer from optical/
near-infrared extinction polarimetry to submillimeter dust
emission polarimetry (Andersson et al. 2015; Jones et al.
2015). Submillimeter emission polarimetry is the only effective
wide-area tracer of ISM polarization in dense molecular clouds

(Ay 2 30 mag) where stars are forming. It is thus vital to

The role of magnetic fields in the star formation process is
not well understood (e.g., Crutcher 2012). Observations of
magnetic field morphologies in the densest parts of molecular
clouds are typically performed indirectly through submillimeter
dust polarization observations (e.g., Matthews et al. 2009). In
low-density, well-illuminated environments in the interstellar

medium (ISM), dust grains are expected to be aligned with
their minor axes parallel to the local magnetic field direction
(Davis & Greenstein 1951). However, at sufficiently high
optical depths, grains are expected to become less efficiently
aligned with the magnetic field (Andersson et al. 2015). Recent
results have suggested that this occurs at a visual extinction

studies of the role of magnetic fields in star formation to know
which gas densities are being traced by dust polarization
observations.

A commonly used method of assessing the alignment of grains
is to determine the relationship between polarization efficiency
and visual extinction (Whittet et al. 2008; Alves et al. 2014,
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Jones et al. 2015, 2016). In submillimeter studies, this is generally
treated as a relationship between the polarization fraction p and
total submillimeter intensity I, as polarization efficiency is
identical to the polarization fraction for optically thin emission
(Alves et al. 2015), and the optically thin submillimeter total
intensity is proportional to the visual extinction Ay for a given
temperature (see Jones et al. 2015; Santos et al. 2017). Recent
comparisons between p and submillimeter dust opacity measure-
ments (an alternative proxy for Ay) suggest that the standard
assumption in polarization studies of I o< Ay is likely to be too
simplistic (Juvela et al. 2018). However, regardless of the exact
nature of the relationship between I and Ay, an accurate
measurement of the p—/ relationship is required in order to
interpret dust grain alignment properties.

It is expected that observations of dense material within
molecular clouds will show a power-law dependence of p on I,
p o I “ (Whittet et al. 2008). This index is expected to steepen
as grains become increasingly poorly aligned with the magnetic
field: an index of @ = 0 would indicate equal grain alignment
at all optical depths, an index of a = 0.5 is predicted for a
cloud in which grain alignment decreases linearly with
increasing optical depth, while an index of a = 1 is predicted
for an environment in which all observed polarized emission is
produced in a thin layer at the surface of the cloud, and grains
at higher densities have no preferred alignment relative to the
magnetic field (see Whittet et al. 2008; Jones et al. 2015).

Several recent studies of molecular clouds and starless cores
have found power-law indices « in the range 0.5-1, for
example, o = 0.7 in OMC-3 and 0.8 in Barnard 1 (Matthews
& Wilson 2000), 0.64 + 0.01 in CB 54 and 0.55 £ 0.22 in DC
253-1.6 (Henning et al. 2001), 0.83 4 0.01 in NGC 2024 FIR
5 (Lai et al. 2002), 0.92 + 0.17 in Pipe 109 (Alves et al.
2014, 2015), 0.84-1.02 in W51 (Koch et al. 2018), 1.0 in FeSt
1-457 (Kandori et al. 2018), 0.7 or 0.8 in Oph A (Kwon et al.
2018), 0.9 in Oph B (Soam et al. 2018), and 1.0 in Oph C (Liu
et al. 2019). (Note that a larger value of « indicates a steeper
negative slope.) In most of these cases, the data used have been
selected to have a signal-to-noise ratio (S/N) >3 in some
combination of polarization fraction, polarized intensity, and
total intensity. Recent improvements in instrumental sensitivity
have allowed more stringent selection criteria: some recent
observations have employed an S/N cut of 20 in total intensity
(Kwon et al. 2018; Soam et al. 2018). These results have
generally been taken to suggest poor grain alignment within the
densest parts of molecular clouds.

Polarized intensity and polarization fraction are both constrained
to be positive quantities and so are characterized by Ricean
statistics (Rice 1945; Serkowski 1958), albeit approximately so in
the case of the polarization fraction, as discussed below. This
results in a strong positive bias in the measured polarization fraction
at low total intensities. Several methods of correcting for this bias
have been proposed, of varying levels of sophistication (Wardle &
Kronberg 1974; Simmons & Stewart 1985; Vaillancourt 2006;
Quinn 2012; Montier et al. 2015a, 2015b; Vidal et al. 2016; Miiller
et al. 2017). These methods are collectively known as (statistical)
debiasing. An alternative approach is to bypass the problem of
characterizing the polarization fraction by working with the Stokes
parameters of the observed polarized emission directly (e.g., Herron
et al. 2018). The Rice distribution is discussed extensively in the
electrical engineering literature due to its relevance to signal
processing (e.g., Lindsey 1964; Sijbers et al. 1998; Abdi et al.
2001).

Pattle et al.

In this work, we investigate the extent to which measure-
ments of the p—/ index are biased by the statistical behavior of
the polarization fraction and choice of selection criteria. We
demonstrate a method by which the relationship between p and
I can be accurately characterized using the full observed data
set without recourse to statistical debiasing.

The L1688 region of the Ophiuchus molecular cloud is a
nearby (138.4 + 2.6 pc; Ortiz-Ledn et al. 2018) site of low-to-
intermediate-mass star formation (Wilking et al. 2008). The
region contains a number of dense clumps, Oph A-F, notable for
their differing properties and star formation histories (Motte et al.
1998; Pattle et al. 2015). The Oph A, B, and C clumps have been
observed with the James Clerk Maxwell Telescope (JCMT)
POL-2 polarimeter as part of the JCMT B-fields in Star-forming
Region Observations (BISTRO) survey (Ward-Thompson et al.
2017; Kwon et al. 2018; Soam et al. 2018; Liu et al. 2019). We
apply the methods developed in this paper to the JCMT BISTRO
survey observations of L1688.

This paper is structured as follows. In Section 2 we present
the key equations governing the behavior of the polarization
fractions. In Section 3, we present a simple model for the
behavior of the polarization fraction as a function of S/N. In
Section 4 we present Monte Carlo simulations demonstrating
the behavior of our model and testing various fitting methods to
recover the underlying relationship between polarization
fraction and total intensity. In Section 5, we apply our model
to recent JCMT POL-2 observations of the Ophiuchus
molecular cloud. Section 6 summarizes our results.

2. Mathematical Properties of the Polarization Fraction

Linearly polarized intensity is given by
P=0+ U2, (1)

where Q is the Stokes Q intensity and U is the Stokes U
intensity. We do not consider circular polarization here, and so
we assume the Stokes V intensity to be zero throughout. The
polarization fraction, the ratio of polarized intensity P to total
intensity /, is given by

1

@)

We take measurements of Stokes I, Q, and U to have
measurement errors of 61, 6Q, and 60U, respectively. We assume
that these measurement uncertainties are drawn from Gaussian
distributions of width oy, 0, and oy.

Note that all symbols defined and used in this work are
summarized in Table 3 in the Appendix.

