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How the climate and land use changes affect the water cycle? Modelling study including the future 1 

drought events prediction using reliable drought indices 2 

 3 
Afzal, M.1,2 and R. Ragab1* 4 

 5 

Abstract  6 

The two key factors that affect the water balance are climate and land-use changes. Although climate 7 

change models have been developed for global scale, the implementation of their predictions is 8 

commonly applied at catchment scale where the measurements are being carried out and the 9 

management takes place. To investigate the impacts of climate and land use changes on the 10 

hydrology, the Don Catchment in Yorkshire, UK, has been selected for this study. A physically based 11 

distributed catchment-scale (DiCaSM) model has been applied. The model simulates the surface 12 

runoff, groundwater recharge and drought indicators such as soil moisture deficit (SMD) and wetness 13 

index (WI) of the root zone. The model was calibrated and validated against the observed river flow 14 

and the model efficiency was evaluated using the Nash-Sutcliffe Efficiency factor (NSE). During the 15 

calibration period (2011-2012), NSE was above 91% and during the validation period (1966-2012) 16 

was above 83%. To study the impact of climate change on the streamflow and the groundwater 17 

recharge, UK Climate Projections (UKCP09) data was applied. Under current land use changes under 18 

different climate scenarios, the greatest decrease in streamflow and groundwater recharge is projected 19 

under medium and high emission scenarios. Considering the projected increase in winter 20 

precipitation, the increase did not contribute much into the streamflow and groundwater recharge due 21 

to prolonged drier summer and higher temperature during the summer and autumn seasons that 22 

resulted in an increase of evapotranspiration and soil moisture deficit (SMD). Climate change 23 

scenarios projected an increase in evapotranspiration, soil moisture deficit more importantly in the 24 

latter half of the current century and resulted in more extreme and severe drought events in 25 

comparison to the baseline period. To study the impact of land use changes on water balance, 26 
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different possible scenarios were created. The increasing of woodland had the most significant impact 27 

by reducing the stream flow by up to 17% and groundwater recharge by 22%. Urbanization, could 28 

lead to increase in stream flow and groundwater recharge. The magnitude of the impact of the climate 29 

change was much more significant than the land use change on the streamflow and the groundwater 30 

recharge. All the applied drought indices (SMD, WI, and RDI) identified an increase in the severity of 31 

the drought under future climatic change scenarios, especially under high emission scenario where the 32 

severity was the highest. Findings of the study are of great importance for Don Catchment that has 23 33 

reservoirs for water supply. Some measures were suggested for sustainable management of the land 34 

and water resources in order to meet future water demand in the light of diminishing water supplies.  35 

Key words: Climate change, Land use change; DiCaSM Hydrological model; Don Catchment; 36 

Reconnaissance Drought Index (RDI); Soil moisture deficit (SMD) and land-use change.  37 

  38 
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1. Introduction 39 

 40 

Changes in the land surface hydrology are attributed to the collective effects of the changes in the 41 

climate, changes in vegetation, and the soil (Wang et al., 2018). Therefore, it is important to understand 42 

the impact of climate and land use changes on the water resources availability. In the UK, the land 43 

surface has changed slightly due to human interventions that mainly resulted in changes in land use for 44 

the food production, energy, housing and recreation. The recent land use changes are probably 45 

happening faster than at any other time in the human history, due to increase in demand for the natural 46 

resources, rapid changes in urbanisation, an increase in water demands for domestic and agricultural 47 

use. This is very significant for the UK where two-thirds of the land area is grassland. Approximately 48 

14% of the UK is urban land which has significantly increased (by 300,000 hectares) since 1998 49 

(Rounsevell and Reay, 2009). The other key land use changes are the agricultural land use practices 50 

which are driven by the farmers’ decisions, which are economically driven by the availability of 51 

investment and subsidies (Shiferaw et al., 2009). 52 

The UK and the study area (North East of England) have experienced a number of droughts,  the most 53 

severe one is the one of  1976 (Marsh and Green, 1997). Annual precipitation in the region varies 54 

significantly, from 600 mm in the eastern lowlands to 2000 mm in western Pennine sites (Fowler and 55 

Kilsby, 2002). Contrary to the water supplies in the South-East region, water supplies in the North East 56 

depend on the reservoirs which fill during the winter months and are drawn down during the summer, 57 

this suggests that the water supplies in the region are more vulnerable to drought which is evident from 58 

the 1995 drought event (Fowler and Kilsby, 2002). The studied catchment, the Don is very significant 59 

for the water supplies in the region as there are 23 reservoirs within the catchment boundary which are 60 

recharged mainly during the winter months. Therefore, the main types of physical modification that 61 

affect the Don Catchment are the water storage and supply reservoirs, flood management structures, 62 

urbanisation and recreation including navigation (The_Don_Network, 2018).  63 

The historic long-term record of the climate variables for the Sheffield area (part of the Don catchment 64 

area), covering the period from 1883 to 2015, suggests a significant annual warming trend (1.0 °C per 65 
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century), combined with an increase in annual precipitation (69 mm per century) with no significant 66 

trend in seasonal precipitation (Cropper and Cropper, 2016). There is a general perception that the 67 

urbanisation possibly added urban heat which contributed to the long-term warming trend which 68 

resulted in extreme precipitation events. This could potentially affect the water resources availability in 69 

the future and increase the drought risk, as water supplies within the catchment significantly depend on 70 

the reservoirs. Considering the historic climate and land use changes and likely changes in the future, 71 

it is important to study of the impacts of climate and land use changes on the studied catchment.  72 

Although a number of studies including (Burke et al., 2010, Jackson et al., 2015, Wilby et al., 2015, 73 

Spraggs et al., 2015) have been carried out to identify the historic droughts in the UK using the observed 74 

data, less focus has been given to study the drought risk over catchment scale under different climate 75 

and land use change scenarios and their impacts on water resources. This study aims to address this 76 

issue in more detail and will also apply a number of indicators for the historic and future climate change 77 

which could potentially be used as drought indicators to identify meteorological, agricultural and 78 

hydrological droughts. The limited availability or access to the aquifers, the surface water reservoirs 79 

significantly contribute to the water supplies of the studied area. As the water available in the reservoirs 80 

is vulnerable to climate change, the reliability of water resources availability in the catchment could be 81 

at higher risk due to the climatic variability.  82 

The objectives of this study is to quantify the impact of climate and land use changes on catchment 83 

water resources availability (surface and groundwater) and to develop suitable drought indicators to 84 

predict future drought events.  85 

Findings of the study are importance for the Don catchment for managing the water abstraction, 86 

improvement in water infrastructure and planning for the future drought risk under climate change.  87 

