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3Observatoire Océanologique, UMR 7009, Centre National de
la Recherche Scientifique (CNRS), 06230 Villefranche-sur-Mer,
France

Summary

Haploid gametes are generated through two consecutive
meiotic divisions, with the segregation of chromosome

pairs in meiosis I and sister chromatids in meiosis II.
Separase-mediated stepwise removal of cohesion, first

from chromosome arms and later from the centromere
region, is a prerequisite for maintaining sister chromatids

together until their separation in meiosis II [1]. In all model
organisms, centromeric cohesin is protected from sepa-

rase-dependent removal in meiosis I through the activity of
PP2A-B56 phosphatase, which is recruited to centromeres

by shugoshin/MEI-S332 (Sgo) [2–5]. How this protection of
centromeric cohesin is removed in meiosis II is not entirely

clear; we find that all the PP2A subunits remain colocalized

with the cohesin subunit Rec8 at the centromere of meta-
phase II chromosomes. Here, we show that sister chromatid

separation in oocytes depends on a PP2A inhibitor, namely
I2PP2A. I2PP2A colocalizes with the PP2A enzyme at centro-

meres at metaphase II, independently of bipolar attachment.
When I2PP2A is depleted, sister chromatids fail to segregate

during meiosis II. Our findings demonstrate that in oocytes
I2PP2A is essential for faithful sister chromatid segrega-

tion by mediating deprotection of centromeric cohesin in
meiosis II.
Results and Discussion

PP2A is a heterotrimer, consisting of a scaffold subunit (A),
a regulatory subunit (B), and a catalytic subunit (C). In
mammals there are two catalytic subunits, two scaffold
subunits, and several isoforms of regulatory subunits (at least
13 regulatory subunits exist in humans), giving a large array of
possible heterotrimers [6]. Phosphatase activity can be de-
tected already upon assembly of only the A and C subunits,
and this so-named Core-PP2A enzyme was shown to exist
in vivo [7]. The PP2A-B56 heterotrimer is thought to confer
protection of centromeric cohesin in mitosis by preventing co-
hesin removal by the prophase pathway before metaphase-
to-anaphase transition [3]. In mammalian meiosis I, PP2A-C
is present in a Sgo2-dependent manner at centromeres [5],
*Correspondence: jean-philippe.chambon@snv.jussieu.fr (J.-P.C.), katja.
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but it is still unknown whether all three subunits of the
PP2A-B56 holoenzyme colocalize at the metaphase I centro-
mere. According to the current model, Sgo2 is removed
from its localization at centromeres due to the bipolar tension
applied on sister kinetochores, in late metaphase II. It was
proposed that, as a consequence of Sgo2 delocalization,
PP2A is moved sufficiently far away from Rec8 to allow
Rec8’s phosphorylation at the metaphase II-to-anaphase II
transition and subsequent cleavage by separase [5, 8, 9].
Thus, the differences in attachment and tension applied on
metaphase I or II kinetochores generated by microtubule-
pulling forces have been proposed as the mechanism leading
to loss of centromeric cohesin protection. However, in
S. cerevisiae monopolin mutants and in S. pombe mutants
undergoing achiasmatic meiosis I, sister chromatids biorient
and come under tension during meiosis I, yet centromeric
cohesion is maintained until meiosis II [10–13]. Furthermore,
artificially targeting Sgo1 and PP2A to meiosis II centromeres
in fission yeast does not hinder sister chromatid segregation
[14]. These results and localization of the PP2A-C subunit to
the centromere also in metaphase II oocytes [5] prompted
us to further examine the localization of all three PP2A sub-
units and, therefore, potentially functional PP2A in oocytes
in order to get insights into the mechanisms underlying
centromeric cohesin deprotection.
To determine whether and when all three PP2A subunits