2.1. The Rice Distribution

Polarized intensity—the result of the addition in quadrature
of real numbers, as shown in Equation (1)—must be a positive
quantity. The addition in quadrature of small values of Q and
U, with measurement uncertainties 6Q and 6U will produce
spurious measurements of polarized intensity where 6Q 2 |Q|
and 60U 2 |U| produce spurious measurements of polarized
intensity. The results of such an addition in quadrature are
described mathematically by the Rice distribution (Rice 1945),
where the quantities under addition have noise properties that
are Gaussian and uncorrelated. In principle, we can expect the
uncertainties on Stokes Q and U to be independent, as Q and U
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are orthogonal components of the Stokes polarization vector
(see, e.g., Herron et al. 2018). We discuss the validity of this
assumption in the specific case of JCMT POL-2 observations in
Section 5.

The Rice distribution has positive skewness at low S/N,
while at high S/N, it tends toward a Gaussian distribution
(Rice 1945). Assuming that the Stokes Q and U data have
independent Gaussian measurement uncertainties, polarized
intensities derived using Equation (1) will be Rice-distributed
(Wardle & Kronberg 1974; Simmons & Stewart 1985).

As the distributions of the observed values of the polarized
intensity, and so of the polarization fraction, are different from
the underlying distributions that would be seen in the absence
of measurement error, we henceforth denote the observed
values of the polarized intensity and polarization fraction as P’
and p/, respectively.

The division p’ = P'/I (see Equation (2)) can, at low S/N
(where I is small and P’ may be artificially large), produce
artificially high values of p’. If P'/6P < I/6I, as is generally
the case, as p < 1 in physically realistic situations, the effect
of the measurement error on I on the distribution of p’ will be
minimal, so p’ will also be approximately Rice-distributed (see
Simmons & Stewart 1985).

If the polarization fractions that we measure can be treated as
being Rice-distributed, the probability of measuring a polariza-
tion fraction p’ given a true polarization fraction p and an rms
uncertainty in polarization fraction o,, (the probability density
function) is

/ 12 2 /
PDFicc(p'|p) = %exp(—#]&[%], 3)

oy 20 P oy,
where 7, is the zeroth-order modified Bessel function
(Simmons & Stewart 1985). See Montier et al. (2015a) for a
derivation of this result (see also Bastien et al. 2007; Hull &

Plambeck 2015).
The mean of the Rice distribution is given by

T 2
e

p

where L1 is a Laguerre polynomial of order %,

2 p? 2 2
o2 el + 2 |z | 2=
2 20%, 20%, 40?,

2 2

14 P
+ =7 =1 5
202 1[40?,)] ©)

p

and 7, and Z; are modified Bessel functions of order zero and
1, respectively.

We note that approximating p’ as Rice-distributed is a statement
that I is perfectly known, and so is equivalent to setting its rms
uncertainty o; = 0. We will demonstrate in Section 4 that
Equation (3) describes synthetic data with realistic noise properties
sufficiently well to justify making this assumption.

Having chosen to treat [ as perfectly known, if the measurement
uncertainties on Q and U are equivalent, i.e., 0y = oy, then o,
will be given by

0% 6)

Pattle et al.

(see Equation (2)). This approximation is discussed by Montier
et al. (2015a).

2.2. Debiasing

The correction of the observed polarization fraction p’ for the
bias described above is known as “debiasing.” A commonly
used method for debiasing polarization fractions is the Wardle
& Kronberg (1974) estimator (see also Serkowski 1962), under
which the debiased observed polarized intensity is given by

Py, = \/Q2 + U* - %(6Q2 + 6U?). (7

Similarly, the debiased observed polarization fraction is given by

/ \/QZ + U2 = 2(80% + 6U?)
P = 7 :

As this is the default debiasing method for POL-2 data (e.g.,
Kwon et al. 2018), we compare the results of fitting non-
debiased data and data debiased using the Wardle & Kronberg
(1974) estimator in Section 4. For a detailed comparison of
debiasing methods, see Montier et al. (2015b).

®)

2.3. An Aside on Polarization Angle

The polarization angle 6, is given by
1
0, = > arctan(U, Q). ©))

We note that measurements of the polarization angle follow a
different probability distribution than those of the polarization
fraction (Naghizadeh-Khouei & Clarke 1993). We expect
measurements of the polarization angle to be significantly more
robust than those of the polarization fraction, as the Q and U
distributions have the same statistical properties and thus their
ratio is not affected by the issues discussed above. Note also
that the polarization angle is not constrained to be positive.

Inference of grain alignment properties from the polarization
angle distribution would require at minimum a model of the
plane-of-sky magnetic field morphology and an estimate of the
fluctuations in magnetic field direction induced by Alfvénic
turbulence (Chandrasekhar & Fermi 1953). We therefore do
not consider polarization angles in this work.

3. A Simple Model for the Polarization Fraction

We construct a simple model in which the polarization
fraction is fully described by

p{) :P()(IL) ) (10)

0

where py is the polarization fraction at the reference intensity,
Iy. We expect 0 < o < 1 (e.g., Whittet et al. 2008).

The reference intensity, or normalization, I, can be treated
as a free parameter of the model. However, we choose to
specify Iy = ogy, where ogy is a single value, with units of
intensity, representative of the rms noise in both Stokes Q and
U measurements. We thus assume that the Stokes Q and U data
sets have identical statistical properties and can be adequately
characterized by a single rms noise value. This is a reasonable
assumption for recent submillimeter emission polarization
measurements, as described in Section 5 below.
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By taking Iy = ogy, we assume that the power-law relation-
ship between I and p applies to all measurements above the noise
level of the data. Choosing Iy = oy allows us to discuss the
behavior of our model in terms of a simple S/N criterion, I/ooy,
as demonstrated below. The reference polarization fraction pg
thus depends on oyy. In order to emphasize this, we define the
polarization fraction at the noise level of the data, p(/ = opp) =
Poyy> 1€ i lo = 0o, Po = Py, -

In order to meaningfully compare polarization fractions in
data sets with different rms noise levels, we must convert Pogy
to the polarization fraction at a common reference intensity
level. In this work, we choose a reference intensity of
I = 100 mJy beam ™' and so define

1y«
100 mJy beam ] an

L=
P1oo mJy beam p()'QU [ oou
The choice to reference to 100 mJy beam™ is largely arbitrary
but suitable for the JCMT POL-2 data that we consider in
Section 5 below, in which I = 100 mly beam™' is both
significantly above the rms noise level of the data and below
the maximum intensities observed. Note that the JCMT has an
effective beam size of 14”1 at 850 um (Dempsey et al. 2013).
Equation (10) becomes unphysical where p(I) > 1. More-
over, in physically realistic scenarios, we expect p < 0.2 in
data with good S/N, as the maximum percentage of
polarization observed in the diffuse ISM is ~20% (Planck
Collaboration et al. 2015). We thus require that p < 1 and
expect that p < 0.2 wherever we believe our observed Stokes
0, U, and I values to be reliable.

3.1. Physical Implications of o

If o =0, this implies that the polarized intensity P =

NO* + U? « I, 50 p = p,  everywhere. If polarized intensity
is directly proportional to total intensity, this indicates that all
emission along each sight line is polarized to the same degree,
so there is no variation in polarization efficiency anywhere
within the observed cloud.

If a =1, this implies that P does not vary with [; ie., a
constant amount of polarized emission is observed at all
locations in the cloud. This indicates that only a small portion
of the total line of sight is contributing polarized emission. This
is usually interpreted as a thin layer of polarized emission
overlaying an otherwise unpolarized optically thin sight line.
This polarized emission is implicitly from low-density material;
so, if the higher-density material along the sight line is also
polarized, that polarized emission ought to also be detectable.
Thus, claiming a physical index of o =1 is essentially a
statement that one has observed statistical noise in Stokes Q and
U around a constant level of polarized intensity, and that this
indicates a genuine absence of polarized emission at high total
intensities, rather than insufficient S/N to achieve a detection.