2. Background of the studied catchment  88 

The Don Catchment (NRFA no. 27006) is in the North East of the country with a catchment area of 373 89 

km2 (Fig. 1). The naturalised discharge (where the river-flow was adjusted to take into account 90 
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abstraction and discharge into the river) was obtained from Environment Agency. This was needed as 91 

streamflow is affected by presence of the 23 reservoirs, river abstraction for agricultural and industrial 92 

use, groundwater abstraction and by treated wastewater discharge. The key land uses of the catchment 93 

are: woodland which covers 15.8% of the catchment area, arable land, 6.1%, grassland, 35.6%, heather 94 

area, 18.9% and urban area, around 14.0% (Fig. 2). The catchment contains a moderate permeability 95 

bedrock which almost covers half of the catchment. Based on historical data, the average annual rainfall 96 

for the Don Catchment is around 1085 mm and average temperature 7.8°C for the baseline data, 1961-97 

1990, the average annual rainfall for the studied period 1991-2012 was 1089 mm and the average 98 

temperature 8.5 °C. The Don catchment is important for drinking water as it supplies conurbations of 99 

South Yorkshire. Therefore, protecting drinking water sources now and in the future is essential. There 100 

are over twenty Yorkshire water reservoirs in operation.  101 

 102 

Figure 1: The Don Catchment: boundaries, land  use practices and location of the gauging station, 103 

adapted from  Morton et al. (2011).  104 
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3. Data, and the methodology 105 

3.1. Historic climate, soil, river flow and future climate data  106 

The Distributed Catchment Scale Model, DiCaSM model was run on a daily time step and spatial scale 107 

of 1 km2 grid square area. The catchment area is 373 km2 covered by 435 grid squares (as not all the 108 

grid squares were covered in the catchment boundary), each of which has 1 km2 area. The model input 109 

requires a number of daily climatic variables including precipitation, temperature, wind speed, daily net 110 

radiation or total radiation and vapour pressure. Climate data were obtained from the Climate 111 

Hydrology and Ecology research Support System (CHESS) that accounted for the impact of changes in 112 

elevation on climatic data (Robinson et al., 2015, Tanguy et al., 2016). The historic continuous climatic 113 

variables and river flow data were available from 1961 until 2012. The catchment boundary and gauging 114 

station location data were available from Centre for Ecology and Hydrology (Morris et al., 1990, Morris 115 

and Flavin, 1994) and National River Flow Archive provided data for the daily river flow for the 116 

catchment (NRFA, 2014). The river and water body data were collected from the Centre for Ecology 117 

and Hydrology, 'Digital Rivers 50 km GB' Web Map Service (CEH, 2014). The UK Land cover data 118 

were obtained from the Centre for Ecology and Hydrology (Land Cover Map 2007, 25m raster, GB) 119 

Web Map Service (Morton et al., 2011). The soil data was obtained from the Cranfield University, 120 

(1:250 000 Soilscapes for England and Wales Web Map Service).  121 

To study the impact of future climatic change on water supply systems, the UK Climate Projection 122 

Scenarios (UKCP09) was used using the joined probability factors and the UKCP09 weather generated 123 

data. In this study three 30-year periods: 2020’s (2010-2039), 2050’s (2040-2069) and 2080’s (2070-124 

2099) for the three greenhouse gas emission scenarios (low, medium and high) were considered. In 125 

UKCP09, Bayesian probability is used in which probability is derived from observations and outputs 126 

from a number of climate models, all with their associated uncertainties. The UKCP09 provides 127 

monthly, seasonal and annual, probabilistic changes factors at 25 km by 25 km grid square resolution 128 

for precipitation and temperature (Table 1). The seasonal temperature shows an increase in emissions 129 

scenario and time, particularly in summer and autumn, whereas the precipitation is showing rainfall 130 
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decreases in summer and increases in winter relative to the 1961-1990 ‘baseline’ period. The weather 131 

generator, WG, of UKCP09 provides daily output data at a 5km2 resolution for more climate variables 132 

such as vapour pressure and sunshine hours, in addition to rainfall and temperature. This data was 133 

downscaled using the weighing factors from (CHESS) methodology that accounted for the impact of 134 

changes in elevation on climatic data. The sunshine hours were converted into net radiation following 135 

the methodology of Allen et al. (1998). For the initial exploratory analysis, simplified change factors 136 

were derived from UKCP09 joint probability central estimates. The joint probability plot was used to 137 

generate seasonal climatic change factors (% change in rainfall and change in temperature, ± °C) to 138 

apply as an input to the DiCaSM model.  139 

Table 1: Probabilistic changes in temperature and precipitation for the Don Catchment under UKCP09 140 

climate change scenarios (joint probability) under three emission scenarios and three selected time 141 

periods.  142 

 143 
 144 

 145 

For the detailed weather generator simulations, 100 realizations of the daily time series data were 146 

generated in order to account for the uncertainty associated with the scenarios and alternative timing of 147 

events. This data was subject to bias correction, which was carried using the ‘qmap’ package in R 148 

statistical tool (Gudmundsson et al., 2012) using the 1961-1990 observation data as a reference period. 149 

This method has been successfully applied in drought studies including the study of Wang and Chen 150 

(2014). Forestieri et al. (2018) applied this bias correction method to study the impacts of climate 151 
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change on extreme precipitation in Italy, De Caceres et al. (2018) subjected the daily climate models 152 

data to  this approach and recently Hakala et al. (2018) applied this bias correction method to evaluate 153 

climate model simulations.  154 

3.2. Historic land use and its importance  155 

The studied Don catchment is not only significant for agriculture but also significantly contribute to the 156 

domestic water supplies. Water supplies in the catchment area come from the twenty-three reservoirs 157 

which are located within the catchment boundary. The low river flow can affect navigation, water 158 

supplies, and the aquatic ecosystem. Low flow also can result in river pollution due to the low dilution 159 

of the sewage effluent and can affect aquatic systems resulting in reducing the recreational activities 160 

within the catchment. Agriculture census data reveals that the key land-use in the area is grassland, 161 

heather and urban, with less than 10% of the catchment being agriculture (Fig. 2).  162 

 163 
Figure 2: Current land use in the Don catchment  164 

3.3. Schematic representation of modelling work 165 

The schematic representation of the modelling work is shown in Figure 3 which shows the data sources 166 

used in the study. Both historic and future climatic variables data were used to generate the streamflow, 167 
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groundwater recharge, net rainfall, potential and actual evapotranspiration, soil moisture deficit (SMD), 168 

wetness index (WI) of the root zone and water losses due to interception. All these variables were 169 

directly or indirectly used to calculate the drought risk for both the historic period and for future climate 170 

change scenarios. Methodology about each used drought index is discussed later.  171 

