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Abstract 

Raman hyperspectral imaging is a powerful technique that provides both chemical and spatial 

information of a sample matrix being studied. The generated data are composed of three-

dimensional (3D) arrays containing the spatial information across the x- and y-axis, and the 

spectral information in the z-axis. Unfolding procedures are commonly employed to analyze 

this type of data in a multivariate fashion, where the spatial dimension is reshaped and the 

spectral data fits into a two-dimensional (2D) structure and, thereafter, common first-order 

chemometric algorithms are applied to process the data. There are only a few algorithms 

capable of working with the full 3D array. Herein, we propose new algorithms for 3D 

discriminant analysis of hyperspectral images based on a three-dimensional principal 

component analysis linear discriminant analysis (3D-PCA-LDA) and a three-dimensional 

discriminant analysis quadratic discriminant analysis (3D-PCA-QDA) approach. The analysis 

was performed in order to discriminate simulated and real-world data, comprising benign 

controls and ovarian cancer samples based on Raman hyperspectral imaging, in which 3D-

PCA-LDA and 3D-PCA-QDA achieved far superior performance than classical algorithms 

using unfolding procedures (PCA-LDA, PCA-QDA, partial lest squares discriminant analysis 

[PLS-DA], and support vector machines [SVM]), where the classification accuracies 

improved from 66% to 83% (simulated data) and from 50% to 100% (real-world dataset) 

after employing the 3D techniques. 3D-PCA-LDA and 3D-PCA-QDA are new approaches 

for discriminant analysis of hyperspectral images multisets to provide faster and superior 

classification performance than traditional techniques. 
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1. Introduction 

Hyperspectral imaging techniques allows one to obtain specially distributed spectral 

data, where each image position (pixel) is composed of a spectrum in a specific wavelength 

range. These data are represented by three-dimensional (3D) arrays where the spatial 

coordinates are present in the x- and y-axis and the spectral information in the z-axis. Looking 

at another point of view, each wavelength response represents a two-dimensional (2D) image 

being stacked up one above the other to form a 3D object, informally called a “data cube”.1 

There are a number of hyperspectral imaging techniques depending on the 

electromagnetic radiation frequency of the light source or the spectrometric technique used to 

obtain the spectral response. For instance, several studies have been performed using visible, 

near-infrared, mid-infrared, and mass spectrometry hyperspectral imaging.2-5 One of these 

imaging techniques that has found increasing application is Raman hyperspectral imaging,6 

which is a generally non-destructive technique where a spectral response is obtained based on 

molecular polarizability changes.7 Raman hyperspectral imaging has been used in a wide 

range of applications, such as, pharmaceutical analysis,8 food quality control,9 forensic 

studies,10 and to investigate biological materials.11 Some advantages of using Raman 

hyperspectral imaging to analyze biological samples include its relative low-cost, minimal or 

no sample preparation, high sensitivity to chemically-relevant information, and minimum 

water interference. For example, in cancer detection, Raman imaging has been successfully 

applied to identify brain,12 breast,13 cervical,14 lung,14 and skin cancer.15 

Hyperspectral imaging data are analyzed by means of multivariate image analysis 

(MIA) techniques, where two approaches can be used: MIA at a pixel level (e.g., “within-

image” analysis), where chemical features are analyzed within a single image based on the 

spatial distribution of their spectral signatures, or MIA at a global image level (e.g., 

“between-image” analysis), where the chemical features of each image are compared to a set 
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of different images.16 An imaging processing workflow usually contemplates the following 

steps: pre-processing, feature extraction, feature selection and analysis, acquisition of desired 

information, and incorporation into prediction, monitoring or control schemes;17 in which as 

series of algorithms are employed to perform these tasks, e.g., principal component analysis 