Intermediate values of 0 < a < 1 indicate a positive
relationship, P o I'~ % in which the total amount of polarized
emission increases with, but slower than, total emission. This
implies that as the amount of material along the sight line
increases, the ability of that material to produce polarized
emission decreases (under the assumption of isothermal,
optically thin emission). Thus, an index of 0 < o < 1 indicates
that depolarization increases with depth into the cloud.

Pattle et al.
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Figure 1. The S/N value (I/0oy)erie at which our model predicts a break in the
power-law index as a function of o and Pogu> derived using Equation (14). In

order to detect and accurately characterize a power-law behavior shallower than
a =1, a reasonable number of data points with (I/ogy) > (I/0gp)enc are
required. The contours show lines of constant S/N. The color table saturates at
Ijogy = 10*. Note that not all combinations of o and Pogy will produce

physically plausible results.

3.2. Low-S/N Limit

In the low-S/N limit, the distribution of p’ tends to the Rice
distribution regardless of the value of a (or py or Iy). In
the limit where p < 0, L£i1(—p*/20,) — 1, and therefore
t, — op7/2. Taking o, = ogy/l, the behavior of the
distribution is well approximated by

-1
Tl I
= |2 — 12
p 2[UQU] (12)

at small 1. Thus, at low S/N, p’ x e regardless of the true
value of a.

In the no-signal case (pUQU = 0; 0 = U = 0), Equation (12)
characterizes the observed signal at all values of I. Thus, in the
absence of a true measurement, p’ o< I~ ' behavior will be
observed.

3.3. High-S/N Limit

In the high-S/N limit, the distribution of p’ tends toward a
Gaussian distribution around the true value,

I —
! = —_— . ]3
p pUQU[ 00 ] (13)

3.4. S/N Criterion

Equations (12) and (13) suggest that, for a < 1, the
underlying power-law dependence of p on I will be observable

when
1
I—a
L>[L] (= 14
gou  \0QU )iy \Pogu ¥ 2

At S/Ns below this critical value, the artificial p’ oc I !
behavior will dominate, and the true value of « will not be

recoverable.
Figure 1 shows solutions of Equation (14) for the critical
S/N value (I/0gp)erir» above which the true power-law behavior
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(i.e., the true value of o) would be recoverable. It is apparent that
significant S/N is required to distinguish a power-law behavior
with a steep value of o from instrumental noise.

4. Monte Carlo Simulations

In order to test the accuracy of our interpretation of the
model described above, we performed a set of Monte Carlo
simulations.

We investigated values of « in the range 0 < o < 1. In each
case, we t00k P1go myy beam = 0.025 (i.e., emission is intrinsically
2.5% polarized at I = 100.0; intensity units are arbitrary but
chosen to mimic POL-2 data, which are calibrated in mly
beamfl). This value of p1o myy beam Was chosen for its similarity
to the POL-2 observations. We then calculated the appropriate
value of Poyy for our chosen a and pigomy beam- USING
Equation (11).

As we are not concerned with polarization angles in this
work, we choose for simplicity that Stokes U = 0 (6, = 0°,
implying that the underlying magnetic field is uniform and
oriented 90° east of north), and so Equation (10) is equivalent
to

o) =pW) x I =p,,,o5u1'~" 5)

We drew a set of 10° randomly distributed log,,(I/opy)
values in the range 0 < log,,(/ /opy) < 3 (thus assuming that
low-S/N values of I are more probable). We drew measure-
ment errors AQ and AU on Stokes Q and U from Gaussian
distributions of equal (fixed) width, ooy, and Al on Stokes /
from a Gaussian distribution of (fixed) width o;. We here chose
oou = o7 = 5.0 (arbitrary units). Equations (3) and (4) assume
that the effect of o; on the distribution of p is negligible. We
wished to test whether that approximation is valid in
observations where the noise on Stokes / is comparable to
that on Stokes Q and U.

The “observed” values Qqps, Uqgps, and I were then, for the
ith value,

Oobs,i = Qi + A, (16)
Uobs,i = AU, 17)

and
lovs,i = I + Al (18)

“Observed” values of p’ and péb were calculated using
Equations (2) and (8), respectively, for a given value of Py
We repeated this process 10* times.

Figure 2 shows a single realization of our Monte Carlo
simulations for three cases: o =1, 0.5, and O (constant
polarization fraction). In all cases, p1oo myy beam = 0.025. The
results are shown without any debiasing of the polarization
fraction and colored according to their S/N in 7 and p'.

Figure 2 shows that where [/ogy < (I/0gp)et» the
distribution shows an identical p’ o I~ behavior in all cases,
and that the underlying power-law behavior does not dominate
over the I~' dependence until I/ooy > (I/0gt)erir- Thus,
unless a reasonable number of data points have S/Ns
significantly greater than the critical value, the true power-
law behavior is not recoverable. The overall behavior of the
recovered polarization fraction is well described by the mean of
the Rice distribution.
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Figure 2. Monte Carlo simulations of the observed polarization fraction p’ as a
function of S/N I/, for three cases: a = 0 (top), 0.5 (middle), and 1 (bottom).
In all cases, p1oo myy beam = 0.025. Results are shown without debiasing. The
polarization fraction p’ is given as an absolute value (not as a percentage), so any
value p’ > 1 (marked in bold on plot axes) is unphysical. Points are colored
according to their S/N in / and p'; gray points meet none of the criteria shown in
the legend. The solid black line shows p’ = 1, the mean of the Rice distribution,
for the given values of a and p,,,. The dashed black line shows the true

polarization fraction p = pUQU(I/aQU)"’. The dotted line shows the null-
hypothesis/low-S/N relation p’ = \Jm/2 (I /ooy)~". In the cases where a < 1,

the dotted—dashed line marks the critical value (I /opy)eric = (pd_Qlu /2 )ﬁ.

4.1. Uncertainty on Polarization Fraction

In keeping with standard practice in observational polari-
metry and the default behavior of the POL-2 pipeline (e.g.,
Kwon et al. 2018), we estimated the uncertainty on the
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polarization fraction using the relation

1
2 2 2 2 2 2 2 7
:(QéQ + UU S1%(0 +U))2 (19)

12 (QZ + UZ) 14

(e.g., Wardle & Kronberg 1974). We note that this result is
derived using classical error propagation and so assumes that
6Q, 6U, and 6l are small and uncorrelated. We here take
00 = 6U = ogpy and 6l = o5. As discussed above, measure-
ment errors Op calculated using Equation (19) can only be
treated as representative of a Gaussian distribution around p’
when p'/ép is large.

4.2. Fitting Methods

We investigated the results of fitting two models to our Monte
Carlo simulations. Fitting was performed using the scipy routine
curve_fit. In all cases, we attempted to recover the input values
of p,, and a, assuming that ogy is a fixed and directly
measurable property of the data set. We supplied our calculated
Op values to curve_fit as 1o uncertainties on p’. Although this is
technically valid only at high S/N, the default behavior of this
fitting routine is to consider only the relative magnitudes of the
input uncertainties. The uncertainties provided thus down-weight
the contribution of low-S/N points to the fitting process.