 172 

Figure 3: Schematic representation of the modelling application 173 

3.4. DiCaSM model input data and processes 174 

The hydrological DiCaSM is the acronym for the Distributed Catchment Scale Model was used to 175 

simulate the water balance of the catchment. The key input of the model are the meteorological data 176 

(temperature, rainfall, net radiation or total radiation, vapour pressure and wind speed), land use and 177 

vegetation (up to 20 land-uses can be assigned per each grid square), land altitude/elevation using the 178 

Digital Terrain Model, DTM, vegetation parameters and soil physical properties of each soil layer 179 

(saturated soil moisture content, soil moisture content at field capacity, soil moisture content at wilting 180 

point, saturated hydraulic conductivity). The model runs on daily time step and produces an output 181 
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including spatially and temporally distributed series of potential evapotranspiration, actual 182 

evapotranspiration, soil water content, soil moisture deficit (SMD), wetness index (WI) of the  root-183 

zone,  groundwater recharge, streamflow and surface runoff (Ragab and Bromley, 2010). The model is 184 

capable of simulating the impact of the changes in climate and land use on the catchment water balance.  185 

The model also addresses the heterogeneity of input parameters of soil and land cover within the grid 186 

square using three different soil and plants algorithms (Ragab et al., 2010). In the model, runoff is routed 187 

between the low points of each grid square along the prevailing slope using the digital terrain model 188 

(DTM).  189 

The model simulates the following processes, rainfall interception by land cover, evapotranspiration, 190 

surface runoff, infiltration, groundwater recharge, plant water uptake, bare soil evaporation and stream 191 

flows. Further details about the model are given in Ragab et al. (2010) and Ragab and Bromley (2010). 192 

For the studied catchment, the vegetation parameters (plant height, Leaf Area Index (LAI), and the 193 

canopy resistance were obtained from the UK-MORECS system (Hough et al., 1997). The model’s 194 

efficiency (goodness of fit), measured during the model calibration and validation, was carried out using 195 

several efficiency indices, including Nash-Sutcliffe Efficiency (NSE), log of Nash-Sutcliffe Efficiency 196 

(log NSE) and Coefficient of Determination, R2 as given below. 197 

3.4.1 Indices of measuring the model efficiency 198 

The calibration procedure consisted of adjusting the parameters related to stream flow calculations to 199 

achieve the best model fit, assessed using the NSE and log NSE of the stream flow. To estimate the 200 

model efficiency/goodness of fit , modelled and observed flow data were compared using a number of 201 

indices, including the Nash-Sutcliffe Efficiency (NSE) coefficient (Nash and Sutcliffe, 1970). NSE is 202 

the most widely used coefficient to assess the performance of stream flow (Gupta et al., 2009), the value 203 

of 100% indicating a perfect match.  204 

𝑁𝑆𝐸 = 100 −  
∑ ( 𝑂𝑖 − 𝑆𝑖

𝑛
𝑖=1 )2

∑ (𝑂𝑖 −  Ōn
i=1 )2

                                        (1) 205 
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where Oi and Si refers to the observed and simulated river flow data, respectively, and Ō is the mean of 206 

the observed data. Another index “Log NSE” is commonly used for low flows and based on the stream 207 

flow logarithmic values has also been considered, (Afzal et al., 2015, Krause et al., 2005). In addition, 208 

the model performance was also evaluated using the statistical indicators namely Coefficient of 209 

determination, R2 as:  210 

𝑅2 =  {
1

𝑁
 

∑[(𝑦0−𝑦0̅̅̅̅ ] (𝑦𝑠−𝑦0)̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜎𝑦0−𝜎𝑦𝑠
}                                             (2) 211 

where yo is the observed value, ys is the simulated value, N is the total number of observations, 𝑦̅o is the 212 

average measured value, 𝑦̅s is the average simulated value, 𝜎𝑦0 is the observed data standard deviation 213 

and 𝜎𝑦𝑠 is the simulated data standard deviation. The values of this index can range from 1 to 0, with 214 

one indicating perfect fit.  215 

3.5 Identification of drought indices  216 

The main drought drivers are  temperature, radiation, wind speed, relative humidity / vapour pressure 217 

(Seneviratne, 2012).  Figure 4 shows how these drought drivers can cause meteorological, agricultural 218 

and/or hydrological droughts. A number of drought indices can be used to identify drought events. The 219 

most  common one is the Standardized Precipitation Index (SPI) (McKee et al., 1993). The SPI index 220 

represents the deviation of precipitation from the long-term average, negative values indicate below 221 

average “dry periods” and positive values indicate above average precipitation “wet periods”. The index 222 

helps in finding different types of droughts, as precipitation is the key climatic variable upon which soil 223 

moisture deficit, stream flow and groundwater recharge depend. Therefore, it could easily be used to 224 

quantify the severity of both dry and wet events. Another drought index is the standardized precipitation 225 

evapotranspiration index (SPEI) which is a multiscale drought index, sensitive to global warming 226 

(Vicente-Serrano et al., 2010).  This index has been widely applied in different parts of the world 227 

(Bachmair et al., 2018, Kunz et al., 2018) to the study meteorological and agricultural droughts and to 228 

study the impacts of drought severity on vegetation health (Bento et al., 2018). The equation used to 229 

calculate SPEI is based on (Thornthwaite, 1948): 230 
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𝐷𝑖 =  𝑃𝑖 − 𝑃𝐸𝑇𝑖                                                    (3) 231 

where Di is the difference between the precipitation (P) and the potential evapotranspiration (PET) for 232 

a particular month. The aim of applying this index was to measure the water surplus or deficit for the 233 

analysed month. 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

  244 

 245 

 246 

 247 
 248 
 249 
Figure 4: Key drought drivers of the meteorological, agricultural and hydrological droughts.  250 
 251 

Like the SPI, a negative value shows dryness and a positive value shows wetness, relative to the long-252 

term average. This drought index has been applied in a number of studies for example (Tirivarombo et 253 

al., 2018) and was used recently to study severity of extreme droughts events, like those of  Cape Town, 254 

South Africa (Solander and Wilson, 2018). Another key drought index used in this study was the 255 

Reconnaissance Drought Index (RDI) which is based on Tsakiris et al. (2007). The standard RDI is 256 

calculated using the ratio of precipitation to potential evapotranspiration over a certain period. It is a 257 

good indicator for describing agricultural, hydrological and meteorological droughts. The 258 

Reconnaissance Drought Index (RDI) was calculated as: 259 

𝑎0
(𝑖)