(PCA) for feature extraction and exploratory analysis,18 partial least squares (PLS) for feature 

extraction and quantification,19 partial least squares discriminant analysis (PLS-DA) for 

feature extraction and classification,20 and multivariate curve resolution alternating least 

squares (MCR-ALS) for feature extraction, exploratory analysis, calibration and construction 

of concentration distribution maps.16,21 

Since most algorithms used to process hyperspectral images are first-order-based, i.e., 

applied to a one-dimensional vectoral data, unfolding strategies are often performed to handle 

hyperspectral 3D arrays. In this process, a 3D array with size m × n × k is unfolded to a 2D 

matrix with size m * n × k. This process is very useful when doing “within-image” analysis, 

once the spatial information of the image is distributed on the row-wise direction. However, 

for “between-image” analysis, when multiple images/samples are compared, the unfolding 

process might affect the variance structure of the data, once the relationship between 

neighboring pixels is lost. Some strategies to deal with 2D and 3D arrays without unfolding 

have been reported, e.g., da Silva et al.22 reported a 2D linear discriminant analysis (2D-

LDA) algorithm to classify three-way chemical data; Morais and Lima23 reported a 2D 

principal component analysis with linear discriminant analysis (2D-PCA-LDA), quadratic 

discriminant analysis (2D-PCA-QDA), and support vector machines (2D-PCA-SVM) to 

classify excitation-emission matrix (EEM) fluorescence data; and, Morais et al.1 have 

reported a 3D-PCA approach to perform exploratory analysis in hyperspectral images. 

In this paper, we propose new 3D discriminant analysis approaches to classify 

hyperspectral images, named three-dimensional principal component analysis linear 
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discriminant analysis (3D-PCA-LDA) and three-dimensional principal component analysis 

quadratic discriminant analysis (3D-PCA-QDA). Results are reported to discriminate 

simulated and real-world data comprised of benign controls and ovarian cancer patients based 

on the Raman hyperspectral imaging. 

 

2. Methods 

2.1 Samples 

Two datasets were used in this study. Dataset 1 is a simulated dataset composed of 60 

hyperspectral images with dimensions 20 × 20 × 301 (301 spectral wavenumbers randomly 

generated using a normal distribution function) divided into two classes. Class 1 contains 30 

hyperspectral images with mean ranging from 0.0722–0.2146 and standard-deviation ranging 

from 0.1988–0.5815 intensity units, and class 2 contains 30 hyperspectral images with mean 

ranging from 0.1421–0.2544 and standard-deviation ranging from 0.2592–0.7134 intensity 

units. 

Dataset 2 is composed of thirty-eight samples (20 benign control individuals, 18 

ovarian cancer patients) were analyzed by a Renishaw InVia Basis Raman spectrometer 

coupled to a confocal microscope (Renishaw plc, UK). The samples were collected with 

ethics approval by the East of England – Cambridge Central Research Ethics Committee 

(REC reference number 16/EE/0010, IRAS project ID 195311). Informed consents were 

obtained from all human participants of this study. For spectroscopic analysis, 30 μL of blood 

plasma were deposited on an aluminum-covered glass slide and left to air-dry overnight. 

Samples were measured with an acquisition area of 100 × 50 μm using 20× magnification 

(numerical aperture [NA] = 0.45) and laser power of 50% at 785 nm with 0.1 s exposure 

time. Hyperspectral images were acquired via StreamHRTM imaging technique (high-
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confocality mode) with a grid area of 22 × 13 pixels. Each image was composed of a 3D 

array with dimensions 22 × 13 × 1015, where 1015 wavenumbers were recorded per pixel 

(1.20 cm-1 data spacing, 725–1813 cm-1). 

