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Abstract 
 

The use of vibrational spectroscopy techniques, such as Fourier-transform infrared (FTIR) and Raman 

spectroscopy, has been a successful method to study the interaction of light with biological materials 

and facilitate novel cell biology analysis. Disease screening and diagnosis, microbiological studies, 

forensic and environmental investigations make use of spectrochemical analysis very attractive due 

to its low cost, minimal sample preparation, non-destructive nature and substantially accurate 

results. However, there is now an urgent need for multivariate classification protocols allowing one 

to analyse biological-derived spectrochemical data in order to obtain accurate and reliable results. 

This is stimulated by the fact that applications of deep-learning algorithms of complex datasets are 

being increasingly recognized as critical towards extracting important information and visualizing it 

in a readily interpretable form. Hereby, we have constructed a protocol for multivariate classification 

analysis of vibrational spectroscopy data [FTIR, Raman and near-infrared (NIR)] highlighting a series 

of critical steps, such as pre-processing, data selection, feature extraction, classification and model 

validation. This is an essential aspect towards the construction of a practical spectrochemical 

analysis model for biological analysis in real-world applications, where fast, accurate and reliable 

classification models are fundamental.  
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Introduction 
 

Vibrational spectroscopy comprises techniques related to electronic changes in the internal 

vibrational energy levels of molecules. Biomolecules that contain chemical bonds that vibrate 

generating a change in the dipole moment as a result of the transition are IR active1,2. Infrared (IR) 

and Raman spectroscopy are the main spectroscopic techniques used to assess vibrational molecular 

modes, where the first is based on molecular dipole changes and the latter on molecular 

polarizability changes. IR spectroscopy is dived into near-IR (NIR), mid-IR (MIR) and far-IR (FIR) 

spectroscopy depending on the incident light frequency. MIR is the main technique used to analyse 

biological materials since it covers fundamental vibrational modes of important biomolecules. 

Vibrational spectroscopy can provide rapid, label-free, and objective analysis for the clinical domain. The 

fingerprint region, between 1800-900 cm-1, include important absorptions of lipids (C=O symmetric 

stretching at ~1750 cm-1,  CH2 bending at ~1470 cm-1), proteins (Amide I at ~1650 cm-1, Amide II at 

~1550 cm-1, Amide III at ~1260 cm-1), carbohydrates (CO-O-C symmetric stretching at ~1155 cm-1), 

nucleic acid (asymmetric phosphate stretching at ~1225 cm-1, symmetric phosphate stretching at 

~1080 cm-1), glycogen (C-O stretching at ~1030 cm-1), and protein phosphorylation (~970 cm-1)3-5. 

The high-region, between 3700–2800 cm-1, can also be used for analysis, where information of water 

(-OH stretching at ~3275 cm-1), protein (symmetric -NH stretching at ~3132 cm-1), fatty acids and 

lipids (=C-H asymmetric stretching at 3005 cm-1, CH3 asymmetric stretching at ~2970 cm-1, CH2 

asymmetric stretching at ~2942 cm-1, CH2 symmetric stretching at ~2855 cm-1) can be obtained6. NIR 

spectroscopy can also be applied as a biospectroscopy tool. This technique is mainly composed of 

MIR overtones, hence, the signal is very complex containing many overlapping features. Therefore, 

biomarkers identification using NIR is harder and more ambiguous, although this technique is a 

powerful tool for quantification and classification applications7. Raman spectroscopy is based on an 

inelastic scattering effect. Most of the photons absorbed by a molecule suffers elastic scattering; 

only a small portion of them (<1%) suffer inelastic scattering, where the released radiation has lower 

or higher energy than the initial incoming absorbed radiation2. Inelastic scattering can be Stokes 

(photons with lower energy are emitted) or anti-Stokes (photons with higher energy are emitted), 

and both correspond to the Raman signal. Due to the small probability of molecules in an initial high 

energy state at room temperature, the anti-Stokes signal is not so strong, and the Stokes signal is 

usually recorded as the final Raman spectrum. 

Since both IR and Raman are non-destructive and sensitive techniques with a relative low-cost, 

passive of automation, and translatable to portable devices, their use to investigate biological 

samples are of great interest3,8. Biofluids offer an ideal diagnostic medium due to their ease and low cost 

of collection and daily use in clinical biology. Applications using IR and Raman spectroscopy to 

investigate biological samples for food9-14, plant15-18, microorganism19-28 and clinical analysis29-33 are 

many. These previously mentioned advantages associated with the application of multivariate 

statistical methods of data analysis make these techniques every day more attractive for routine 

application. Previous protocols for IR3 and Raman8 spectroscopy to analyse biological samples have 

been already published, but there is still a lack of good practical procedures on how to analyse the 

acquired data for classification applications where, for example, the spectral data can be used to 

determine if a given sample is healthy or disease, or if it belongs or not to a given group. This is 

critical since the results obtained by these studies are directly dependent on the data analysis 

methodology being used. 

Bio-spectral data analysis is a science that requires multidisciplinary knowledge, where to obtain 

reliable and chemically-meaningful results, the application of chemometric techniques is 
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fundamental. Chemometrics is defined as “the science of relating measurements made on a 

chemical system or process to the state of the system via application of mathematical or statistical 

methods”34. The use of statistical methods to solve chemical problems trace back centuries, though 

in 1949, the first report of least squares regression, design of experiments and analysis of variance 

(ANOVA) appear in analytical chemistry, by Mandel35. In the early 1960’s, multivariate methods were 

first reported in a modern physical-chemistry context to determine the number of components in 

spectral mixtures as theoretical chemistry approaches36,37. Practical implementation into 

experimental analysis started with the influence of statistical approaches by Pearson and Fisher, 

whose published work in multivariate analysis in the 1920’s and 1930’s, acted as inspiration to apply 

ideas such as principal component analysis (PCA), factor analysis and discriminant modelling in a 

chemical context38. During late 1960’s and the 1970’s, advancements in computer power and 

availability, the development of artificial intelligence algorithms, and the work done by Bruce 

Kowalski in the US and Svante Wold in Sweden enabled the introduction of multivariate methods in 

analytical chemistry in a modern fashion, and the word “chemometrics” was defined38. 

Multivariate methods in a chemical context can be seen as an expansion of the Lambert-Beer’s law 

in a multi-component approach, where the absorbance (spectral response) is a linear combination of 

concentration time coefficients39. For the notation, generally, bold uppercase characters (e.g., X) 

represent matrices, bold lowercase characters (e.g., x) represent vectors, and italic characters (e.g., 

n) represent scalars. The concentrations are related to sample differences, thus being used to assess 

the real chemical concentration or to find similarities/dissimilarities between samples, while the 

coefficients represent the weight of each variable (e.g., wavenumber) in the linear combination, 

hence, being used to find possible spectral markers. In classification applications, most of the 

algorithms employed to discriminate spectral data are a combination of feature extraction or feature 

selection methods followed by discriminant or class modelling techniques, which are mostly 

distance-based; a classical example is the partial least squares discriminant analysis (PLS-DA) 

algorithm40. 

There are several steps to process biospectroscopic data towards classification applications. Firstly, 

before analysing the data, one must think if the experiment was performed correctly, if the number 

of sample is representative to solve their problem, and if the data are bilinear, that is, if the product 

of spectrum times concentration is a constant. If design of experiments (DoE)41 are required to 

acquire representative data, this should be performed. If the data are not bilinear, then non-linear 

data analysis approaches should be investigated. After data acquisition, the first step is to visualise 

the data. Anomalous spectral behaviours should be investigated and, depending on the application 

of interest, removed from the dataset. Outlier detection is a powerful tool to systematically 

investigate anomalous spectral profiles, though one must always visualise the data during this 

procedure. Then, pre-processing, data selection, model construction and validation are the essential 

steps to obtain reliable results. These steps are summarized in Figure 1. We must stress that these 

steps are iterative and entwined and the user can go back and change them until convergence to a 

good model is achieved. For this reason, red arrows going backwards are shown in Figure 1; this 

means that in order to optimise the model the user must test different data selection (including 

outlier detection), pre-processing and model construction techniques in an interconnected way since 

there is no single route to validation.  
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Figure 1. Spectral data analysis flowchart. 

 

Experimental design 
 

More important than the data analysis itself is the experimental setup used to acquire the spectral 

data. Previous protocols demonstrate all the materials and steps needed for spectral data 

acquisition of biological-derived samples using both IR and Raman spectroscopy1,3,8,42. Therefore, in 

this protocol, we will focus solely on the spectral data analysis aspect. 

 

Minimum dataset requirements 
 

Before carrying on with the experiments, the number of samples must be defined. For pilot studies, 

power tests are recommend, where a power of 80% can be used as the minimum number of 

samples for the dataset43. Normally, 5 to 25 point spectra are collected per sample42, and 10 point 

spectra have been suggested in a previous protocol for ATR-FTIR3. By increasing the number of 

spectra replicates, the standard-deviation between measurements is reduced, since the standard-

deviation is proportional to 1/√𝑛, where 𝑛 is the number of spectra replicates. Extra caution should 

be taken when analysing heterogeneously distributed samples (e.g., tissues), where spectra 

replicates should be acquired in a way that covers the sample surface as uniformly as possible. 

