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3-5 highlights 

 

 The first dynamic neuron “whole-cell” neuron models, built for fly photoreceptors.  

 

 Neural information processing at the mechanistic, algorithmic and the computational levels.  

 

 Explanations why sensory neuron process structured stimuli better than Gaussian white noise 

 

 Subcellular refractory period and stochastic sampling greatly benefit encoding in graded potential 

systems. 

 

 Photoreceptor microsaccades sharpen retinal images of moving objects, enabling hyperacute vision. 

 

Abstract  
Understanding a neuron’s input-output relationship is a longstanding challenge. Arguably, these signalling 

dynamics can be better understood if studied at three levels of analysis: computational, algorithmic and 

implementational (Marr, 1982). But it is difficult to integrate such analyses into a single platform that can 

realistically simulate neural information processing. Multiscale dynamical “whole-cell” modelling, a recent 
systems biology approach, makes this possible. Dynamical “whole-cell” models are computational models 
that aim to account for the integrated function of numerous genes or molecules to behave like virtual cells 

in silico. However, because constructing such models is laborious, only a couple of examples have emerged 

since the first one, built for Mycoplasma genitalium bacterium, was reported in 2012. Here, we review 

dynamic “whole-cell” neuron models for fly photoreceptors and how these have been used to study neural 
information processing. Specifically, we review how the models have helped uncover the mechanisms and 

evolutionary rules of quantal light information sampling and integration, which underlie light adaptation 

and further improve our understanding of insect vision. 

 

Keywords: "whole-cell" modelling; neural information processing; insect vision; fly photoreceptor 

 

Introduction 
Single neurons are the main building blocks of the nervous system. A central problem in neuroscience is to 

understand mechanistically how neurons sample and communicate information. Quantitative 

computational models can help reproduce a neuron’s physical properties, simulate its dynamics, and 
approximate its information processing. However, incorporating the essential details to achieve 
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appropriate model complexity with computational tractability is a notoriously difficult balancing act  (Herz 

et al., 2006). As Yakov Frenkel (1894–1952), a Russian physicist, mulled: A good theoretical model of a 

complex system should be like a good caricature: it should emphasise those features, which are most 

important and should downplay the inessential details. However, the only snag with this advice is that one 

does not really know which are the inessential details until one has understood the phenomena under study 

(Hemberger et al., 2016). To search for the essential details to study neural information processing, we 

think there is a need for biomimetic “whole-cell” neurons models, which implement microscopic molecular 

details to reproduce macroscopic cellular input-output dynamics. We will next highlight this point by briefly 

reviewing the major single-neuron model categories.  

 

A brief overview of single-neuron model categories in computational neuroscience 

Single-neuron models fall into two major categories: detailed biophysical models and simple 

phenomenological models. The phenomenological models adopt a reductionist approach, aiming to derive 

the simplest mathematical format describing a particular feature of a stimulus-response function. Such 

models can be derived from experimental data or can emerge from theoretical derivations out of first 

principles. The models typically start from empirical mathematical descriptions, such as Volterra filter series 

and static nonlinearities (French et al., 1993; Juusola et al., 1995b), with parameters fitted to reproduce 

neural responses to explicit stimuli (Ostojic and Brunel, 2011). However, because these generic black-box 

“block-components” are too simple to mimic real neurons’ adaptive sampling dynamics, the models 

provide limited predictive power and generalisability beyond the tested conditions and cannot respond like 

real neurons to a broad range of stimuli (Juusola et al., 2017; van Kleef et al., 2010). 

 

To study how the emergent properties come about from complex systems, such as living cells, it seems 

reasonable to construct bottom‐up biomimetic models, which aim to replicate the cell's ultrastructure, 

signalling pathways and response dynamics. Such biologically-realistic models follow a constructionist 

approach, assembling the relevant biological details to achieve sufficient verisimilitude for the neuron’s 
workings to be studied systematically and understood mechanically (Clark et al., 2013; Juusola et al., 2017).  

 

Whilst there is a spectrum of neuronal modelling techniques that lie between the phenomenological and 

biologically-realistic models (Herz et al., 2006), we focus on the most detail-oriented single neuron models 

because they can act as diagnostic simulation platforms to understand the studied phenomena. 

Trendsettingly, these modelling approaches are being applied in large regional brain initiatives, such as the 

human brain project (HBP), highlighting their growing influence on the field. 

 

The HBP hypothesises that building biologically accurate brain models can help explore the emergence of 

biological intelligence (Markram, 2006). The “realistic” single neuron models have shown their emergent 

explanatory power in revealing the mechanisms for a neuron’s nonlinear signalling dynamics, with 

examples tabled in (Herz et al., 2006). It is even assumed that these kinds of complex single-neuron 

computations may underlie biological intelligence. For example, Goriounova et al. showed in silico, with a 

detailed pyramidal neuron model, that more extensive and more complex dendrites of human pyramidal 

neurons may associate with large temporal cortical thickness and high IQ scores, reflecting fast action 

potential kinetics (Goriounova et al., 2018).  

 

More than a decade ago, scientists began to use the biologically-detailed single neuron models to simulate 

large neuronal population activity (Markram, 2006, 2012; Markram et al., 2015). The Blue Brain Project, a 

collaboration between EPFL and the IBM computing corporation, even started to assemble 100,000 

“realistic” neuron models to simulate a rat’s neocortical column, considered to be an elementary cortical 
unit within the brain (Markram, 2006, 2012; Markram et al., 2015). More recently, biological-realistic 

simulation of large neural networks is included in several well-funded national and global brain initiatives, 

including the Human Brain Project (HBP) (Markram, 2012) and Obama’s BRAIN initiatives (Szalavitz, 2013). 

The on-going China Brain Project (Poo et al., 2016) also emphasises a more applied aspect, the brain-

inspired Artificial Intelligence (AI). However, we would like to take a step back and look critically at this 

“realistic” neuronal modelling approach, asking: “is the current realistic neuronal modelling approach 

realistic?”. 
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Biophysical single neuron models originate from the Hodgkin-Huxley’s formalism (Hodgkin and Huxley, 

1952), which simulates how action potentials arise from two specific ion-channel population’s push-pull 

dynamics on the cell membrane. Wilfred Rall recognised that the complexity of the dendritic and axonal 

structures would profoundly affect a neuron’s voltage generation and propagation (Rall, 1959) and 

developed the cable theory to quantify how current flows in realistic neuronal structures (Rall, 1964). The 

main idea was to segment the neurons into many little compartments, following their real morphology, 

building HH models for each compartment, and connecting them by resistors through which axial current 

flows. Such detailed compartmental models are currently the most widely-used biologically “realistic” 
neuronal models. They can be quite complicated, with a single model composed of tens of thousands of 

compartments (Goriounova et al., 2018), but enable investigations about how the complicated neural 

morphology, the ionic conductance compositions, and the synaptic input distributions influence the 

neuron’s signal processing. 

 

Nonetheless, the detailed compartmental model’s core remains electro-centric, describing mainly the 

generation and propagation of electrical signals in the brain. Consequently, Bhalla pointed out that it is 

perhaps best to think of neuronal computation as a seamless blend of electrical and chemical signalling  

(Bhalla, 2014). Numerous neuronal functions are initiated, modulated or maintained by chemical signalling 

pathways: environmental signals are quite often transduced into neuronal signals through molecular 

reaction pathways; neurons mainly communicate through chemical synaptic transmissions; ionic or 

molecular diffusions and changes to cytoplasmic ionic concentrations can be typical feedback regulator for 

intracellular pathways; and neuronal functions are also subject to other chemical processes, including 

neuromodulations, homeostasis, metabolisms and housekeeping processes. 

 

The electro-centric models lack the integration of chemo-centric systems’ biochemical models, making 

them insufficient to explain how chemical signals influence neuronal signalling and communications (De 

Schutter, 2008). As a result, a detailed compartmental neuron model, no matter how complicated and 

realistic in morphology, cannot mimic a real neuron in its natural environment, where its input would be 

dynamically integrated from many chemical synaptic events from numerous pre-synaptic neurons. This 

realisation raises the question: If a single neuron’s input and output relationships cannot be investigated 

concerning its natural environment, what are the fundamental hypotheses for these models and 

simulations to test about their information flow and processing, or the proposed emergence of 

intelligence? 

 

Need for biomimetic “whole-cell” neuron models to study neural information processing  

A neuron is a signal processor that transforms its input or multiple inputs to its electrical outputs, from the 

information processing viewpoint. Forty years ago, David Marr proposed that three analysis levels are 

needed for a comprehensive understanding of neural information processing: the computational, the 

algorithmic and the implementational levels (Marr, 1982). Out of these, the mechanistic implementations 

have continuously remained elusive (Herz et al., 2006). It is hoped that this becomes possible with the help 

of biologically-realistic neuron models.  

 

The ideal biologically-realistic single neuron models should integrate both the electrical membrane 

properties and the chemical transduction pathways. The first chemical kinetic models for neural signalling 

were published several decades ago (Land et al., 1981). Many pioneering studies have since highlighted the 

importance of integrating the electrical and biochemical reaction events for improving understanding of 

neuronal signalling (Bhalla, 2011; Bhalla and Iyengar, 1999; Kotter and Schirok, 1999). A wide range of 

kinetic models of chemical signalling pathways for signal transduction (Klipp and Liebermeister, 2006), 

synaptic transmission and plasticity (Kim et al., 2013; Naoki et al., 2005; Smolen et al., 2012) have been 

constructed, with standardised open-source simulation packages enabling the reaction kinetics to be 

coupled with particle diffusion in realistic neuronal morphology (Stiles and Bartol, 2000; Vayttaden et al., 

2004). These models primarily comprise subcellular structures, such as synapses, spines and dendrites, and 

can be analysed using dynamical systems approaches. But because the models are local, tuned for neural 
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sub-structures, they are inherently limited in quantifying the input-output relationship of a “whole-

neuron”; thus, these models cannot explain neural information processing at the global (cellular) level.  