2.2 Software 

The Raman images were imported and processed in MATLAB R2014b (MathWorks, 

Inc., USA). All the samples’ images were firstly pre-processed by cosmic rays (spikes) 

removal using a lab-made routine, followed by Savitzky-Golay (SG) smoothing (window of 

15 points, 2nd order polynomial fitting) and automatic weighted least squares (AWLS) 

baseline correction using PLS Toolbox 7.9.3 (Eigenvector Research, Inc., USA). First-order 

discriminant analysis (PCA-LDA, PCA-QDA) were performed using the Classification 

Toolbox for MATLAB,24 and 3D discriminant analysis (3D-PCA-LDA, 3D-PCA-QDA) were 

performed using lab-made algorithms. The simulated dataset was not pre-processed. The real-

world pre-processed hyperspectral images were split into training (70%) and test (30%) sets 

using the Kennard-Stone (KS) uniform sample selection algorithm.25 

2.3 Computational analysis 

Unfolded PCA-LDA and PCA-QDA where compared with 3D discriminant 

algorithms (3D-PCA-LDA and 3D-PCA-QDA). PCA is an exploratory analysis technique 

where a spectral data matrix X is decomposed into a few number of principal components 

(PCs) responsible for the majority of the original data variance. The first PC explains the 

biggest proportion of the data variance, followed by the second PC, and so on. Each PC is 

orthogonal to each other, being composed of scores (projections of the samples on the PC 

direction) and loadings (angle cosines of the variables projected on the PC direction). The 

scores represent the variability on sample direction, thus being used to assess 

similarities/dissimilarities among the samples based on their distribution pattern, and the 
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loadings contain the weights for each variable in the decomposition, being used to find 

potential spectral markers.1,18,26 

In this 3D-PCA approach,1 a local bilinear PCA model is performed for each pixel 

position across the hyperspectral image dataset as follows: 

𝐗𝑖𝑗
∗ = 𝐓𝑖𝑗𝐏𝑖𝑗

T + 𝐄𝑖𝑗           (1) 

where 𝐗𝑖𝑗
∗  is a temporary matrix at the position (i,j) where rows represent samples, and 

columns represent wavenumbers; 𝐓𝑖𝑗 are the PCA scores at position (i,j); 𝐏𝑖𝑗 are the PCA 

loadings at position (i,j); 𝐄𝑖𝑗 are the residuals at position (i,j); and the superscript T represents 

the matrix transpose operation. At the end, 3D-PCA generates three 3D arrays representing 

the scores (𝐓), loadings (𝐏), and residuals (𝐄). This is different of 3D-PCA for trilinear data 

based on Tucker3 (“true 3D-PCA”), which decomposes a trilinear three-dimensional array 

into three loadings and a core matrix;27,28 and also different of Tucker3 model with 

orthogonal factors, known as “three-way PCA”.29,30 

In these 3D-PCA-LDA and 3D-PCA-QDA approaches, a linear discriminant analysis 

(LDA) and quadratic discriminant analysis (QDA) classifier are employed to the mean scores 

of 3D-PCA, respectively. The 3D-PCA-LDA (𝐿𝑠𝑘) and 3D-PCA-QDA (𝑄𝑠𝑘) classification 

scores are thus calculated as follows:31 

𝐿𝑠𝑘 = (𝐱𝑠 − 𝐱𝑘)T𝐂pooled
−1 (𝐱𝑠 − 𝐱𝑘) − 2 log𝑒 𝜋𝑘       (2) 

𝑄𝑠𝑘 = (𝐱𝑠 − 𝐱𝑘)T𝐂𝑘
−1(𝐱𝑠 − 𝐱𝑘) + log𝑒|𝐂𝑘| − 2 log𝑒 𝜋𝑘       (3) 

where 𝐱𝑠 is a row-vector 1 × N representing the mean scores of 𝐓 for sample 𝑠 for each 

principal component N; 𝐱𝑘 is a row-vector 1 × N representing the mean scores of class k for 

each principal component N; 𝐂pooled is the pooled covariance matrix; 𝐂𝑘 is the variance-

covariance matrix of class k; and 𝜋𝑘 is the prior probability of class k. 𝐂pooled, 𝐂𝑘 and 𝜋𝑘 are 

calculated as follows: 
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𝐂pooled =
1

𝑛
∑ 𝑛𝑘𝐂𝑘

𝐾
𝑘=1          (4) 

𝐂𝑘 =
1

𝑛𝑘−1
∑ (𝐱𝑠 − 𝐱𝑘)(𝐱𝑠 − 𝐱𝑘)T𝑛𝑘

𝑠=1        (5) 

𝜋𝑘 =
𝑛𝑘

𝑛
           (6) 

where 𝑛 is the total number of samples in the training set; K is the total number of classes; 

and 𝑛𝑘 is the number of samples of class k. 