Sample replicates are also recommended. For precision estimation, at least six replicates at three 

levels should be performed42. When patient variability is being measured, i.e., when the 

classification model is performed in a sample-basis, the spectral replicates per sample can be 

averaged so each resultant spectral response corresponds to a different patient. In this way, the 

chemometric model is modelled per patient rather than by spectral replicate. However, this requires 

a larger number of samples and might be difficult to be implemented in small pilot studies. In larger 

studies, especially before routine implementation, thousand of samples are necessary. This number 

is defined by the analyst experience and the classification rigour needed. The analyst while designing 

the experiment must think about confounding factors and the sources of variability that needs to be 

contemplated in the experiment. If needed, standardisation procedures should be performed to 

make sure that systematic variations due to environmental, instrumental or analyst changes do not 

affect the spectral response42. 

Data acquisition Outlier detection Pre-processing

Outlier detectionData selectionModel construction

Validation
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Also, the classes’ sizes must be taken into consideration. Ideally, classes should have equal size; 

however, in real clinical scenarios it is unlikely this will occur. For example, for general screening 

applications, it is very common in clinical settings to have more healthy patients than disease; while, 

when investigating a specific type of disease, it is more likely that the patients being recruited 

contain the disease of interest whilst the control group is reduced. When both situations are 

present, the analyst must take extra care in the data analysis to avoid overfitting the model towards 

the biggest class size. Some solutions are the application of prior-probability terms based on the 

classes’ size, the use of non-parametric methods, or by increasing the number of samples for each 

class to ensure that the calibration model covers enough sources of variation for each classes.  As 

well, according to the central limit theorem (CLT), by increasing the number of samples the data will 

tend to a normal distribution, which will make parametric classification methods more efficient. 

Before pre-processing, the data can be evaluated visually and through some statistical methods in 

order to identify anomalous behaviours or biased patterns. This is first performed by visual 

inspection (e.g., plotting the data to identify anomalous spectral features), followed by Hotelling’s T2 

versus Q residuals charts using only the mean-centred raw spectra. Principal component analysis 

(PCA) residuals can be explored to identify experimental bias, in which heteroscedastic distributions 

indicate biased experimental measurements, whereas homoscedastic distributions are associated 

with good sampling39. The signal-to-noise ratio (SNR) can be estimated by dividing the signal power 

(Psignal) by the power of the noise (Pnoise), that is, SNR = Psignal Pnoise⁄ = (Asignal Anoise⁄ )
2
, where 

A is the amplitude; or by the inverse of the coefficient of variation, when only non-negative variables 

are measured42. Collinearity can be evaluated by calculating the condition number, which shows 

how sensitive the result is to perturbations in the spectral data and to roundoff errors made during 

the solution process (this value is naturally elevated for spectral data, which indicates high 

collinearity)42. Visualising the data by plotting them throughout all the data analysis steps 

summarized in Figure 1 is essential. Prior scientific knowledge of the problem being addressed is also 

important. The data must be meaningful and the analyst has to make decisions based on how the 

spectral data look. All data analysis algorithms generate numbers based on the input data, thus if the 

data are not meaningful (i.e., the signal of interest is absent) the model will generate untrue values. 

Thus, adequate instrumental techniques allied with good chemometric practices is fundamental. 

 

Pre-processing 
 

Pre-processing is applied to the spectral data in order to remove or reduce the contribution of 

signals which are not related to the analyte or target property, or to the sample discrimination 

(which depends on the chemical composition). Pre-processing of the raw data reduces chemically 

irrelevant variations with the goal of improving accuracy and precision of qualitative and 

quantitative analyses. The primary role of pre-processing is to transform the spectrum to the best fit 

condition and to ensure that optimum performance can be achieved in later steps. This process is 

essential to correct for physical interferences, such as light scattering due to different particle sizes, 

different sample thickness or different optical paths; and random instrumental noise. However, pre-

processing techniques also carry the risk of generating correlations in the noise structure, which 

would impact negatively on the quality of the multivariate model; thus one should use pre-

processing techniques with caution and not overuse them.    
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In biological applications, the first pre-processing usually consist of truncating the biofingerprint 

region: 1800-900 cm-1 for IR data5, 2000 to 500 cm-1 for Raman5, and 900 to 2600 nm for NIR44. This 

removes spectral artefacts such as water and CO2 absorptions present in other parts of the IR 

spectrum, and additional baseline distortions that may be present in the spectrum42. The high-region 

associated mainly to lipids (3700 to 2800 cm-1) can also been used for IR6 and Raman32, however this 

region is highly affected by water absorption in IR (free ν(O-H) at 3600-3650 cm-1; hydrogen-bonded 

ν(O-H) at 3300-3400 cm-1)45 and Raman (fully hydrogen-bonded ν(O-H) at 3250 cm-1; partly 

hydrogen-bonded ν(O-H) at 3300-3630 cm-1)46. Usually, the model performance in the fingerprint 

region is better than in the high-region due to less water interference and the presence of more 

complex chemical features6,47. 

Figure 2 depicts the effect of each pre-processing for a given spectral dataset; and Figure 3 shows a 

flowchart to define which pre-processing technique to use after removal of substrate contributions. 

Pre-processing techniques should be used in the most parsimonious way48. The order in which the 

pre-processing steps are performed is fundamental; they must be performed in a logical order so 

that the next pre-processing step does not mask the signal of interest highlighted with the previous 

pre-processing42. Each pre-processing has its advantage, disadvantage and optimization step, which 

will be discussed hereafter. 

Digital removal of substrate contributions. Sometimes substrate contributions originating from 

components such as glass or wax are present in the spectral data. These effects can be mitigated or 

eliminated through digital filters, such as digital de-waxing49,50. For example, the extended 

multiplicative signal correction (EMSC) algorithm has been reported to neutralise variability caused 

by paraffin signal and allow selection of unique spectral features related to the sample composition 

in vibrational spectroscopy49,50; independent component analysis (ICA) and non-negatively 

constrained least squares (NCLS) are also common methods of digital de-waxing for vibrational 

spectroscopy49,51,52. Glass contributions are reduced in the high-wavenumber region of the mid-IR 

spectrum, thus allowing spectral data analysis within the region between ~2500–3800 cm-1 53; and 

can be reduced in NIR spectroscopy by subtracting the glass spectrum from the sample spectrum 

and by working in the wavelength range of 1850–2150 nm44. 

Smoothing. Smoothing is made by spectral filters that remove random noise while preserving useful 

spectral information. The most used smoothing technique is the Savitzky-Golay (SG) algorithm54. It is 

based on a polynomial equation fitted in a least squares sense within a pre-defined interval of 

spectral points, where the central point from the interval is removed and used as a fitting criteria. 

This interval is then displaced to the next point of the spectrum and the fitting procedure is 

repeated. SG smoothing is excellent to remove large instrumental noise and can be applied to any 

type of vibrational spectroscopy technique. Its major disadvantage is that the polynomial order and 

the window size used in the polynomial fitting affect the result, so one must use an polynomial order 

similar to the spectral shape features (e.g., 2nd order polynomial for vibrational spectroscopy data), 

and the window size must be an odd number not too small (which keeps the noise) nor too large 

(changing the spectral shape)42. In addition, moving-window mathematical pre-processing 

techniques introduce correlations in the noise structure, and this may complicate the use of 

chemometric models assuming that the noise is identically and independently distributed (iid)55.   

Light scattering correction. Light scattering is present when particles with different sizes, especially 

smaller than the spectral electromagnetic wavelength, is present on the material being analysed. 

This shifts the absorbance or spectral intensity in a systematic fashion, affecting the y-axis. Light 

scattering effects are also generated by different probe pressures when portable spectrometers are 

used to analyse solid samples, or by different lengths of optical path. Light scattering is very common 
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in NIR spectroscopy, and some techniques such as multiplicative scatter correction (MSC)56 and 

standard normal variate (SNV)57 can be used to correct this problem. MSC corrects light scattering 

(Mie scattering) maintaining the original spectral shape and the same spectral scale. As main 

disadvantage, it needs a reference spectrum representative of all measurements. Usually, this 

reference spectrum is not available, and then it is substituted by the average spectrum across all 

training samples42. SNV also corrects light scattering (Mie scattering) maintaining the original 

spectral shape with no need of a reference spectrum, but it creates an artificial absorbance scale 

with negative values since the data are centralized to zero in the y-scale42. Resonant Mie scattering  

is also a frequent issue in IR spectroscopy of biological materials58, where a dispersion artefact 

occurs through a light scattering when there is simultaneous absorption. This can be often observed 

by a severe baseline distortion followed by a systematic shift in the y-axis58,59. Bassan et al.58,59 have 

proposed a modified version of the EMSC algorithm to correct for resonant Mie scattering, named 

the RMieS-EMSC algorithm. Additionally, Mie scattering (elastic scattering) is also present in Raman 

spectroscopy60, contributing to baseline distortions which are often mistakenly assigned to a 

fluorescence background. This can be also corrected by applying a modified version of the EMSC 

algorithm through the addition of polynomial extensions to the basic EMSC algorithm in order to 

correct for fluctuating baseline features61.  

Baseline correction. Baseline correction techniques remove background absorptions interferences. 

