
Central Lancashire Online Knowledge (CLoK)

Title Investigating centrifugal filtration of serum-based FTIR spectroscopy for the 
stratification of brain tumours

Type Article
URL https://clok.uclan.ac.uk/45316/
DOI https://doi.org/10.1371/journal.pone.0279669
Date 2023
Citation Theakstone, Ashton, Brennan, Paul, Jenkinson, Michael, Goodacre, Royston 

and Baker, Matthew (2023) Investigating centrifugal filtration of serum-
based FTIR spectroscopy for the stratification of brain tumours. PLoS ONE. 

Creators Theakstone, Ashton, Brennan, Paul, Jenkinson, Michael, Goodacre, Royston 
and Baker, Matthew

It is advisable to refer to the publisher’s version if you intend to cite from the work. 
https://doi.org/10.1371/journal.pone.0279669

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.  
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors 
and/or other copyright owners. Terms and conditions for use of this material are defined in the 
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/


RESEARCH ARTICLE

Investigating centrifugal filtration of serum-

based FTIR spectroscopy for the stratification

of brain tumours

Ashton G. TheakstoneID
1, Paul M. Brennan2, Michael D. Jenkinson3,4, Royston Goodacre5,

Matthew J. BakerID
6,7*

1 Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom, 2 Centre

for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom, 3 The Walton Centre NHS

Foundation Trust, Liverpool, United Kingdom, 4 Department of Pharmacology & Therapeutics, University of

Liverpool, Liverpool, United Kingdom, 5 Department of Biochemistry and Systems Biology, University of

Liverpool, Liverpool, United Kingdom, 6 Dxcover Limited, Glasgow, United Kingdom, 7 Faculty of Clinical

and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom

* matthew.baker@dxcover.com, MBaker10@uclan.ac.uk

Abstract

Discrimination of brain cancer versus non-cancer patients using serum-based attenuated

total reflection Fourier transform infrared (ATR-FTIR) spectroscopy diagnostics was first

developed by Hands et al with a reported sensitivity of 92.8% and specificity of 91.5%. Cam-

eron et al. then went on to stratifying between specific brain tumour types: glioblastoma mul-

tiforme (GBM) vs. primary cerebral lymphoma with a sensitivity of 90.1% and specificity of

86.3%. Expanding on these studies, 30 GBM, 30 lymphoma and 30 non-cancer patients

were selected to investigate the influence on test performance by focusing on specific

molecular weight regions of the patient serum. Membrane filters with molecular weight cut offs

of 100 kDa, 50 kDa, 30 kDa, 10 kDa and 3 kDa were purchased in order to remove the most

abundant high molecular weight components. Three groups were classified using both partial

least squares-discriminate analysis (PLS-DA) and random forest (RF) machine learning algo-

rithms; GBM versus non-cancer, lymphoma versus non-cancer and GBM versus lymphoma.

For all groups, once the serum was filtered the sensitivity, specificity and overall balanced

accuracies decreased. This illustrates that the high molecular weight components are required

for discrimination between cancer and non-cancer as well as between tumour types. From a

clinical application point of view, this is preferable as less sample preparation is required.

Introduction

Brain cancer diagnosis is challenging. The most common symptoms are non-specific (such as

headaches) and are more likely to be associated with a non-tumour diagnosis [1–3]. As many

as two thirds of patients are diagnosed in the Emergency Department when their symptoms

have deteriorated, with the majority of these patients having previously visited their primary

care doctor multiple times [4]. There is a need for a rapid, cost-effective and non-invasive tool

for earlier diagnosis.
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A vibrational spectroscopic technique, attenuated total reflection (ATR) Fourier transform

infrared (FTIR) spectroscopy, has been applied to earlier detection and diagnosis of brain

tumours [5, 6]. FTIR spectroscopy involves irradiating samples with infrared light where the

absorbance of light results in an IR spectrum that is representative of specific components

within the sample. Indication of disease states is possible through imbalances of biomolecular

components and diagnostic outputs are achievable with machine learning algorithms [7].