 

Biochemistry models and biophysical models should be integrated across the entire cell membrane at 

multiple spatial scales; from synapses and spines at nanometer scales to action potential propagation along 

axons up to a meter scale. “Whole-cell” models are such biomimetic models, implementing microscopic 

molecular details to reproduce macroscopic “whole-cell” dynamical input-output behaviours (Goldberg et 

al., 2018). The ultimate aim of “whole-cell” dynamical models is to act as virtual in silico cells, accounting 

for the integrated function of numerous genes or known molecules (Tomita, 2001). Such methodology is 

contemporary in systems biology. Several whole-cell dynamical models have been reported to simulate 

gene networks or cellular metabolisms (Goldberg et al., 2018), and this approach is predicted to have real 

potential to make a powerful impact on molecular and systems biology, bioengineering and medicine.  

 

Unfortunately, however, it is hard to interlink stochastically operating signalling pathways, ionic diffusion, 

and electrical dynamics, and there are only a few “whole-cell” models for analysing neural information 

processing. This sparsity stems from the incomplete data to constrain the biochemical dynamics in neural 

signalling and the neurons’ complicated structural sophistication and connectivity. Therefore, it is a 

formidable challenge to accurately assess and quantify a neuron's real inputs in its natural environments. 

Advantageously, peripheral sensory neurons, especially the receptor neurons, directly face the 

environment, their input can be effectively characterised (van der Schaaf and van Hateren, 1996). As such, 

the first “whole-cell” neuron models were built for fly (Drosophila, Calliphora and Coenosia) 

photoreceptors (Song et al., 2012a). Photoreceptors populate the retina, the first neural layer of the eye, 

where they sample and transduce changes in environmental photon influx (light input) into electrical 

responses (neural output), initiating vision.    

 

From the information processing perspective, abided by data processing inequality (Shannon, 1948), which 

states that any post-processing cannot increase information, photon sampling constitutes the absolute 

visual information bottleneck (Juusola and de Polavieja, 2003). Any information the photoreceptors lose 

cannot be recovered downstream. Consequently, it is vital to understand how a single photoreceptor 

samples and processes light information and the underlying mechanisms that determine its capacity to do 

so.  

 

Furthermore, because of the unprecedented molecular, ultrastructural, electrophysiological knowledge 

about the phototransduction pathways, and because its quantal sampling dynamics were obtained from 

systematic in and ex vivo experimental and information-theoretical investigations (Goldberg et al., 2018; 

Hardie, 1991; Hardie and Minke, 1992; Hardie et al., 1993; Hardie and Postma, 2008; Hardie et al., 2001; 

Juusola and de Polavieja, 2003; Juusola and Hardie, 2001a, b; Juusola et al., 1994; Niven et al., 2003; Song 

et al., 2012b; Vähäsöyrinki et al., 2006; Wardill et al., 2012; Zheng et al., 2006; Zheng et al., 2009), fly 

photoreceptors became the premier “whole-cell” models for simulating neural information processing.  

 

The “whole-cell” fly photoreceptor models are multiscale. For the first time to our knowledge, they 

connected the microscopic molecular reaction dynamics and the macroscopic “whole-cell” input-output 

transformations in a single simulation platform. The previous state-of-the-art biophysical fly photoreceptor 

models either focused on mapping the cell’s steady-state nonlinear input-output relationships (French et 

al., 1993; Juusola et al., 1995b; van Hateren and Snippe, 2006) or simulating its molecular reaction 

pathways in transducing single photon energy (Pumir et al., 2008). In clear contrast, the “whole-cell” 
photoreceptor models (Song et al., 2012a) combined these two separate objectives. These new models 

accurately simulate the molecular reactions of a photoreceptor’s sampling unit (microvillus) in transducing 
a single photon and the reaction dynamics of 30,000-90,000 microvilli when transducing millions of 

photons. And crucially, by following the experimentally quantified quantum bump (elementary response) 

dynamics and statistics (Gonzalez-Bellido et al., 2011; Juusola and de Polavieja, 2003; Juusola and Hardie, 

2001a, b), these models could reliably reproduce continuous voltage responses with realistic variability to 

any light intensity time series, without the need to train any parameters (Juusola et al., 2017; Song and 

Juusola, 2014).  
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The “whole-cell” fly photoreceptor models enable information processing studies at the three levels of 

analysis. At the implementation level, they have been crucial in revealing novel light adaptation 

mechanisms, such as the subcellular refractory period (RP) and the signalling stochasticity (Song et al., 

2012a). At the algorithmic level, they have paved the way for developing algorithms with only four 

sampling parameters to achieve automatic gain control and temporal adaptation (Song et al., 2017). At the 

computational level, they have elucidated phototransduction dynamics through a framework of refractory 

photon information sampling, leading to a trade-off between coding efficiency and energy consumption (Li 

et al., 2019; Song and Juusola, 2014). We next review the multiscale “whole-cell” fly photoreceptor models, 
specifically focussing on the Drosophila R1-R6 photoreceptor model and its emergent properties at these 

levels.  

 

Drosophila R1-R6 “whole-cell” photoreceptor model  
The first “whole-cell” model built for a neuron was a fly photoreceptor model (Song et al., 2009; Song et al., 

2012b). The model simulates the cell’s light response dynamics at multiple spatial scales. It linked the 

intracellular molecular dynamics with the “whole-cell” input-output relationships and was constructed to 

map light intensity time series input into a continuous voltage response at the cellular level. Light input 

mimics a photoreceptor’s light-intensity-time-series input at its receptive field. Because light is composed 

of photons, the light intensity changes were quantified as photons/s (Juusola and de Polavieja, 2003; 

Juusola and Hardie, 2001a). For model validations, the simulations were compared to the corresponding 

real recordings. In in vivo recordings, the light intensity time series of specific statistics are played back to 

the photoreceptor using a feedback-controlled LED/light-guide-stimulator (Juusola and de Polavieja, 2003; 

Juusola and Hardie, 2001a; Zheng et al., 2006), while the resulting photoreceptor output, the voltage 

response to the light input, was recorded intracellularly using a sharp microelectrode in an intact living fly 

(Juusola et al., 2016; Juusola and Hardie, 2001a).  

 

At the molecular level, the light input is quantal, with information carried by discrete photon arrivals. 

Photons are absorbed by rhodopsin-molecules (light-sensitive G‐protein‐coupled receptors) inside 30,000 
microvilli (sampling units), each of which is a compartmentalised finger-like membrane protrusion. 

Together, the microvilli stack up the rhabdomere, the photosensitive part of the photoreceptor (Fig. 1A). 

Each microvillus contains a full G‐protein‐coupled receptor (GPCR) signalling pathway (Hardie and Juusola, 

2015; Hardie and Postma, 2008), which constitutes a sequence of biochemical reactions called the 

phototransduction cascade (Fig. 1B). This cascade can transduce a single photon into a quantum bump 

(QB), a unitary analogue current influx (Hardie, 1991; Henderson et al., 2000; Juusola and Hardie, 2001a).  

 

The first state-of-the-art phototransduction cascade model simulated the production of single QBs inside 

one microvillus (Pumir et al., 2008). Whereas the later R1–R6 photoreceptor models describe how 30,000 

microvilli act in parallel, transducing millions of photons into thousands of QBs and integrating them into 

the macroscopic “whole-cell” light-induced-current (LIC) (Song et al., 2009; Song et al., 2012a). The 

macroscopic LIC then charge the photoreceptor’s photo-insensitive membrane, generating a macroscopic 

voltage response (Li et al., 2019; Niven et al., 2003; Vähäsöyrinki et al., 2006) (Fig. 1C).  

 

The “whole-cell” photoreceptor model structure 

Akin to a real R1–R6 photoreceptor, the model comprises four biophysically realistic submodules (Fig. 1D) 

(Juusola et al., 2015; Song et al., 2012a): 

● Random Photon Absorption Model (RandPAM) distributes the incoming photons to the 

30,000 microvilli following Poisson statistics. Its output is the absorbed photon sequences of each 

microvillus (Song et al., 2012a; Song et al., 2016). 

● Stochastic Bump Model: stochastic biochemical reactions inside a microvillus transduce the absorbed 

photon sequences to QB sequences (Pumir et al., 2008; Song et al., 2012a). This model comprises ~20 

nonlinear ODEs and includes ~50 parameters, and describes the molecular dynamics of the GPCR 

signalling pathway inside a single microvillus (Fig. 1E). The model uses the Gillespie algorithm 
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(Gillespie, 1976), a discrete and stochastic method that explicitly simulates a system with few 

reactants.  

● Summation Model: QBs from 30,000 microvilli integrate to the macroscopic light‐induced current (LIC) 
response (Song et al., 2012a) (Fig. 1F). 

● Hodgkin–Huxley Model of the photoreceptor plasma membrane. This module transduces LIC into 

voltage response by reproducing the voltage‐gated K+ conductance dynamics on the photon‐
insensitive membrane (Li et al., 2019; Niven et al., 2003). 

 

These modules were assembled and validated step‐by‐step to simulate QBs (Fig. 2A), the QB sequences 

inside a single microvillus (Fig. 1E), the photoreceptor’s macroscopic responses to light steps (Fig. 2B), and 

light time series with various statistics (Figs. 2C and D). The model’s continuous voltage responses were 

validated by the corresponding intracellular recordings (Juusola et al., 2017; Song and Juusola, 2014; Song 

et al., 2012a). 

 

The “whole-cell” photoreceptor model samples information like a real photoreceptor  

The “whole-cell” fly photoreceptor model surpasses other photoreceptor models in its generalisability and 

interpretability. The model is generalisable because it can predict responses to untested stimulus statistics. 

It retained its physiological relevance because the model parameters, wherever possible, were fixed to 

their physiologically measured or pre‐estimated values (Juusola and Hardie, 2001a, b). The “whole-cell” fly 
photoreceptor model was first fitted to reproduce the cell’s light impulse responses and step responses. 

Then, without refitting any parameters, the model was stimulated by other light time-series stimuli, 

including white noise with various bandwidth and naturalistic stimuli with 1/f power spectra. The model 

predicted realistic response waveforms to all tested stimuli, showing its great generalisability (Juusola et 

al., 2017; Juusola and Song, 2017; Song et al., 2009; Song and Juusola, 2017, 2014; Song et al., 2012a). 