Single power-law—In keeping with standard practice, we
fitted a single power-law model, Equation (13), to the high-S/
N data. This model assumes that p’ ~ p and so is usually
applied to data that have been statistically debiased. Applying
this model to data that have not been debiased would inherently
lead to artificially high values of « being recovered. In order to
fairly test this model, we thus applied it to the debiased
polarization fractions pd’b returned by our Monte Carlo
simulations; i.e., we fitted

1 —
Py = pJQU(—) (20)
oou

to a high-S/N subset of the debiased data. We tested two
commonly used S/N criteria: 1/61 > 10 and py /6p > 3. As
we are here selecting higher-S /N data points, the ép values we
use should be somewhat representative of 1o Gaussian
uncertainties on pd/b. However, this model will provide accurate

values of Poyy and « only if the pd/b values selected are well

within the high-S/N limit described in Section 3.3.

Mean of Rice distribution—We fitted the mean of the Rice
distribution (Equation (4)), assuming that p is given by
Equation (13), and that 0, = ogy/1, i.e.,

-1 2 2(1—a)
Py,
p = | L Li| ——= L . 21
2 oou 2 oou

We hereafter refer to this model as the “Ricean-mean model.”
This model is applied to the entire data set without any
selection by S/N and to data that have not been statistically
debiased. The Ricean-mean model is predicated on the Ricean
probability density function (Equation (3)) being applicable to
the data, which will not be the case if any attempt has been
made to correct the data for observational bias. We note that
although the p values used in the fitting process do not strictly
represent 1o Gaussian uncertainties, they do have the effect of
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significantly down-weighting the contribution of low-S/N data
to the best-fit model. Fitting this model thus requires a good
measurement of ooy with which to constrain the low-S/N
behavior.

We fitted these models to non-debiased (Ricean-mean) and
debiased (power-law) values of p’ for each realization of our
Monte Carlo simulations. We tested values of « in the range
0 < a < 1. Our results are shown in Figure 3. We find that, of
the fitting models we tested, only the Ricean-mean model can
accurately recover both « and Pogy when « is large.

For data with a maximum I/ogy value of 1000 and
D100 my beamt = 0.025, « and Ppy, Can be approximately
recovered with the single power-law model only while
a < 0.3. For the single power-law model, the recovered value
of « is systematically larger than the input value, tending
toward 1 as « increases (thus, an input value o = 1 can be
accurately recovered). The recovered value of Poyy is also larger
than the input value for steep values of «. Selecting p/ép > 3
systematically increases the recovered value of Py, as would
be expected from examination of Figure 2. Thus, we expect
fitting a single power-law model to, in general, systematically
return larger-than-input values of a and Poyy and so over-
estimate the extent to which depolarization is occurring. This is
shown in Figure 3.

We find that the Ricean-mean model performs well for most
values of a. As expected, the Ricean-mean model cannot
accurately recover the input model parameters without a significant
number of data points above (I/ogy)eri- If the data set under
consideration has a maximum S/N (I/oop)max. @ necessary
condition for the input model parameters to be recoverable will be

(L) >(L) , @
%u max %ou crit

because if the break from p’ oc I to p’ oc I”® occurs above the
maximum S/N in the data set, o will perforce not be recoverable.
Thus, for a given value of Pogys there will be some theoretical
maximum (i.e., steepest) recoverable value of o, which we define
as Qupyy, associated with (/0 pt)max = I/ 0ou)erie- Combining this
equality with Equation (14) (substituting o, for « in the latter),

we find
log| /T
g Pogy 2

Omax = 1 — m (23)

In practice, a reasonable number of data points must have S/Ns
greater than (I/ogy)erie in order to accurately recover the input
model values. Figure 3 shows that, for our chosen values of
P100 mJy beam! = 0.025, Ogu = 5.0, and (I/UQU)max = 1000,
the Ricean-mean model can accurately recover values up to
a = 0.6 and approximately recover o = 0.7, but values steeper
than this cannot be recovered accurately. The o = 0.9 and 1.0
cases have no data points above (I/0gy)erir- Our results suggest
that in order to accurately recover the input parameters, ~>40%
of the data points must be above (I/ogp)crit-

When performing these Monte Carlo simulations, we set
o7 = ogy. We find that the Ricean-mean model can accurately
recover the input model values despite the approximation
o7 = 0 in Equation (3). This supports our assumption that the
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Figure 3. Results of fitting to Monte Carlo simulations for p10o myy beam = 0.025 and 0 < a < 1. Left column: The black data points show single power-law fitting
to debiased data where p/ép > 3 (dashed line) and I/6I > 10 (solid line). The red data points show fitting of the Ricean-mean model to non-debiased data. Top row:
recovered values of a; middle row: recovered values of Pogy bottom row: recovered values of pigo myy beam1- All rows: The solid gray line shows the input values.
Right column (relevant to Ricean-mean model only): The top row shows the critical S/N value (I/0gp)eri inferred from the best-fit o and Pogy for the Ricean-mean
model. The solid gray line shows the input values. The horizontal dashed line shows the maximum S/N value in the simulations, (/0 gg)max = 1000, and the values
(I/0ov)erit > (I/00u)max (indicating the range in which input model values are not recoverable) are shaded in gray. Middle row: maximum recoverable index Cpax.
The dotted gray line shows the 1:1 relation; values near or to the right of this line will not be accurately recoverable. Bottom row: fraction of data points above the

critical S/N (I/0ot)erit-

effect of uncertainty on the total intensity on the observed
polarization fraction is negligible compared to that on the
polarized intensity.

We find that the Ricean-mean model consistently performs
better than single power-law fitting in accurately recovering «
and Pay,- We therefore choose to apply this model to our
observational data.

5. An Example: JCMT POL-2 Observations of the L1688
Region of the Ophiuchus Molecular Cloud

In order to test our model on real data, we used JCMT
BISTRO survey (Ward-Thompson et al. 2017) 850 pm POL-2
observations of three dense clumps within the Ophiuchus
L1688 molecular cloud: Oph A, Oph B, and Oph C. These
data sets were originally presented by Kwon et al. (2018),
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Figure 4. Finding chart for the L1688 region. The gray-scale image shows the
JCMT Gould Belt Survey SCUBA-2 850 um map of the region (Pattle
et al. 2015). The three BISTRO fields are marked in red: solid lines show the
central 3’ diameter regions with uniform noise characteristics used in this work,
and dotted lines show the full extent of the observations. The locations of the B
stars HD 147889 and S1 are marked with blue stars. A plane-of-sky distance of
0.25 pc at our assumed distance to L1688 of 138 pc is shown in the lower right
corner.

Soam et al. (2018), and Liu et al. (2019), respectively, and
were taken under JCMT project code M16AL004.

The Oph A and B clumps are active star formation sites
containing outflow-driving protostellar sources and gravita-
tionally bound prestellar cores, while Oph C has little or no
ongoing star formation and contains only pressure-bound cores
(Pattle et al. 2015). Oph B and C are cold (~10K) clumps
showing little sign of external influence. Oph A is warmer,
~20K, and is in the vicinity of two B stars, HD 147889
(spectral type B2V, Wilking et al. 2008; effective temperature
Terr ~ 20,800 K, Silaj et al. 2010) and S1 (B4V, T~
17,000 K; Mookerjea et al. 2018). The immediate proximity of
the latter of these significantly increases the ionizing photon
flux on Oph A over that on other clumps in L1688 (Pattle et al.
2015). The geometry and radiation field of L1688 is discussed
in detail by Liseau et al. (1999) and Stamatellos et al. (2007). A
finding chart for the L1688 region is shown in Figure 4.