=  
∑ 𝑃𝑖𝑗

12
𝑗=1

∑ 𝑃𝐸𝑇𝑜𝑟𝐴𝐸𝑖𝑗
12
𝑗=1

                                           (4) 260 
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𝑅𝐷𝐼𝑛
𝑖 =  

𝑎0
(𝑖)

𝑎0̅̅̅̅
   − 1                                               (5) 261 

𝑅𝐷𝐼𝑠𝑡 (𝑘)
𝑖 =

𝑦𝑘
(𝑖)

−𝑦̅𝑘

𝜎̂𝑦𝑘
                                              (6) 262 

where Pij and PETij are the precipitation and potential evapotranspiration of the jth month of the ith 263 

hydrological year (starting from October), is 𝑎̅0the arithmetic means of the a0 calculated for the 264 

number of years. In the above equation yi is the ln (𝑎0
(𝑖)

), 𝑦̅𝑘  is its arithmetic mean and 𝜎̂𝑦𝑘 is its 265 

standard deviation. This drought index has been used in studies in different parts of the world, 266 

including Greece (Vangelis et al., 2013) and Iran (2015). This method is widely accepted and applied 267 

as it calculates the aggregated deficit between precipitation and the atmospheric evaporation demand. 268 

The method is directly linked to the climate conditions of a region and is comparable to the FAO 269 

Aridity Index (Tsakiris et al., 2007). In addition to the conventional way of calculating RDI, an 270 

adjusted RDI was calculated using the net rainfall (gross rainfall minus rainfall interception losses by 271 

canopy cover) and actual evapotranspiration. Further to SPI, SPEI and RDI, two other drought indices 272 

were considered: the soil moisture deficit (SMD) and the wetness index (WI) of the root-zone (Ragab 273 

and Bromley 2010).  WI ranges from zero to 1. The value of 1 means the catchment is at its maximum 274 

soil moisture content and 0 means the catchment at its lowest soil moisture content of the simulated 275 

period (Kalma et al., 1995). Wetness Index of the root zone (scaled soil moisture calculated as 276 

(current soil moisture – minimum soil moisture)/ (Maximum soil moisture – minimum soil moisture). 277 

Using a range of drought indices helps in identifying different types of droughts (meteorological, 278 

hydrological and agriculture), for example SPI for meteorological, RDI for hydrological and WI and 279 

SMD for agricultural drought.  280 

4. Results  281 

4.1 Model calibration/validation for the streamflow 282 

The key six model parameters that were used to calibrate the model against the observed flow data 283 

were: the percentage of surface runoff flow routed to the stream, the catchment storage/time lag 284 

coefficient, an exponent function describing the peak flow, a stream storage/time lag coefficient, a base 285 

flow factor and the streambed leakage. The other factors on which model performance is also affected 286 
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by are the soil hydraulic properties and the land cover parameters. The selected time period for 287 

calibration was run using a simple iteration algorithm for optimization in which each of the six stream 288 

flow parameters was assigned a range described by a minimum and a maximum value. Each range was 289 

divided into a number of steps and the number of total iterations is the product of multiplication of the 290 

steps of the six key parameters. The number of iterations for each parameter was assigned according to 291 

the parameter sensitivity, i.e. a higher number of iterations were assigned to parameters, which showed 292 

more sensitivity to the streamflow. The model calculates the Nash-Sutcliffe Efficiency value, NSE, ln 293 

NSE and R2 for each iteration. The model optimisation process helps in finding a good set of parameters 294 

that produces a good model efficiency value.   Figure 5 (top) shows the model calibration during 2001-295 

2012 where model efficiency, measured using the Nash-Sutcliffe Efficiency, was above 87% with less 296 

than two percent percentage error. The selected calibration period included a dry and a wet period in 297 

order to assess the model performance during both conditions.  298 

The model performed well both during the rainy and dry events and responded according to soil 299 

hydrology status, i.e. during the soil moisture deficit period, a small rainfall event did not generate 300 

enough streamflow and during the heavy rainfall event, when the soil was at saturation during the winter 301 

months, the model responded extremely well. The model validation results during the drought period 302 

are shown in Figure 5 (bottom) for the 1970s decade, during this period model efficiency measured 303 

using the Nash Sutcliffe Efficiency was above 80%, which shows good confidence in the used model 304 

efficiency parameters. The results of model prediction efficiency calculated in percentage as Nash 305 

Sutcliffe Efficiency, ln Nash Sutcliffe Efficiency or R2 values are shown in Table 2. The model 306 

calibration was carried out over a shorter period and validation over a number of 10-year periods and 307 

over the entire study period. The overall model performance over the whole period, 1961-2012 was 308 

good, (NSE = 83%). The correlation between the observed and simulated flow of different time periods 309 

is shown in Figure 6. The figure shows the model’s capability to reasonably predict stream flows both 310 

during the model calibration and validation periods for both dry and wet periods.  311 

 312 
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Table 2: Don Catchment model performance during the stream flow calibration and validation stages. 313 

Periods NSE 

ln 

NSE 
R2 

Square 

root of R2 

Average 

Modelled 

flow m3 s-1 

Average 

Observed 

flow m3 s-1 

% 

Error 

2001-2012* 87.08 73.1 0.87 0.93 4.86 4.73 2.61 

1991- 2000 87.03 79.1 0.88 0.93 5.10 5.18 -1.60 

1981-1990 83.13 76.4 0.84 0.91 5.17 5.13 0.81 

1971- 1980 82.21 66.1 0.83 0.91 4.68 4.90 - 4.63 

1966-2012 83.06 73.0 0.84 0.91 5.06 5.08 -0.60 

*calibration period 314 

  315 



16 
 

 316 

 317 

 318 
Figure 5: Don Catchment calibration (2011-2012) and validation (1971-1980) period. 319 

 320 
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321 

322 

 323 
Figure 6: Relationship between the observed the simulated flow during the model calibration and 324 

model validation over a decadal time scale and over the entire period.  325 

4.2 Identification of historic droughts 326 

4.2.1 The standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration 327 

Index (SPEI) 328 

The SPI is the most commonly used drought index to describe the deviation of the precipitation from 329 

the average precipitation. The SPI index scale values mean: above 2.0 extremely wet, 1.5-1.99 very 330 

wet, 1.0 -1.49 moderately wet, -0.99 to 0.99 near normal, -1.0 to -1.49 moderately dry, -1.5 to -1.99  331 
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severely dry and -2.0 and less, extremely dry (McKee et al., 1993). The SPI and SPEI time series are 332 

shown in Figure 7 which also illustrates that the SPEI has shown higher severity for both dry and wet 333 

events, more clearly for the 1970s drought. Both indices picked up all the drought events which took 334 

place in the Don Catchment between 1961 and 2012.  335 

 336 
Figure 7. The standardized precipitation index (SPI) and standardised precipitation potential 337 

evapotranspiration index (SPEI) of the Don Catchment from 1961 to 2012.   338 

As the evapotranspiration calculation in the model is dependent on climatic data as well as on a number 339 

of soil and plant parameters, the SPEI is expected to better represent the severity of the drought. Both 340 