 

The “whole-cell” fly photoreceptor model is interpretable because it mechanistically describes how a 

photoreceptor’s 30,000 microvilli (photon sampling units) sample light information in parallel, transducing 

millions of photons into thousands of QBs and integrating them into the macroscopic voltage responses 

(Song et al., 2009; Song et al., 2012a). Given that the model’s QB statistics match those measured for the 
ambient light condition (Juusola et al., 2017; Juusola and Hardie, 2001a, b), the model produces similar 

voltage responses to the real recordings (Juusola et al., 2017; Song and Juusola, 2014; Song et al., 2012a). 

This equivalence signifies the whole-cell model’s intrinsic accuracy in replicating a real photoreceptor’s 
adaptive response dynamics from the photon sampling to QB integration.  

 

Next, we will review how the whole-cell” photoreceptor model’s generalisability and interpretability have 

contributed to scientific advancement in the insect vision field. 
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Fig. 1.  The fly photoreceptor “whole-cell” 
model links microscopic molecular dynamics 

with the macroscopic “whole-cell” responses. 
(A) A fly photoreceptor is functionally divided 

into the photosensitive membrane 

(rhabdomere) and the photo-insensitive part 

(soma). (B) The phototransduction cascade 

inside a single microvillus. (C) voltage-gated K+ 

conductances on the soma. (D) The model 

structure. (E-F) The model not only simulates 

the molecular dynamics inside a single 

microvillus (E) but also integrates light-

induced current (LIC) quantum bump (QB) 

influx from 30,000 microvilli, producing a 

macroscopic “whole-cell” LIC response (F). 

Figure adapted from (Song and Juusola, 2017; 

Song et al., 2012a).  

 

 

Fig. 2. Model validation against experimental 

recordings. Comparing different simulations 

to corresponding recordings: (A) light-induced 

current (LIC) quantum bump (QB) waveforms 

(left) and QB latency distribution (right); (B) 

macroscopic LIC responses to dim and bright 

light pulses; (C) macroscopic voltage 

responses to different bandwidth Gaussian 

white-noise (GWN) stimuli; and (D) 

macroscopic voltage responses to the same 

repeated naturalistic light intensity time-series 

(NS) at dim and bright conditions. Data from 

(Juusola et al., 2017; Song and Juusola, 2014; 

Song et al., 2012a). 
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“Whole-cell” fly photoreceptor model elucidate generic encoding rules 

 

Quantal sampling dynamics govern adaptation  

With the real-world objects looking broadly the same from dawn till dusk, visual animals can execute 

successful behaviours. Much of this invariance comes from the physical objects’ invariable relative 
reflectance, which vision encodes into perceptual contrast constancy. Remarkably, insect photoreceptors 

already show early contrast constancy by generating similar response waveforms to the same naturalistic 

stimulus from dim to ~1,000,000-times brighter conditions (Faivre and Juusola, 2008; Friederich et al., 

2009; Gonzalez-Bellido et al., 2011; Juusola and de Polavieja, 2003; Zheng et al., 2006; Zheng et al., 2009) 

(Fig. 2D). The large dynamic range for encoding similar contrast responses within a photoreceptors’ limited 
amplitude (~60 mV) and frequency range (~200-300 Hz) is achieved through light adaptation, the system’s 
ability to change its sensitivity according to light intensity changes. In terms of absolute light detection, fly 

photoreceptors far surpass man‐made sensors in achieving 8-10 orders of magnitude dynamic range 

(Howard et al., 1987; van Hateren, 1997). 

 

It has been widely studied how photoreceptors adapt over the day/night-cycle by various gain control 

mechanisms. But for effective visual course control, photoreceptors must also adapt continuously and near 

instantaneously to their local light intensity changes, which could be full of various temporal structures, as 

an animal locomotes within a natural scene (Clark et al., 2013; Juusola et al., 2017; Juusola and de 

Polavieja, 2003; Silva et al., 2001; Zheng et al., 2009).  

 

How does a fly photoreceptor’s adaption dynamics change within a millisecond-to-second time scale? The 

“whole-cell” Drosophila photoreceptor model provides a powerful simulation platform to investigate this 

question (Fig. 3). The model can produce realistic photoreceptor responses at vastly varying light conditions 

and has elucidated four factors that control fast adaptation. These are: (i) the number of microvilli in the 

rhabdomere, the photosensitive structure; (ii) QB size (waveform); (iii) QB latency distribution (latency is 

the delay between a photon arrival and its QB emerging), and (iv) RP distribution in a microvillus, (its 

recovery time after a QB) (Song and Juusola, 2014; Song et al., 2012a). These factors constitute a set of 

rules, which jointly govern a photoreceptor’s light adaptation and information sampling dynamics:  

● Population sampling; the microvillus population size sets the encoding limit (Fig. 3A). The number of 

microvilli (photon sampling units) is the critical parameter, limiting a photoreceptor's encoding 

capacity (Hochstrate and Hamdorf, 1990; Howard et al., 1987; Song and Juusola, 2014; Song et al., 

2012a). Simulations, in which the microvilli amount and properties were systematically changed, 

demonstrated that the photoreceptors with the most and fastest microvilli generate the highest-

fidelity responses (Juusola and Song, 2017; Song and Juusola, 2014; Song et al., 2012a), consistent with 

corresponding neuroethological, electrophysiological and ultrastructural data.  

● Adaptive QB. QBs get smaller and briefer with brightening (Fig. 3B) and can shrink ~50 times from dark 

to bright (Juusola and Hardie, 2001a). This QB desensitisation is caused by the nonlinear biochemical 

reactions and the negative feedbacks within the phototransduction cascade.  

● Microvillar RP. RP enlarges the dynamic range (Figs 3C-D) and contributes to temporal adaptation 

(Song et al., 2012a; Song et al., 2017). Simulations, in which a single microvillus responds to a photon 

sequence, established that each QB is followed by a 50-300 ms RP (Juusola et al., 2015; Song et al., 

2012a). This RP is different from an action potential’s RP, which affects the whole neuron at once. 
Whereas a microvillar RP is a local phenomenon. Only the microvilli, which generate QBs, become 

refractory. Because this happens across subcellular micro-domains (Song et al., 2017), the current 

recording techniques cannot measure it directly from the integrated response or QBs. Thus 

experimentally, it is difficult to assess how RP impacts encoding. 

 

RP greatly benefits encoding in graded potential systems. The microvillar RP provides an automatic gain 

control mechanism, which enlarges the photoreceptor’s dynamic range by two orders of magnitude (Song 

and Juusola, 2017; Song et al., 2012a). Some input information is inevitably lost through RP as some 

photons fail to evoke QBs, eventually saturating the QB count (Juusola et al., 2017; Song and Juusola, 2014; 

Song et al., 2012a). Nevertheless, for a Drosophila R1-R6, ~105-106 QBs/s in a bursty time series maximise 
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output information within its bandwidth, and increasing QB count any further makes little difference to its 

already lofty signal-to-noise ratio (>20,000) (Juusola et al., 2017). Refractoriness further accentuates 

responses to salient brightness changes (Juusola et al., 2017; Juusola et al., 2015; Song and Juusola, 2014; 

Song et al., 2012a). By enlarging response transients to light on- and offsets, it enhances the neural 

representation of phasic information, such as line elements and contrast edges (Friederich et al., 2016; 

Juusola and de Polavieja, 2003; Song and Juusola, 2014). Thus, using local refractory sampling units could 

be one general mechanism affecting adaptation and computations, as suggested by seemingly similar 

response dynamics of many sensory neurons and synapses (Juusola and French, 1997; Juusola et al., 1996; 

Juusola et al., 1995a; Rabinovich et al., 2008), and as already modelled for a mechanoreceptor’s dynamic 

behaviour (Song et al., 2015). 

 

Fig. 3. Five mechanisms governing light 

adaptation dynamics. (A) The size of the 

microvillus population limits encoding. (B) 

Normalised QB in dim (red) and bright (blue) 

light conditions. QBs get smaller and briefer 

with brightening. (C-D) RP act as an automatic 

gain control mechanism. In dim light, few 

photons are lost through RP; Quantum 

Efficiency (QE) approaches 100%. But in bright 

light, as more photons are lost through RP, QE 

reduces. The stochastically varying delays, 

from photon absorptions to their QBs 

emergence (in C), jointly constitute the QB 

latency distribution. (E) Stochastic sampling 

combat image aliasing. When sin(x2+y2), 

plotted with 0.1 resolution, is resampled with 

0.2 resolution, ghost rings appear from under-

sampling aliasing (left). However, there are no 

ghost rings when a random matrix samples the 

initial image with 0.2 mean resolution (right). 

Its trade-off is broadband noise. (F) Stochastic 

sampling combat aliasing in time. Step 

responses simulated with stochastic refractory 

periods reduce oscillations in step responses 

simulated with fixed refractory periods. (G) 

Voltage feedback regulates LIC’s electromotive 

driving force through TRP/TRPL1 channels on 

the photosensitive membrane. (H) Voltage 

feedback changes instantaneously with light intensity, adapting neural responses to input statistics. Data 

from (Juusola et al., 2017; Song et al., 2012a). 

 

Stochastic signalling: stochastic QB production anti-aliases temporal responses 

Both photon absorptions and QB productions are inherently stochastic (Pumir et al., 2008; Song et al., 

2016), and the term stochastic sampling was coined to describe the stochastic operation of the entire 

microvillus population (Song et al., 2012a). By employing the Gillespie algorithm (Gillespie, 1976) - to 

simulate the “whole-cell” photoreceptor model, its stochasticity could be mimicked realistically to 
investigate how QB variations impact information processing.  

 

In contrast to the past view, where the QB variations were considered mostly noise that lowers a 

photoreceptor's information transfer (Laughlin and Lillywhite, 1982; Lillywhite, 1979; Lillywhite and 

Laughlin, 1979), both our modelling and experimental results indicate that stochasticity benefits encoding. 

The stochastically operating microvilli resist saturation in generating the macroscopic photoreceptor output 
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(Juusola et al., 2015; Song et al., 2012a). Stochastic QB latency distributions are similar over a wide range of 

light backgrounds (Juusola and Hardie, 2001a), weighting microvilli output to evoke similar-looking 

temporal responses to naturalistic stimulation in different illumination conditions (Faivre and Juusola, 

2008; Juusola and de Polavieja, 2003).  