5.1. Observations and Data Reduction

We reduced each set of observations®’ (20 observations of
Oph A and C; 19 observations of Oph B) using the pol2map®'
routine recently added to SMURF (Berry et al. 2005; Chapin
et al. 2013) and the “2018 January” instrumental polarization
model (Friberg et al. 2018). The data reduction process is as
described by Soam et al. (2018), with the following modifica-
tions: (1) in the second stage of the data reduction process, the
skyloop™ routine was used, in which each iteration of the
mapmaker is performed on each of the observations in the set
in turn, rather than each observation being reduced consecu-
tively, as is the standard method; (2) variances in the final
coadded maps were calculated according to the standard
deviation of the measured values in each pixel across the 20

200 single JCMT BISTRO POL-2 observation consists of 40 minutes of
observing time using the POL-2-DAISY scan pattern described by Friberg
et al. (2016).

2! hup: //starlink.eao.hawaii.edu/docs/sc22.pdf
2 http://starlink.eao.hawaii.edu /docs/sc21.htx /sc21.html
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observations, rather than as the mean of the rms of the
bolometer counts in that pixel in each observation; and (3)
in the final coadded maps, each observation was weighted
according to the mean of its associated variance values. The net
effect of these alterations is to improve homogeneity between
observations and reduce noise in the final coadded maps. Based
on the outcomes of fitting our Monte Carlo simulations, we did
not attempt to debias the measured polarization fractions.

As discussed in Section 3, the Ricean model assumes that
Stokes Q and U have uncorrelated uncertainties. This is a
reasonable assumption for POL-2 data. The first step of the
POL-2 data reduction process is to separate each bolometer
time stream into Q, U, and [ time streams by fitting a sinusoidal
function to the data using the calcqu® routine. So long as the
phase of the polarized emission (twice the position angle of
the POL-2 half-wave plate) is accurately known at each point in
the bolometer time stream, the Q and U time streams should be
correctly separated. The Q, U, and [ data are thereafter reduced
independently of one another.

In our model, we assume that the observed data can be
accurately characterized by a single rms noise value, o The
JCMT POL-2 observations use an observing mode wherein the
central 3/ diameter region of each 12’ diameter observation has
constant exposure time and so approximately constant rms
noise (Friberg et al. 2016). We thus considered only this central
region of each field. (In Oph B, this corresponds to the Oph B2
clump.) The three fields, along with their polarization vectors,
are shown in Figure 5.

Each pixel in the output Stokes QO and U maps has associated
variance values V, and Vi, determined as described above.
These variance maps can be converted into maps of 1o rms
noise by taking their square roots. We thus estimated a single
rms noise value for our data,

N
Z(\/ Vo.i + JVu.i)s (24)

i=1

1
{oov) = -
where N is the number of pixels in the data set. We set
opu = (0py) when performing model fitting. We retain the
notation (opy) while fitting real data in order to emphasize that
this is a measured property of the data set. The (opy) values
measured in each field are listed in Table 1. We also calculated
the uncertainties on the polarization fraction for each pixel from
the variance values V, Vy, and V; using Equation (19).

The JCMT POL-2 data are by default reduced onto 4” pixels.
In order to investigate the dependence of the observed
polarization fraction on rms noise, we also gridded the data
to 4n” pixels, where n = 1-8, thereby generally reducing the
rms noise, as shown in Table 1. We note that binning to larger
pixel sizes increases the chance of beam-averaging-related
depolarization. However, for the 8” and 12" cases, as we grid
from a pixel size of ~1/3 of the 850 pum JCMT primary beam
to slightly smaller than beam-sized pixels (the JCMT has an
effective beam size of 14”1 at 850 um; Dempsey et al. 2013),
we do not expect this to be an issue in at least these cases. We
did not grid to larger pixel sizes than 32", as at larger pixel
sizes, the rms noise values ceased to improve, and the number
of data points became prohibitively small.

B http:/ /starlink.eao.hawaii.edu/docs/sun258.htx /sun258ss5.html
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Figure 5. The POL-2 850 pm total intensity maps of the central 3’ of the BISTRO Oph A, B, and C fields, with polarization vectors overlaid. Vectors are sampled to a
12" grid and scaled according to \/17 . The polarization fractions have not been debiased. The 20% and 2% polarization vectors are shown in the upper left corner of
the left panel, demonstrating the nonlinearity of the vector scale. The JCMT 850 pm beam size is shown in the lower right corner of each plot.

5.2. Fitting

We fitted each data set with the mean of the Rice distribution
(Equation (4)) using all data points and uncertainties calculated
using Equation (19). Fitting was performed as described in
Section 4.2. The models were normalized to the mean
uncertainty in Q and U, (opy), and the data were fitted for
Doy, and .

The results of our fitting are listed in Table 1 and plotted in
Figures 6 and 7. It can be seen that in all cases, the data are well
characterized by (opy) and well described by the Rice
distribution, following Equation (4).

Table 1 lists the reduced y? values for each model and the
null hypothesis. Under the null hypothesis, Doy, = 0, 80

p' = I /{ogy)) 'J7/2 for all I. As in Section 4.2, we note
that the uncertainties on dp can be treated as Gaussian only at
high S/N. The reduced-x? statistic is thus not strictly a direct
comparison between the difference between the data and the
model and the variance in the data. We therefore compare only
the relative size of the reduced-y” statistics for the best-fit and
null-hypothesis models, treating a smaller value of the reduced
x° as being broadly representative of better agreement between
the data and the model.

5.3. Oph A

Oph A shows clear evidence for a power-law behavior
shallower than o« = 1. Examination of Figure 6 shows
significant deviation from « =1 on 12" pixels. This is
confirmed by the fitted models producing a reduced-x? statistic
approximately three to four times smaller than that of the null
hypothesis on all pixel sizes.

When fitting the mean of the Rice distribution to the Oph A
data, we consistently recovered pioomyy beam =~ 0.047 and
a = 0.34. The results returned from 4”-28" pixel data are
consistent within the fitting uncertainties, with no obvious signs
of depolarization due to beam averaging, although the fitting
results become more uncertain as the pixel size increases, as
shown in Figure 8. Fitting of the Oph A data fails for 32"
pixels; this is likely due to the relatively small number of
remaining data points and the significant intrinsic scatter in the
data around the best-fit model. In all cases, the best-fitting
models produce reduced-y” statistics significantly greater than

unity, suggesting more variation in the data than can be
explained by our simple model alone.

We thus interpret our results as indicating that the Oph A
data can be represented by the model pioo myy beam = 0.047
and a = 0.34. Equations (11) and (14) suggest that, when
oou ~ 1 mly beam™!, this behavior will be recoverable
only when a significant number of data points fall above

(I/JQU)crit ~ 18.

5.4. Oph B

In Oph B, the incompatibility of the data with the null
hypothesis becomes more apparent with increasing pixel size.
In the 4" case, the Oph B data do not clearly support a power-
law index distinct from o« = 1 being observed, with the Ricean-
mean model and the null hypothesis producing similar
reduced-x* values.

In the 12" case, the data appear to be skewed above the null-
hypothesis line in Figure 6. The Ricean-mean fitting results
produce reduced-y? values a factor of ~2 smaller than that of
the null hypothesis. Gridding the data to larger pixel sizes
results in progressively smaller values of Py, and o being
recovered, as shown in Figure 8. The 32" case is shown in
Figure 7 and clearly shows that the data are not consistent with
an index of o = 1.