SPI and SPEI indices crossed over the ‘extremely severe’ drought level during the most well-known 341 

1970s drought which affected most parts of the UK and Europe. The catchment experienced two 342 

extreme drought events which took place in the mid-1970s and the mid of 1990s. These drought indices 343 

show that the Don Catchment was subjected to drought events which significantly affected Southern 344 

England, the Anglian regions, Southern and Eastern England and the Midlands (Parry et al., 2016). The 345 

drought termination rate showed a west-east divide in 1995-1998, which was more apparent in the 346 
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Midlands and Southern and Eastern England. This is evident from both the SPI and SPEI indices, which 347 

crossed over the ‘extreme drought’ level during both the 1970s and the 1990s droughts. Not only the 348 

occurrence of the drought events (frequency) but also the duration and drought strength significantly 349 

affect the streamflow and the groundwater recharge.  350 

Therefore, the SPI and SPEI indices could be used as good indicators for the meteorological and 351 

hydrological drought. The SPI and SPEI indices over 52 years elucidated the successive dry events, like 352 

those occurred in the 1970s and the 1990s. The SPI and SPEI indices also help in identifying smaller 353 

magnitude drought events, or drier periods, which took place in the late 1960s, early 1990s, in 2005-354 

2006 and in 2010. The magnitude of the severity of drought was considered as severe in the mid-1970s, 355 

in 1976 and in 1996 when SPI and SPEI indices were well below -2, ‘extreme drought’ level.  356 

4.2.2. Reconnaissance Drought Index (RDI) 357 

Figure 8 shows the comparison between the adjusted RDI and the classical RDI. Both picked up all the 358 

drought events, which were detected by the SPI. However, the advantage of applying the RDI over SPI 359 

is that it does not rely on one factor only, i.e. precipitation. The adjusted RDI showed slightly different 360 

severity levels, especially during the extreme drought events.  In addition, there is a strong correlation 361 

between the two ways of calculating the RDI and the SPI/SPEI. Figures 7 and 8 show that the extreme 362 

drought conditions of 1976, 1996 and 2006 was picked up similarly by both SPI/SPEI and RDI/adjusted 363 

RDI. Drier than average events (SPI/SPEI less than -10% or RDI less than -1) were also observed in 364 

1964, 1975, 1990, 1996, 2003, 2005, 2011. Both drought indices also picked up extreme drought events 365 

which took place in 1976, 1989 and1996. However, the severity of the drought event was slightly higher 366 

when applied reconnaissance drought index using the gross rainfall and the potential evaporation in 367 

most of the cases. Based on both types of RDIs and SPI/SPEI drought indices, the total percentage of 368 

wet years were higher than total percentage of dry years.  369 
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370 

Figure 8: Standard RDI (Reconnaissance drought index) based on potential evapotranspiration and 371 

total rainfall and the adjusted RDI, calculated using net-rainfall and actual evapotranspiration, for the 372 

Don Catchment during the 1962-2012 period.  373 

4.2.3. Soil moisture deficit, SMD and Soil Wetness Index, WI as a drought indicator  401 

In addition to the SPI/SPEI and RDI drought indices, which are more commonly used to predict 402 

meteorological and hydrological droughts, two other drought indices soil moisture deficit and wetness 403 

index of the root-zone, which are more appropriate for the agriculture drought, were applied in the 404 

study. For agriculture drought, the soil moisture deficit, SMD and the wetness index, WI of the root-405 

zone are more appropriate (Fig. 9). The wetness index, WI represents how relatively wet or dry the 406 

catchment is over the period.  407 
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408 

 409 
Figure 9: Soil moisture deficit from 1975 to 1977 (top) and Wetness Index of the root-zone from 1996 410 
to1998 (bottom) for the Don Catchment.  411 
 412 

The WI is a scaled soil moisture status that accommodates the spatial variability of soil types, elevation, 413 

vegetation cover, etc. across the catchment. The Soil Moisture Deficit, SMD represents the deviation of 414 

soil moisture from the soil moisture at field capacity. Here zero means, the catchment’s soil moisture is 415 

at field capacity level. The deviation gets larger when the soil moisture starts to fall below the field 416 

capacity, especially during summer and during drought periods. Examples of both indices are shown in 417 

Figure 9 which clearly shows the significant change in soil moisture indicators WI and SMD during the 418 

dry summer months, especially during the extreme droughts in 1975 and 1976 and the recovery in 1977 419 

for the SMD. In the dry summer months of 1975, the soil moisture deficit exceeded 100 mm and during 420 

the 1976 dry summer period, soil moisture deficit was over 140 mm. The figure also shows the severity 421 
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of the dry spell as a result of the continuation of the dry seasons including the 1975-1976 winter months 422 

as the SMD did not drop down to zero, whereas in the 1977 winter months, above average winter rainfall 423 

brought the SMD back to zero after persistent rainfall events during the 1977 winter months. It can also 424 

be seen that the WI dropped below the winter value of 1.0 to 0.3 during the extreme drought of the 425 

summer of 1976 and mirrored the other drought indices including the SPEI/SPI and the RDI.  426 

4.3. Future climate change impact on the water resources 427 

4.3.1 Changes in streamflow  428 

The future climate change scenarios (UKCP09) suggest an increase in temperature under all emission 429 

scenarios and a decrease in rainfall, during the summer months (Table 1). To study the impact of climate 430 

change on the hydrology of the Don catchment, the future climate projections were derived using two 431 

approaches based on UKCP09 outputs: simplified change factors based on joint probability data and 432 

the weather generator data. Using the joint probability approach, nine scenarios (three time periods and 433 

three emission scenarios) were investigated. The seasonal climate change factors (relative to the 434 

baseline data, 1961-1990) of temperature (± change in °C) and rainfall (% change in rainfall) at the 435 

most likelihood (central estimate) probability level were input into the DiCaSM model and applied on 436 

the 1961-1990 baseline climate data (Table 1).  437 

A significant change in streamflow was observed using both approaches. The simplified change factor 438 

(joint probability) approach suggests that streamflow is likely to increase in winter (December, January, 439 

February) by up to 10% in the 2080s under high emission scenarios due to an increase in winter rainfall. 440 

Similar results were also observed using the weather generator data for the winter months, but the 441 

decrease in streamflow was not that significant (Fig. 10). This is of greater significance for the Don 442 