 

Stochastic sampling may represent a generic solution to the temporal aliasing problems (Fig. 3E). 

Simulations show that stochastic refractory periods reduce oscillations in photoreceptor output compared 

to those seen in models with a fixed refractory period (Fig. 3F) (Song and Juusola, 2017; Song et al., 

2012a). A more detailed account of how stochastic sampling benefits encoding and the related trade‐off 
between anti-aliasing and broadband noise can be found in the recent publications (Juusola et al., 2017; 

Juusola and Song, 2017; Song and Juusola, 2017). 

 

Global voltage feedback performs contrast normalisation 

In the “whole-cell” photoreceptor model, voltages produced at the photo-insensitive membrane regulate 

the electromotive driving force of LIC through TRP/TRPL1 channels on the photosensitive membrane (Fig. 

3G) acting as global feedback (Song et al., 2012a). Although the concept of regulating an ion channel's 

driving force by voltage is not new (Hodgkin and Huxley, 1952), how this influences adaptation, especially 

to naturalistic stimulation, was less clear. 

 

Simulations showed that the voltage regulation act as a global adaptive gain controller, compressing LIC 

signals less in dim conditions but far more to bright stimulation (Song et al., 2012a). Importantly, the 

feedback signal changes instantaneously as the light changes, adapting the neural responses to input 

statistics (Juusola and Song, 2017; Wark et al., 2007). This dynamic contributes to the rapid normalisation 

of a photoreceptor’s contrast responses in a natural environment (Figs 2D and 3H) (Heeger, 1992; Juusola 

and de Polavieja, 2003; Li et al., 2019). 

 

Together, the above mechanisms constitute stochastic adaptive sampling (Song et al., 2012a). Within this 

scheme, subcellular RP and stochastic signalling were found extremely beneficial for encoding efficient and 

invariable neural representations of the visual world. In contrast, these two mechanisms were previously 

thought to be detrimental to analogue signalling, as they either lose information or add noise. However, 

“whole-cell” model simulations have shown their real importance in elucidating how stochastic sampling 

maximises visual information packaging in photoreceptor output while minimising aliasing. For more in-

depth reviews, please see (Juusola and Song, 2017; Song and Juusola, 2017).  

 

Neuroethological adaptations 

Different fly species have evolved with distinct behaviours and lifestyles. The fast‐flying  Coenosia is a 

predator, and the slow‐flying Drosophila can be its prey (Gonzalez-Bellido et al., 2011). Starting from the 

photoreceptors, predatory Coenosia has faster vision than its fruit-loving cousin, Drosophila. What 

neuroethological adaptations give Coenosia faster photoreceptor dynamics and vision? 

 

“Whole-cell” photoreceptor models can be tweaked to predict the responses of different fly species. The 
same model structure works equally well for simulating Drosophila, Coenosia and Calliphora photoreceptor 

responses, with the changes in the four QB sampling factors accounting for most of their differences (Fig. 

4). The fast-flying flies can have more microvilli, briefer QBs, smaller RPs and narrowed latency distributions 

(Song and Juusola, 2014; Song et al., 2012a). These findings suggest that evolution may use conserved 

computational adaptation mechanisms to match early visual information processing with lifestyles.  

 

                        
1
 TRP: Transient receptor potential;   TRPL: Transient receptor potential like; 

TRP channels were initially discovered in the so-called "transient receptor potential" mutant (trp-mutant) strain of 

the fruit fly Drosophila, hence their name. Later, TRP channels were found in vertebrates where they are ubiquitously 

expressed in many cell types and tissues (Hardie, 2007). 
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Fig.4. Neuroethological 

adaptation differences in 

fly photoreceptor voltage 

responses. Different fly 

species have evolved with 

distinct visual behaviours 

and lifestyles. The same 

model structure can 

accurately predict R1-R6 

photoreceptor voltage 

responses and their 

information transfer rates 

of slow-flying (A) 

Drosophila melanogaster 

and fast-flying Calliphora 

vicina (B) and Coenosia 

attenuata (C). Larger 

microvillus population, 

smaller bumps, narrower 

latency distribution and 

shorter refractory periods 

can make the photoreceptor response dynamics faster, enabling them to capture more information from 

the same naturalistic light contrast stimulus. Figure adapted from (Juusola and Song, 2017; Song et al., 

2012a). 

 

Algorithmic photoreceptor signalling implementation  

John von Neumann famously proclaimed: With four parameters I can fit an elephant, and with five I can 

make him wiggle his trunk (Mayer et al., 2010), meaning that a complex model with enough parameters 

can fit any data and perhaps one should not be too impressed by that.  

 

One can argue that the “whole-cell” photoreceptor models are too complicated with too many details, 
containing too much or unnecessary parts. But through their systematic construction and testing against 

comparable experimental recordings, the models have played a significant role in revealing a new 

understanding of how the fly photoreceptors sample light information (Juusola et al., 2017; Song and 

Juusola, 2014; Song et al., 2012a). This new understanding then helped to reduce the “whole-cell” model 
into a much simple phenomenological model, incorporating as little parameters as possible while being 

inspired by the earlier ideas about quantal sampling (Henderson et al., 2000; Juusola et al., 2016; Juusola 

and Hardie, 2001a, b; Juusola et al., 1994; Juusola et al., 1995a; Wong and Knight, 1980; Wong et al., 1982, 

1980). The new idea was to probabilistically sample QBs from the latency distribution and the newly 

discovered refractory distribution (Song et al., 2017). The resulting reduced 4-parameter model can predict 

the photoreceptor response dynamics equally well with the “whole-cell” model (Li et al., 2019; Song et al., 

2017). 

 

The reduced model is parameterised into four sampling factors: the microvillus (sampling unit) count, QB 

waveforms, QB latencies, and QB RPs, while its four-parameter algorithm design is based on stochastic 

renewal processes. It is assumed that the QB generations inside a microvillus follow a renewal process, and 

superpositions of 30,000 independent renewal processes are used to model photoreceptor signalling. The 

model implements five rules: (1) A microvilli population absorbs photons based on Poisson processes. (2) 

Each successfully absorbed photon leads to a delayed QB. (3) A refractory period follows each QB. (4) All 

QBs sum up macroscopic LIC. (5) QB latencies and refractory periods are stochastic variables that follow 

long-tailed distributions, e.g. log-normal distributions.  

 

This simple model is important because:  
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● From the systems biology perspective, the simple model acts as a mesoscopic bridge to link the 

molecular dynamics at the microscopic level to the “whole-cell” response at the macroscopic level, 

which otherwise would be hard to do; owing to the complicated interconnections within the molecular 

reaction network.  

● Extensive computer simulations may help to obtain qualitative insight, but it is the mathematics that 

truly delineates the system. Mathematical analysis for quantitative results is easier to perform on the 

simple model. A new formula was defined to calculate the probability density function (PDF) for the 

QB interval distribution: not the convolution of the PDF of the photon-interval and the RP’s PDF, but 
the weighted sum of the two (Song et al., 2017). In the past research, it was unconsidered that 

photons could arrive after the RP, in which case the RP does not influence encoding (Franklin and Bair, 

1995).  

● The simple model is an algorithmic implementation of the photoreceptor signalling, accomplishing the 

2nd level in the three analysis levels. Such algorithms can be beneficial in brain-inspired computations.  

 

Refractory information sampling benefits vision 

Light intensities in a natural scene are distributed in a highly structured way, showing strong 

spatiotemporal correlations (Juusola and de Polavieja, 2003; Rieke and Rudd, 2009; van Hateren, 1997). 

The efficient coding hypothesis proposes that the sensory neurons, networks and organs have evolved to 

utilise such environmental regularities in their neural representations (Barlow, 1961). Experiments have 

shown that sensory neurons transmit more information when the input stimuli are chosen from natural 

ensembles (Juusola and de Polavieja, 2003; Rieke et al., 1995). This realisation means that these neurons 

are not simple pre-processing filters. Otherwise, they would sample and transmit maximum information 

from a Gaussian white noise stimulus (GWN), which has a “flat” power spectrum and should contain most 
information within its bandwidth and variance (Juusola and de Polavieja, 2003; Shannon, 1948). 

 

Why and how does an early sensory neuron encode various stimuli with different efficiency? What stimuli 

excite the neuron the most, producing the highest signal-to-noise ratio? These questions were investigated 

by “whole-cell” photoreceptor model simulations to GWN stimuli with different frequency cut-offs and 

manipulated naturalistic light time series, which follow different temporal statistics (Figs 5 and 6). (Juusola 

et al., 2017; Song and Juusola, 2014).  

 

Four types of stimuli were used to simulate the “whole-cell” model: 
(1) a naturalistic stimulus, NS, selected from van Hateren natural stimulus collection (Juusola and de 

Polavieja, 2003; van Hateren, 1997). The NS has complicated higher-order correlations, with neighbour 

values more likely to be similar, but its amplitude power spectrum roughly follows 1/f statistics.  

(2) A shuffled-NS, having all NS intensity values rearranged in a random order to whiten the NS (Song and 

Juusola, 2014).  

(3) An artificial GWN-1/f stimulus; a random phase-shifted NS (Song and Juusola, 2014).  

(4) NS, modulated by a Drosophila’s saccadic walk within a natural scene (Juusola et al., 2017).  

 

In each case, the model simulations closely resembled in vivo intracellular voltage responses to the very 

same stimuli. Thus, these conclusions were drawn:  

 

● Naturalistic stimulation generates larger and information-richer photoreceptor responses than stimuli 

without its temporal correlations (Juusola and de Polavieja, 2003; Song and Juusola, 2014). A 

Drosophila R1-R6 photoreceptor captures 2-to-4-times more information than previous maximum 

estimates (Juusola et al., 2017). In particular, this happens when a photoreceptor responds to high-

contrast bursts (periods of rapid bright light changes followed by darker quiescent periods) that 

resemble light input from natural scenes generated by saccadic viewing (Fig. 6). These results explain 

why GWN, which lacks all these correlations, is a highly inefficient stimulus to study neural 

performance.  