The calculation procedure is the same in the unfolded PCA-LDA and PCA-QDA, in 

which equations 2–6 are performed with the PCA scores of the unfolded 3D array. The 

unfolded data were also tested using partial least squares discriminant analysis (PLS-DA) and 

support vector machines (SVM) with a radial basis function (RBF) kernel as comparative 

classification methods.  All unfolded and 3D models were built using cross-validation leave-

one-out for optimization of the number of factors (number of latent variables (LVs) in PLS-

DA and kernel parameters in SVM), and evaluated using an external test set. The external test 

set contained 30% of the total number of samples (whole hyperspectral images) in the 

simulated and real-world datasets that did not participate in the model construction phase. 

2.4 Model evaluation 

The unfolded and 3D models were evaluated by means of the following figures of 

merit calculated in the test set: accuracy (total number of samples correctly classified 

considering true and false negatives), sensitivity (proportion of positives correctly classified), 

and specificity (proportion of negatives correctly classified).23 These parameters are 

calculated as follows: 

Accuracy (%) = (
TP+TN

TP+FP+TN+FN
) × 100      (7) 

Sensitivity (%) = (
TP

TP+FN
) × 100       (8) 

Specificity (%) = (
TN

TN+FP
) × 100       (9) 
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where TP stands for true positives; TN stands for true negatives; FP stands for false positives; 

and FN stands for false negatives. Additionally, confusion matrices containing the correct 

classification rates in the training, cross-validation and test sets were produced. 

 

 

3. Results and discussion 

The mean simulated hyperspectral images for classes 1 (n = 30 hyperspectral images) 

and 2 (n = 30 hyperspectral images) of dataset 1 along with their mean spectral profiles are 

shown in Figure 1. This dataset was randomly generated using a normal distribution function. 

Distinguishing spectral features between classes 1 and 2 are clearly shown between the entire 

variable range. For dataset 2, the mean Raman hyperspectral images for the 20 samples of the 

benign control group and 18 samples of the ovarian cancer group are depicted in Figures 2a 

and 2b, respectively. Distinct visual features characterized by surface abnormalities are 

observed on the images. This adds a degree of variance in the image data across the spatial 

domain for each sample. The hyperspectral images were acquired in the region between 725–

1813 cm-1, which includes the fingerprint region that contains Raman signatures of the main 

biochemical molecules present in the sample.32 The raw and pre-processed (SG smoothing 

and AWLS baseline correction) mean spectra for both groups of samples are depicted in 

Figures 2c and 2d, respectively. 

Unfolded PCA-LDA, PCA-QDA, PLS-DA and SVM were applied to the pre-

processed data of both datasets using cross-validation, and tested using an external test set 

containing 18 samples (hyperspectral images) for the simulated dataset and 11 samples 

(hyperspectral images) for the real-world dataset. Table 1 contains confusion matrices 

representing the training, cross-validation and test performances for the simulated dataset. In 

the simulated and real-world datasets, the minimum cross-validation error was used to 
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estimate the number of LVs in PLS-DA (simulated dataset: 6 LVs (84% cumulative explained 

variance); real-world dataset: 1 LV (11% cumulative explained variance)) and the RBF kernel 

parameters of SVM (simulated dataset: kernel parameter = 9, cost = 10, support vectors = 31; 

real-world dataset: kernel parameter = 0.14, cost = 1000 cost, support vectors = 27). 