Catchment which significantly contributes to the water supplies in the region as there are 23 reservoirs 443 

within the catchment boundary which are recharged mainly during the winter months. 444 

In the spring (March, April, May) season, there is little difference in the change in streamflow under 445 

three emission scenarios and three selected time periods. With an exception in the 2020s, under low and 446 
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medium emission scenarios, where the streamflow in spring is likely to decrease by -2.11% to -5.45% 447 

under low emission scenarios, -1.48% to -4.82% under medium emission scenarios and within   -1.39% 448 

to -4.45% under high emission scenarios, relative to the baseline period. During the spring season, the 449 

evaporation is low relative to the precipitation and the soil is more saturated except during the latter 450 

part of spring (Fig. 10).  451 

During the 2020s period, in summer, a significant decrease in streamflow is projected under all emission 452 

scenarios. In the 2020s, the summer streamflow is likely to decrease, by 13 to15 % using the joint 453 

probability approach, whereas under the weather generator only a small decrease of up to 4.5% is 454 

projected. In 2050s a significant decrease of 12.75 to 17.86 % relative to baseline period is projected 455 

using the weather generator data, whereas under the joint probability, a decrease is projected from 27 456 

to 29 % with no significant variation under different emission scenarios. During the summer season in 457 

the 2080s, using the joined probability approach, the stream flow is likely to decrease by 24 to 42%, 458 

whereas using the weather generator data, streamflow is likely to decrease by 16.05 to 25.5%, depending 459 

on the emission scenario.  460 

The severity of the change, particularly during the summer season, could lead to very low stream 461 

flows, possibly leading to a high risk of inadequate domestic, industrial and agricultural water supply. 462 

The latter is more significant for the Don catchment, as river water abstraction is very significant. The 463 

streamflow is likely to decrease in the summer season because the soils are not saturated like they are 464 

during winter and spring, as a results soil moisture deficit is likely to increase. The combined effect of 465 

decreasing rainfall with the increasing temperature could result in higher evapotranspiration during 466 

the summer season, which in turn could result in reduced flow especially under high emission 467 

scenarios. This is because the temperature is likely to increase by 4.6 0C and rainfall to decrease by up 468 

to 34% by the end of the century. The relationship between the precipitation and the hydrological 469 

response is much more dependent on antecedent catchment conditions. With reductions in 470 

precipitation in autumn and spring (enhanced by higher evaporation), saturated conditions will occur 471 

less frequently, and precipitation events will be less likely to generate high runoff flow flows. 472 
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473 

 474 
Figure 10: Percentage change in streamflow relative to the baseline period (1961-1990) over seasonal 475 

scale under low, medium and high emission scenarios for the 2020s, 2050s and 2080s, under UKCP09 476 

joined probability (a) and under UKCP09 weather generator (b).  477 

In autumn, streamflow is likely to decrease slightly under low and high emission scenarios, and a slight 478 

increase under medium emission scenarios in the 2020s. Overall, there is not much variation among the 479 

emission scenarios in the 2020s. However, in 2050s, more significantly under medium and high 480 

emission scenarios, up to 10% decrease under both joint probability and the weather generator approach 481 
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was observed. No significant change in rainfall is projected under medium and high emission scenarios, 482 

but an increase in temperature and reduced rainfall in summer would lead to higher soil moisture deficit 483 

during both the summer and autumn seasons, combined by an increase in autumn temperature this 484 

would result in reduced streamflow in autumn due to higher water losses by evapotranspiration. The 485 

simplified change factor (joint probability) showed slightly higher change compared to the weather 486 

generator as joint probability method only consider two climate variables (rainfall and the temperature).  487 

Overall, in all seasons, the severity of the change in streamflow more particularly during the summer 488 

season could lead to very low stream flows, possibly leading to a high risk of inadequate domestic, 489 

industrial and agricultural water supply. The latter is more significant for the Don catchment as there 490 

are twenty-three reservoirs within the catchment, which significantly contribute to the water supply 491 

systems.  492 

4.3.2. Changes in groundwater recharge  493 

The analysis using the weather generator and joint probability, under all emission scenarios and for the 494 

selected time periods showed that the groundwater recharge would decrease, with some exceptions 495 

under weather generator in the 2020s more significantly under high emission scenarios when 496 

groundwater recharge increased by 4.32% compared to the baseline period (Fig. 11b). The increase in 497 

winter precipitation would be counterbalanced by the higher water losses by the increased 498 

evapotranspiration (due to increased temperature) which resulted in a small increase in groundwater 499 

recharge in comparison to the baseline period in the 2020s. The groundwater recharge projections under 500 

joint probability suggest that the groundwater recharge is likely to decrease from 3.39 to 11.25% under 501 

all emission scenarios during the winter months (December, January, and February). Without exception, 502 

groundwater recharge decreased for the three selected time periods, but the decrease will be slightly 503 

less under low emission scenarios, compared to the medium and high emission. This is due to a smaller 504 

increase in precipitation under low emission scenarios. Considering the change in precipitation under 505 

all emission scenarios, the likely increase in the groundwater recharge is lower than expected, due to 506 

losses by evapotranspiration that causes a decrease in stream flow and groundwater recharge in all 507 
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seasons. Other factor which could reduce the groundwater recharge in all seasons, is that  the winter 508 

precipitation is expected to come as extreme events and over a short period of time, as reported in 509 

Alexander et al. (2005). The groundwater recharge is also likely to decrease in spring due to milder 510 

increase in spring temperature and the insignificant change in precipitation.  511 

A significant decrease in groundwater recharge is projected in summer months due to increasing 512 

temperature and a decrease in precipitation, which result in higher water losses due to 513 

evapotranspiration, higher soil moisture deficit and lower the groundwater recharge. Using joint 514 

probability, the groundwater recharge is likely to decrease by over 60% under medium emission 515 

scenarios in the 2080s and up to 75% under high emission scenarios. The percentage change in 516 

groundwater recharge was not that high when using the weather generator data. The highest decrease 517 

in summer groundwater recharge projected for the 2080s is likely to be over 40%, compared to the 518 

baseline period. Such a significant decrease in groundwater recharge could be the result of increased 519 

soil moisture deficit. Under all emission scenarios and observed time periods, the groundwater recharge 520 

is likely to decrease by -38% to -58% under joint probability and -10% to -30% under the weather 521 

generator under the low emission scenarios; while under medium emission scenarios the decrease in 522 

groundwater recharge would fall within  -38% to -67% with joint probability and -13% to -35% with 523 

the weather generator; the highest decrease is projected under high emission scenarios with -39% to -524 

