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Abstract—This paper proposes a system architecture that
uses deep learning image processing techniques to automatically
identify forest fires in real-time using neural network models
for small UAV applications. Considering the strict power and
payload constraints of small UAVs, the proposed model runs on
a compact, lightweight Raspberry Pi4B (RPi4B) and its perfor-
mance is comparable to the state-of-the-art metrics (accuracy
and real-time response) while achieving significant reduction
in CPU usage and power consumption. The proposed YOLOv5
optimization approach used in this paper includes: 1) Replacing
the backbone network to ShuffleNetV2, 2) Pruning the Head
and Neck network following the backbone baseline, 3) Sparse
training to implement the model-pruning method, 4) Fine-tuning
of the pruned network to recover the detection accuracy and 5)
Hardware acceleration by overclocking the RPi4B to improve
the inference speed of the algorithm. Experimental results of the
proposed forest fire detection system show that the proposed
algorithm compared to the state-of-the-art that run on RPi
single board computer, achieves 50% higher inference speed
(9 FPS), reduction in CPU usage and temperature by 35% and
25% respectively and 10% reduced power consumption while
the accuracy (92.5%) is only compromised by 2%. Finally, it
is worth noting that the accuracy of the proposed algorithm is
not affected by deviations in the bird-eye view angle.

Index Terms—YOLOv5; Fire detection; UAV; Raspberry Pi

I. INTRODUCTION

Climate change, has been responsible for the rapid increase
of the size and frequency of forest/wild fires, which pose
severe socioeconomic (the destruction of homes and loss of
life) and environmental impact (carbon emissions, air and
water quality) [1]–[5]. According to World Health Organiza-
tion (WHO), 50% of recorded wildfires are from unknown
origins and while the period between 1998-2017 affecting 6.2
million people and and being responsible for 35,000 fatalities
[6]–[8]. Other worldwide statistics report that wildfires were
responsible for Australia’s 2009 ’Black Saturday’ destruction
of 1,800 homes and burnt area of 4,500 km2 whereas in
2017, 10,200 structures and 5,559 km2 in California, USA,
and 4,180 km2 in Portugal [9]. The cost of wildfires damage
is typically between 10 to 50 times the suppression estimated
worldwide to be more than $100 billion annually [10].

Early warning methods and systems include the use
of watchtowers, sensor networks, satellite remote sensing
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and patrolling using manned and unmanned aerial vehicles
(UAVs). A comprehensive review of the aforementioned
methods of early fire and smoke detection systems presented
in [11] indicates that satellite systems provide a vast coverage
area, but their response time depends on the location of the
satellite and fire, while terrestrial sensor networks offer high
accuracy and fast response times but their wide coverage
is typically associated with significant increase in cost and
system complexity. It seems that the use of small UAVs
offers the highest future potential mostly because of their
fast response time and extendable coverage area.

Technological advancements over the last 20 years, have
enabled the production of an abundance of sensors and
unmanned systems, affordable for commercial UAV appli-
cations. The list of such applications includes but is not
limited to aerial photography [12], search and rescue [13],
traffic monitoring [14], precision agriculture [15] and more.
According to [16] the UAV market has surpassed $12 billion
in 2021. Computer vision has gained popularity in UAV
applications, however, the cumbersome processing of real-
time target detection algorithms, requires additional single
board computers (SBC) to avoid interference with navigation
systems. Due to the strict run-time and payload availability on
small and medium UAVs, the selection of onboard hardware
is best addressed as a constraint optimization engineering
process [17]. A comparison of the state of the art of com-
mercially available SBC is examined by [18]. The study
examined the UAV electrical power consumption due to the
integrated SBC processing and its additional onboard weight.
As concluded the Raspberry Pi (RPi) and Odroid platforms
offer the lowest power consumption followed by Jetson.

A. Motivation of this work

The aim of this work is the development of a fire detection
system for small UAV applications. Considering the current
research progress in deploying target detection algorithms on
embedded devices, and hardware and practical limitations,
the research objectives include: The development of a com-
puter vision target detection algorithm with reduced false
alarm rate that is able to run on a compact, lightweight, and
cost-effective SBC, such as RPi-4B while its performance
remains comparable to the state-of-the-art metrics (accuracy
and real-time response) under real-life wildfire scenarios.



Fig. 1. The architecture of the proposed network. 1) The input is a 320 × 320 three-channel RGB image. 2) The backbone of the proposed network is
ShuffleNetV2 [41], which reduces the amount of cache space occupied and increases the inference speed. SFB is the layer structure of ShuffleNetV2. 3)
The Neck network part uses a FPN + PAN architecture, with channel pruning of the Head in order to optimise memory access and usage.