colocalize with the meiotic cohesin subunit Rec8, we per-
formed mouse oocyte metaphase I (germinal vesicle break-
down [GVBD] + 6–7 hr) and metaphase II (GVBD + 14–16 hr)
chromosome spreads. Metaphase II spreads were performed
at a time when oocytes have extruded the first polar body (PB)
and are competent to undergo metaphase II-to-anaphase II
transition upon activation (‘‘late metaphase II’’). Immunostain-
ing of endogenous proteins shows that PP2A-A, PP2A-B56,
and PP2A-C colocalize with CREST in both meiosis I and II,
and all three subunits are also detected between the two
centromere dots in meiosis II (Figures 1A and 1B). The ex-
pected PP2A-A and PP2A-C colococalization in metaphase I
and II is shown in Figures 1C and 1D. Next, we analyzed
localization of PP2A relative to Rec8 in meiosis I and II. Coloc-
alization of PP2A-C with Rec8 in meiosis I was confirmed (Fig-
ure 1E). Crucially, in meiosis II, PP2A-C was found at the
centromere exactly where centromeric Rec8 is localized (Fig-
ure 1F). Sgo2 localization in meiosis I and II was identical to
PP2A localization relative to CREST staining (see Figures
S1A and S1B available online). It is important to note that our
spreading technique allows us to maintain the tension applied
on sister kinetochores inmeiosis II, because sister kinetochore
dots are still clearly separated in a microtubule-dependent
manner (Figure S1C). Therefore, our localization data are not
in accordance with a model where PP2A is removed from
Rec8 in metaphase II due to the bipolar tension applied on
sister kinetochores.
Presence of the PP2A holoenzyme between sister chro-

matid arms in meiosis II prompted us to ask whether some
unknown mechanism prevents dephosphorylation of Rec8 to
allow sister chromatid segregation in meiosis II. To identify
candidates required for PP2A inhibition in meiosis II, we
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Figure 1. All Three PP2A Subunits Localize to the

Centromere in Metaphase I and II Where Centro-

meric Rec8 Is Found

(A and B) Approximately 30 metaphase plates

were analyzed for each staining. Acquisitions

were obtained by confocal microscopy. The

pseudocolors attributed to each staining are indi-

cated. Chromosomes were stained with Hoechst

(blue). Scale bars represent 2 mm.Metaphase I (A)

and metaphase II (B) spreads were stained with

antibodies against the different PP2A subunits

(red), CREST (green), and Hoechst (DNA, blue).

(C and D) Metaphase I (C) and metaphase II (D)

spreads were stained with PP2A-A (green) and

PP2A-C (red) antibodies.

(E and F) Metaphase I (E) and metaphase (F) II

spreads were stained with PP2A-C (green) and

Rec8 (red) antibodies.

(See Figure S1.)
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switched to ascidian oocytes. In the ascidian species used in
this study, Ciona intestinalis (suborder of phlebobranchs),
only one Sgo ortholog is present: Sgo1 [15]. The huge number
of oocytes that can be obtained per animal allowed the
construction of a C. intestinalis oocyte library (Proquest,
Invitrogen) to perform a yeast two-hybrid screen, using Ci-
Sgo1 as bait. We identified Ci-I2PP2A, a homolog to a previ-
ously identified mammalian PP2A inhibitor [16], which is also
a subunit of the INHAT complex (inhibitor of acetyltransferases
[17], also termed SET, PHAP-II, or TAF-1b; see [18–20] and
references therein), as an interaction partner of Ci-Sgo1 (Table
S1). Ci-I2PP2A is expressed in oocytes during meiotic matura-
tion (Figure S1D) and has the capacity to inhibit PP2A in vitro
(Figure S1E), as has been shown for its mammalian homolog,
which interacts with and inhibits the catalytic subunit of
PP2A [16]. This led us to hypothesize that I2PP2A inhibits
PP2A to allow sister chromatid separation in oocyte meiosis
II. Interestingly, I2PP2Awas detected in hSgo1 immunoprecip-
itations [3] and was very recently shown to be part of a PP2A-
B56 network, together with hSgo1 in human mitotic cells [21],
suggesting that I2PP2A may play a role as a PP2A inhibitor in
mitosis to protect centromeric cohesin from removal by the
prophase pathway.
I2PP2A is found in diverse multicel-
lular eukaryotes (Figure S1F), and its
amino acid sequence is well conserved
between ascidians and mouse (78%
homology and 55% identity, data not
shown). We performed western blots
from mouse oocyte extracts and found
that I2PP2A is expressed in meiosis I
and II in mouse oocytes (Figure S1G).
To get insight into I2PP2A’s potential
role in mammalian female meiosis, we
analyzed I2PP2A’s localization in mouse
oocytes relative to the localization of the
centromere marker CREST and the
different PP2A subunits. I2PP2A was
localized in the centromere region in
meiosis I and II, but it was only in
meiosis II that the I2PP2A signal over-
lapped with the entire CREST signal
and was also found between the two
centromeres (Figures S2A and S2B).
I2PP2A staining is shifted away from the different PP2A
subunits in meiosis I, but it colocalizes with the three PP2A
subunits in meiosis II (Figures 2A–2D; Figures S2C and S2D).
The different localization patterns of PP2A and I2PP2A in
metaphase I were confirmed by super-resolution structured
illumination microscopy (SIM) (Figure S2E). Triple labeling of
I2PP2A with PP2A-A and PP2A-C subunits further shows
that the core PP2A enzyme does not overlap with I2PP2A in
meiosis I but does overlap in meiosis II (Figures S2F–S2H).
I2PP2A colocalization relative to the PP2A subunits, as well
as PP2A-A and PP2A-C colocalization (not shown), was quan-
tified and shows that a substantial fraction of PP2A is not
colocalizing with I2PP2A in meiosis I and is therefore free to
dephosphorylate Rec8 (Figure S2I).
Now the key question was to determine where I2PP2A is