Baseline distortions are commonly present in all types of vibrational spectroscopy techniques. For 

NIR, the baseline distortions are mainly a result of light scattering, which can be corrected by MSC or 

SNV; however, for IR and Raman spectroscopy, this effect is more apparent, especially in the latter 

due to fluorescence interferences. There are several techniques of baseline correction, most of them 

already included in spectrometers’ software, in which the main ones are the rubber-band baseline 

correction, polynomial baseline correction, asymmetric least squares (ALS), automatic weighted 

least squares (AWLS), and Whittaker filter. The baseline correction technique being chosen affect 

the final result, therefore, they must be kept consistent throughout all the data analysis, especially if 

new samples are added after the model is developed. 

Spectral differentiation. First and second derivatives can be applied to the spectral data in order to 

correct both light scattering and baseline distortions. Also, these techniques highlight smaller 

spectral differences between the samples’ spectra, which can be critical to find distinctive spectral 

features amongst complex samples. It can also be coupled to SG smoothing in a single routine, 

making these procedures computationally easier. However, derivatives have great disadvantages. 

Spectral differentiation is not indicated to correct for resonant Mie scattering since it does not 

correctly deal with these spectral distortions. The order of the derivative function must be chosen 

carefully to avoid increasing the noise level too much. In addition, derivatives using moving-window 

procedures also carry the same risk of introducing correlations in the noise structure discussed to 

smoothing techniques, which affects the use of chemometric models assuming that the noise is iid. 

Also, derivatives change the spectral scale (y-axis scale) to mathematical coefficients instead of 

absorbance, thus the spectral intensity of derivative bands cannot be used for direct correlation with 

chemical concentrations; and spectral markers (biomarkers) identification needs to be performed 

carefully, since derivatives shift the spectral band positions in 𝑖 × 𝑑 wavenumbers, where 𝑖 is the 

derivative order and 𝑑 is the data spacing resolution. Some software automatically correct this 

spectral shift by deleting the first 𝑖 wavenumber position(s), thus matching the size of the spectral 

response (derivative result) with the reference wavenumber vector; but some software do not offer 

this correction. 
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Normalisation. Spectral normalisation techniques are commonly employed in IR and Raman 

spectroscopy to correct for different sample thickness and concentration, hence, avoiding the 

influence of non-desired spectral signatures among the samples. However, this procedure must be 

performed only when needed and with care, since the normalisation might hide important spectral 

bands that could be discriminant features among the samples, such as amide I and amide II 

absorptions; and it also may introduce non-linearities to the data42. Amide I and vector 

normalisation are the commonest type of normalisation for IR data; the first can be used when the 

amide I band is not a distinguishing feature between the classes; and the latter when this 

information is unknown but different sample thickness or concentration correction is needed. 

Raman spectrometers using CCD detectors also surfers from cosmic rays interferences, which create 

spikes in the spectral data compressing important Raman spectral signatures. Spikes removal is an 

essential step when analysing Raman data and must be performed before any data pre-processing. 

Most Raman spectrometers’ software have spikes removal routines. Finally, scaling methods (also 

referred as “standardization” by Hastie et al.62) are fundamental when dealing with multivariate 

methods, in particular PCA and partial least squares (PLS). Mean-centring is a very reasonable 

approach to use with spectral data before modelling, after which all variables in the dataset will 

have zero mean. When data contain information represented by different scales (e.g., after data 

fusion using both IR and Raman spectra), block-scaling should be used. In this case, each block of 

data (i.e., data for each instrumental technique) would have the same sum of squares (normally 

after mean-centring)42. For discrete data with different scales, autoscaling is recommend. 
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Figure 2. Effect of different pre-processing applied to an IR dataset. MSC: multiplicative scatter correction; SNV: standard normal variate. 

Random noise Smoothing

Baseline distortion Baseline correction

Amide I normalisationBaseline corrected spectra

Baseline corrected spectra Vector normalisation

Baseline distortion or light scattering 1st derivative

Baseline distortion or light scattering 2nd derivative

Light scattering MSC

Light scattering SNV



 

Figure 3. Decision tree to define the pre-processing technique for a spectral dataset. MSC: 

multiplicative scatter correction; SNV: standard normal variate; EMSC: extended multiplicative signal 

correction; RMieS-EMSC: resonant Mie scattering - extended multiplicative signal correction. 

 

Outlier detection 
 

When analysing real data, it often occurs that some observations are different from the majority. 

Such observations are called outliers. The spectral signal for some samples might differ from the 

spectral signal for the majority of the samples being measured. This can happen either by substantial 

differences in chemical structure or concentration for these specific samples, or by a measurement 

error. In the first case, we usually refer to an extreme sample, that is, a sample that belongs to the 

measurement set but with an extreme property value. This sample is characterized by a high 

Hotelling’s T2, and usually does not skew the model in a high degree; although it is recommended 

exclusion of this sample from the dataset before modelling. In the latter case, when the spectral 

abnormality is caused by a measurement error, this sample is a true outlier, being characterized by a 

high Q residuals. This sample should be removed from the dataset before analysis. Both extreme 

samples and outliers should be investigated in order to find possible sources of abnormalities. 

There are several techniques for outlier detection, such as the Jack-knife63, Z-score64 and K-mode 

clustering65. However, one of the most popular and visually intuitive technique for outlier detection 

is the Hotelling’s T2 versus Q residuals test66.  In this test, a chart is created using the Hotelling’s T2 

values (sum of the normalised squared scores, which is the distance from the multivariate mean to 

the sample projection onto the PCA principal components (PCs) space) in the x-axis and the Q 

residuals (sum of squares of each sample in the PCA error matrix, representing the residuals 

between a sample and its projection onto the PCs space) in the y-axis, generating a scatter plot42. All 

samples far from the origin of this chart are considered candidates to outliers and should be 
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investigated and removed.  Samples should be removed one at a time, since PCA is highly influenced 

by the samples that are included in the model. Samples with high values in both Hotelling’s T2 and Q 

residuals are the outliers with the greatest effect in PCA, while the samples with high values in only 

one of these parameters are the outliers with the second-greatest effect on the PCA model42. Figure 

4 illustrates 4 outliers detected amongst a set of 700 IR spectra by a Hotelling’s T2 versus Q residuals 

chart applied to the pre-processed data (AWLS baseline correction and vector normalisation). The 

outliers were spectra corresponding to background noise measured within the experimental set, 

most likely by a mistake made by the analyst when placing the samples in the attenuated total 

reflection (ATR) apparatus. 

 

Figure 4. Outlier detection test by a Hotelling’s T2 versus Q residuals chart. Pre-processing: AWLS 

baseline correction and vector normalisation. PCA model built with 8 PCs (94.3% cumulative 

explained variance). Spectra in black: outliers. 

 

Data selection 
 

A fundamental step towards building predictive chemometric models is data selection, that is, 

splitting an initial experimental dataset into at least two subsets: training and test. The training set 

contemplates the major fraction of the samples and is used to build the classifier, whereas the test 

set includes the remaining fraction of samples and is used to evaluate the model classification 

performance, since, although they are measured during the same experiment, the test set is 

Raw spectra Pre-processed spectra

Hotelling’s T2 versus Q residuals chart
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considered external to the model (blind), thus reflecting the expected model behaviour toward new 

observations67. When two subsets are used, cross-validation is recommended to optimize the model 

parameters. Cross-validation uses samples from the training set to optimize model parameters, such 

as the number of PCs in PCA-based models or latent variables (LVs) in PLS-based models, in an 

iterative internal validation process. This is made by first removing a certain number of samples from 

the training set and then building the model with the remaining samples, where the removed 

samples are predicted as a temporary validation set67. This is performed for a certain number of 

repetitions usually until all training samples are excluded once from the training set and predicted as 

an external validation set. One of the most popular cross-validation methods is the leave-one-out 

cross-validation (also called leave-one-spectrum-out cross-validation). In this case, only one sample 

spectrum is removed from the training set per each interaction. Although much used, leave-one-out 

cross-validation is only indicated for small size datasets, usually with no more than 20 samples in the 

training set42. When this number is larger, other cross-validation approaches are recommended, 

such as venetian blinds or random subset selection. When there are replicate spectra, leave-one-

spectrum-out cross-validation should not be used at all, but rather a continuous-block cross-

validation (also called leave-one-patient-out cross-validation when the number of replicate spectra is 

equal for each sample and organised in a sequential way within the spectral matrix X), otherwise 

during the cross-validation procedure the training and temporary validation sets will have spectra 

from the same sample, hence, giving overoptimistic cross-validation results. In continuous-block or 

leave-one-patient-out cross-validation, the whole set of replicas for a same sample is transferred to 

the temporary validation set during cross-validation, thus the training and temporary validation sets 

will not have spectra for the same sample, hence, giving more realistic results.  

When a large number of samples is measured, generally more than 100, it is recommended to split 

the experimental dataset into three groups: training, validation and test. In this case, an extra 

validation set that does not contain training samples is used to optimize the model. It is important to 

stress that the training, validation and/or test sets cannot contain spectra of the same sample 

distributed among them, i.e., the samples in each set must be independent. Extra caution must be 

taken when multiple spectral replicates are used to feed the model, to ensure that they do not 

overlap in different sets. 