76% under joint probability and -13% to -40.2% under  the weather generator, all changes are in 525 

comparison to the baseline period.  526 

 527 
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 528 

 529 
Figure 11: Percentage change in groundwater recharge in the Don Catchment for the different seasons 530 

over a selected time period, based on joint probability (a) and Weather Generator (b) of UKCP09 under 531 

different climate change scenarios.  532 
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In summer months (June, July, August) enhanced evapotranspiration, together with the decreased 533 

precipitation, would result in reduced streamflow and groundwater recharge. Higher evapotranspiration 534 

combined with lower rainfall during the summer months would result in an increase in soil moisture 535 

deficit, which would result in low groundwater recharge during the autumn months under all emission 536 

scenarios. However, the severity of the decrease is much higher in the second half of the century under 537 

high emission scenarios. Under low emission scenarios the groundwater recharge is likely to decrease 538 

by -2.15% to -12%, under medium emission the likely decrease will be within the -5.93% to -14.87% 539 

range and under high emission scenarios the projected likely decrease will be within -3.99% to -25.77% 540 

range. The higher decrease in groundwater recharge under high emission scenarios would result due to 541 

the increase in soil moisture deficit during the summer months. Studies carried out in the Midlands 542 

suggest that maintaining water supplies in the 2050s may be challenging due to the limited availability 543 

of the water resources (Wade et al., 2013), suggesting that demand-side measures would be required  to 544 

match the future water supplies availability (Wade et al., 2013).  545 

4.3.3. Drought indices   546 

To investigate the impact of climate change, a number of drought indices including soil moisture deficit, 547 

wetness index of the root-zone, and reconnaissance drought index were considered. As a result of the 548 

drier and warmer climatic conditions, higher water losses by the evapotranspiration, higher soil 549 

moisture deficit and low Wetness index were observed (Fig. 12). To illustrate the impact of decreasing 550 

rainfall and increasing water losses due to the evapotranspiration, the standardized reconnaissance 551 

drought index, RDI was applied. The adjusted RDI was calculated from the net rainfall and actual 552 

evapotranspiration of the selected time periods: 2020s, 2050s and 2080s for three emission scenarios 553 

(Fig 13). The analysis revealed an increase in number of moderate and severe drought events, more 554 

importantly under the medium and high emission scenarios. In comparison to the baseline period, the 555 

extreme drought events are likely to double in the later part of the century. Not only the extreme dry 556 

events but also, severe drought events are also likely to increase in the future. In addition, the frequency 557 
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of moderately droughts events (RDI -1 to -1.5) is likely to increase in the future, more specifically under 558 

medium and high emission scenarios.  559 

560 

 561 
Figure 12: Seasonal changes in soil moisture deficit, actual evapotranspiration and the wetness index 562 

of the root zone for the Don Catchment under all emission scenarios base on UKCP09 joint probability.  563 

 564 

0

40

80

120

160

2020s 2050s 2080s

%
 c

h
an

ge
 r

el
at

iv
e 

to
 b

as
el

in
e 

p
er

io
d

Soil moisture deficit

Low emission

Medium emission

High emission

-20

-15

-10

-5

0

2020s 2050s 2080s
%

 c
h

an
ge

 r
el

at
iv

e 
to

 b
as

el
in

e 
p

er
io

d

Wetness Index 

Low emission

Medium emission

High emission

0

40

80

120

160

2020s 2050s 2080s

%
 c

h
an

ge
 r

el
at

iv
e 

to
 b

as
el

in
e 

p
er

io
d

Potential evapotranspiration

Low emission
Medium emission
High emission

0

30

60

90

120

2020s 2050s 2080s

%
 c

h
an

ge
 r

el
at

iv
e 

to
 b

as
el

in
e 

p
er

io
d

Actual evapotranspiration

Low emission
Medium emission
High emission



30 
 

565 

 566 
Figure 13: The severity of drought events observed in the Don Catchment under the three emission 567 

scenarios for the 2020s, 2050s and 2080s (a) under joint probability and using the weather generator 568 

data (b).  569 

4.3. Impacts of land use changes on the water resources 570 

To study the impact of land use changes on the water balance a number of possible plausible and 571 
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1. 100% Grass area replaced by winter barley: Stream flow is likely to increase between 3% and 6% 574 

while groundwater recharge is likely to increase between 1 and 7%.  575 

2. Grass area replaced by oil seed rape: Stream flow is likely to decrease by up to 3% in all seasons apart 576 

from autumn where it is likely to slightly increase by <3%,  while groundwater is likely to decrease 577 

between ~ 2% apart from autumn where the recharge is likely to increase by ~2%.  578 

3. 40% urban expansion replacing grass and arable area: Stream flow is likely to increase by ~1% and 579 

groundwater recharge by ~2%.  580 

4. Replacing 50% of winter barley by oil seed rape: Stream flow is likely to decrease by ~2% and 581 

groundwater recharge by ~3% 582 

5. Whole catchment as grass area: Stream flow is likely to decrease by ~2% and 8% and groundwater 583 

recharge by ~5% and 9%.  584 

6. Whole catchment as Broad leaf forest area: The stream flow is likely to decrease between 9% and 17% 585 

and groundwater recharge between 10% and 22%.  586 

 The expansion of the wooded broadleaf forest would be likely to result in an increase of soil moisture 587 

deficit, more specifically during the spring and summer seasons when plants at maximum growth rate 588 

and take up much of water and transpiration rates are significant. Urban expansion could result in 589 

increased streamflow (likely to increase in flood risk) and increase in groundwater recharge. 590 

Increasing conventional crops, like barley replacing grass could result in a slight increase in river flow 591 

and a decrease in soil moisture deficit, compared with oilseed rape, which takes up more water during 592 

the spring season (Table 3).  593 

Sensitivity analysis to see the combined effect of both climate and land use changes revealed that 594 

overall, the effect of the land use changes on the hydrological variables was much less than the effect 595 

of climate change. Considering the possible changes in climatic variables and extreme events in the 596 

future, sustainable land use practices could potentially be used to mitigate the impact of climate 597 

change as the studied catchment is of significance for the water supplies in the Sheffield area 598 

 599 

 600 

 601 

 602 
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Table 3: Impact of land use changes in the Don Catchment on stream flow and groundwater recharge.   603 