localized relative to Rec8. I2PP2A does not colocalize with
Rec8 in meiosis I, but it does so in meiosis II (Figures 2E
and 2F; quantitation in Figure S2I). Our localization data are
therefore in agreement with a role for I2PP2A in mediating
deprotection in meiosis II.
Does the difference in I2PP2A staining between meiosis I

and II depend on bipolar or monopolar configuration of kinet-
ochores and, in particular, the differences in tension exerted



Figure 2. I2PP2A Colocalizes with PP2A-A,

PP2A-C, and Centromeric Rec8 in Metaphase II

Approximately 30 metaphase plates were

analyzed for each staining. Acquisitions were

obtained by confocal microscopy. The pseudo-

colors attributed to each staining are indicated.

Chromosomes were stained with Hoechst

(blue). Scale bars represent 2 mm. Representative

line scans for the stainings of the corresponding

images are shown. n indicates the number of

centromere stainings analyzed by line scans

from multiple metaphase plates.

(A and B) Metaphase I (A) and metaphase II (B)

spreads were stained with antibodies against

I2PP2A (red) and PP2A-A (green).

(C and D) Metaphase I (C) and metaphase (D) II

spreads were stained with antibodies against

I2PP2A (red) and PP2A-C (green).

(E and F) Metaphase I (E) and metaphase II (F)

spreads were stained with antibodies against

I2PP2A (red) and Rec8 (green).

(See Figure S2.)
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on sister kinetochores in meiosis I and II? To answer
this question, we examined I2PP2A localization on bivalent
chromosomes that are attached in a monopolar fashion in
meiosis II. For this, mouse oocytes were injected with mRNAs
coding for nondegradable securin (D91-securin), which
inhibits separase [22] but still allows oocytes to progress
into meiosis II without chromosome segregation, as shown
by securin-YFP degradation and reaccumulation (Figure 3A),
similarly to oocytes devoid of separase [23]. Monopolar
attachment of bivalent chromosomes was shown by CREST
staining on chromosome spreads (Figure 3B, CREST signals
of sister kinetochores appear as one dot) and spindle
staining of cold-stable microtubules in whole oocytes (Fig-
ure 3C). Even though bivalents are attached in a monopolar
fashion, I2PP2A relocalized as in meiosis II, and it now
colocalized with PP2A-C (which did not change its localiza-
tion) (Figure 3D). This relocalization at the centromere
was also observed when CREST and I2PP2A double labeling
was performed (Figure 3E). Our result shows that the
relocalization of I2PP2A at the centromere in metaphase
II occurs independently of the tension applied through
bipolar attachment in meiosis II and
is regulated through meiotic cell-cycle
progression.