The most representative values of a and p oo mjy beam- IR
Oph B are not very well constrained. To a certain extent,
Figure 8 shows a stabilization in the fitted values of « and
D100 mJy beam- in Oph B at lower rms noise values. On the larger
pixel sizes considered, o ~ 0.6-0.7. On 20" pixels and larger,
P100 mJy beam-1 Decomes consistent with a value of ~0.02. It is
also possible that gridding to larger pixel sizes alters the
observed average grain properties in Oph B, although, as
discussed above, this does not appear to be the case in
Oph A. Equations (11) and (14) suggest that « = 0.65 and
P100 mly beamt = 0.02 would, for opy ~ 1 mly beam™', be
recoverable only when a significant number of data points fall
above (I /ogy)erit ~ 26.

5.5. Oph C

We find that Oph C behaves similarly to Oph B. Due to its
lower peak brightness than Oph B, the Oph C data show little
evidence for deviation from an /' behavior on beam-sized or
smaller pixels. In the 4” and 8" data, the null hypothesis
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Table 1
Mean rms Noise in Stokes Q and U, <<TQU>; Number of Pixels, N; and Fitting Results for the Ricean-mean Model for L1688 Oph A, B, and C Data on Pixel Sizes of
413"
Pixel Null Ricean-mean Model
2 2
Size (o00) N X ¥o3
(arcsec) (mlJy beam™) @ Pooy P100 mJy beam-!
Oph A
4 3.29 £+ 0.55 1456 333 0.34 £+ 0.02 0.15 £+ 0.02 0.047 + 0.009 9.2
8 1.88 £+ 0.36 400 101.0 0.34 £+ 0.03 0.18 £+ 0.04 0.047 + 0.016 24.9
12 1.45 £+ 0.50 192 189.4 0.33 £+ 0.05 0.19 £+ 0.06 0.047 + 0.025 45.1
16 1.15 + 0.44 114 291.9 0.34 £+ 0.06 0.21 £+ 0.09 0.046 + 0.032 73.0
20 1.07 £+ 0.66 79 397.2 0.39 £+ 0.08 0.31 £ 0.18 0.053 + 0.050 110.6
24 0.95 + 0.66 56 437.1 0.38 + 0.10 0.30 + 0.20 0.051 + 0.058 98.9
28 1.02 £ 0.77 47 480.4 0.31 £ 0.12 0.18 £ 0.16 0.043 + 0.062 115.5
32 0.60 + 0.16 31 832.0 0.00 £+ 0.16 0.02 £+ 0.03 0.020 + 0.046 172.1
Oph B
4 3.37 £ 0.57 1404 14 0.86 £+ 0.03 0.89 £ 0.11 0.048 + 0.011 1.0
8 1.93 +£ 041 390 2.5 0.78 £+ 0.05 0.73 £ 0.18 0.034 + 0.015 1.4
12 1.49 £+ 0.54 191 3.7 0.76 £+ 0.07 0.68 + 0.25 0.028 + 0.018 2.0
16 1.18 £ 0.49 115 4.7 0.70 £ 0.09 0.53 + 0.26 0.024 + 0.021 2.2
20 1.12 +£ 0.76 78 6.6 0.66 + 0.12 0.44 £+ 0.29 0.023 + 0.027 3.2
24 0.99 + 0.73 58 7.7 0.71 £ 0.12 0.58 £+ 0.38 0.022 + 0.026 3.5
28 1.03 £+ 0.77 47 6.4 0.57 £ 0.18 0.22 + 0.22 0.016 + 0.030 3.2
32 0.61 £ 0.16 32 12.2 0.59 £+ 0.16 0.34 £ 0.34 0.017 £ 0.030 4.2
Oph C
4 3.70 £+ 0.65 1239 0.9 0.83 £+ 0.03 0.75 £+ 0.09 0.049 + 0.011 0.7
8 2.12 £ 045 359 14 0.84 £+ 0.04 0.93 + 0.16 0.037 £+ 0.012 1.0
12 1.64 £+ 0.63 177 2.1 0.76 £+ 0.07 0.70 £+ 0.20 0.031 + 0.018 1.3
16 1.30 £+ 0.54 109 2.3 0.75 + 0.07 0.72 + 0.24 0.027 + 0.018 1.3
20 1.22 £+ 0.80 75 2.6 0.69 + 0.09 0.52 +£ 0.22 0.025 + 0.020 1.3
24 1.10 £+ 0.87 55 2.9 0.71 £ 0.12 0.52 + 0.29 0.021 + 0.023 1.7
28 1.15 £ 0.88 45 4.0 0.58 + 0.14 0.30 £ 0.21 0.023 + 0.030 2.0
32 0.67 + 0.18 32 6.0 0.63 + 0.11 0.52 + 0.30 0.022 + 0.025 2.0

Note. Note that the results for Oph A on 32" pixels are not reliable.

produces a reduced-y? value comparable to that of the Ricean-
mean model, and there is no clear evidence that the Ricean-
mean model provides a better description of the data. In the 12”
case, shown in Figure 6, there is only a marginal improvement
in goodness of fit over the null-hypothesis case.

As in Oph B, gridding to larger pixels produces smaller
values of both a and p ;o myy beam-1 and makes the deviation of
the data from the null-hypothesis behavior more apparent.
Figure 7 qualitatively shows the similarity between the Oph B
and C data, while Figure 8 shows that the fitting results of
Oph B and C agree very closely in all cases.

5.6. Discussion

Our results suggest that grains in Oph A are intrinsically
better aligned with the magnetic field than those in Oph B and
C. Grains in Oph B and C appear to lose what alignment they
have with the magnetic field more precipitously with increasing
density (or extinction) than is the case in Oph A. Oph B and C
appear to have indistinguishable grain properties despite their
differing star formation histories, while Oph A and B behave
significantly differently despite having comparable mass and
both being active sites of star formation.

We estimated the upper-limit ionizing fluxes on Oph A, B,
and C from the B stars HD 147889 and S1 as a qualitative
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indicator of the differences in interstellar radiation field
(ISRF) on the three clumps. We took the flux of Lyman
continuum photons to be ~10?**cm™?s~! from the surface
of HD 147889 and ~10'®°cm s~ from the surface of S1
(Pattle et al. 2015, and references therein). We determined
plane-of-sky distances from HD 147889 and S1 to the centers
of Oph A, B, and C, assuming a distance to L1688 of 138 pc
(Ortiz-Le6n et al. 2018), and so estimated upper-limit ionizing
fluxes from the stars on each region.”* These fluxes are listed in
Table 2. We assume that the global ISRF on the three regions
is comparable (a reasonable assumption, given the clumps’
proximity to one another). It can be seen that the ionizing flux
on Oph A is an order of magnitude larger than that on Oph B
and C, and that this difference is primarily caused by the
proximity of S1 to Oph A. It is likely that HD 147889 will
affect the three clumps similarly, while S1’s influence is
dominant in Oph A but negligible elsewhere.

24 We note that if we adopted the three-dimensional model of L1688 proposed
by Liseau et al. (1999), the distance from HD 147889 to the three clumps
would be 0.86 pc to Oph A, 1.33 pc to Oph B, and 1.03 pc to Oph C (distances
scaled to account for their assumed distance to L1688 of 150 pc). This would
alter our inferred fluxes from HD 147889 by factors of ~0.5, ~0.6, and ~0.8 in
Oph A, B, and C respectively. This would not change the conclusions of our
analysis.
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Figure 6. Plot of observed polarization fraction p’ vs. total intensity / for the
Oph A, B, and C data, gridded onto 12" pixels. Top row: Oph A; middle row:
Oph B; bottom row: Oph C. The solid black line shows the best-fitting Ricean-
mean model. The dotted black line shows the expected behavior under the null
hypothesis. Note that the polarization fractions have not been debiased.