● The mechanistic reason why information sampling is more efficient for NS stimulation is that a 

photoreceptor's information capture depends critically upon the stochastic refractoriness of its 30,000 

sampling units (microvilli). NS contains more dark contrasts (Ratliff et al., 2010), recovering more 
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refractory microvilli (Juusola et al., 2017; Juusola and Song, 2017; Song and Juusola, 2014). The more 

available microvilli enable the cell to sample more photons, generating more QBs, from phasic light 

changes, and encoding more information (Juusola et al., 2017; Song and Juusola, 2014). 

● Stochastic refractory periods also lower the cell’s metabolic costs. For a bright NS stimulus, 40% of 
energy is saved by losing 12% of information (Song and Juusola, 2014).  

 

In summary, at the computational level of analysis, the phototransduction process can be understood 

through a framework of refractory photon information sampling. The results provided mechanistic reasons 

why and how the earliest neural code and metabolic cost depend upon the stimulation's statistical context.  

 

Fig. 5. The Naturalistic Stimuli 

generate larger and information-

richer photoreceptor responses 

than the artificial stimuli, 

highlighting the importance of 

temporal correlations in 

naturalistic stimuli. (A) GWN 

stimuli with different frequency 

cut-offs. (B) Three types of 

manipulated NS stimuli. Blue: a 

naturalistic stimulus time series 

(NS) selected from van Hateren 

natural stimulus collection. 

Green: a shuffled-NS, in which all 

the NS intensity values are 

rearranged in a random order, 

effectively whitening the Orange: 

an artificial GWN-1/f stimulus, 

which is a random phase-shifted 

NS. (C) Whitened stimuli have 

higher information content (green and dark red). (D) Photoreceptor responses to the corresponding test 

stimuli. (E) NS evokes information richer responses, i.e. photoreceptors have higher encoding efficiency 

to NS stimuli.  Figure adapted from (Song and Juusola, 2014). 
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Fig. 6. A Drosophila’s saccadic walk 
generates a bursty high-contrast time 

series from natural scenes, enabling its 

photoreceptor to extract more 

information from the environment 

than other walking patterns, Including 

linear scanning. (A-B) Angular velocity 

and yaw of a prototypical walking 

trajectory (Geurten et al., 2014). (C) A 

natural scene used for generating light 

intensity time series: (i) by translating 

the saccadic yaw (A–B) dynamics on it 

(blue trace), and (ii) by a linear walk 

with the median velocity of the 

saccadic walk. (D) Saccadic walk 

enables an R1-R6 photoreceptor to 

capture more information from the 

environment. The darker bar colours 

(left) indicate intracellular in vivo 

photoreceptor voltage recordings, the 

lighter colours (right) the 

corresponding model simulations. Figure adapted from (Juusola et al., 2017). 

 

 

Scalable “whole-cell” models: augmented new modules contribute to new discoveries  

Many signalling pathways for diverse functions exist in cell physiology. There may be many dynamical 

processes that span over multiple spatial and temporal scales, even for a specific signalling process. The 

depth of knowledge may not be complete at any time to model all the processes in a cell. Therefore, a 

“whole-cell” model should be scalable. They should integrate new modules as the knowledge accumulates 
over time (Goldberg et al., 2018).  

 

We have scaled up the “whole-cell” Drosophila photoreceptor model with two separate processes, 

including a module for microsaccadic photomechanical photoreceptor contraction dynamics (Juusola et al., 

2017) and a module to infer the cell’s synaptic feedback currents (Li et al., 2019). These new augmented 

modules have helped to obtain new understandings about insect vision and synaptic homeostasis. Such 

development shows that when a “whole-cell” model is constructed from biophysically realistic modules, as 
new evidence accumulates, the emerging discrepancies between the model predictions and experimental 

observations may indicate knowledge expansion opportunities. 

 

Photomechanical Photoreceptor microsaccades combat motion-blur and induce hyperacuity 

Whilst light adaptation enlarges the eye's dynamical range, it also desensitises the eye over time, causing 

perceptual fading to the unchanging visual stimulus. For example, this happens when nothing moves within 

a scene, and the gaze is held completely still (Ditchburn and Ginsborg, 1952). To refresh the retinal image 

and prevent it from fading, animals make rapid involuntary eye movements called microsaccades (Ahissar 

and Arieli, 2012). It was not known why microsaccades do not blur vision (Packer and Williams, 1992).  

 

This question could be addressed by systematically striving to replicate experimental in vivo recordings with 

the “whole-cell” Drosophila photoreceptor model simulations (Juusola et al., 2017). Using ex vivo atomic 

force microscopy, Hardie and Franze (2012b) had found earlier that Drosophila photoreceptors contract 

photomechanically. They proposed how these nanoscale twitches contribute to light-sensitive channel 

gating but thought these movements were too small to affect vision. However, in vivo, high-speed optical 

microscopy with electrophysiology revealed that targeted light stimulation causes a larger ultrafast 

axiolateral photoreceptor movement, a microsaccade (Fig. 7), which dynamically shifts and narrows its 
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receptive field (Juusola et al., 2017). These photomechanics, which simultaneously shape both the light 

input and photoreceptor output, could be modelled by a separate module, placed as a pre-processing step 

in the “whole-cell” model (Juusola et al., 2017). 

 

The simulations were tuned to replicate in vivo electrophysiological recordings, in which two bright spatially 

separated dots crossed a photoreceptor’s receptive field, generating a highly-phasic two-peaked voltage 

response (Fig. 7Biv). With the recordings and model predictions being consistent with the related in vivo 

behavioural tests and controls, it became clear that photoreceptor microsaccades significantly improve 

Drosophila’s ability to see in fine-resolution fast-moving objects (Juusola et al., 2017). Thus, microsaccades 

effectively reduce motion blur, sharpening the retinal image to separate adjacent visual objects in time. 

This active sampling mechanism allows Drosophila to see >4-folds finer details than their hypothesised 

optical pixelation limit (interommatidial distance), disproving the 100-year-old theory about compound eye 

acuity (Juusola et al., 2017).  

 

Fig. 7. Microsaccadic eye movements increase visual acuity 

in insect vision. A microsaccadic movement model was 

developed to tune the light input for the photoreceptor 

model. This model allows the photoreceptor’s receptive 
field to move and narrow with the moving dots. (A) 

According to the old theory, because the photoreceptor has 

a broad Gaussian receptive field (RF, blue, i), which stays 

still (ii), two bright dots crossing across it fast cannot be 

resolved (iii and iv). (B) According to the new theory, when 

the dots touch the edge of the RF (i), the photoreceptor’s 
light absorption causes it to contract (ii). This microsaccade 

moves and narrows the RF (i, red), sharpening light input 

(iii, red) so that the two moving dots can be encoded in 

time as two separate peaks in the voltage response (iv). 

Figure adapted from (Juusola et al., 2017). 

 

 

Synaptic feedback: photoreceptor-interneuron-photoreceptor circuit homeostasis 

Homeostatic processes regulate neurons’ electrical activity and make circuitry communication fault-

tolerant against perturbations (Marder and Goaillard, 2006). Nevertheless, such robustness could have 

associated costs (Abbott and Lemasson, 1993). How do the intrinsic perturbations of missing Ca2+ activated 

K+ channels influence the synaptic transmission, and what are the costs? These questions can be 

investigated by studying the synaptic transmission between photoreceptors and interneurons (Large 

Monopolar Cells or LMCs). In this R-LMC-R system, stereotypical columns of feedforward and feedback 

synapses are formed to process and route visual information to the Drosophila brain (Dau et al., 2016; 

Meinertzhagen and O'Neil, 1991; Rivera-Alba et al., 2011; Zheng et al., 2006; Zheng et al., 2009). 

 

The R-LMC-R circuitry is perturbed by gene deletions in SK, “small”, and BK, “big”, conductance Ca2+-

activated K+-channels. One can work out how these channels contribute to neural processing by 

systematically comparing intracellularly recorded and “whole-cell”-model-simulated wild-type and mutant 

photoreceptor voltage responses to naturalistic light intensity time series (Li et al., 2019; Zheng et al., 

2006). Furthermore, because the original photoreceptor model lacked the synaptic feedback conductances, 

the differences between the simulated and recorded responses could be used to infer how these shape 

photoreceptor voltage responses (Fig. 8). By directly comparing the model predicted photoreceptor 

responses (without the synapse) to the real photoreceptor recordings for the same light stimulation, we 

could work out how the synaptic feedback modulation (from LMCs) accentuates the photoreceptor output, 
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and how this modulation happens homeostatically as the mutant flies’ photoreceptor-LMC-photoreceptor 

systems adapt their synaptic loads. This approach gave computational means to quantify the homeostatic 

changes involved and their cost in retaining synaptic information transfer (Li et al., 2019). 

 

The R-LMC-R circuitry shows real robustness: the loss of SK and BK channels did not diminish Drosophila 

photoreceptors’ information sampling and transmission capacity in vivo. However, the homeostatic 

compensation did come with unavoidable costs. It reduced other K+-currents and overloaded synaptic 

feedback from the lamina network, reshaping fast adaptation trends in photoreceptor output. In effect, 

communication between the mutant photoreceptors and LMCs became inefficient, consuming more 

energy while distorting visual information flow to the brain. Thus, the results indicated that whilst 

homeostatic compensation makes neural communication robust, this comes with the price tag of being 

energetically more expensive and less adaptive to sudden large light changes (Abou Tayoun et al., 2011; Li 

et al., 2019). 

 

Fig. 8. Synaptic feedback currents 

are tuned so that the difference 

between the simulated and 

recorded responses are minimised.  

 

 

Conclusion 
“Whole-cell” models are bottom‐up models, which - in their extreme form - aim to account for the 

integrated function of every gene or molecule inside a cell. They integrate heterogeneous dataset about 

the studied organism into a unified simulation framework for systematic investigations. Such models for 

bacteria have already shown their capacity to predict complex cellular dynamics, identify knowledge 

limitations, and suggest future experiments for obtaining new knowledge (Carrera and Covert, 2015). 

However, in computational neuroscience, there has been a void for “whole-cell” neuron models that can 

(1) integrate both biochemistry models for signalling pathways and biophysical models for the electrical 

behaviours of the membrane; (2) perform the integration at the “whole-cell” cellular level across many 
spatial scales, synapses- soma-axons; and (3) can reliably map the neuron’s naturalistic inputs to its voltage 

responses at the cellular level, for the study of neural information processing. 