There are several ways to split the samples into training, validation and/or test sets. Manual splitting 

is not recommend, since it can introduce bias to the model. Thus, computational-based 

methodologies are recommended instead. Random-selection and the Kennard-Stone (KS) 

algorithm68 are some well-known approaches. Random-selection is a simpler approach where 

samples are assigned to the training, validation and/or test sets randomly. The KS algorithm works 

based on a Euclidian distance calculation by first assigning the sample with the maximum distance 

from all other samples to the training set, and then by selecting the samples that are as far away as 

possible from the selected sample to this set, until the designed number of selected samples is 

reached. This ensures that the training model will contain samples that uniformly cover the 

complete sample space, for which no or minimal extrapolation of the remaining samples is 

necessary42. KS has been proved to be superior than random-selection alone67, but for biological-

derived samples, we have recently proposed a modification to the KS algorithm by adding a small 

degree of randomness to it, where the model predictive performance increased; this is called the 

MLM algorithm67. 
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Modelling 
 

Exploratory analysis is the first step towards analysing complex spectral data, where the analyst can 

initially assess the data in order to identify clustering patterns and trends, thus helping them to draw 

conclusions about the nature of samples, outliers and experimental errors42. PCA is the most 

common method of exploratory analysis, in which the pre-processed spectral data are decomposed 

into a few number of PCs responsible for the majority of the variance within the original dataset. The 

PCs are orthogonal to each other and are generated in a decreasing order of explained variance, so 

that the first PC explain most of the data variance, followed by the second PC and so on69. PCA 

decomposition takes the form: 

𝐗 = 𝐓𝐏T + 𝐄            (3) 

where 𝐗 represents the pre-processed spectral data, 𝐓 is the PCA scores, 𝐏 the loadings, and 𝐄 the 

residuals. 

PCA is then often the first step of the data analysis, followed by classification, cluster analysis, or 

other multivariate techniques. The PCA scores represent the variance in the sample direction, being 

used to detect clustering patterns related to chemical similarities/dissimilarities between the 

samples. The PCA loadings represent the variance in the wavenumber direction, being used to 

identify spectral variables with high degree of importance for the pattern observed in the scores 

distribution42. The PCA loadings are commonly used for searching spectral markers that distinguish 

samples from different biological classes. This can be performed by identifying the spectral bands 

with the highest absolute loadings coefficients (positive or negative) on the discriminant PCs 

directions42. Another strategy proposed by Martin et al.70 is the cluster vector approach, where a 

median score is calculated for each of the 3 PCs that represent the best samples’ clustering in a 

three-dimensional space and, thereafter, the three loading vectors for these PCs weighted by the 

median score are summed. As a result, a new loading vector is generated representing the effective 

loadings profile for the clustering2,70. The PCA residuals represent the difference between the 

decomposed and original pre-processed data, being used to identify experimental errors. Ideally, the 

PCA residuals should be random and close to zero (homoscedastic distribution); otherwise they 

indicate experimental bias42. 

PCA is a fast, intuitive and reliable method to identify differences between spectral data, however, it 

is important to stress that PCA is not a classification technique. PCA is a data reduction and 

exploratory analysis method, but PCA solely cannot be used to systematically classify samples. For 

this, supervised classification techniques are needed. Supervised classification methods build 

computer-based classifiers that can predict future samples based on their training spectral profiles. 

Therefore, data selection as mentioned previously is fundamental before building supervised 

classification models. 

Classification methods are separated into two groups: one-class modelling (also called class-

modelling) and discriminant models. In one-class modelling, the classification model output does not 

solely depend on the training classes, thus it can assume values such as “unknown” or that the test 

sample does not belong to any of the training classes. On the other hand, in discriminant models the 

model outputs are always referent to one of the training classes. The one-class modelling approach 

is very useful when only one class is modelled and the model output is whether the sample belongs 

or not to the reference class. However, one-class approaches requires a large number of samples, 

since the classes boundaries must include all the sample space as much as possible, and usually 
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provides worst classification results than discriminant models, since in one-class modelling slightly 

extreme samples to the reference class could be interpreted as not belonging to the class. These 

problems are not present in discriminant models, since the model output is always one of the 

training classes, and the class space is much larger. Discriminant approaches cannot predict samples 

that do not belong to the training classes, thus building meaningful training sets is fundamental in 

this type of analysis. 

The main algorithm of one-class modelling is the soft independent modelling by class analogy 

(SIMCA)71. In SIMCA, each class is modelled by an independent PCA model of opportune 

dimensionality. Then, the class space is defined according to some statistically defined outlier 

detection criterion, which is often the distance-to-the-model criterion72. This is made by calculating 

the probability distributions for the T2 statistics and Q statistics for the PCA model of each class, 

where a threshold corresponding to a determined confidence level (usually 95%) is chosen for both 

statistics to define the class space72. Other ways to define the class space are possible, such as the 

method proposed by Pomerantsev73, although the T2 and Q statistics is the most common approach. 

There are several discriminant analysis algorithms, most of them based on distance calculations on 

the real or transformed sample space. The main discriminant analysis algorithms employed in 

biological-derived spectrochemical applications will be discussed below. 

Linear discriminant analysis (LDA). LDA is a discriminant analysis algorithm based on a Mahalanobis 

distance calculation between the samples for each class74. This calculation can be performed with or 

without Bayesian probability terms, which can be applied when classes have different sizes74. LDA 

uses the pooled variance-covariance matrix in the distance calculation, hence, the distance between 

a test sample and a given class centroid is weighted according to the overall variance of each 

spectral variable74. This is particularly useful when the classes have similar variance structures or 

when the sample size is small75. However, LDA is highly affected when classes have different 

variance structures, which often happens in complex biological medium. In addition, LDA is a 

parametric method that assumes the samples follow a normal distribution and cannot be applied to 

ill-conditioned data, e.g., when the number of spectral variables is larger than the number of 

samples42. Although spectral data usually do not perfectly follow a normal distribution, LDA is robust 

enough to handle spectroscopy data and, according to the CLT, this effect can be reduced by 

increasing the sample size. The issue related to ill-conditioned data can be solved by the application 

of PCA or variable selection techniques to the pre-processed spectral data prior LDA, such as the 

principal component analysis linear discriminant analysis (PCA-LDA) algorithm, where LDA is applied 

to the PCA scores76. 

Quadratic discriminant analysis (QDA). Similarly to LDA, QDA is a discriminant analysis algorithm 

based on a Mahalanobis distance calculation between the samples for each class, which can use 

Bayesian probability terms to correct for classes having different sizes74. However, differently from 

LDA, QDA forms a separate variance model for each class, thus using a different variance-covariance 

matrix for each class74. For this reason, QDA outperforms LDA when classes exhibiting different 

within-category variances are being analysed77. Like LDA, QDA is also a parametric method that is 

highly affected by ill-conditioned data; however, these issues can be solved in the same manner as 

described for LDA. Often, QDA is applied to the PCA scores in the principal component analysis 

quadratic discriminant analysis (PCA-QDA) algorithm76. Its main disadvantages are that QDA 

underperforms LDA for small size datasets and it has a higher risk of overfitting than LDA42,75,77. 

Partial least squares discriminant analysis (PLS-DA). PLS-DA40 is a feature extraction and classification 

algorithm that usually performs better than PCA followed by LDA, as the scores from PCA do not 
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necessarily describe the difference between the samples, but the variance in the spectral data42. In 

PLS-DA, a PLS model78 is applied to the pre-processed spectral data reducing the original spectral 

variables to a small number of latent variables (LVs), where then a linear discriminant classifier is 

used for classifying the groups34. It is important to stress that there are different ways of performing 

the PLS model, such as using the SIMPLS79 or the non-linear iterative partial least squares (NIPALS) 

algorithm80, and that the classification rule of PLS-DA vary according to the application or software 

being used. Linear classifiers based on Euclidian distance to centroids40, LDA81 and Bayesian decision 

rule82 are some examples that can be used in PLS-DA. In addition, PLS-DA can be adapted to one-

class modelling, as described by Pomerantsev and Rodionova81. The main disadvantage of PLS-DA is 

that this algorithm is greatly affected by classes having different sizes and it requires optimization of 

the number of LVs, which is often performed by cross-validation42. Also, it is important to highlight 

that PLS-DA is a binary classifier, that is, when more than two classes are analysed a PLS2 model is 

built where the classes are codded in a matrix with size m (rows, samples) x n (columns, classes)  

containing zeros when the sample does not belong to the target class and ones when the sample 

belong to the target class. In PLS-DA, class-coding cannot be made in a sequential manner (e.g., 1, 2, 

3, …) since this imply a distance relationship between the samples (e.g., samples from class 1 are 

farther from class 3 than the samples in class 2). Some softwares allow the input of sequential class-

coding, but this information is internally convert into a zeros and ones matrix before model 

construction. 