ATR-FTIR mode uses an internal reflection element (IRE) where an evanescent wave extends

beyond the IRE and penetrates the sample that is in direct contact [8].

Serum-based ATR-FTIR combined with machine learning algorithms can reliably predict

which patients with symptoms of a possible brain tumour actually have a tumour on brain

imaging. Hands et al. were the first to investigate the use of serum for ATR-FTIR spectroscopic

analysis for brain tumour diagnosis, comparing brain tumour and asymptomatic non-tumour

patients. Subsequent studies have included symptomatic non-tumour patients as well as inves-

tigating predictions of tumour grade and subtype [9–11]. The earlier work used a traditional,

time-consuming ATR-FTIR set-up with a fixed-point diamond IRE. A newer, high-throughput

approach uses silicon-based IRE (SIRE) sample slides. These SIREs are disposable and have

multiple sampling points, which allows for high-throughput and batch processing [12, 13].

With this technique, brain tumours can be detected with a sensitivity of 88.7%, specificity

of 94.7% and overall balanced accuracy of 91.7% [14]. To further improve test performance,

we investigated whether specific molecular weight regions of patient serum improved detec-

tion and stratification. Blood serum contains over 20,000 different proteins with a wide range

of molecular weights, dominated by human serum albumin (HSA); 30–50 g/L is considered

normal [15]. Imbalances within protein concentrations in serum may relate to specific disease

states and the low molecular weight fraction of serum may contain cancer-specific diagnostic

information [16, 17].

Commercially available centrifugal filters can fractionate serum according to a molecular

threshold, and so aid investigation of specific molecular weight fractions of serum. Tradition-

ally, these filters are used to separate and remove rapidly the most abundant high molecular

weight proteins from the less abundant low molecular weight molecules (viz. metabolites).

One concern with these filters is the extra sample preparation required, the binding of small

molecules to proteins which are then removed by filtrations. The reported potential for contam-

ination from the filter membrane, has been resolved by Bonnier et al. who developed a centrifu-

gal washing technique to remove any trace glycerine from the filter membranes [18, 19].

Here, we use the serum-based ATR-FTIR technique to investigate six (five fractions plus

unfiltered whole serum) different molecular weight regions of serum for the stratification of

brain cancer patients against non-cancer controls (Hands et.al previously reported sensitivity

of 92.8% and specificity of 91.5% [9]). We also explore the stratification between tumour types;

GBM and primary cerebral lymphoma (Cameron et al. previously reported sensitivity of

90.1% and specificity of 86.3% [12]).

Analysis of the patient serum corresponded with previous published work and involved an

unsupervised exploratory principal component analysis (PCA) followed by supervised

machine learning methods including random forest (RF) and partial least squares-discrimi-

nant analysis (PLS-DA). PCA involves an orthogonal linear transformation of the data to

determine any separation between the classes. Any variance can be displayed within a scores

plot as principal components (PC) with the first PC responsible for the greatest variance [20].

RF and PLS-DA are supervised classification algorithms where RF uses a Classification and

Regression Trees (CART) technique to build an ensemble of decision trees as independent

models and predictions are based on a majority vote within the forest [21, 22]. PLS-DA com-

bines PLS regression and linear discriminant analysis to reduce the dimensionality of complex
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data to revel hidden patterns. In binary classifications the technique separates classes by divid-

ing the data space into two distinct regions and new variables are formed called PLS compo-

nents, with the first PLS component accounting for the greatest variance (PLS1). The

corresponding loadings plots can further explain the variance by highlighting the regions

where highest disparity between the classes is observed [23, 24].

Materials and methods

Patient serum samples (n = 90) were obtained from the Walton Centre NHS Trust (Liverpool,

UK) and the Royal Preston Hospital (Preston, UK) with informed written consent, under Eth-

ics approval code (Walton Research Bank BTNW/WRTB 13_01/BTNW Application #1108).