 

This gap was narrowed by constructing “whole-cell” fly photoreceptor models (Juusola and Song, 2017; 

Juusola et al., 2015; Song and Juusola, 2017; Song et al., 2012a). We reviewed these models and showed 

how they had been used to study insect vision and visual information processing. The current models were 

refined over many years and represent the latest knowledge of quantal light information sampling in 

microvillar compartmentalised phototransduction systems. These models can integrate the molecular 

dynamics of biochemical reactions at the microscopic scales and reproduce many experimentally observed 

dynamics or theoretically deduced mechanisms at the single-cell level. By simulating the dynamics of the 

contributing components, the models have revealed their considerable explanatory power in clarifying our 

understanding of various phenomena, such as (1) how to achieve contrast constancy – with objects looking 

the same in dim and bright conditions - through quantal stochastic adaptive sampling mechanisms (Juusola 

and Song, 2017; Juusola et al., 2015; Song et al., 2012a); (2) how this relates to photoreceptors’ vast 

dynamic range (Song and Juusola, 2017; Song et al., 2012a; Song et al., 2017); and (3) how the 

photoreceptor microsaccades combat motion-blur, rather than cause it, enabling the flies to see visual 

details beyond their compound eye’s optical limit (Juusola et al., 2017). 

 

Without automatic parameter tuning, the model can respond like a real neuron to light time series that 

follow a wide range of statistics, as validated experimentally (Juusola et al., 2017; Song and Juusola, 2014). 
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The close match between simulations with experiments allows one to explore how the neuron processes 

stimuli with complex temporal correlations. Fly photoreceptors are incredibly well adapted to deal with 

fluctuating patterns of light that enter the eye, effectively utilising the structures of naturalistic light 

changes to maximise visual information sampling (Juusola et al., 2017; Song and Juusola, 2014). Through 

photomechanical microsaccades, they auto-regulate the light stimuli falling within their receptive fields, 

and by that, practically initiate active sensing (Juusola et al., 2017). These findings challenge the traditional 

ideas of photoreceptors being simple light detectors and the concept that the “real” vision only happens 
downstream in the retinal networks and within the brain.  

 

“Whole-cell” models enable dissection of neural information processing at three levels of analysis. At the 

implementation level, they can be used to assess light-adaptation results from dynamic changes in quantal 

sampling (Song and Juusola, 2014; Song et al., 2012a). At the algorithmic level, the workings of a complex 

“whole-cell” model could be reduced to a simple algorithm with only four parameters to achieve automatic 

gain control and temporal adaptation (Song et al., 2017). At the computational level, the phototransduction 

process could be understood mechanistically through a framework of stochastic adaptive photon sampling, 

which clarified why coding of naturalistic stimuli with complex temporal correlations is more efficient than 

encoding GWN stimuli that lack these correlations (Juusola et al., 2017; Song and Juusola, 2014). 

 

The success of these models is a direct testament to a close marriage between experiments and theory. 

Painstakingly perfected experimental methods provided intracellular neural responses and 

photomechanical contraction dynamics of wild-type and mutant flies with unprecedented quality (Hardie, 

1991; Juusola et al., 2017; Juusola et al., 2016; Juusola and Hardie, 2001a; Song and Juusola, 2014), which 

could directly guide the model parameters (Juusola et al., 2017; Li et al., 2019; Song et al., 2009; Song and 

Juusola, 2014; Song et al., 2012a) and be used in the result comparisons. Simultaneously, information 

theoretical and systems analytical methods with minimal assumptions (Juusola and de Polavieja, 2003; 

Juusola and Hardie, 2001a; Shannon, 1948; Song et al., 2017; van Hateren and Snippe, 2006) enabled 

recordings and simulations (of the same size and resolution) to be tested and analysed in unbiased ways. 

From our experience of building and exploring with these “whole-cell” models, we found this integrative 
(multidisciplinary constructionist) approach extremely useful and would like to call for more efforts in this 

direction. Whole-cell models of more complex neurons need to integrate efforts from targeted 

experiments, computer simulations, theoretical hypothesis and mathematical descriptions, and thus 

inevitably will require interdisciplinary research cooperation.  

 

Appendices 

Appendix A：Some conceptual clarifications 

“Whole-cell” models. Throughout this paper, “whole-cell” is printed in quotations, as the described 
photoreceptor models do not fall within the strict classification of including all signalling pathways. The fly 

photoreceptor models focus on the phototransduction signalling dynamics and ignoring other functions, 

such as gene encoding, protein synthesis and degradation, transcriptional regulation and metabolism. The 

models are not as complicated as the ones reported in systems biology; for example, the M. genitalium 

model implements 28 pathways (Goldberg et al., 2018). So “whole-cell” is used in a broader sense, 

indicating that a dynamical process is modelled both in the microscopic gene/molecular and macroscopic 

whole-cell scales.  

 

Multi-modular, multi-compartmental and multiscale models. Several concepts can describe complex 

models: multi-modular models, multi-compartmental models, and multiscale models. We have 

encountered them all in our modelling process. Although the three concepts have different definitions, 

they can also intertwine with each other.  

 

A multi-modular model is one where the organism or the model can be divided into different components. 

Each of these can be a sub-model for a different function. For example, a “whole-cell” photoreceptor 
model contains four modules, with each describing a different dynamical process; including the light 

absorption process, the stochastic molecular reaction pathway, and the deterministic membrane charging 
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process. A multi-compartmental model can encompass different body sections. In computational 

neuroscience, multi-compartmental models are used to account for the complex morphology of a neuron 

(Herz et al., 2006), and a complicated model can include tens of thousands of neural compartments. The 

“whole-cell” photoreceptor models have two major compartments: the photosensitive rhabdomere and 

the photo-insensitive cell body (Fig. 1). The photosensitive rhabdomere can be further divided into 30,000 

microvilli. However, this part of the model only contains three modules, where the photo-insensitive 

compartment has only one module. 

 

Multiscale models integrate models at different scales to describe a system with features that can happen 

at multiple space and time scales. The different models usually focus on different resolution scales, such as 

atoms, proteins, chemical reaction-diffusion or network dynamics. In computational neuroscience, there 

are systems models for neural circuitry, where signals from many neurons are pooled together as excitation 

or inhibition signals (van Vreeswijk and Sompolinsky, 1998). There are also single neuron models at various 

abstraction levels (Herz et al., 2006), including point-neuron models (Hodgkin and Huxley, 1952); 

morphologically-detailed multi-compartmental neuron models (Rall, 1959); subcellular models, described 

by differential equations (Izhikevich, 2004); and molecular dynamics models simulated with Monte Carlo 

methods (Vasudeva and Bhalla, 2004).  
 

By definition, a “whole-cell” model is multiscale, integrating dynamics at many spatial and temporal 

resolutions. The “whole-cell” photoreceptor models are multiscale models that integrate intracellular 
protein level signalling with whole-cell level membrane electrophysiology. However, multiscale models do 

not need to be integrated into one complex model. Instead, they can be parallel models constructed down 

to different levels of abstraction. The three-levels-of-analysis framework is multiscale by nature, and we 

showed how the photoreceptor models could be analysed at the computational, algorithmic and 

implementation level.  

 

Appendices B-E: Brief mathematical presentations of the “whole-cell” model 
Akin to a real R1–R6 photoreceptor‘s signal transduction process, the “whole-cell” fly photoreceptor model 
comprises four biophysically realistic submodules (Fig. 1D) (Juusola et al., 2015; Song et al., 2012a). We 

now briefly present the mathematical summary of the model equations for the relevant modules so that 

this review is self-contained. The other details, such as the parameter justifications and the relevant 

experimental measurements, can be found in corresponding references. The Matlab scripts for this model 

are downloadable from the repository:  

https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/BiophysicalPhotoreceptorMo

del.  

 

Appendix B: Random Photon Absorption Model (RandPAM)  

Appendix B describes the Random Photon Absorption Model (RandPAM), which distributes the incoming 

photons to the 30,000 microvilli following Poisson statistics. Its output is the absorbed photon sequences of 

each microvillus (Song et al., 2012a; Song et al., 2016).  

 

Assuming that all microvilli absorb photons independently and have the same photon absorption 

probability, the photon absorption process can be modelled as a multinomial process. At each time 

incident, the distribution of 𝑁𝑝ℎ photons over 𝑁𝑢microvilli is multinomial with a size parameter equal to 𝑁𝑝ℎ, and the probability vector of length  𝑁𝑢 with each element equal to 
1𝑁𝑢 . 

 

Appendix C: Stochastic Bump Model 

Appendix C shows the stochastic bump model (Song et al., 2012a). This model simulates the molecular 

reaction network for the fly phototransduction cascade, which transduces a sequence of absorbed photons 

to a sequence of unitary current events, called the quantum bumps, inside a single microvillus. Similar work 

can also be found in (Pumir et al., 2008), but it only simulates single-photon responses without the 

capability of simulating the transduction of photon arrival sequences. Simulation of bump sequences is 

needed for studying the light adaptation process. 
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The molecular reaction network is rather complicated, including a G-protein coupled receptor signalling 

pathway, various Ca2+ signalling pathways and the relevant feedback dynamics. A photon activates 

rhodopsin, which then kicks the G protein active, catalysing GDP exchange for GTP. The active Ga-GTP then 

couples to PLC and hydrolyses PIP2 to generate DAG, InsP3, and a proton. These reactions result in the 

activation of two classes of Ca2+ permeable cation channels, TRP and TRPL. Ca2+ influx via TRP then feeds 

back to multiple targets in the phototransduction cascade, including the channels, rhodopsin and PLC. The 

various feedbacks influence the light response kinetics, amplification and adaptation (refer to fig1 in Hardie 

and Juusola, 2015 for a pictorial representation of the pathway).  

 

The model comprises ~20 coupled nonlinear ODEs with ~50 parameters (Fig. 1E). Because some of the 

reactant proteins are low in numbers, the model was simulated by a stochastic method, called the Gillespie 

algorithm, which generates the statistically correct solution of the underlying chemical master equation 

(Gillespie, 1976). We provide a brief mathematical summary of the model equations, whereas the other 

details, such as the detailed meaning and values of the parameters, can be found in Table S1 of the 

published supplementary materials (Song et al., 2012a). Parameter justifications, the relevant experimental 

measurements are discussed in the supplement materials (Song et al., 2012a).  