K-nearest neighbours (KNN). KNN83 is a local non-parametric classification method where samples 

are classified based on the “majority vote” approach, that is, a given test sample spectrum is 

projected in a feature space and based on the calculation of a distance or dissimilarity metric 

(Manhattan, Euclidian, Minkowski or Mahalanobis distance; or by correlation), depending on the 

number of nearest surrounding neighbour training samples to this test sample, the sample is 

classified towards the majority observed class. The main advantage of KNN is that it can be applied 

to almost all type of data independent of its probability distribution or condition number, and does 

not require a particular ratio between the number of samples and the number of spectral 

wavenumbers72. KNN main disadvantages are that the model tends to overfit by skewing towards 

the bigger class size when unequal classes sizes are analysed, and that the model is highly sensitivity 

towards random spectral noise and to the “curse of dimensionality”42,562,72. In addition, KNN requires 

the optimization of the distance calculation method and the k value (number of neighbours), which 

can be performed through cross-validation42. 

Support vector machines (SVM). SVM is a binary linear classifier with a non-linear step called the 

kernel transformation84. A kernel function transforms the input spectral space into a feature space 

by applying a mathematical transformation which is often non-linear. Then, a linear decision 

boundary is fit between the closest samples to the border of each class (called support vectors), thus 

defining the classification rule. Although being highly accurate to classify spectral data, SVM requires 

many parameters optimization, such as the type of kernel function and its parameters, and it is 

highly susceptible to overfitting; besides being a highly time-consuming algorithm42. The radial basis 

function (RBF) kernel is often the best kernel to use in SVM, since it can adapt to different data 

distribution. To avoid overfitting, cross-validation should be always performed to estimate the best 

kernel parameters42. Multiclass SVMs are possible through the implementation of approaches such 

as one vs. all, one vs. one, fuzzy rules and directed acyclic graph trees85, although the first approach 

is the most common. 

When data complexity increases, for instance, when the spectra data are not following a bilinear rule 

or when the components complexity are too excessive to be analysed by the previous methods, 
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“black box” algorithms, i.e., machine learning techniques where the classification rules are hard to 

interpret, can be applied. Most of these algorithms were developed for applications such as face 

recognition, where a high degree of non-linearity is observed between the measurements, but they 

have found their way into spectrochemical applications. Artificial neural networks (ANN)86, random 

forests87 and deep-learning approaches88 are common classification methods applied in such 

situations. All these techniques have a non-linear classification nature and higher accuracy in 

comparison with more simpler methods, however in order for these algorithms work properly with a 

low-risk of overfitting many parameters need to be optimised, which depends on the analyst skills 

and usually demands high computation cost42. Classification techniques should be used in a 

parsimonious order48, in which the simplest algorithms should be performed first before testing 

more complex algorithms. A suggested order for running these classification algorithms is: LDA > 

PLS-DA > QDA > KNN > SVM > ANN > Random forests > deep-learning approaches42. 

Apart from these discriminant methods, there are many other discriminant analysis algorithms that 

are known but not much applied to biological-derived spectral data, such as learning vector 

quantization (LVQ)74 and regularized discriminant analysis (RDA)75. These algorithms are not much 

used probably due to the lack of available software containing these routines. The main 

chemometric softwares for classification applications are shown in Table 1. Apart from these main 

softwares, there are many open source freely-available options with specific algorithms for 

classification of spectral data, such as the MultiDA89 toolbox for MATLAB that contains some 

classification routines; the Biodata90 toolbox for MALTAB that contain PCA-LDA routines; the SAISIR91 

toolbox that contains PCA-LDA, PLS-DA and QDA routines; the ParLeS92 software that contain 

routines including PCA and PLS; the Raman Processing Program93 that contains LDA, ANN and SVM 

routines; the PML94 toolbox for machine learning; the DD-SIMCA95 toolbox for MATLAB that contain 

SIMCA routines; the libPLS96 library for MATLAB that contain PLS-DA routines; and the LIBSVM97 

library for SVM. Other classification routines can be found in spectrometer softwares or by specific 

libraries or toolbox available online for MATLAB, Octave, Scilab, R and Python. 

Octave and Scilab are open source freely-available platforms with syntax very similar to MATLAB and 

may interchangeable routines98, i.e., routines made for MATLAB often work in Octave or Scilab. 

Freely-available chemometric toolboxes for Octave and Scilab include the SAISIR toolbox91 

(https://www.chimiometrie.fr/saisir_webpage.html) and the FACT (Free Access Chemometrics 

Toolbox) (https://www.scilab.org/fact-free-access-chemometrics-toolbox). R is another powerful 

open source statistical platform often used for chemometric applications99. Apart from the CAT 

(Chemometric Agile Tool) toolbox showed in Table 1, there are other freely-available chemometrics 

packages for R, such as the Chemometrics package 

(https://www.rdocumentation.org/packages/chemometrics/versions/1.4.2) and the CRAN package 

Chemometrics100 (https://cran.r-project.org/web/packages/chemometrics/index.html). Python is a 

high-level computer programming language which is also becoming  popular for chemometric 

applications. Jarvis et al.101 developed an open source chemometric toolbox named PYCHEM for 

multivariate analysis of spectral data using Python. PYCHEM is freely-available at 

http://pychem.sourceforge.net/.  

  

 

 

 

https://www.chimiometrie.fr/saisir_webpage.html
https://www.scilab.org/fact-free-access-chemometrics-toolbox
https://www.rdocumentation.org/packages/chemometrics/versions/1.4.2
https://cran.r-project.org/web/packages/chemometrics/index.html
http://pychem.sourceforge.net/
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Table 1. Main chemometric softwares for multivariate classification. 

Software Website Classification algorithms Availability  

IRootLab102 http://trevisanj.github.io/irootlab/  LDA, PCA-LDA, ANN, fuzzy 
classification, KNN, logistic 
regression, SVM, PCA-
SVM, binary decision trees. 

Free 

Classification 
Toolbox for 
MATLAB103 

http://www.michem.unimib.it/  LDA, QDA, PCA-LDA, PCA-
QDA, classification trees 
(CART), PLS-DA, SIMCA, 
unequal class models 
(UNEQ), potential 
functions, SVM, KNN, 
backpropagation neural 
networks. 

Free 

CAT 
(Chemometric 
Agile Tool) 

http://gruppochemiometria.it/index.php
/software  

LDA, QDA, KNN. Free 

PLS_Toolbox http://www.eigenvector.com/  PLS-DA, SVM, SIMCA, KNN. Commercial 
Statistics and 
Machine Learning 
Toolbox for 
MATLAB 

https://mathworks.com/  Binary decision trees, LDA, 
QDA, naïve Bayes 
classifier, KNN, SVM, 
random forest. 

Commercial 

Unscrambler X https://www.camo.com/unscrambler/  SIMCA, LDA, PLS-DA, SVM. Commercial 
Pirouette https://infometrix.com/  KNN, SIMCA, PLS-DA. Commercial 
SIMCA Umetrics https://umetrics.com/  SIMCA, PLS-DA, orthogonal 

partial least squares 
discriminant analysis 
(OPLS-DA). 

Commercial 

 

 

Feature extraction and selection 
 

The feature extraction stage is responsible for producing a smaller number of variables that are 

more informative than the original whole set of wavenumber/variables. Feature selection is 

commonly applied as a stage prior to classification as a means to prevent overfitting and to 

circumvent the “curse of dimensionality”. Feature extraction and selection can be used to reduce 

data complexity, to reduce redundant information, to speed computation-time, and to aid 

biomarkers identification. Feature extraction techniques allow one to extract spectral features 

related to important chemical components within the spectral dataset, and feature selection 

techniques significantly reduces the pre-processed spectral dataset to a small set of variables 

responsible for class differentiation. The most straightforward way to identify important spectral 

features is by plotting the colour-coded mean-centred data. As mentioned before, mean-centring is 

a key scaling step applied to the data before multivariate analysis. By plotting the mean-centred 

data, the analyst can see spectral regions where the general data trend between the classes diverge. 

Spectral regions where one can clearly see a spectral difference are often the most important 

spectral regions within the dataset. These regions can be selected for model construction; though it 

is a trying and error procedure. I.e., the analyst needs to evaluate the model validation performance 

http://trevisanj.github.io/irootlab/
http://www.michem.unimib.it/
http://gruppochemiometria.it/index.php/software
http://gruppochemiometria.it/index.php/software
http://www.eigenvector.com/
https://mathworks.com/
https://www.camo.com/unscrambler/
https://infometrix.com/
https://umetrics.com/
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using the whole spectrum, some selected spectral regions, and spectral variables selected by other 

methods. Also, knowing the nature of the phenomena being measured can aid and guide the analyst 

to select important spectrochemical features. 

Feature extraction techniques can also be used directly or indirectly to identify important spectral 

variables. PCA and PLS-DA are two very common feature extraction techniques. PCA loadings and 

the PLS-DA regression coefficients can be used to identify important spectral features. Some 

approaches based on PLS such as variable importance in projections (VIP) scores104, selectivity 

ratio104 and interval partial least squares (iPLS)105 are useful tools to find important spectral 

variables. VIP scores, selection ratio and iPLS are very different techniques where the first two are 

methods employing the PLS loadings or the regression coefficients, which carry some risk of 

misinterpretation, since regression vectors of inverse calibration methods, such as PLS, can exhibit 

extremely complex behaviour in even the most simplistic circumstances106. On the other hand, 

methods employing the minimum error as guidance, such as iPLS, do not carry this risk and are in 

some degree more reliable for qualitative spectral interpretation.   