II. BACKGROUND AND RELATED WORKS

Ample of recent review papers [19]–[25] in fire detection
and UAV applications, referencing more than 500 publica-
tions combined, conclude that convolutional neural networks
(CNNs) which are a branch of deep learning algorithms, are
currently achieving the best results in target detection and
classification. Two-stage algorithms (R-CNN, Fast R-CNN,
Faster R-CNN) [26]–[28] need to use the heuristic (selective
search) or CNN network (RPN) to generate Region Proposal,
and then do the classification and regression on Region Pro-
posal. The other type of one-stage algorithms (YOLO, SSD)
[29], [30], which uses only a CNN network to directly predict
the class and location of different targets. The first method
is more accurate but slower while the second algorithm is
faster but less accurate. However, either networks usually
require graphics processing units to operate properly because
they are computationally challenging, use large amounts of
memory, and are expensive to run. Therefore, deploying real-
time target detection algorithms on SBC without powerful
computing power is one of the current challenges of computer
vision. Hence, works reported in the literature [31]–[33]
examine the performance of ”You Only Look Once” (YOLO)
network which is becoming the most popular object detection
model for SBC. As presented, the YOLO versions “tiny”,
offer higher inference speed (FPS) which however comes
at a compromised reduced accuracy because of the reduced
number of layers on the network. A successfully deployed
YOLOv4 algorithm on a RPi platform achieving an improved
inference speed to 2 FPS was reported in [34] while a
YOLOv5 algorithm deployed on an unmanned aerial vehicle
(UAV) for dynamic beehive detection and tracking achieving
an inference speed of 0.5 FPS on RPi4 is reported in [35].
Nevertheless, this speed is still not fast enough for UAV-
applications, hence researchers began to experiment with
deploying target detection algorithms on the NVIDIA Jetson
Nano, at the expense of higher power consumption. An Im-

proved YOLOv5 based Real-time Spontaneous Combustion
Point Detection Method was proposed using “FPN + PAN”
in the Neck layer of YOLOv5 algorithm to enhance the
detecting the smoke or flame in early stage and achieved
7 FPS speed in real-time video stream on NVIDIA Jetson
Nano [36]. Finally, the authors of [37] used a single-shot
object detector based on deep convolutional neural networks
(CNNs) deployed on Odroid-XU4 achieving 8-10 FPS with
a accuracy around 95% and 5-6 FPS at 95% on a RPi3B.
However, in both cases the CPU usage reached 100%.

III. PROPOSED OPTIMIZATION

This work proposes a modified YOLOv5 improving its
inference speed by replacing its backbone network and
by applying pruning to reduce the computational cost.
A fine-tuning technique is implemented on the obtained
pruned model to restore the detection accuracy of the model
while improving the mapping effect. Additionally, the RPi
was overclocked at the hardware level, to achieve better
CPU/GPU performance. Both the ordinary YOLOv5 and
the proposed optimized one, were re-trained using the same
datasets, and the achieved accuracy and inference speed were
obtained experimentally.

The proposed network structure as shown in Fig. 1
consists of four main parts: Input, Backbone, Neck, and
Prediction. The input is responsible to pre-process the
data with mosaic data enhancement, adaptive initial anchor
box calculation, and adaptive image scaling. The backbone
uses the lightweight ShuffleNetV2 algorithm to improve the
YOLOv5s model, which reduces the size of the model and
the number of parameters, effectively saving computational
resources. The proposed network performs channel pruning
at the head and neck according to the backbone network to
ensure proper operation of the network.

The pipline of the optimization process is presented in
Fig. 2 and starts by replacing the backbone network of the



ordinary YOLOv5 network and modifying the number of
head and neck channels to ensure proper operation of the
network. Then an iterative process includes sparse training to
identify the layers that have a minor effect on the detection
results followed by pruning of the small scale factors of
the channels and then fine-tuning to recover the detection
accuracy of the pruned model. The achieved and desired
performances are compared on each iteration and when the
desired goal is reached the compact and high performance
model is obtained.

Fig. 2. The pipline of the proposed optimization. Dashed lines denote the
iterative process.

A. Replacement of the Backbone Network

Computational complexity and parameter storage have a
negative impact on the speed of CNN networks which can be
extremely slow when running on computational- and power-
constrained devices. Mobile devices need compact models
to achieve low latency which leads to accurate and fast
detection. To meet these requirements, some lightweight
CNN networks such as MobileNet [39] and ShuffleNet [40]
have been proposed, which achieve a good balance between
speed and accuracy.

The current state-of-the-art lightweight network Shuf-
flNetV2 [41] is an improved version based on ShuffleNet.
[49] ShuffleNetV2 is faster and more accurate than most other
networks for the same complexity of inference. Hence, it is
ideal for replacing the ordinary YOLOv5 backbone network.