Included within the study were 30 glioblastoma (GBM) patients, 30 primary cerebral lym-

phoma patients and 30 asymptomatic control patients.

The patient serum was fractionated sequentially through five different size molecular

weight filters (100 kDa, 50 kDa, 30 kDa, 10 kDa and 3 kDa) (Amicon Ultra-0.5 mL, Merck,

Germany). The samples were centrifuged at 14,000 xg for 30 min to collect molecular weight

fractions. The filtrate was collected and analysed so each portion represented the molecular

weights less than the cut-off point (E.g.,<100 kDa). This resulted in 6 serum samples per

patient (including unfiltered whole serum), with a total of 540 samples.

Before the filters were used, they were centrifugally washed with 0.1M NaOH and MilliQ

water through the following steps; 30 min with 0.1M NaOH at 14,000 xg, followed by 2 times

30 min with MilliQ water at 14,000 xg, and finally 2 min upside down at 1,000 xg to remove

any remaining liquid. The washing was necessary to remove any residual glycerine coating on

the ultrafiltration membranes as indicated by the manufacturer, to ensure no interferences

within the sample spectra. Within the S1 File there is example serum spectra illustrating both

washed and unwashed filters, highlighting the need for the pre-analytical washing steps.

Patient serum, either whole or molecular weight fraction (3 μL), was deposited onto a SIRE

optical sample slide (Dxcover Ltd, Glasgow, UK) and air dried before spectroscopic data col-

lection. All serum spectra were collected on a Perkin Elmer Spectrum 2 FTIR spectrometer

(Perkin Elmer, London, UK), utilising a Specac Quest ATR accessory unit with a specular

reflectance puck (Specac Ltd., London, UK), allowing a Dxcover optical sample SIRE (Dxcover

Ltd., Glasgow, UK) to be placed directly on top of the aperture. Each sample SIRE contains

four wells where one remains blank as the background and the other three were used as sample

repeats, with each three wells analysed three times. Nine spectra per patient were collected

within the range of 4000–450 cm−1, at a resolution of 4 cm−1, with 1 cm−1 data spacing and 16

co-added scans; resulting in a total of 4,860 spectra acquired. The typical time for spectral col-

lection was 15 min per patient sample slide (9 repeats and background).

The spectroscopic data analysis was completed using the R Statistical Computing Environ-

ment, MATLAB R2020a software with the PRFFECT toolbox [25] or a PCA code written in

house. Data pre-processing was applied to reduce computational burden and improve classifi-

cation algorithms. The techniques used match previous published work including a min-max

normalisation, a binning factor of 8, cutting to the spectral region of 1800–1000 cm-1, and an

extended multiplicative signal correction which uses an average of 10 background measure-

ments of the SIRE as a reference to scale each datapoint [14, 26]. The wavenumber region of

1800-1000cm-1 was chosen as it contains the most spectral information. Exploratory analysis

was completed using PCA followed by supervised machine learning methods including ran-

dom forest (RF) and partial least squares-discriminant analysis (PLS-DA). The supervised

techniques require splitting the data into training and test sets where the training set is used to

identify biosignatures in a calibration phase and the model generated subsequently used for
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predictions to be made on the test set [7, 12, 13, 27]. As there were no imbalances between the

groups, no training set sampling adjustments were needed for classification analysis. The three

groups were classified as the following: (i) GBM versus non-cancer, (ii) lymphoma versus non-

cancer and (iii) GBM versus lymphoma.

Each classification completed using the PRFFECT toolbox had 51 reiterations to minimise

standard error and to ensure a robust diagnostic model was used. The data were randomly

split by patient ID at a 70/30 ratio between the training and test sets, keeping all patient spec-

tral repeats together. The 51 reiterations shuffled the 70/30 split each time so that every patient

within the whole dataset was predicted at least once.

Results

Fig 1 displays the spectral differences between the same GBM patient sample in unfiltered

serum compared to each of the five molecular weight cut-off regions. Each patient serum was

separated through a 100 kDa filter first, followed by 50 kDa, then 30 kDa, followed by 10 kDa

and finally 3 kDa, where the filtrate (region that has passed through the filter) was analysed.