Another feature extraction technique particularly useful for hyperspectral imaging data is the 

multivariate curve resolution alternating least squares (MCR-ALS) algorithm107,108. MCR-ALS can be 

applied to reduce the spectral dataset into important spectral features and aid biomarker 

identification through the interpretation of the concentration and spectral profiles containing the 

purest components in the experimental spectral matrix. MCR-ALS allows the introduction of 

chemical constraints in the factor analysis model, improving the resolution of spectral mixtures 

through adjusting chemically-meaningful parameters; and allow the construction of concentration 

distribution maps based on the recovered MCR-ALS concentration profiles for hyperspectral images 

datasets109. For first-order spectral data, MCR-ALS can also be applied to solve mixtures and to 

recover concentration and pure spectral profiles towards kinetic, quantitative or qualitative 

applications. However, MCR-ALS is limited by the fact that its bilinear decomposition may show a 

large degree of rotational ambiguity, precluding the obtainment of reliable results. 

Feature selection techniques allows the identification of specific spectral wavenumbers within the 

original spectral space responsible for maximizing the class differences. Some examples of feature 

selection algorithms include the minimum redundancy maximum relevance (mRMR) algorithm110, in 

which the variable selection process is based on the maximization of the relevance of extracted 

features and simultaneous minimization of redundancy between them42; the successive projections 

algorithm (SPA)111, which is an iterative forward feature selection method operating by solving co-

linearity problems within the spectral dataset, thus selecting wavenumbers whose information 

content is minimally redundant112; and the genetic algorithm (GA)113, which is a iterative 

combinational algorithm inspired by Mendelian genetics where a set of initial variables undergo 

selection, cross-over combinations and mutations until the fittest selected variables are found112. 

The variables selected by these techniques can be used as input for the classification methods 

described previously, which is important since these techniques reduce the data size and 

collinearity, hence, improving the model accuracy and analysis time. Adaptations of PCA, PLS, SPA 

and GA (as feature extraction/selection techniques) to LDA, QDA, SVM, KNN and ANN (as classifiers) 

are well known114-116. 

 

Model validation 
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The performance of any classification model must be validated by calculating some quality metrics, 

or figures of merit, for a validation or test set. The training or cross-validation performance reflects 

the model fitting but it does not reflect the model predictive performance towards unknown 

samples. For this reason, figures of merit such as accuracy (AC), sensitivity (SENS), specificity (SPEC), 

positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), 

negative likelihood ratio (LR-), F-Score and G-Score are often calculated for external validation or 

test sets117,118. The equations to calculate these parameters are depicted in Table 2. 

Table 2. Quality parameters to evaluate the model classification performance. TP stands for true 

positives, FP for false positives, TN for true negatives, and FN for false negatives. 

Parameter Equation Meaning 

Accuracy (AC) / % TP + TN

TP + FP + TN + FN
× 100 

Number of samples correctly 
classified considering true 
and false negatives. Optimal 
value: 100%. 

Sensitivity (SENS) / % TP

TP + FN
× 100 

Proportion of positive 
samples (e.g., disease) that 
are correctly classified. 
Optimal value: 100%. 

Specificity (SPEC) / % TN

TN + FP
× 100 

Proportion of negative 
samples (e.g., healthy 
controls) that are correctly 
classified. Optimal value: 
100%. 

Positive predictive value (PPV) / % TP

TP + FP
× 100 

Number of test positives that 
are true positives. Optimal 
value: 100%. 

Negative predictive value (NPV) / % TN

TN + FN
× 100 

Number of test negatives 
that are true negatives. 
Optimal value: 100% 

Positive likelihood ratio (LR+) SENS

1 − SPEC
 

Ratio between the 
probability of predicting a 
sample as positive when it is 
truly positive and the 
probability of predicting a 
sample as positive when it is 
actually negative. SENS and 
SPEC are not in percentage. 
Optimal value: infinite. 

Negative likelihood ratio (LR-) SPEC

1 − SENS
 

Ratio between the 
probability of predicting a 
sample as negative when it is 
actually positive and the 
probability of predicting a 
sample as negative when it is 
truly negative. SENS and 
SPEC are not in percentage. 
Optimal value: 0. 

F-Score 2 × SENS × SPEC

SENS + SPEC
 

Model performance 
considering imbalanced 
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classes. Optimal value: 100%. 
G-Score √SENS × SPEC Model performance not 

accounting for the classes 
size. Optimal value: 100%. 

 

For binary models, i.e., models containing two classes, these parameters are calculated only once, 

where the positive class is the class of interest (e.g., disease) and the negative class is the control 

class (e.g., healthy controls). When more than two classes are modelled, then these parameters 

must be calculated individually per class. Often, receiver operating characteristic (ROC) curves, 

including the area under the curve (AUC) value; and confusion matrices containing the predicted 

number of samples or predicted classification rate per class are reported in a form of a table or 

graphically to aid the reader evaluating the model classification performance. Also, based on the 

confusion matrix, the Cohen’s kappa coefficient (κ)119 can be calculated, which is a weighted average 

of the model performance. Other parameters, such as model uncertainty, can be calculated. 

Uncertainty is related to the probability of misclassification and model robustness120, and can be 

calculated for LDA, QDA and SVM models120; PLS-DA121,122; and ANN123. The number of quality 

metrics to report depends on the application and rigor of the study. We recommend reporting at 

least the accuracy, sensitivity and specificity for small studies, while all the metrics in Table 2 can be 

reported for bigger studies. 

 

Procedure 
 

Loading the data ● Timing 5 min – 2 d, depending on the size of the dataset  
 

1. The spectra data must be loaded into the software for data analysis. Usually, the spectral 

data need to be converted to suitable .txt or .csv files within the spectrometer software, or 

saved in an extension format readable by the software used for data analysis. MATLAB 

commands such as ‘csvread’ and ‘importdata’, or the option right click > ‘Import Data…’ over 

the file in the “Current Folder” window of MATLAB, can be used to load standard .csv or .txt 

files.  IRootLab86 toolbox for MATLAB contain an interface called “mergertool” to load 

different spectral formats: .DAT files, .csv files, OPUS binary files from Fourier transform 

infrared (FTIR) Bruker® spectrometers, and .txt and Wire files from Renishaw® Raman 

spectrometers. We strongly suggest saving the spectral files in .csv or .txt file formats since 

these are universal formats most chemometric software read regardless the instrument 

manufacturer brand. 

▲ CRITICAL Experimental procedures for sample preparation and Raman and FTIR spectral 

acquisition are demonstrated in other protocols1,3,8,42. 

▲ CRITICAL The routine to load the spectral data depends on the file format, spectrometer 

manufacturer, and software being used to analyse the data. 

? TROUBLESHOOTING  

In case of fail to load directly the spectral data into the software for data analysis, export the 

spectral data into readable .txt, .csv or .xls formats within the spectrometer software and load them 
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into Microsoft® Excel or any spreadsheet software. Then, copy and paste the spectral data from the 

spreadsheet to the data analysis software. 

■ PAUSE POINT Save the spectral dataset in the data analysis software format (e.g., .mat for 

MATLAB) into a known folder for further analysis. 

 

Data quality evaluation ● Timing 40 min – 4 h, depending on the size of the dataset 
 

2. Evaluate the raw spectral data by plotting them and by performing quality tests to identify 

anomalous spectra or biased patterns before applying processing. This can be done by visual 

inspection of the spectral profiles, followed by plotting Hotelling’s T2 versus Q residuals 

charts using only the mean-centred data, and the analysis of the PCA residuals. Samples far 

from the origin of the Hotelling’s T2 versus Q residuals chart should be investigated and 

removed. Outliers must be removed one at the time from the PCA model. PCA residuals 

should be random and close to zero. Further instructions about data quality evaluation can 

be found in ‘Minimum dataset requirements’ and ‘Outlier detection’ in the ‘Experimental 

design’ section. Hotelling’s T2 versus Q residuals charts can be built using the automatic 

Outlier Detection algorithm42 for MATLAB at 

https://figshare.com/articles/Outlier_Detection/7066613/2. 

 

Data pre-processing ● Timing 15 min – 4 h, depending on the size of the dataset  
 

▲ CRITICAL Steps 3 – 8 below can be modified depending on the nature of the dataset. Pre-

processing effects are depicted in Fig. 2 and a pre-processing decision flowchart is shown in Fig. 3. 

Further details about pre-processing techniques can be found in ‘Pre-processing’ in the 

‘Experimental design’ section. 

3. Selecting the biofingerprint region. Truncate the spectra dataset to the biofingerprint region 

to eliminate atmospheric interference present in other regions of the spectra. FTIR: 1800 – 

900 cm-1; Raman: 2000 – 500 cm-1; NIR: 900 – 2600 nm. 

4. Savitzky-Golay (SG) smoothing for removing spectral noise. When random noise is present, 

SG smoothing should be applied. Window size varies according to the spectral dataset 

resolution and size. The window size must be an odd number, since a central data point is 

required for the smoothing process. Try different window sizes from 3 to 21 and observe 

how the spectra change (in shape) and how the noise is reduced. Use the smallest window 

size that removes a considerable amount of the noise while maintaining the original spectral 

shape. E.g., using a spectral resolution of 4 cm-1, the IR biofingerprint region (900-1800 cm-1) 

usually contains 235 wavenumbers; in this case, a window size of 5 points should be used. 