If I2PP2A were required for sister
separation in meiosis II, loss of en-
dogenous I2PP2A was expected to
abrogate sister chromatid separation.
We performed morpholino-mediated
knockdown experiments to address
whether sister chromatids are sepa-
rated without I2PP2A. Germinal vesicle
(GV) stage mouse oocytes were in-
jected with morpholino or control oligos
and incubated for up to 24 hr. Oocytes
were induced to undergo meiotic matu-
ration until metaphase II. Knockdown
efficiencies were determined by whole
oocyte immunofluorescence (Fig-
ure 4A). Chromosome spreads showed
that only dyads were present in meta-
phase II (Figure 4B). Metaphase II
oocytes were artificially activated to induce metaphase-to-
anaphase transition of meiosis II. Control oocytes harbored
only single CREST dots on separated sister chromatids in
the oocyte. Importantly, 100% of spreads that were negative
for I2PP2A staining (31 out of 88) showed the presence of
paired CREST dots (Figure 4C) and, therefore, paired sister
chromatids. The percentage of sister chromatids that re-
mained paired varied between individual knockdown
oocytes. Spreads that remained positive for I2PP2A staining
did not show paired CREST dots. The presence of separated
sisters only in oocytes that were activated indicates that
metaphase-to-anaphase transition of meiosis II took place.
Furthermore, the formation of pronuclei and decondensation
of chromatin indicative of meiosis II exit was observed in
control and knockdown oocytes (Figure 4D). Importantly,
I2PP2A knockdown to analyze meiosis I, with morpholino
oligo (MO) incubation times comparable to the ones used
to analyze meiosis II, did not affect meiotic maturation
(data not shown) and had no effect on chromosome segre-
gation in meiosis I or on spindle formation (Figures S3A
and S3B).



Figure 3. I2PP2A Changes Its Localization from

Metaphase I to Metaphase II at the Centromere

Independently of Chromosome Structure and

Tension Exerted on Sister Kinetochores

(A) A representative graph of YFP-securin fluo-

rescence in a D91-securin-expressing oocyte,

showing that D91-securin does not block cell-

cycle progression.

(B) Chromosome spread of a metaphase II

(control) and a metaphase II oocyte expressing

D91-securin, stained with CREST (green) and

showing chromosomes stained with Hoechst

(blue). Scale bar represents 10 mm.

(C) Examples of whole-mount immunofluores-

cence images of a metaphase I, a metaphase II,

and a metaphase II oocyte expressing D91-

securin. Cold-stable microtubules were stained

with anti-b-tubulin antibody (green), kinetochores

with CREST (red), and chromosomes with

Hoechst (blue). One z section of 75 sections of

0.13 mm (confocal microscope) is shown. Scale

bar represents 35 mm.

(D and E) Metaphase I spreads (control) and

metaphase II spreads of oocytes expressing

D91-securin where indicated, stained with

I2PP2A antibody (red) and counterstained (in

green) with either PP2A-C antibody or CREST

antiserum. I2PP2A is localized exactly where

centromeric PP2A-C (D) and CREST (E) is found

on bivalent chromosomes inMII afterD91-securin

expression. Controls: metaphase I bivalents.

Insets show the shift observed on bivalent chro-

mosomes in metaphase I control oocytes, with

equivalent bivalents at metaphase II. Scale bar

represents 4 mm.
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Our data strongly suggest that I2PP2A locally inhibits PP2A
and, therefore, allows Rec8 phosphorylation. We hypothesize
that, in mouse oocytes, changes in I2PP2A’s localization rela-
tive to Rec8 and PP2A and posttranslational modifications,
such as phosphorylation of I2PP2A or PP2A itself, ensure the
inhibitor’s activity toward PP2A only in meiosis II. Indeed,
human I2PP2A has to be phosphorylated on two serine resi-
dues in bAR signaling to bind and inhibit PP2A [24]. Future
work will aim at identifying the signaling pathways regulating
I2PP2A’s localization and activity toward PP2A in a meiosis
II-specific manner. It remains to be determined whether the
recently identified role of cyclin A2 for sister chromatid segre-
gation requires I2PP2A [25].

The relocalization of I2PP2A is regulated by cell-
cycle progression, independently of chromosome structure
(bivalent or dyad) or attachment to microtubules. In contrast,
it has been shown that Sgo2’s localization depends on bipolar
versus monopolar attachment [5, 9]. It has been assumed that
PP2A would therefore be displaced from Rec8 in meiosis II as
well. Intriguingly, in a recent study, Sgo1/2-independent local-
ization of PP2A-B56 to the mitotic centromere has been
described, indicating that Sgo1/2 locali-
zation does not necessarily reflect PP2A
localization under certain conditions, at
least in mitosis [26]. We show here
that PP2A colocalizes with Rec8 in
meiosis II. We propose that I2PP2A
locally inhibits PP2A exactly where
centromeric cohesin is found in meta-
phase II, though we do not exclude
an additional mechanism of physical
removal of PP2A at anaphase II onset [5, 9], which is addition-
ally required for complete PP2A inhibition toward Rec8. The
localization of I2PP2A itself is regulated in a cell-cycle-depen-
dent manner, independent of mono- or bipolar attachment.
Our findings that I2PP2A is essential for sister chromatid
segregation in meiosis II adds a new layer of complexity to
the regulation of PP2A. Our results allow us to propose a novel
regulatory mechanism of centromeric PP2A inhibition by
I2PP2A that is controlled in space and time in oocyte meiosis.
Female meiosis is error-prone in humans—it is estimated