This process resulted in the molecular weight regions of<100 kDa, <50 kDa,<30 kDa,<10

kDa and<3 kDa. From Fig 1, it is clear that there is a large difference within the serum spectra

once the higher molecular weight components (>100 kDa) were removed. This is significant

in the higher wavenumber region between 3700 cm-1 to 2700 cm-1. However, more

Fig 1. Example of patient serum spectra including unfiltered whole serum and each molecular weight region. Average of the 30 GBM patients shown here.

The inset is the wavenumber region between 1800 cm-1 and 1000 cm-1, which was used for all chemometrics and machine learning analyses. Spectra is offset for

clearer visualisation.

https://doi.org/10.1371/journal.pone.0279669.g001
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importantly there are numerous differences between 1800 cm-1 and 1000 cm-1 (Fig 1 inset),

which was therefore determined as the region of interest for further analyses. The Amide I and

II bands are reduced after filtration, which is perhaps unsurprising as HSA and other serum-

based proteins have been removed (note HSA is ~50% of the protein content of human

blood). Given this observation, as to be expected, there are no visual differences observed

between the three groups of patients; GBM, lymphoma and non-cancer (S2 and S3 Figs in

S1 File), however they all followed the same trend as Fig 1 once separated into specific molecu-

lar weight fractions.

The patient spectral data were subjected to both exploratory PCA and supervised classifica-

tion models (RF and PLS-DA) for all three groups: (i) GBM versus non-cancer, (ii) lymphoma

versus non-cancer and (iii) GBM versus lymphoma. Fig 2 illustrates the PCA scores results for

the three groups with unfiltered serum and contains a slight separation between the classes

along the second principal component (PC2). Fig 3 shows the PCA outcomes for the three

groups in the molecular weight region <100 kDa, where there is no clear separation between

in the classes in all groups. The PCA scores plots for <50 kDa,<30 kDa,<10 kDa and<3

kDa are contained with the S1 File and display similar results to that of the<100 kDa region,

with no separation between the classes (GBM versus non-cancer, lymphoma versus non-cancer

and GBM versus lymphoma).

Following this initial exploratory PCA, each group was analysed using the supervised learn-

ing algorithms of RF and PLS-DA. Tables 1–3 contain the sensitivity, specificity and balanced

accuracy (defined as the averaged sensitivity and specificity) for each serum fraction. The

PLS-DA model results are included within these tables (Tables 1–3), while the RF are provided

within the S1 File.

For the GBM versus non-cancer there was a slight decrease in the sensitivity, specificity and

balanced accuracies once the serum was filtered. However, all classification models had an

overall balanced accuracy greater then 82%, suggesting that even the individual molecular

weight regions of serum can predict GBM from non-cancer patients. Lymphoma versus non-

cancer had a larger decrease in sensitivity, specificity and balanced accuracies once filtered

with overall balanced accuracies ranging between 72% and 78%. When investigating between

the two cancer types, GBM versus lymphoma, there was a significant decrease in the sensitivity,

specificity and balanced accuracies. The overall balanced accuracy decreased from 91.5% to a

range between 46% and 56%, suggesting the serum fractions are unreliable in being able to

stratify between cancer types as there is no distinction between GBM and lymphoma.

The RF classifications for all three groups gave very similar responses to the PLS-DA. For

GBM versus non-cancer there was more of a decrease in sensitivity, specificity and balanced

accuracies once the serum was filtered. The same can be said with Lymphoma versus non-can-

cer and once again, there was no ability to stratify between the cancer types using RF model

algorithms. The percentages for each groups sensitivity, specificity and balanced accuracies are

displayed in the S1 File.