The proposed work achieves network optimization fol-
lowing the four guidelines of the ShuffleNetV2 design: 1)
Balance between the input and output feature channel and
output feature channels of the convolution layer. 2) Avoidance
of use group convolution. 3) Using less number of network
branches and avoidance of parallel structures. 4) Keep mini-
mal Element-Wise operations.

B. Network Pruning

One way to reduce the parameter storage and computa-
tional cost without compromising accuracy is to Prune the
CNN network. Pruning is a technique in deep learning to
develop compact and more efficient neural networks. It is
a model optimisation technique that involves removing large
amounts of redundant neurons and weights in neural network
models. The compressed neural network runs faster while
it reduces the computational cost of training the network
which is particularly critical when deploying models on

mobile phones or other edge devices. Li et al [38] proposed
an acceleration method for CNNs that directly removes
convolutional kernels that have little impact on the accuracy
of the CNN, which can greatly reduce the computational cost
without compromising accuracy.

Fig. 3. The layer structure diagram for ShuffleNetV2 [41], which is also the
main structure in proposed YOLOv5, corresponds to SFB1 X and SFB2 X
in the Fig. 1 respectively.

C. Sparse training and pruning preparation

The channel dimension is pruned after sparse training
according to the method of network slimming proposed by
Liu et al. [47]. The principle includes two parameters γ,
β in the BN layer, and the input is normalised through
BN to obtain a normal distribution. When γ, β tends to 0,
the input is multiplied by 0, and the convolution on that
channel will only output 0. To improve the speed of the
network, redundant channels which have minor impact on the
detection results of the model are eliminated. When a network
is trained without any modification, then the γ is generally
distributed around 1 due to initialisation. To converge γ to
0, the coefficients are constrained by the addition of the L1
rule which makes the coefficients sparse also known as sparse
training. After sparse training, the filters with small effect to
the results can be pruned and the trained model can be further
reduced by this process.

The BN layer performs the following transformation :

ẑ =
zin − µβ√
σ2
β + ϵ

; zout = γẑ + β (1)

The activation size zout per channel is positively correlated
with the coefficient γ (which in the pytorch framework
corresponds to the weights of the BN layer and β to the
bias).If γ is close to 0 then it implies that the activation value
is also very small with minor impact on the final result.

After normal network training, the coefficients of the BN
layers are similar to a normal distribution. This makes the
identification of the importance of each layer very difficult.
Whereas, sparse training using the L1 rule distinguishes



the importance of each layer thus enabling the pruning of
unimportant layers which leads to higher inference speed.

L =
∑
(x,y)

l(f(x,W ), y) + λ
∑
γ∈Γ

g(γ) (2)

The first term of equation 2 is the normal training loss
function, whereas the second term is the constraint, where
g(s) = |s| and λ is the canonical coefficient, adjusted
according to the dataset. The back propagation technique is
used to update the weight values which minimise the loss
function.

L′ =
∑

l′ + λ
∑

g′(γ) =
∑

l′ + λ
∑

|γ|′

=
∑

l′ + λ
∑

γ ∗ sign(γ)
(3)

The following points are worth mentioning for the pruning
implementation on the YOLOv5 model: 1) YOLOv5 uses
automatic mixed precision training, therefore, the FP32 mode
is required during training. 2) Not all BN layers are selected
for pruning. The implementation removes the Bottleneck
layers with shortcut, mainly to ensure that the shortcut is as
addable as the residual layer channel. 3) After sparse training,
the convolution kernels of the corresponding channels in the
convolution layer before the BN layer and the corresponding
feature maps after the BN layer are pruned off.

D. Pruning process and Fine-tuning of the pruned model

After obtaining the sparse trained model, the next step
is to prune out the channels with γ going to 0. First, the
γ of all BN layers are counted and aligned and sorted to
find the threshold corresponding to the pruning rate. Then,
the mask of each BN layer is obtained according to the
threshold, ensuring that the pruned channel is guaranteed
to be a multiple of 4, which is required to compound
the front-end acceleration. Since, the pruned network does
not align with the original network channel, the network
needs to be redefined and parsed. The reconstructed network
structure needs to be redefined as more parameters need to be
imported. After reconstructing and parsing the network, we
also need to fill in the parameters of the parsed network,
find the parameters of each layer of the parsed network
corresponding to the ordinary network, and clone them to
the reconstructed network. This completes all the steps of
the pruning process.

However, as the network structure of the pruned model
changes compared to the original model, while the neural
network parameters learned from the original network struc-
ture remain unchanged, the target detection capability of the
pruned model decreases and the mapping capability is low.
The reduction in the accuracy after pruning can be fine-
tuned to recover. Since the pruned model is able to relearn
the neural network parameters based on the current network
structure, it is the finetuning for training and this restores the
detection accuracy of the model and improves the mapping
effect.