The unfolded and 3D-PCA-LDA/QDA models were built using 2 PCs. Figures 3a and 

3c show the unfolded PCA-LDA and PCA-QDA calculated classification boundaries between 

class 1 and 2 of the simulated dataset, and Figures 3b and 3d shows the 3D-PCA-LDA and 

3D-PCA-QDA calculated classification boundaries between these two classes. For the real-

world dataset, the unfolded and 3D-PCA-LDA/QDA calculated classification boundaries 

between benign controls and ovarian cancer samples are shown in Figure 4. The PCA scores 

response were average per sample, so each point in Figures 3 and 4 represents a sample 

(image). The superposition pattern observed in Figures 4a and 4c reflects the poor 

classification of unfolded PCA-LDA and PCA-QDA as demonstrated in Table 2, where 

ovarian cancer samples are being highly misclassified in the test set (80% misclassification), 

and in Table 3, where accuracies (64%) and sensitivities (20%) for PCA-LDA and PCA-QDA 

are substantially low. 

On the other hand, by using the 3D-based algorithms (3D-PCA-LDA and 3D-PCA-

QDA), the classification performance improved substantially. These algorithms were applied 

to the whole hyperspectral dataset without unfolding with a computation time of 

approximately 2 min per model using a standard laptop computer. Figures 4b and 4d show the 

3D-PCA-LDA and 3D-PCA-QDA calculated classification boundaries between benign 

controls and ovarian cancer samples. There is a clear separation between the classes in both 

cases. For 3D-PCA-LDA (Figure 4b), one ovarian cancer sample of the training set is within 

the benign controls space; while in 3D-PCA-QDA this sample is projected over the class 

boundary. This sample reduced the training and cross-validation fitting for these models, in 
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which a correct classification rate of 92% was observed for the ovarian cancer group in the 

training set using both 3D-PCA-LDA and 3D-PCA-QDA; and 93% and 92% in cross-

validation for 3D-PCA-LDA and 3D-PCA-QDA, respectively (Table 2). The classification 

performance in the test set also substantially improved for the simulated dataset using the 3D-

based algorithms (Table 3), where both 3D-PCA-LDA and 3D-PCA-QDA had a classification 

accuracy of 83%, in comparison with PCA-LDA (66%), PCA-QDA (67%), PLS-DA (72%) 

and SVM (72%). In the real-world dataset, there was a perfect discrimination in the test set 

using the 3D algorithms (accuracy, sensitivity and specificity equal to 100%) (Table 3), while 

the unfolded methods provided a maximum of 64% accuracy using PCA-LDA or PCA-QDA. 

These findings indicate the potential of 3D discriminant analysis compared to the unfolding 

procedure. 

 The difference-between-mean (DBM) spectrum and 3D-PCA loadings are show in 

Figures 5 (simulated dataset) and 6 (real-world dataset). The simulated data show 

distinguishing features particularly between variables 0 to 200 (Figure 5a and 5b). Both 

loadings on PC1 (Figure 5c) and PC2 (Figure 5d) indicate higher coefficients along variables 

0 to 100, indicating this region was the most important for the separation pattern observed in 

the PCA scores. The ovarian cancer samples spectra appear to have overall higher intensity 

values than benign controls, as demonstrated in Figures 6a and 6b, where the negative values 

in the latter indicate higher intensity influence in the ovarian cancer group. The 3D-PCA 

loadings on PC1 contain higher coefficients at: 820 cm-1 (C-C stretching in protein), 990 cm-1 

(C-C stretching in glucose/collagen), 1140 cm-1 (fatty acids), 1400 cm-1 (NH in-plane 

deformation), 1510 cm-1 (ring breathing modes in DNA bases), 1592 cm-1 (C=C stretching) 

(Figure 4c).29 The 3D-PCA loadings on PC2 contain higher coefficients at: 727 cm-1 (C-C 

stretching in collagen), 860 cm-1 (phosphate group) and 986 cm-1 (C-C stretching β-sheet in 

proteins) (Figure 4d) (29). PC1 seems to be related to wavenumbers of higher energy, 
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encompassing mainly fatty acids, lipids and protein vibrations; while PC2 contain higher 

weights toward wavenumbers of lower energy, including collagen, phosphate groups of 