Hydrological 

variables 

Land use types 

  100% Grass area 

replaced by 

winter barley 

Grass 

area 

replaced 

by oil 

seed rape 

40% urban 

expansion 

replacing 

grass and 

arable area 

Replacing 

50% of 

winter 

barley by 

oil seed 

rape 

Whole 

catchment 

as grass 

area 

Whole 

catchment 

as Broad 

leaf forest 

area 

River flow Season % % change % change % change % change % change 

Winter 6.46 -2.8 1.14 -1.35 -2.64 -12.4 

Spring 6.10 -1.2 1.13 -0.50 -5.22 -16.6 

Summer 3.39 -0.31 0.42 -0.10 -8.35 -14.4 

Autumn 3.57 2.4 -0.05 -1.14 -3.90 -9.01 

Groundwater 

recharge 

Winter 6.53 -2.01 1.40 -0.47 -7.80 -13.48 

Spring 5.21 -0.05 1.90 0.30 -6.10 -15.21 

Summer 0.60 -1.95 1.40 0.58 -9.10 -21.90 

Autumn 6.48 3.91 1.80 -3.13 -5.30 -9.65 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 
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5. Discussion 617 

The drought indices used in the study were able to identify all the historical drought events. The adjusted 618 

reconnaissance drought index calculated using the actual evapotranspiration and the net rainfall, in 619 

addition, to the conventional RDI, SPI/SPEI, SMD and WI of the root-zone were used as indicators to 620 

identify future drought events. The standardized precipitation index, SPI/SPEI indicated the 621 

significantly negative deviation from the average precipitation in the 1970s, specifically in 1975-1976 622 

and 1995-1996. The 1975/1976 drought has been studied in a number of studies including (Perry, 1976, 623 

Marsh et al., 2007). During the 1995/1996 drought period, water resources in the Northern England and 624 

in the Midlands remained fragile as April to November 1995 rainfall was the second lowest in the 228 625 

years for England and Wales (Marsh and Turton, 1996). All the applied drought indices including 626 

reconnaissance drought index (RDI), soil moisture deficit, SMD and the Wetness index, WI of the root-627 

zone (Figures 7-9) identified these drought events. During these drought events, the RDI, SPI/SPEI 628 

were well below -2, which identifies them as ‘extreme drought’ events (caused by extremely low rainfall 629 

and high evapotranspiration). Under current land use practices, a further increase in likelihood of 630 

extreme drought events, specifically under medium and high emission scenarios in the middle and the 631 

latter part of the century (Figure 13) due to an increase in temperature, resulting in higher water losses 632 

by evapotranspiration, a decrease in rainfall, an increase in soil moisture deficit consequently would 633 

result in more frequent and severe drought in the future. This would further increase the pressure on 634 

water resources due to changes in land use practices.  635 

The land use type would significantly change in the future, especially due to urbanisation, as 636 

urbanisation would further increase pressure on water resources in the Don catchment.  The other key 637 

land use changes are the agricultural land use practices, which are driven by the farmers’ decisions 638 

which are market based, as well as the availability of investment, subsidies and the socio-cultural 639 

attributes of individual farmers. Increasing woodland area would significantly reduce both stream flow 640 

and groundwater recharge.  641 
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The application of a wider range of drought indices could be used to identify different types of droughts. 642 

For example, in agriculture, when soil moisture deficit, SMD or Wetness Index, WI of the root zone, 643 

reach a critical level, crops will require irrigation, particularly during the summer months. This will 644 

require reliable water supplies to secure adequate yield. The WI value, if close to 1, would indicate a 645 

wet catchment with a possible runoff generation during the next rainfall event, therefore, it is a help to 646 

reservoir managers to know the WI in real time. RDI would be helpful for short and long-term planning 647 

by water authorities and water companies. Therefore, the findings from the modelling work could be 648 

used to review the future surface water abstraction regulations to be in line with the water resources 649 

availability as predicted by the hydrological models and in possible planning of building new water 650 

infrastructure to increase the water storage in relation to increasing future water demand.  651 

The DiCaSM model proved to be a good tool to predict river flow and recharge to groundwater and can 652 

simulate the effects of climate change on the different elements of the hydrological cycle. The future 653 

climate change scenarios suggested a significant decrease in groundwater recharge although climate 654 

models project an increase in winter rainfall but such increase could be counter balanced by an increase 655 

in evapotranspiration and increase of soil moisture deficit during the summer and autumn seasons. The 656 

streamflow decrease would affect the Don catchment more as there are 23 reservoirs within the 657 

catchment, which are recharged during the winter season. Considering the possible decrease in 658 

groundwater recharge and streamflow and the increasing possibility of droughts in the future. New 659 

investment will be required if water demand is not met through greater water use efficiency or by 660 

alternative sources to traditional reservoirs, such as rainwater harvesting systems (Zhang and Hu, 2014) 661 

or by reducing evaporation from the reservoirs by for example, floating solar panels, spreading 662 

ecologically friendly agents on water surface or an ultra-thin layer of organic molecules on their surface 663 

(Alamaro et al., 2012). The implication of surface water abstractions during drought and low flow 664 

periods would reduce river flows possibly below the minimum environmental flow. Alternatively, 665 

restrictions on abstraction to maintain the minimum environmental flows may restrict crop yields and 666 

food production.  667 
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6. Conclusion 668 

The model calibration and validation results showed a good agreement between the observed the 669 

simulated flow and overall model efficiency using the NS index was above 82% for the 52 years’ study 670 

period. In addition to the stream flow, the DiCaSM hydrological model identified all drought events 671 

using the drought indices: RDI, SMD, and the WI in the 1970s but also during the 1980s, 1990s and the 672 

most recent ones in 2010-2012. The analysis revealed that the standard RDI, based on gross rainfall and 673 

potential evapotranspiration, showed slightly higher severity than the adjusted RDI. The latter is based 674 

on realistic input of net rainfall (excluding interception losses by vegetation cover) and actual 675 

evapotranspiration, which reflects the actual losses from soil and plants. Under the UKCP09 climate 676 

change projection, the streamflow and the groundwater recharge significantly decreased, more 677 

specifically during the summer months, while the severity of the drought events significantly increased 678 

over time. All the applied drought indices (SMD, WI, and RDI) identified an increase in the severity of 679 

the drought under future climatic change scenarios. Under high emission scenarios, the severity was 680 

higher as this severity was associated with the increasing temperature and subsequently increasing water 681 

losses by evapotranspiration, thus reducing soil moisture availability, surface runoff to streams and 682 

recharge to groundwater. These findings would help in planning for perhaps extra water infrastructure 683 

work if needed, such as building more reservoirs or water transfer pipelines from water-rich to water-684 

poor regions and planning for irrigation water demand under different climatic conditions. The study 685 

catchment is of significance as there are twenty-three reservoirs in the catchment boundary, which 686 

significantly contribute into the water supply of the catchment. The findings of this study can also be 687 

useful in revising the “Catchment Abstraction Management Strategies, CAMS” for the Don catchment.   688 
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