From these PLS-DA classification models the loadings plots were investigated in order to

identify which wavenumber regions were important for the discriminations between the

cohorts. Figs 4 and 5 display the PLS-DA loadings plot for each group with the unfiltered serum

(Fig 4) and the first fraction of filtered serum (<100 kDa) (Fig 5). Both the first and second PLS

components are shown within the figures as the majority of the spectral variance between the

cohorts will be present within these two latent variables. The loadings plots for the other serum

fractions (<50 kDa,<30 kDa,<10 kDa and<3 kDa) are included within the S1 File.

For the unfiltered serum the loadings plot suggests that the discrimination between GBM

and non-cancer (Fig 4A) is dependent on the Amide I and Amide II proteins (region between

1700 cm-1 and 1500 cm-1) and the glycogen/carbohydrates (1100 cm-1–1000 cm-1). Lymphoma
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versus non-cancer (Fig 4B) has similar reliance on the Amide I and Amide II bands, however

there is less importance in the glycogen/carbohydrates. The peak at ~1740 cm-1 suggests that

the discrimination between lymphoma and non-cancer is also determined by the lipid compo-

nents within the serum. Discriminating between cancer types, GBM versus lymphoma

(Fig 4C), there is importance within the Amide I and Amide II region, and the glycogen/carbo-

hydrates region. The peaks identified as important for each group is displayed in Table 4.

Fig 2. Principal component analysis scores plots for the unfiltered whole serum of the first and second dimensions. The three figures represent (A) GBM

in blue and non-cancer in yellow, (B) lymphoma in blue and non-cancer in yellow and (C) GBM in blue and lymphoma in yellow. The eclipses in each class

represent a 95% confidence interval. Values in parentheses within the axes legends are the total explained variance (TEV) for each principal component (PC).

https://doi.org/10.1371/journal.pone.0279669.g002
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Once the serum was filtered the loadings plot significantly changed with what wavenumber

regions were deemed important for the discrimination between patient cohorts (Fig 5). The

percentage of variance from each LV will decrease with the accuracy of the model, therefore it

is unreasonable to directly compare the important peaks from filtered and unfiltered serum

when the whole serum will have a greater percentage of importance. It is interesting to note

that more regions are deemed important within the filtered serum however the percentage of

variance represented in each LV is minimal compared to the whole serum.

Fig 3. PCA scores plots for the filtered serum (<100 kDa) of the first and second dimensions. The three figures represent (A) GBM in blue and non-cancer

in yellow, (B) Lymphoma in blue and non-cancer in yellow and (C) GBM in blue and lymphoma in yellow. The eclipses in each class represent a 95%

confidence interval. Values in parentheses are the TEV for each PC.

https://doi.org/10.1371/journal.pone.0279669.g003
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Discussion

From the initial visual observations there was a significant difference between the spectral pro-

files of whole unfiltered serum and the different molecular weight fractions. This is to be

expected as the initial filtration step will remove components greater than 100 kDa, including

human serum albumin which comprises 50% of the protein complement of sera (30–50 g/L),

and antibodies such as immunoglobulin G (IgG). IgG is one of the main components (7–16 g/

L) within serum [29, 30]. The removal of serum albumin and other components within the

first filtration step has a significant impact on the overall serum spectral profile. Between the 3

patient groups, GBM, lymphoma and non-cancer, visually there were no spectral differences

and they all follow the same spectral trend once centrifugally filtered (Fig 1, S2 and S3 Figs in

S1 File). There were visually few changes between the molecular weight fractions as most sig-

nificant changes occured within the first filtration step.

Within the exploratory principal component analysis (PCA) there was slight separation

between the groups along the second principal component for the unfiltered whole serum. By

contrast, once filtered there was no separation between the groups of patients, demonstrated

throughout all molecular weight regions. The clear distinction between groups within the

unfiltered serum suggests that the higher molecular weight (>100 kDa) components within

the serum play an important role for the discrimination between cancer and non-cancer or

between cancer types.

Table 1. Sensitivity, specificity and balanced accuracies for the PLS-DA model classification of GBM versus non-cancer patients. Mean, standard deviation (SD) and

95% confidence intervals (CIs) are provided.