The polynomial order of the SG fitting should be second order for IR, Raman and NIR 

datasets due to the quadratic band shape of the spectrum. 

5. Light scattering correction using either MSC, SNV or second derivative. First, try using MSC or 

SNV, as MSC maintains the spectral scale and both methods maintain the original spectral 

shape. If the results are not satisfactory (e.g., classification accuracy < 75% in the validation 

set), try using the second-derivative spectra. 

https://figshare.com/articles/Outlier_Detection/7066613/2
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▲ CRITICAL If resonant Mie scattering58 is present in the spectra (often detected by a severe 

baseline distortion followed by a systematic shift in the y-axis), then the RMieS-EMSC algorithm59 

should be used for spectral correction instead of MSC, SNV, second derivative or other baseline 

correction technique.  

6. Perform baseline correction using AWLS or rubber-band baseline correction. If EMSC or 

spectral differentiation is applied as the light scattering correction method, baseline 

correction is not necessary. 

7. Normalisation. Normalise the spectrum to the Amide I or Amide II peak, or perform a vector 

normalisation (2-norm, length = 1) to correct different scales across spectra (e.g., due to 

different sample thickness when using FTIR in transmission mode). 

8. Scaling. Mean-centre the spectral dataset. In case of data fusion, block-scaling should be 

used. 

▲ CRITICAL Plot the spectral data throughout all the pre-processing steps to identify anomalous 

behaviours. For parsimonious reason, only use the pre-processing methods that are needed for the 

dataset (see Fig. 3 and ‘Pre-processing’ in the ‘Experimental design’ section). 

■ PAUSE POINT Save the pre-processed spectral dataset in the data analysis software format (e.g., 

.mat for MATLAB) into a known folder for further analysis. 

 

Exploratory analysis ● Timing 1 h – 4 d, depending on the size of the dataset  
 

9. Perform a PCA model with the mean-centred pre-processed spectral data to identify 

clustering patterns, trends and outliers within the dataset. Determine the number of PCs by 

plotting the number of PCs versus the model explained variance, where the selected number 

of PCs should be the one that contains the majority of the cumulative explained variance 

before a constant trend is observed in the next following PCs. Usually the number of PCs 

should not exceed 10 PCs, since this can add random noise to the model. 

10. Plot the PCA scores on PC1 versus PC2, and investigate other combinations of PCA scores 

plot on different PCs according to the number of selected PCs to identify possible clustering 

patterns or trends. Colour-code the samples to facilitate visualisation. If a clear segregation 

pattern between the classes is observed on the PCA scores space, this is an indication that 

PCA-based discriminant models, such as PCA-LDA and PCA-QDA, might work well with the 

dataset. 

11. Plot the Hotelling’s T2 versus Q residuals chart for the PCA model built in order to identify 

possible outliers still within the spectral dataset. The outliers should be removed from the 

dataset before proceeding to the next steps. 

 

▲ CRITICAL The pre-processed spectral data must be mean-centred before PCA. 

▲ CRITICAL PCA is not a classification method, thus the PCA scores plot is not the final classification 

model. 

? TROUBLESHOOTING 
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If no segregation trend is observed in the PCA scores plot, this is an indicative of the dataset 

complexity. The visualisation of the PCA scores is limited to 3-demenions (3D) plots, hence, no 

apparent segregation trend does not mean that the dataset cannot be discriminated in the PCA 

scores space. Therefore, PCA-based discriminant models can still be built by using 4 to 10 PCs, or 

more. 

 

Data selection ● Timing 10 min – 4 h, depending on the size of the dataset  
 

12. Separate the samples that will be used for the training and test sets. Data selection should 

be performed before model construction. The samples can be split into training (70%) and 

test (30%) sets, using a cross-validated model; or they can be split into training (70%), 

validation (15%) and test (15%) sets without using cross-validation. To maintain consistency 

and account for well-balanced training models, the KS or MLM algorithms are suggested to 

separate the samples into the sub-sets. The KS algorithm is freely available at 

https://doi.org/10.6084/m9.figshare.7607420.v1; and the MLM algorithm is freely available 

at https://doi.org/10.6084/m9.figshare.7393517.v2. 

 

▲ CRITICAL Spectrum replicas for a same sample cannot be present in more than one sub-set; that 

is, spectral replicates cannot be distributed amongst the training, validation and/or test sets. 

? TROUBLESHOOTING  

When spectral replicates are present in the dataset, the data selection algorithm can be applied in a 

way to keep the spectrum replicas together, or by averaging the spectral replicates before applying 

the data selection algorithm. 

? TROUBLESHOOTING  

If the percentages of samples (70%, 30% or 15%) for each sub-set generate numbers with decimal 

places, round them to the closest integer values. 

■ PAUSE POINT Save the training, validation and/or test sets in the data analysis software format 

(e.g., .mat for MATLAB) into a known folder for further analysis. 

 

Model construction ● Timing 1 h – 4 d, depending on the size of the dataset  
 

▲ CRITICAL Feature extraction (e.g., by means of PCA) or feature selection (e.g., by means of SPA or 

GA) should be used to reduce data collinearity and speed up data processing and analysis time. PLS-

DA is already a feature extraction method; thus performing a feature extraction technique prior PLS-

DA is not necessary. KNN, SVM and ANN algorithms can be applied either without or after feature 

extraction/selection techniques. The classification technique being tested must follow a parsimony 

order: LDA > PLS-DA > QDA > KNN > SVM > ANN > random forests > deep-learning approaches. 

13. Apply the feature extraction or selection technique. The optimization of the number of PCs 

during PCA-based methods or LVs during PLS-DA can be performed using an external 

validation set (15% of the original dataset) or using cross-validation (leave-one-out for small 

https://doi.org/10.6084/m9.figshare.7607420.v1
https://doi.org/10.6084/m9.figshare.7393517.v2
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datasets (≤20 samples); venetian blinds or random subsets with 10 data splits can be used 

for large datasets (>20 samples); or continuous-block (i.e., leave-one-patient-out cross-

validation) when replicate spectra are present). GA should be performed three times, 

starting from different initial populations, and the best result using an external validation set 

(15% of the original dataset) should be used. Cross-over probability should be set to 40% 

and mutation probability should be set to 1–10%, according to the dataset size. 

14. The classification method should be used optimized by an external validation set or by using 

cross-validation, especially for selecting the number of LVs of PLS-DA, and the kernel 

parameters for SVM. The kernel function for SVM should be the radial basis function (RBF) 

kernel, due to its adaptation to different data distribution. To avoid overfitting, cross-

validation should be always performed during model construction to estimate the best RBF 

parameters in SVM. 

 

▲ CRITICAL The final classification model must be built with the optimum classifier parameters. 

■ PAUSE POINT Save the training model parameters for further analysis. 

 

Model validation ● Timing 1 h – 8 h, depending on the size of the dataset 
 

15. After model construction using the training set, the model must be blindly validated by an 

external test set. The samples in the test set cannot be present in the training set; and the 

model output for the test set must be statistically compared with reference known values. 

16. Based on the model output for the training and test sets, calculate the accuracy, sensitivity 

and specificity for each set. The metrics for the training set are used to assess the fitting of 

the model, but they do not reflect the true model behaviour towards unknown samples. The 

metrics for the test set are the true expected results representing the predictive 

classification ability of the model. 

 

Troubleshooting 
 

Loading the data 
 

The file format in which the spectral data is saved must be readable by the data analysis software. 

Check the importing data routines in the data analysis software beforehand to save the 

experimental files in a suitable file format. 

 

Data pre-processing 
 

Data pre-processing techniques should be used in a parsimonious way, and they cannot mask the 

signal of interest. Testing different pre-processing techniques is recommend to find the best solution 

in terms of cross-validation or validation performance.  
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Model construction 
 

In case of unsatisfactory classification results, the complexity of the model being tested should 

increase in the following order: LDA > PLS-DA > QDA > KNN > SVM > ANN > random forests > deep-

learning approaches. Changing the type of classifier, the feature extraction/selection technique and 

the type of pre-processing are ways to narrow down the classification results and find the best 

classification model. The performance testing of candidates models can be made by cross-validation 

or by using an external validation test. The final performance of the classification model must be 

calculated using an external test set containing independent samples (samples not present in the 

training set). 

 

Timing 
 

Loading the data 
 

Step 1, importing the data to the data analysis software: 5 min – 2 d, depending on the size of the 

dataset. 

 

Data quality evaluation 
 

Step 2(A), plotting and inspecting the spectral profiles: 15 min – 1 h, depending on the size of the 

dataset. 

Step 2(B), inspecting Hotelling’s T2 versus Q residuals charts for the mean-centred raw data: 15 min – 

2 h, depending on the size of the dataset. 

Step 2(C), analysis of PCA residuals: 10 min. 

 

Data pre-processing 
 

Step 3, selecting the biofingerprint region: 10 min. 

Step 4, Savitzky-Golay (SG) smoothing for removing spectral noise:  2 min – 20 min, depending on 

the size of the dataset. 