The most likely explanation for the better grain alignment in
Oph A is thus the elevated photon flux on that region, primarily
resulting from the proximity of the star S1. Under the radiative
torque alignment (RAT) paradigm of grain alignment (Lazarian
& Hoang 2007; Andersson et al. 2015), this stronger and bluer
radiation field on Oph A would allow grain alignment to persist
to a higher optical depth. The strongly anisotropic radiation
field on Oph A might also favor better grain alignment in this
region (Dolginov & Mitrofanov 1976; Onaka 2000; Weingartner
& Draine 2003). We note that the difference in behavior between
Oph A and Oph B, both of which are actively forming stars,
suggests that the better grain alignment in Oph A is primarily
driven by external influence, not by short-wavelength flux from
protostellar sources within the clump.
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Figure 7. Observed polarization fraction p’ vs. total intensity / for the B and C
data, with data gridded to 32" pixels. The polarization fractions have not been
debiased. Best-fitting models are shown as in Figure 6. Note that both data sets
show significant deviation from the null-hypothesis behavior.

We note that the ionizing flux from these stars will not itself
directly contribute to grain alignment within the clumps. In
order to drive RAT grain alignment, the wavelength of
the incident radiation must be shorter than twice the size of
the largest grains, i.e., <I1-2 um (Andersson et al. 2015). The
short-wavelength photons considered here will undergo multi-
ple scatterings before they can contribute significantly to grain
alignment, while longer-wavelength emission from the stars
may contribute more directly, particularly in Oph A, thanks to
its proximity to S1. We emphasize that the calculations above
only qualitatively demonstrate the global elevation of photon
flux on Oph A over the other two clumps. Modeling of the
detailed radiation field in L1688 is beyond the scope of
this work.

The magnetic field in Oph A may also be intrinsically more
ordered in Oph A than in Oph B and C, as the clump’s location
between HD 147889 and S1 could result in its molecular gas,
and thus its magnetic field, being compressed by the HD
147889 photon-dominated region (PDR) and the S1 reflection
nebula. In contrast, Oph B and C are evolving in relative
isolation from the two B stars and are not undergoing
significant compression. In this case, the lower value of « in
Oph A might in part result from its more ordered internal
magnetic field, with less vector cancellation of the observed
polarization fraction along the line of sight occurring in Oph A
than in the other two regions.

Another possible cause of better grain alignment in Oph A
than in the other two clumps is grain growth in the dense
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Figure 8. Best-fit values of « (left) and p o myy beam- (right) for the Oph A, B, and C data, as determined from fitting the Ricean-mean model, as a function of pixel
size (top) and rms noise (opy) (bottom). Fitting results for Oph A on 32” pixels are shown in pink, as this result is not reliable.

Table 2
ITonizing Flux on Oph A, B, and C from the Stars HD 147889 and S1

Plane-of-sky Dis- Upper-limit Ionizing Photon Flux

tance (pc) s 'm™
Region = HD 147889 S1 HD 147889 S1 Total
Oph A 0.62 005 7.0x10° 15x 10" 22 x 10"
Oph B 1.13 051 21 x10°  12x10° 22 x10"°
Oph C 0.91 050  32x10"°  12x10° 34 x10°

regions of Oph A. The peak gas density of Oph A is
approximately 1 order of magnitude higher than in Oph B and
C (Motte et al. 1998). Such high densities might provide the
necessary conditions for the formation of large dust grains
(e.g., Hirashita & Li 2013). In the RAT paradigm, larger dust
grains can be aligned by longer-wavelength photons, as
described above; thus, the presence of large grains would
allow grain alignment to persist to a higher optical depth.
While our results support better grain alignment in Oph A
than in the other clumps, they do not suggest that grains in
Oph B and C have no alignment with the magnetic field. Our
modeling suggests that an index o ~ 0.6-0.7 is plausible for
both Oph B and C, suggesting that some degree of grain

12

alignment may persist to high optical depths within these
clumps.

These results suggest that grain alignment could persist to
significantly higher densities within starless clumps and cores
than has previously been believed to be the case (e.g., Jones
et al. 2015; Kwon et al. 2018; Soam et al. 2018), even in the
absence of a short-wavelength illuminating source. This is
consistent with recent modeling results, which suggest that
grains remain well aligned with the magnetic field at gas
densities >10* cm ™ (Seifried et al. 2019).

5.7. Limitations of the Fitting Process

The simple model we consider in this work is subject to a
number of limitations.

We emphasize that in this work, we selected our data such
that they can be well characterized by a single rms noise value
in both Stokes Q and U. Data sets containing significant
variation in rms noise would produce additional vertical spread
in the p/-I plane, further complicating the recovery of an
accurate value of a.

Our data show scatter about the best-fit line greater than can
be explained by instrumental uncertainty alone, particularly
in Oph A, which in all cases shows reduced—x2 values
significantly larger than those in Oph B and C, and where
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fitting fails for the largest pixel size considered here, likely due
to significant intrinsic scatter in the data and the small number
of data points to which the model can be fitted. In order to
demonstrate the statistical properties of the data, we have
chosen a very simple model in which the data are characterized
by a single power law. More complex relationships between the
polarization fraction and intensity could be investigated in
future studies, as well as accounting for intrinsic variation in
Poy, and « within a given region.

Our model is unphysical in that it suggests that the
polarization fraction can increase indefinitely at small 1. We
are implicitly assuming first that there is a turnover in behavior
at a density below which the polarization fraction becomes a
shallower function of intensity, tending to the value in the low-
density ISM. Second, we assume that this turnover occurs at
densities lower than we can probe with POL-2. (In approxi-
mately isothermal environments, the SCUBA-2 camera is
effectively volume-density-limited in its detections; see Ward-
Thompson et al. 2016.)

Our results suggest that an observed index of o >~ 1 in the
submillimeter data (e.g., Alves et al. 2014; Jones et al. 2015;
Liu et al. 2019) is not sufficient to claim that nonaligned grains
have been observed. However, if a break or turnover in
behavior from a shallow power law (o < 1) to an index of
a = 1 with increasing intensity were observed within a single
polarized submillimeter emission data set, this would be strong
evidence for the loss of grain alignment at high intensities. This
is because if an index o < 1 were recoverable at intermediate
intensities, then an v = 1 index seen at high intensities in the
same data set could not simply result from having insufficient
S/N to measure a shallower index and would thus be indicative
of a genuine change in behavior with intensity. We do not see
any evidence of such a break in behavior in Ophiuchus.

5.8. Relation between 1 and Visual Extinction Ay

In this paper, we consider only the relationship between p
and 7, with the goal of accurately determining their underlying
relationship in the presence of Ricean noise. However, it is
important to emphasize that the true physical relationship under
investigation is not between p and I but between p and Ay.

Recent POL-2 studies (Juvela et al. 2018; Coudé€ et al. 2019;
Wang et al. 2019) show a shallower relationship between p’
and Herschel Space Observatory—derived dust opacity /optical
depth measurements (a proxy for Ay, as discussed below) than
between p’ and I. We here present a simple argument for why
we expect the p—Ay relationship to be intrinsically shallower
than the p—I relationship.