that 20% of oocytes are aneuploid, and errors in meiotic
chromosome segregation account for one-third of all miscar-
riages [27]. Tight regulation of cohesin removal is a prerequi-
site for correct chromosome segregation in oocytes, and
weakening of cohesion with age has been associated with
meiotic missegregations in mice [28–30]. Precocious loss
of centromeric cohesin protection will also cause the gener-
ation of aneuploid oocytes; therefore, the mechanisms
underlying cohesin protection and deprotection have to be
elucidated to understand why female meiosis goes awry so
frequently.



Figure 4. Endogenous I2PP2A Is Required for

Faithful Chromosome Segregation in Mouse

Oocytes

(A) Morpholino-mediated knockdown of I2PP2A

in mouse oocytes was confirmed by immunofluo-

rescence (I2PP2A in red, chromosomes in blue) in

MII and AII oocytes. Scale bar represents 25 mm.

(B) Chromosome spreads of control or MO-

injected oocytes that have extruded the first PB,

before activation at GVBD + 16 hr. Chromosomes

were stained with CREST antibody (green),

Hoechst (blue), and I2PP2A antibody (red) to

control for knockdown efficiencies in individual

oocytes. No single sisters can be detected in

control or MO-injected oocytes. Scale bar repre-

sents 10 mm.

(C) Chromosome spreads of activated control

or MO-injected mouse oocytes that underwent

anaphase II as judged by the presence of single

sister chromatids. Spreads were stained as in (B).

Scale bar represents 8 mm. Arrows indicate exam-

ples of sisters that have notbeen separated; aster-

isks indicate examples of single sister chromatids.

(D) Pronucleus formation after activation of

control or MO-injected oocytes. Extrusion of the

second PB was prevented through cytochalasin

B treatment for better visualization of the two de-

condensed chromosome masses in the oocyte.

Live images of oocytes incubated with Hoechst

(blue) are shown. Scale bar represents 25 mm.

(See Figure S3.)

I2PP2A Is Essential in Oocyte Meiosis II
489
Experimental Procedures

Mouse Oocyte Collection and Microinjection

GV oocytes were obtained as described [31] from adult female mice. MI

(meiosis I) oocyteswere obtained around 6–7 hr, andMII (meiosis II) oocytes

14–16 hr, after entry into meiosis. mRNAs for injections were transcribed

using the mMessage mMachine T3 Kit (Ambion), according to the manufac-

turer’s protocol, and injected into GV oocytes as described previously for

exogenous protein expression [31]. For D91-securin expression, GV stage

oocytes were injected with D91-securin mRNA [25] and released to enter

meiosis I after 2–3 hr incubation. Oocytes were used for metaphase II

spreads or fixation 14–16 hr after GVBD. Movies to quantify securin-YFP

were done as described in [31]. MetaMorph software was used to quantify

fluorescence signals in individual oocytes, which were subtracted from

background fluorescence. Parthenogenetic activations and anaphase II

spreads were done as described in [25, 32]. Extrusion of a second PB

was observed after 45 min, at which time oocytes were spread. For pronu-

cleus formation, oocytes were activated in the presence of 5 mg/ml

cytochalasin B (which prevents extrusion of the second PB) and 2 ng/ml

bisbenzimide H33342 (Hoechst 33342) and were imaged after 3 hr incuba-

tion. Morpholino oligos (50 ACAGAGCCCAGAGCCCTGATGTTCA 30 against
I2PP2A, Gene Tools) and control morpholino oligos (unrelated sequence,

Gene Tools) were injected at a concentration of 300 nM into GV oocytes,

which were incubated for up to 24 hr before being induced to enter meiosis,

unless otherwise indicated. To control for knockdown efficiencies, spreads

were stained with anti-I2PP2A antibody (see Supplemental Experimental

Procedures), and acquisitions by spinning-disk confocal microscopy were

performed with the same settings for control and knockdown oocytes.

Images to assess knockdown efficiencies were not adjusted for brightness

or contrast.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, three figures, and one table and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2013.02.004.
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