 

In the Gillespie algorithm, the chemical system is assumed to be well-mixed for simplicity. The signalling 

pathway is decomposed into a set of unidirectional reactions, denoted as 𝑅𝑢(𝑢 = 1,2,⋯ ,12), each of 

which contains only unimolecular or bimolecular reactants (Table A1). In Table A1, the molecules, which 

are few, are counted; otherwise, concentrations are used. In general, X is the number of molecules; X* is 

the active state of X, and XT the total number of corresponding molecules/channels inside a single 

microvillus. [X] is the concentration; [X]i is intracellular concentration, and [X]o the extracellular 

concentration. 

 

Each of the reaction steps in Table A1 is characterised by a momentarily-defined stochastic reaction 

constant 𝑐𝑢, where 𝑐𝑢𝛿𝑡 denotes the average probability that a particular combination of R reactant 

molecules reacts accordingly in the next infinitesimal time interval 𝛿𝑡. If ℎ𝑢 is the total number of 𝑅𝑢 

reactant pairs, then 𝑎𝑢𝛿𝑡 = 𝑐𝑢ℎ𝑢𝛿𝑡 is the average probability that reaction 𝑅𝑢 will occur during 𝛿𝑡. 
Assuming during 𝛿𝑡, only 0 or 1 reaction occurs, 𝑑𝑡 (next reaction time increment) and 𝑅𝑢 can be 

determined independently. When 𝑅𝑢 is chosen, the state vector X is updated with a state transition vector, 𝑉𝑢. The procedure iterates until a termination criterion is satisfied; e.g.  if the current simulation time, t, is 

larger than a preset value.  

 

Table A1: The modelled reactions in the phototransduction cascade 

 

Rection Parameter Parameter 

definition 

Corresponding biological 
process 𝑀∗ 𝑐1→∅                         (R1) 𝑐1 = 𝛾𝑀∗ (1+ ℎ𝑀∗𝑓𝑛) 𝜅 and 𝛾 are 

the activation 
and 
deactivation 
rates, 
respectively 

 

 𝑓𝑝and 𝑓𝑛 are 
the positive 
and feedbacks, 
respectively. 
 

Inactivation of metarhodopsin 

(M*) by arrestin binding. ∅ 
indicates any product, whose 
kinetics are not modelled 

 𝑀∗ + 𝐺 𝑐2→𝑀∗ + 𝐺∗    (R2) 𝑐2 = 𝜅𝐺∗  The activation of G into G* by 
M*. Three states are modelled, 
GαGβγGDP (G), GαGTP (G*) and 
GαGTP‐PLC (PLC*) 
 𝐺∗ +𝑃𝐿𝐶 𝑐3→𝑃𝐿𝐶 ∗      

(R3) 

𝑐3 = 𝜅𝑃𝐿𝐶∗  G* binds to PLC and becomes 
an active G‐protein‐PLC 
complex (PLC*) 
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𝐺∗ +𝑃𝐿𝐶 ∗𝑐4→𝐺𝛼𝐺𝐷𝑃+ 𝑃𝐿𝐶∗      
(R4) 

𝑐4 = 𝛾𝐺𝐴𝑃 ℎ∗,𝑝 and ℎ∗,𝑛 
are the 
positive and 
negative 
feedback 
strength to the 
relevant 
molecular 
targets. 
 

 𝐾𝐷∗  is the 
transition rate 
from D* to the 
opening of 
TRP/TRPL.  
 𝐾𝑈 and 𝐾𝑅 are 
the uptake and 
release rate of 
Ca2+ from 
Calmodulin.  
 

V is the 
microvillus 
volume. 
 

The detailed 
meaning and 
values of the 
parameters 
can be found 
in Table S1 of 
supplementary 
materials of 
Song et al. in 
2012. 

The conversion from GαGTP to 
GαGDP by GTPase activity of 
G*, catalysed by PLC* 

 𝐺𝛼𝐺𝐷𝑃 𝑐5→ 𝐺                (R5) 𝑐5 = 𝛾𝐺  GαGTP then rebinds to Gβγ 
before it can be reactivated 

 𝑃𝐿𝐶 ∗ 𝑐6→𝐷∗+ 𝑃𝐿𝐶 ∗    
(R6) 

𝑐6 = 𝛾𝐷∗  PLC* hydrolyses PIP2 into DAG 
and IP3. Here, PLC* is modelled 
to activate the unknown 
excitation messenger D* 
directly 

 𝑃𝐿𝐶 ∗ 𝑐7→ 𝑃𝐿𝐶 +𝐺𝛼𝐺𝐷𝑃                          (R7) 
 𝑐7 = 𝛾𝑃𝐿𝐶 ∗ (1+ ℎ𝑃𝐿𝐶∗𝑓𝑛) 
 

 

PLC* decompose to PLC and 
GαGDP 

 𝐷∗ 𝑐8→∅                          
(R8) 

𝑐8 = 𝛾𝐷∗(1+ ℎ𝐷∗𝑓𝑛) D* degrades  

   2𝐷∗+𝑇 𝑐9→𝑇∗               
(R9) 

𝑐9 = 𝜅𝑇∗(1+ ℎ𝑇∗ ,𝑝𝑓𝑝)(𝐾𝐷∗)2  

 

 

D* excites TRP/TRPL channels 
T to their open states (T*) 
 

𝑇∗ 𝑐10→ 𝑇                         
(R10) 

𝑐10 = 𝛾𝑇∗(1 + ℎ𝑇∗,𝑛𝑓𝑛) 
 

 

open TRP/TRPL channels close 

 

𝐶𝑎2+ +𝐶𝑎𝑀 𝑐11→ 𝐶 ∗ (R11) 𝑐11 = 𝐾𝑈𝑉2  

 

 

Ca2+ binds to Calmodulin C* 

 

𝐶 ∗ 𝑐12→ 𝐶𝑎2+ +𝐶𝑎𝑀 (R12) 𝑐12 = 𝐾𝑅 the release of Ca2+ from 
Calmodulin 

 

Assuming that, apart from Ca2+, the molecular components cannot enter or leave the microvillus, the 

following mass balance equations hold in Table A2. 

Table A2: Mass balance equations in the phototransduction cascade of a single microvillus 

Mass balance equation Definition Number 𝑇∗ + 𝑇 = 𝑇𝑇         The total amount of TRP/TRPL channels (𝑇𝑇 ) is fixed  (1) 𝐶𝑎𝑀 +𝐶 ∗ = 𝐶𝑇 The total amount of Calmodulin (𝐶𝑇) is fixed (2) 𝑃𝐿𝐶 ∗+ 𝑃𝐿𝐶 = 𝑃𝐿𝐶𝑇 The total amount of PLC (𝑃𝐿𝐶𝑇) is fixed (3) 𝐺∗𝐺𝐷𝑃+𝐺 +𝐺∗ +𝑃𝐿𝐶 ∗ = 𝐺𝑇  The total amount of G proteins (𝐺𝑇 ) is fixed (4) 

 

Using these mass balance equations in Table A2, the number of state variables can be reduced, and the 

state vector, X, is defined as: 𝑋 = [𝑀∗ ;𝐺;𝐺∗ ;𝑃𝐿𝐶 ∗ ;𝐷∗ ;𝐶 ∗;𝑇∗]                                                               (5) 
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The state transition matrix, V, is defined as: 

𝑽 =
[  
   
 −1 0 0 0 0 0 0 0 0 0 0 00 −1 0 0 1 0 0 0 0 0 0 00 1 −1 −1 0 0 0 0 0 0 0 00 0 1 0 0 0 −1 0 0 0 0 00 0 0 0 0 1 0 −1 −2 0 0 00 0 0 0 0 0 0 0 0 0 1 −10 0 0 0 0 0 0 0 1 −1 0 0 ]  

   
 
                          (6) 

 

The number of reactant pairs for each reaction is: 

 

𝒉 =      [𝑀∗ ; 𝑀∗(𝐺); 𝐺∗(𝑃𝐿𝐶𝑇− 𝑃𝐿𝐶 ∗); 𝐺∗(𝑃𝐿𝐶∗);𝐺𝑇 −𝐺∗ −𝐺 −𝑃𝐿𝐶 ∗; 𝑃𝐿𝐶 ∗ ; 𝑃𝐿𝐶 ∗; 𝐷∗;𝐷∗(𝐷∗−1)(𝑇𝑇−𝑇∗)2 ; 𝑇∗ ; 𝐶𝑎2+(𝐶𝑎𝑀); 𝐶 ∗]                  (7) 

 

With the definitions of X, V, c, h, the time increment dt, during which the next reaction 𝑅𝑢 reacts, is 

determined by Eq.8, and 𝑅𝑢 can be chosen so that Eq. 9 satisfies: 

 

 𝑑𝑡 = 1𝑙𝑎+𝑎𝑠 ln ( 1𝑟1)                                                                        (8) 

 ∑ 𝑎𝑣 < 𝑟2𝑎𝑠 ≤ ∑ 𝑎𝑣𝑢𝑣=1𝑢−1𝑣=1                                                             (9) 

where 𝑟1 and 𝑟2 are uniformly distributed random numbers. 𝑎𝑠 is the dot product between 𝑐 and ℎ (𝑎𝑠 =∑ 𝑐𝑢ℎ𝑢𝑀𝑢=1 ), and 𝑎𝑣 is a product between 𝑐𝑣 and ℎ𝑣.  

 

Ca dynamics: Ca2+ is an essential feedback signal in the phototransduction cascade.  Ideally, Ca2+ should be 

included as one of the state variables, but because Ca2+ changes up to 1,000-fold during a bump, its 

dynamics are approximated by a deterministic approach to save computation time. The formulas to 

calculate Ca2+ and the relevant feedbacks are listed in Table 3.  Ca2+ dynamics are assumed to be so fast 

that the stochastic simulation framework quantities are updated by the steady-state values.  