Step 5, light scattering correction using either MSC, SNV, second derivative or RMieS-EMSC: 2 min – 

20 min, depending on the size of the dataset. 

Step 6, performing baseline correction using AWLS or rubber-band baseline correction: 2 min – 40 

min, depending on the size of the dataset. 
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Step 7, normalisation: 1 – 10 min, depending on the size of the dataset. 

Step 8, scaling: 1 – 10 min, depending on the size of the dataset. 

 

Exploratory analysis 
 

Step 9, building a PCA model with the mean-centred pre-processed spectral data to identify 

clustering patterns: 10 min – 4 h, depending on the size of the dataset. 

Step 10, plot the PCA scores on PC1 versus PC2, and investigate other combinations of PCA scores 

plot on different PCs to identify possible clustering patterns or trends: 30 min – 12 h, depending on 

the number of selected PCs. 

Step 11, checking the Hotelling’s T2 versus Q residuals chart to identify outliers: 10 min – 2 h, 

depending on the size of the dataset. 

 

Data selection 
 

Step 12, sample splitting: 10 min – 4 h, depending on the size of the dataset. 

 

Model construction 
 

Step 13, application of feature extraction or selection techniques: 15 min – 8 h, depending on the 

size of the dataset and the feature selection technique being used. 

Step 14, construction of the classification model: 15 min – 4 d, depending on the size of the dataset, 

type of cross-validation and type of classifier. 

 

Model validation 
 

Step 15, obtaining the model outputs for the test set: 15 min – 1 h, depending on the size of the test 

set. 

Step 16, calculation of model performance metrics: 30 min – 8 h, depending on the number of 

metrics being calculated and the number of classes in the dataset. 

 

Anticipated results 
 

To illustrate how this protocol can be used to analyse spectral data, we will conduct some 

classification models for 3 real datasets: (1) Syrian hamster embryo (SHE) cells dataset composed of 
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FTIR spectra, free available as part of IRootLab toolbox (http://trevisanj.github.io/irootlab/); (2) 

Raman spectra of blood plasma to detect ovarian cancer, free available at 

https://doi.org/10.6084/m9.figshare.6744206.v1; and (3) NIR spectra of corn samples, free available 

at http://www.eigenvector.com/data/Corn/index.html. 

Dataset 1 (SHE cells) was originally published by Trevisan et al.124 and is composed of originally 10 

classes, containing attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra of cells 

exposed to 5 contaminants in two levels (non-transformed and transformed). In this example, only 

two classes are being used for analysis: class 1 (cells exposed to benzo[a]pyrene (B[a]P) non-

transformed, n = 59) and class 2 (cells exposed to B[a]P transformed, n = 62). The spectra at the 

fingerprint region (1800-900 cm-1) was pre-processed by 2nd differentiation. The step-by-step 

analysis of this dataset using PCA-LDA/QDA is demonstrated in the Supplementary Method. Dataset 

2, originally published by Paraskevaidi et al.125, is also composed of two classes: class 1 containing 

182 Raman spectra of blood plasma from healthy individuals, and class 2 containing 189 Raman 

spectra of blood plasma from ovarian cancer patients. The raw spectra were pre-processed by 

cutting the Raman fingerprint region (2000-500 cm-1), followed by Savitzky-Golay 2nd differentiation 

(window of 21 points, 2nd order polynomial fit) and vector normalisation. Dataset 3 consists of 80 

corn samples measured on 3 different NIR spectrometers.  The spectra were acquired in the range 

between 1100 – 2498 nm at 2 nm intervals. The classification models for this dataset were based on 

the spectra collected by instrument 5 (‘m5spec’) where class 1 was defined as the samples with 

protein content ≤ 8.5 (n = 36), and class 2 the samples with protein content > 8.5 (n = 44). The 

spectra for this dataset were pre-processed by SNV. The raw spectra for datasets 1–3 are show in 

the Supplementary Information, Figure S1. 

A PCA was applied for exploratory analysis of the pre-processed spectral data followed by an outlier 

detection algorithm. The PCA scores plot and Hotelling’s T2 versus Q residuals charts for datasets 1–3 

are show in the Supplementary Information, Figure S2. For dataset 1, it is possible to identify a 

segregation trend between the samples from class 1 and 2 along PC1, where the samples from class 

1 are mostly distributed on the left-side, and the samples from class 2 on the right-side of the PCA 

scores plot (Figure S2a). The Hotelling’s T2 versus Q residuals chart (Figure S2b) does not show any 

sample significantly far from the origin, thus no outlier is present in this dataset. In dataset 2, the 

PCA scores plot on PC1 versus PC2 do not show any clear segregation between the classes (Figure 

S2c); and the Hotelling’s T2 versus Q residuals chart (Figure S2d) indicates the presence of 4 outliers 

in class 2. These 4 spectra were removed from the dataset before further analysis. The PCA scores 

plot for dataset 3 (Figure S2e) show a separation trend along PC2, where the samples from class 1 

are mostly on the positive side of the scores on PC2, and the samples from class 2 are mostly in the 

http://trevisanj.github.io/irootlab/
https://doi.org/10.6084/m9.figshare.6744206.v1
http://www.eigenvector.com/data/Corn/index.html


 29 

negative side of the scores on PC2. The Hotelling’s T2 versus Q residuals chart for this dataset (Figure 

S2f) does not indicate the presence of outliers. 

After data selection using the MLM algorithm (70% of samples for training and 30% of the samples 

for test), the mean-centred pre-processed spectra were used to build PCA-LDA, PCA-QDA and PLS-

DA classification models. The training and cross-validation accuracies for datasets 1–3 using PCA-LDA 

and PLS-DA are show in Table 3. 

Table 3. Training accuracies for PCA-LDA and PLS-DA algorithms applied to datasets 1–3. Cross-

validation using venetian-blinds with 10 data splits. PCs stands for principal components; LVs stands 

for latent variables; and EV stands for cumulative explained variance. 

Dataset Algorithm Number of factors Training accuracy  Cross-validation accuracy  

1 PCA-LDA 10 PCs (97% EV) 93% 90% 

 PLS-DA 5 LVs (86% EV) 95% 92% 

2 PCA-LDA 9 PCs (27% EV) 61% 61% 

 PLS-DA 2 LVs (6% EV) 89% 72% 

3 PCA-LDA 8 PCs (100% EV) 91% 84% 

 PLS-DA 6 LVs (98% EV) 93% 88% 

 

The optimal number of factors was selected by cross-validation (Figures S3–S5). Overall, the PLS-DA 

models are superior to the PCA-LDA models, which often happens since the PLS decomposition takes 

into consideration the reference classes labels for the training set in a way that the latent variables 

maximize the covariance between the samples, which emphasize the differences between the 

classes; while PCA decomposition only describe the variance in the data, which might not be totally 

related to class differences42. 

The performance of the discriminant analysis models in Table 3 applied to an external test set is 

depicted in Table 4. PLS-DA models show superior predictive performance, where higher accuracies, 

sensitivities and specificities are observed in the test set in comparison to PCA-LDA. The mean pre-

processed spectrum and discriminant function plot for PLS-DA applied in datasets 1–3 are show in 

Figure 5. The PLS-DA regression coefficients and ROC curves are show in the Supplementary 

Information, Figures S6–S9. 
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Table 4. Test performance of PCA-LDA and PLS-DA models applied to datasets 1–3.  

Dataset Algorithm Accuracy  Sensitivity  Specificity  

1 PCA-LDA 86% 95% 78% 

 PLS-DA 89% 95% 83% 

2 PCA-LDA 67% 59% 75% 

 PLS-DA 80% 75% 85% 

3 PCA-LDA 83% 69% 100% 

 PLS-DA 88% 77% 100% 
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Figure 5. Results for PLS-DA models in datasets 1–3. (a) Mean pre-processed FTIR spectra (2nd 

derivative) for dataset 1; (b) calculated PLS-DA response for dataset 1, where o = training samples 

and * = test samples; (c) mean pre-processed Raman spectra (2nd Savitzky-Golay derivative (window 

of 21 points, 2nd order polynomial function) and vector normalisation) for dataset 2; (d) calculated 

PLS-DA response for dataset 2, where o = training samples and * = test samples; (e) mean pre-

processed NIR spectra (SNV) for dataset 3; (f) calculated PLS-DA response for dataset 3, where o = 

training samples and * = test samples. 

 

a. b.

c. d.

e. f.
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The classification performances of the PLS-DA models in Table 4 are satisfactory. Usually, in clinical 

applications, the minimum threshold for accuracy, sensitivity or specificity is 75%, the level often 

found in routine clinical procedures. The AUC values for the PLS-DA models in Table 4 were 0.99 

(dataset 1), 0.96 (dataset 2) and 0.99 (dataset 3), indicating excellent predictive performance. 

Nevertheless, the classification performance of these models might improve by changing the type of 

pre-processing or by increasing the degree of complexity of the classification technique, such as by 

using feature selection techniques (e.g., SPA and GA) or non-linear classifiers (e.g., SVM and ANN). 

For sake of simplicity, herein only the results obtained by PCA-LDA and PLS-DA, which are the most 

common classification algorithms, are reported. 
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