RNA, and C-C in proteins.33 Vibrations around 820 cm-1 and 1400 cm-1 (PC1) have been 

previously reported as protein markers for cervical tumors34 and ovarian cancer.1 

4. Conclusion 

This paper reports new 3D discriminant analysis approaches named three-dimensional 

principal component analysis linear discriminant analysis (3D-PCA-LDA) and three-

dimensional discriminant analysis quadratic discriminant analysis (3D-PCA-QDA) for 

classification of hyperspectral images datasets. These algorithms were compared with 

unfolded methods (PCA-LDA, PCA-QDA, PLS-DA and SVM), where a much superior 

performance was obtained with the 3D-based techniques to discriminate simulated and real-

world data composed of benign controls and ovarian cancer patients based on the Raman 

hyperspectral imaging. An improvement in the accuracy (66% to 83% (simulated data), 50% 

to 100% (real-world data)) and sensitivity (33% to 89% (simulated data), 0% to 100% (real-

world data)) in the test set was observed when the 3D discriminant algorithms were applied. 

For the real-world dataset, 3D-PCA loadings indicated spectral markers associated with 

proteins, lipids and DNA along PC1 and PC2 for class differentiation. These new 3D 

discriminant analysis approaches provide fast class differentiation for multi-image 

hyperspectral datasets with a superior discriminating performance compared to algorithms 

using unfolding procedures, which are often employed for this type of data. 
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Figure captions 

 

Figure 1. Simulated hyperspectral data. (a) Mean hyperspectral image for class 1; (b) mean 

hyperspectral image for class 2; (c) mean spectra of class 1 and class 2. Colour bar: mean 

image intensity.  

Figure 2. Raw Raman hyperspectral images for the real-world dataset. (a) Benign controls; 

(b) ovarian cancer patients; (c) mean raw Raman spectra for benign controls and ovarian 

cancer samples; (d) mean pre-processed (Savitzky-Golay (SG) smoothing (window of 15 

points, 2nd order polynomial fitting) and automatic weighted least squares (AWLS) baseline 

correction) Raman spectra for benign controls and ovarian cancer samples. False-colour 

images represented by the mean of the spectral dimension (725–1813 cm-1). 

Figure 3. Calculated class boundaries on the PCA scores for the training set of the simulated 

dataset. (a) Unfolded PCA-LDA; (b) 3D-PCA-LDA; (c) Unfolded PCA-QDA; and (d) 3D-

PCA-QDA. Numbers inside parenthesis on the x- and y-labels represent the percentage of 

explained variance in each principal component (PC). 

Figure 4. Calculated class boundaries on the PCA scores for the training set of the real-world 

dataset. (a) Unfolded PCA-LDA; (b) 3D-PCA-LDA; (c) Unfolded PCA-QDA; and (d) 3D-

PCA-QDA. Numbers inside parenthesis on the x- and y-labels represent the percentage of 

explained variance in each principal component (PC). 

Figure 5. 3D-PCA loadings for the simulated dataset. (a) Average pre-processed spectra for 

class 1 (continuous line) and class 2 (dashed line) samples; (b) difference-between-mean 

spectrum for class 1 and class 2 (negative signal indicates higher intensity in class 2); (c) 3D-

PCA loadings on PC1; (d) 3D-PCA loadings on PC2. 
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Figure 6. 3D-PCA loadings for the real-world dataset. (a) Average pre-processed spectra for 

benign controls (continuous line) and ovarian cancer (dashed line) samples; (b) difference-

between-mean spectrum for benign controls and ovarian cancer samples (negative signal 

indicates higher intensity in ovarian cancer samples); (c) 3D-PCA loadings on PC1; (d) 3D-

PCA loadings on PC2. 
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Tables 

 

Table 1. Confusion matrices for the training, cross-validation and test sets using the unfolded 

and 3D hyperspectral images of the simulated dataset. PCA-LDA: principal component 

analysis linear discriminant analysis; PCA-QDA: principal component analysis quadratic 

discriminant analysis; PLS-DA: partial least squares discriminant analysis; SVM: support 

vector machines; 3D-PCA-LDA: three-dimensional principal component analysis linear 

discriminant analysis; 3D-PCA-QDA: three-dimensional principal component analysis 

quadratic discriminant analysis. 