 

Table 3: Formulas for Ca2+ dynamics in the microvillus 

Formulas 

 

Parameters # 

 𝑑[𝐶𝑎2+]𝑖𝑑𝑡  = 𝐼𝐶𝑎,𝑛𝑒𝑡2𝑉𝐹 − 𝑛 𝑑[𝐶∗]𝑖𝑑𝑡 − 𝐾𝐶𝑎[𝐶𝑎2+]𝑖      1st term: Ca2+ influx; 2nd term: Ca2+ uptake by calcium 
buffer; 3rd term: Ca2+ diffusion to the cell body; 
V: microvillus volume, F: Faraday constant. n: the 
number of Calmodulin Ca2+ binding sites. 1/KCa 
denotes Ca2+ diffusion time constant. 
 

(10) 

𝐼𝐶𝑎,𝑛𝑒𝑡 = 𝐼𝐶𝑎 −2𝐼𝑁𝑎𝐶𝑎   𝐼𝐶𝑎: Ca2+ influx through TRP/TRPL, calculated as 40% 
of total current influx; 𝐼𝑁𝑎𝐶𝑎: Ca2+ extrusion from Na+/Ca2+ exchanger 

 

(11) 

𝐼𝑁𝑎𝐶𝑎 = 𝐾𝑁𝑎𝐶𝑎 ([𝑁𝑎+]𝑖 3[𝐶𝑎2+]𝑜−[𝑁𝑎+]𝑜3[𝐶𝑎2+]𝑖𝑒−𝑉𝑚𝐹𝑅𝑇 )     𝐼𝑁𝑎𝐶𝑎 is calculated from a simplified Na+/Ca2+ 
exchanger model, given that the extracellular ionic 
concentrations ae fixed and the cell is voltage‐
clamped; KNaCa: scaling factor; Vm: the 
transmembrane potential; R: the gas constant; T: the 
absolute temperature 

 

(12) 

𝑑[𝐶∗]𝑖𝑑𝑡  = 𝐾𝑢 [𝐶𝑎2+]𝑖 [𝐶𝑎𝑀]𝑖 −𝐾𝑅[𝐶∗]𝑖    
 

Dynamics of Ca2+ binding to CaM; 𝐾𝑈 and 𝐾𝑅 are the 
uptake and release rate of Ca2+ from Calmodulin.  

(13) 
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𝑓𝑝([𝐶𝑎2+]𝑖) = ([𝐶𝑎2+]𝑖𝐾𝑃 )𝑚𝑝
1+([𝐶𝑎2+]𝑖𝐾𝑃 )𝑚𝑝    

 

 

The positive and negative feedbacks are 
approximated by Hill functions of [Ca2+]i. 
 𝐾𝑝 and 𝐾𝑛 are the dissociation constants, i.e., the 
substances that provide half‐occupancy of the 
binding sites; 𝑚𝑝 and 𝑚𝑛 are the Hill coefficients, 
describing the cooperativity of the excitation 
messengers 

(14) 

𝑓𝑛([𝐶∗]𝑖) = 𝑛𝑠 ∗ ([𝐶∗]𝑖𝐾𝑛 )𝑚𝑛1+([𝐶∗ ]𝑖𝐾𝑛 )𝑚𝑛      
(15) 

 

Despite the many model parameters, adaptation mechanisms can be regulated by only two mass 

parameters: 𝑛𝑠  in Eq. 15 for the quantum bump (QB) shape and 𝑙𝑎 in Eq. 8 to tune the width of the QB 

latency distribution. These parameters had little effect on the QB refractory period when the bump 

statistics were within the physiological range for Drosophila (Song et al., 2012). 

 

Appendix D: Integration of Light-Induced Current (LIC) 

The macroscopic light-induced current (LIC) of the rhabdomere is integrated from the current QBs of up to 

Nu microvilli. The formulas for the calculations are listed in Table 4: 

 

Table 4: Formulas to calculate the macroscopic LIC 

Formulas 

 

Parameters  # 𝐼𝑖𝑛𝑁 = 𝐼𝑇∗ × 𝑇∗𝑁 

 

𝐼𝑖𝑛𝑁  is the (LIC) of microvillus N 𝑇∗𝑁 : the number of opened TRP/TRPL channels in microvillus N 

 

(16) 

𝐼𝑇∗ = 𝑔𝑇𝑅𝑃(𝑇𝑅𝑃𝑟𝑒𝑣 − 𝑉𝑚) 
 

𝐼𝑇∗  is the average single‐channel current conducted by an open 
TRP/TRPL channel; 𝑔𝑇𝑅𝑃 is the single TRP channel conductance 𝑇𝑅𝑃𝑟𝑒𝑣  is the TRP channel reversal potential; 𝑉𝑚is the 

photoreceptor membrane potential.  

 

(17) 

𝑔𝑇𝑅𝑃 = 8 ×{1  𝑖𝑓 𝑇𝑅𝑃𝑟𝑒𝑣 > 𝑉𝑚0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

Single-channel conductance is 8 pS, 𝑇𝑅𝑃𝑟𝑒𝑣  is 0 mV (18) 

𝐿𝐼𝐶 = ∑ 𝐼𝑖𝑛𝑁𝑁𝑢
𝑁=1  

 

The microscopic LIC of the rhabdomere is integrated from the 
current QBs of up to Nu microvilli. From Eq. 17, as 𝑉𝑚 increases, 

the bumps 𝐼𝑖𝑛𝑁  shrink accordingly, LIC decreases. Thus, LIC and 𝑉𝑚 are calculated iteratively.  

 

(19) 

𝑉𝑚 = 𝐻𝐻(𝐿𝐼𝐶) 
 

𝑉𝑚 is obtained by injecting the macroscopic LIC in into the HH 

model of the cell body.  

 

(20) 

 

Appendix E: Hodgkin-Huxley Cell-Body Model 

Appendix E describes the Hodgkin–Huxley model of the photoreceptor plasma membrane. This module 

transduces LIC into voltage response by reproducing the voltage‐gated K+ conductance dynamics on the 

photon‐insensitive membrane (Li et al., 2019; Niven et al., 2003). The model was adopted from (Niven et 

al., 2003); we only list the major equations and parameters. The details can be found in Vähäsöyrinki’s PhD 
thesis (Vähäsöyrinki, 2004).  

 

Table 5: Formulas for the HH model for the photoreceptor cell body 
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Formulas Parameters # 

 𝐶𝑚 𝑑𝑉𝑚𝑑𝑡 = 𝐿𝐼𝐶 −∑𝑔𝑖(𝑉𝑚− 𝐸𝑘)𝑖 − 𝑔𝐿(𝑉𝑚−𝐸𝐿) 
LIC is the macroscopic light‐induced current 
integrated from all QBs in the rhabdomere. 𝑔𝑖 
represents various voltage‐gated K+ conductances, 
including fast inactivating Shaker, slow delayed 
rectifier, Shab conductances, and a slowly 
activating, non‐inactivating voltage‐gated K+ 
conductance. 𝑔𝐿 represents K+ and Cl‐ leaks.  

 

Resting potential ‐66 mV (21) 
Specific membrane 
capacitance 

4 uF/cm2 

Maximum Shaker 
conductance 

0.8 mS/cm2 

Maximum Shab 
conductance 

3.0 mS/cm2 

Maximum novel K+ 

conductance 

0.11 mS/cm2 

Potassium leak 
conductance 

0.0855 mS/cm2 

Chloride leak 
conductance 

0.0585 mS/cm2 

𝑔𝑖 = 𝑔𝑖𝑚𝑎𝑥∏[𝛾𝑘(𝑉𝑚,𝑡)]𝑛𝑘  

 

𝑔𝑖𝑚𝑎𝑥  represents the various maximum 
conductance listed above. n is the number 
of gating variables 

(22) 

𝑑𝛾𝑘𝑑𝑡 = 𝛼𝛾(1− 𝛾𝑘)− 𝛽𝛾𝛾𝑘 
 𝛾𝑘  is the probability of the permissive state 
of the gating particles; 𝛼𝛾  and 𝛽𝛾  are 
voltage‐dependent rate constants. Steady‐
state activation and inactivation curves 
(𝑔∞) for voltage‐gated K+ channels were 
fitted to experimental data with Boltzmann 
function. 

(23) 

𝛼𝑘 = [(𝑔∞ 𝑔𝑚𝑎𝑥⁄ )𝑘]1 𝑛𝑘⁄𝜏𝑘  

 

(24) 

𝛽𝑘 = 1 − [(𝑔∞ 𝑔𝑚𝑎𝑥⁄ )𝑘]1 𝑛𝑘⁄𝜏𝑘  

 

 

(25) 

( 𝑔∞𝑔𝑚𝑎𝑥) = 11+ 𝑒𝑉50−𝑉𝑚𝑠  

 

𝑉50 is the voltage producing a steady‐state 
conductance of 50% of the maximum 
value, and s is the slope factor 

(26) 

𝜏 = 1𝑝1𝑒𝑝2−𝑉𝑚𝑝3 +𝑝4 𝑝5 −𝑉𝑚𝑒𝑝5−𝑉𝑚𝑝6 − 1 

 

The time constants of activation and 
inactivation curves were fitted to 
experimental data with a bell‐shaped 
function, where 𝑝𝑖 are the free parameters 
for fitting.  

 

(27) 

 

Table 5: Parameters for the HH model of the photoreceptor cell body 

Variable Shaker Shab Novel K+ 𝑉50(𝑚𝑉) Act Inact 

 

Act Inact Act 

‐23.7 1st ‐55.3 

2nd ‐74.8 

 

‐1.0 ‐25.7 ‐14 

𝑆(𝑚𝑉) 12.8 1st  ‐3.9 9.1 ‐6.4 10.6 

2nd  ‐10.7 

 𝑛 3 1 2 1 1 𝜏 
 

 

 

𝑝1 0.008174 0.2303 0.1163 𝜏𝑖𝑛𝑎𝑐𝑡 =1200 𝑚𝑠  𝜏𝑎𝑐𝑡𝑖 = (13+623230∗√𝜋2 exp (−2∗(𝑉𝑚+19.430 )2)  𝑝2  1.61882 ‐192.973 ‐25.6551 𝑝3  24.6583 31.3196 32.1933 𝑝4 0.05813 0.04373 0.006592 𝑝5 ‐59.639 13.4859 ‐23.8032 
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𝑝6  4.5012 11.11 1.3455 
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