Sensitivity (%) Specificity (%) Balanced accuracy (%)

Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI

GBM versus NC Unfiltered 87.4 11.8 ±3.2 84.2–90.6 92.4 8.2 ±2.3 90.1–94.7 89.9 6.4 ±1.8

88.1–91.7

<100 kDa 85.5 10.7 ±2.9 82.6–88.4 92.4 8.2 ±2.3 90.1–94.7 89.0 6.0 ±1.6

87.4–90.6

<50 kDa 84.3 11.5 ±3.2 81.1–87.5 88.9 10.4 ±2.9 86.0–91.8 86.6 6.3 ±1.7

84.9–88.3

<30 kDa 84.0 13.9 ±3.8 80.2–87.8 85.6 12.4 ±3.4 82.2–89.0 84.8 8.7 ±2.4

82.4–87.2

<10 kDa 79.7 12.7 ±3.5 76.2–83.2 85.2 13.5 ±3.7 81.5–88.9 82.4 7.4 ±2.0

80.4–84.4

<3 kDa 86.8 13.7 ±3.8 83.0–90.1 87.4 9.7 ±2.7 84.7–90.1 87.1 8.3 ±2.3

84.8–89.4

https://doi.org/10.1371/journal.pone.0279669.t001

Table 2. Sensitivity, specificity and balanced accuracies for the PLS-DA model classification of lymphoma versus non-cancer patients. Mean, standard deviation

(SD) and 95% confidence intervals (CIs) are provided.

Sensitivity (%) Specificity (%) Balanced accuracy (%)

Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI

Lymphoma versus NC Unfiltered 85.3 13.6 ±3.7 81.6–89.0 85.8 13.3 ±3.7 82.1–89.5 85.6 8.7 ±2.4 83.2–88.0

<100 kDa 66.1 18.5 ±5.1 61.0–71.2 78.9 14.9 ±4.1 74.8–83.0 72.5 11.5 ±3.2 69.3–75.7

<50 kDa 66.9 19.7 ±5.4 61.5–72.3 83.7 12.8 ±3.5 80.2–87.2 75.3 10.9 ±3.0 72.3–78.3

<30 kDa 74.2 17.4 ±4.7 69.4–79.0 80.6 13.8 ±3.8 76.8–84.4 77.4 10.4 ±2.9 74.5–80.3

<10 kDa 70.6 16.4 ±4.5 66.1–75.1 81.5 12.1 ±3.3 78.2–84.8 76.0 10.8 ±3.0 76.0–79.0

<3 kDa 65.7 15.2 ±4.2 61.5–69.9 82.8 13.6 ±3.7 79.1–86.5 74.2 9.6 ±2.6 71.6–76.8

https://doi.org/10.1371/journal.pone.0279669.t002
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These observations can be confirmed through the supervised classification analysis

where each group of patients was stratified using both PLS-DA and RF machine learning

algorithms. For the unfiltered serum the classifications between the two patient groups

(GBM versus non-cancer, lymphoma versus non-cancer or GBM versus lymphoma) all gave

overall balanced accuracies above 85%. When focusing on GBM versus non-cancer the sen-

sitivities, specificities and balanced accuracies of the models remained around or greater

then 80%; however, none of the molecular weight filtrates gave percentages as high as the

unfiltered whole serum. Lymphoma versus non-cancer had a more noticeable decrease in

sensitivity, specificity and balanced accuracies once the patient serum was filtered. These

Fig 4. PLS loadings plots for the 1st and 2nd latent variables (LVs) for the unfiltered whole serum. (A) GBM versus non-cancer, (B) Lymphoma versus non-

cancer and (C) GBM versus lymphoma.

https://doi.org/10.1371/journal.pone.0279669.g004

Table 3. Sensitivity, specificity and balanced accuracies for the PLS-DA model classification of GBM versus Lymphoma patients. Mean, standard deviation (SD) and

95% confidence intervals (CIs) are provided.