Unfolded  Training Cross-validation Test 

PCA-LDA  Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

 Class 1 67% 33% 52% 48% 100% 0% 

 Class 2 52% 48% 48% 52% 67% 33% 

PCA-QDA        

 Class 1 71% 29% 71% 29% 78% 22% 

 Class 2 43% 57% 48% 52% 44% 56% 

PLS-DA         

 Class 1 86% 14% 81% 19% 78% 22% 

 Class 2 14% 86% 24% 76% 33% 67% 

SVM        

 Class 1 91% 9% 67% 33% 67% 33% 

 Class 2 0% 100% 33% 67% 22% 78% 

3D         

3D-PCA-LDA        

 Class 1 71% 29% 71% 29% 78% 22% 

 Class 2 24% 76% 24% 76% 11% 89% 

3D-PCA-QDA        

 Class 1 81% 19% 76% 24% 78% 22% 

 Class 2 24% 76% 29% 71% 11% 89% 
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Table 2. Confusion matrices for the training, cross-validation and test sets using the unfolded 

and 3D hypespectral images of real-world dataset. PCA-LDA: principal component analysis 

linear discriminant analysis; PCA-QDA: principal component analysis quadratic discriminant 

analysis; PLS-DA: partial least squares discriminant analysis; SVM: support vector 

machines; 3D-PCA-LDA: three-dimensional principal component analysis linear 

discriminant analysis; 3D-PCA-QDA: three-dimensional principal component analysis 

quadratic discriminant analysis; Control: benign control group; Cancer: ovarian cancer 

patients. 

Unfolded  Training Cross-validation Test 

PCA-LDA  Control Cancer Control Cancer Control Cancer 

 Control 79% 21% 70% 30% 100% 0% 

 Cancer 46% 54% 51% 49% 80% 20% 

PCA-QDA        

 Control 86% 14% 72% 28% 100% 0% 

 Cancer 54% 46% 57% 43% 80% 20% 

PLS-DA         

 Control 86% 14% 64% 36% 100% 0% 

 Cancer 23% 77% 46% 54% 100% 0% 

SVM         

 Control 100% 0% 71% 29% 100% 0% 

 Cancer 0% 100% 46% 54% 100% 0% 

3D         

3D-PCA-LDA        

 Control 100% 0% 99% 1% 100% 0% 

 Cancer 8% 92% 7% 93% 0% 100% 

3D-PCA-QDA        

 Control 100% 0% 93% 7% 100% 0% 

 Cancer 8% 92% 8% 92% 0% 100% 
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Table 3. Quality parameters for the models using the unfolded hyperspectral images and the 

full three-dimensional arrays in the test set. PCA-LDA: principal component analysis linear 

discriminant analysis; PCA-QDA: principal component analysis quadratic discriminant 

analysis; 3D-PCA-LDA: three-dimensional principal component analysis linear discriminant 

analysis; 3D-PCA-QDA: three-dimensional principal component analysis quadratic 

discriminant analysis. 

Dataset Method Accuracy Sensitivity Specificity 

Simulated Unfolded    

 PCA-LDA 66% 33% 100% 

 PCA-QDA 67% 56% 78% 

 PLS-DA 72% 67% 78% 

 SVM 72% 78% 67% 

 3D    

 3D-PCA-LDA 83% 89% 78% 

 3D-PCA-QDA 83% 89% 78% 

Real Unfolded    

 PCA-LDA 64% 20% 100% 

 PCA-QDA 64% 20% 100% 

 PLS-DA 50% 0% 100% 

 SVM 50% 0% 100% 

 3D    

 3D-PCA-LDA 100% 100% 100% 

 3D-PCA-QDA 100% 100% 100% 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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