The submillimeter intensity /,, of thermal dust emission at a
frequency v is given by

I, = BI/(T)TI/Qa (25)

where B,(T) is the Planck function at temperature 7, 7, is the
submillimeter optical depth, and €2 is the solid angle (e.g.,
Hildebrand 1983). We henceforth assume that we are observing
over a constant area, so

I, < B,(T)7,. (26)

Assuming 7, Ay, i.e., optically thin submillimeter emission
(e.g., Jones et al. 2015) and constant dust optical properties
along the line of sight,

I, < B,(T)Ay. 27)
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Thus, I is a direct tracer of Ay only where T is constant.
However, in most environments in molecular clouds, B,(T) and
I are observed to be anticorrelated (e.g., Kirk et al. 2013;
Konyves et al. 2015). This is a physical effect, with cooling
being caused by self-shielding in dense environments (e.g.,
Glover & Clark 2012). Such cooling is expected in regions that
do not contain embedded massive stars causing internal
heating, such as the dense clumps of L1688 (Stamatellos
et al. 2007). We parameterize the relationship between B,(T)
and I, as

B,(T) x 1, (28)

initially placing no constraint on + (note that here B,(7) is the
source function of the dust emission; see Equation (26)).
Combining Equations (10), (27), and (28),

@

p oA, 29)
If v < 0 (BAT), and so T, decreases with increasing 1,), then
L 1 (30)

1 -~

Thus, in most physical environments in molecular clouds, any
power-law relationship between Ay and p must be shallower
(and likely more weakly correlated) than that between / and p.
We note that ¥ < 0 would not hold in the presence of
significant heating by sources located at high Ay, but in that
case, we might expect these heating sources to also be driving
grain alignment in their vicinity.

This analysis further suggests that grains could be better
aligned at higher extinction than has previously been believed.

The exact nature of the relationship between /, 7, and 7 is not
obtainable from single-wavelength observations such as those
considered here. However, forthcoming multiwavelength
studies will allow more direct investigation of the I-Ay
relationship.

6. Summary

The dependence of the polarization fraction on total intensity
in polarized submillimeter emission measurements is typically
parameterized as a power law and used to infer the efficiency of
dust grain alignment with the magnetic field in star-forming
clouds and cores. In this work, we have demonstrated that
significant S/N and well-characterized noise properties are
required to recover a genuine power-law relationship between
the polarization fraction and total intensity.

We presented a simple model for the dependence of the
polarization fraction on total intensity in molecular clouds
and so demonstrated that below an S/N threshold of
I/O'QU = (pU;ll]\/TF/Z)llu, a power-law index of —1 will always
be observed, as a result of the addition in quadrature of Stokes
Q and U components and the approximate 1/1 dependence of
the error in the polarization fraction. For power-law indices
o < 1, the intrinsic dependence of the polarization fraction on
intensity will be recoverable at high S/N. However, a genuine
measurement of p oc I '—indicating unaligned grains—will
be indistinguishable from statistical noise in most, if not all,
physically realistic scenarios without additional information.
We demonstrated that fitting a single power law is likely to
result in overestimation of « and so of the degree of
depolarization occurring. We further found that fitting the
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mean of the Rice distribution to non-debiased data will
accurately recover both Poyy and «, provided a reasonable
number of data points fall above the required S/N threshold.

We used JCMT POL-2 observations of three clumps in the
L1688 region of the Ophiuchus molecular cloud to demonstrate
the statistical behavior described above. We found that the
Oph A region, which is illuminated by two B stars, shows
significantly better grain alignment than the neighboring Oph B
and C. We found a power-law index of o ~ 0.34 in Oph A,
significantly shallower than that found by previous works. The
power-law indices in Oph B and C are less well constrained but
steeper than that of Oph A, and they are likely to be in the
range o ~ 0.6-0.7. Oph B and C have intrinsically lower
polarization fractions than Oph A at a total intensity of 100 mJy
beam™', with emission from Oph A being 4.7% polarized,
while emission from Oph B and C is ~2% polarized. Oph C, a
quiescent cloud, appears to behave comparably to the actively
star-forming Oph B. Our results thus suggest that grain
alignment in Ophiuchus is driven by the external radiation
field on the clumps, not by internal radiation sources.

These results suggest that grain alignment could persist to
significantly higher densities within starless clumps and cores
than has previously been believed to be the case. Submillimeter
polarization measurements could thus potentially trace the
magnetic field morphology in dense, star-forming gas.
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Appendix
Appendix: List of Symbols Used in This Work

Table 3 lists the symbols used in this work, along with their
units and the section of the paper in which they are defined.

Table 3

Symbols Used in This Work
Symbol Definition Units Section Defined in
« Power-law index, p o< I @ Dimensionless 1,3
Qmax Steepest recoverable « for given Pogu and (I/00)max Dimensionless 4.2
I Stokes [ intensity Intensity 2
oy rms noise in Stokes / Intensity 2
ol Measurement uncertainty on Stokes / Intensity 2
Lops Stokes I intensity in Monte Carlo model Intensity 4
Al Measurement error on Stokes / in Monte Carlo model Intensity 4
Zo Modified Bessel function of order zero 2.1
T Modified Bessel function of order 1 2.1
L 1 Laguerre polynomial of order % 2.1
N Number of pixels in a given data set Dimensionless 5.1
p Intrinsic polarization fraction Dimensionless 2
4 Measured polarization fraction Dimensionless 2.1; see also 4.2
pd’b Debiased measured polarization fraction Dimensionless 22
Po Polarization fraction at reference intensity I Dimensionless 3
Poou Polarization fraction at reference intensity ooy Dimensionless 3
P100 mJy beam-! Polarization fraction at / = 100 mlJy beam™ Dimensionless 3
op rms noise in polarization fraction Dimensionless 2.1
op Measurement uncertainty on polarization fraction Dimensionless 4.1
Hp Mean of Rice-distributed polarization fraction Dimensionless 2.1
P Intrinsic polarized intensity Intensity 2
P Measured polarized intensity Intensity 2.1
P, Debiased measured polarized intensity Intensity 22
Q Stokes Q intensity Intensity 2
oo rms noise in Stokes Q Intensity 2
60 Measurement uncertainty on Stokes Q Intensity 2
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Table 3
(Continued)
Symbol Definition Units Section Defined in
Vo Variance on Stokes Q intensity (Intensity)? 5.1
Qobs Stokes Q intensity in Monte Carlo model Intensity 4
AQ Measurement error on Stokes Q in Monte Carlo model Intensity 4
U Stokes U intensity Intensity 2
oy rms noise in Stokes U Intensity 2
U Measurement uncertainty on Stokes U Intensity 2
Vu Variance on Stokes U intensity (Intensity)? 5.1
Ubps Stokes U intensity in Monte Carlo model Intensity 4
AU Measurement error on Stokes U in Monte Carlo model Intensity 4
oou {(1) Representative rms noise in Stokes Q and U Intensity 3
(2) Reference intensity for fitted model

(oou) ooy inferred from real data Intensity 5.1
0, Polarization angle Angle 2.3
Vv Stokes V intensity Intensity 2
I/ 000)erit Critical S/N below which p’ oc I~! dominates Dimensionless 3.4
/000 max Maximum S/N in a given data set Dimensionless 4.2
Ay Visual extinction mag 5.8
B, Planck function Wm 2Hz st 5.8
¥ Power-law index, I o T~ " Dimensionless 5.8
Q Solid angle st 5.8
v Frequency Hz 5.8
T Dust temperature K 5.8
T Submillimeter optical depth/dust opacity Dimensionless 5.8
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