Sensitivity (%) Specificity (%) Balanced accuracy (%)

Mean SD 95% CI Mean SD 95% CI Mean SD 95% CI

GBM versus lymphoma Unfiltered 97.1 5.4 ±1.5 95.6–98.6 86.0 10.5 ±2.9 83.1–88.9 91.5 6.2 ±1.7 89.8–93.2

<100 kDa 52.9 17.7 ±4.9 48.0–57.8 53.2 17.7 ±4.9 48.3–58.1 53.1 9.7 ±2.7 50.4–55.8

<50 kDa 53.8 18.9 ±5.2 48.6–59.0 56.0 16.6 ±4.6 51.4–60.6 54.9 11.7 ±3.2 51.7–58.1

<30 kDa 54.4 18.8 ±5.2 49.2–59.6 57.1 21.0 ±5.8 51.3–62.9 55.8 12.1 ±3.3 52.5–59.1

<10 kDa 55.4 17.9 ±4.9 50.5–60.3 44.5 19.7 ±5.4 39.1–49.9 50.0 10.9 ±3.0 47.0–53.0

<3 kDa 27.5 15.0 ±4.1 23.4–31.6 65.5 20.4 ±5.6 59.9–71.1 46.5 11.0 ±3.0 43.5–49.5

https://doi.org/10.1371/journal.pone.0279669.t003
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Fig 5. PLS loadings plot for the 1st and 2nd LVs for the filtered serum (<100 kDa). (A) GBM versus non-cancer, (B) Lymphoma versus non-cancer and (C)

GBM versus lymphoma.

https://doi.org/10.1371/journal.pone.0279669.g005

Table 4. Top wavenumbers for each group in unfiltered serum classifications. Tentative biochemical assignments and their corresponding vibrational modes are

included [28].

Wavenumber (cm-1) Tentative assignment Vibrational modes

GBM versus NC 1668.5 Amide I of proteins v(C = O), v(C-N), δ(N-H)

1660.5 Amide I of proteins v(C = O), v(C-N), δ(N-H)

1628.5 Amide I of proteins v(C = O), v(C-N), δ(N-H)

1556.5 Amide II of proteins δ(N-H), v(C-N), δ(C-O), v(C-C)

1100.5 Nucleic acids v(PO2-)

1028.5 Glycogen v(C-O), v(C-C), def(C-OH)

Lymphoma versus NC 1740.5 Lipids v(C-O)

1660.5 Amide I of proteins v(C = O), v(C-N), δ(N-H)

1652.5 Amide I of proteins v(C = O), v(C-N), δ(N-H)

1580.5 Amide II of proteins δ(N-H), v(C-N), δ(C-O), v(C-C)

1108.5 Carbohydrate v(C-O), v(C-C)

GBM versus Lymphoma 1668.5 Amide I of proteins v(C = O), v(C-N), δ(N-H)

1660.5 Amide I of proteins v(C = O), v(C-N), δ(N-H)

1628.5 Amide I of proteins v(C = O), v(C-N), δ(N-H)

1548.5 Amide II of proteins δ(N-H), v(C-N), δ(C-O), v(C-C)

1108.5 Carbohydrate v(C-O), v(C-C)

1020.5 Glycogen v(C-O), v(C-C)

ν = stretching

δ = bending; def = deformation

https://doi.org/10.1371/journal.pone.0279669.t004
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remained at 65% and greater, however, as with the GBM versus non-cancer cohort the unfil-

tered serum outperformed each filtrate. Between the two cancer types, GBM versus lym-

phoma, there was a significant decrease in stratification ability once the serum was filtered.

The overall balanced accuracies of 50% suggest that there are no discriminatory features

within the serum to identify between a GBM or lymphoma brain cancer patient once the

components above 100 kDa were removed.

For all classifications the unfiltered whole serum performed the greatest which suggests that

the higher molecular weight components are needed for discriminatory ability between these

binary cohorts. From a clinical application point of view, this is preferable as the extra pre-ana-

lytical steps to include the filtration is more time consuming and harder to translate into a

clinic ready test.
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