E. Hardware Acceleration

In order to get the best performance out of the algorithms
the RPi4B CPU was overclocked to 2.0 GHz (maximum of
2140 MHz). Experimental work (Table III) clearly shows
that the faster the clock runs, the more energy is transferred,
and the more heat is generated by the chip. As the RPi is
normally used with a CPU with its NEON-ARM instructions,
the GPU was not overclocked for this study and its default
frequency, 500 MHz was used (maximum of 650 MHz). To
avoid overheating of the RPi platform, automatic over-voltage
adjustment and dynamic clock frequency were used.

IV. DATASET GENERATION AND TRAINING PROCEDURE

A. Dataset

The dataset was generated using a python crawler tool.
However, unrelated images were manually removed. Manual
was also the process of labelling of the flames and smoke
areas on the images. The process of filtering and labeling
images was time consuming. The dataset was randomly
divided into three independent and equally distributed sets:
(i) the Training set, containing 83% of the images (20,255);
(ii) the Validation set, containing 13% of the images (3,148);
and (iii) the Test set, containing 4% of the images (977).
Data augmentation was not a straight forward process be-
cause the fire and smoke characteristics (i.e. color disperse,
concentration, etc) are significantly affected by the fire in-
tensity, air temperature, the type of flammable material as
well as wind speed and direction. Hence, the training set
had undergone through randomly selected data augmentation
techniques. Given these premises and the inherent difficulties
of detection, this learning adds some additional image data
to this dataset using data augmentation. Furthermore, images
such as sunsets, flashing lights, etc were added to the dataset
to reduce the model’s false detection of fire-like objects that
could trigger false alarms, as shown in Fig. 4. As a result, the
dataset becomes robust and accurate under abstract conditions
and patterns including camera angles.

Fig. 4. Some examples of the dataset: (a) and (b) show image based data
augmentation techniques to expand the dataset. (c) and (d) show respective
ground-truth bounding boxes. (e) and (f) represent images that are prone to
false detection. (g) is a ground-based image of the forest fire and (h) is an
aerial view of the fire.



B. Training procedure

Initially, the YOLOv5 network for the proposed fire detec-
tion system needed to undergo through training. Following
the recommendations of [42] and [43] the training process
included the MGD-algorithm (Mini-batch Gradient Descent)
which required approximately 30,000 iterations. The pro-
posed size and momentum were 64 and 0.937 respectively.
Worth noting that the GPU simultaneous processing was
limited to a maximum of 64 images for as long as the mini-
batch size of 64 had undergone through additional subdivi-
sion to a total of 317 partitions. Over-fitting was avoided
by stopping the training process when no-improvement was
achieved for 5,000 iteration. Warm-up technique [44] with a
warm-up momentum 0.8 and warm-up epochs 3.0 were used
to improve the training. A warm-up bias learning rate of 0.1
has been used during the warm-up process. As proposed in
[45], the image size (N) was selected to 320 which lead to a
grid cell size (S=N/32) of 10 which then lead to 3 bounding
boxes per grid cell (B).

The ordinary YOLOv5s model detects two classes (Fire
and Smoke). The forward propagation pass when processing
a single RGB image of size 320 × 320 pixels, occupies the
use of 15.8 GFLOPs. However, the popular YOLOv3 [46]
requires 154.6 GFLOPs for the same process. To achieve a
clear comparison, the Ordinary YOLOv5 network and the
optimized YOLOv5 network were trained with the same
hyper-parameters mentioned above. In addition, the weights
of the layers were initialized through the transfer learning in
the COCO (Microsoft Common Objects in Context) dataset.
The proposed model uses input image size of 320 and the
weight of each category is related to the number of labels.

The Adam optimization method [50] was used for training
with learning rate-decay starting from a learning rate of
0.001, and multiplying it by a factor of 0.95 every 5 epochs
to achieve a smoother decrease. Each network is trained for
300 epochs each comprising of 317 batch iterations, with a
batch size of 64.

V. EVALUATION AND EXPERIMENTAL RESULTS

A full quantitative evaluation of the fire and smoke de-
tectors for YOLOv5 and its optimised version is performed
and presented in this section. The training and inference
phases were conducted on a machine with 16 GB of RAM
using a single GPU NVIDIA RTX3050. The system was
running Ubuntu 20.04 LTS operating system and CUDA
compiler tools, version 11.7. The training and optimization
procedures were implemented in Python using the PyTorch
[31] framework. The platform used to test and deploy the
algorithms is the RPi4B with Broadcom BCM2711, quad-
core Cortex-A72 (ARMv8) 64-bit SoC@1.5GHz, 4GB mem-
ory, OpenGLES 3.1, Vulkan 1.0 and a 64GB Micro-SD card
for both operating system installation and data storage. To
evaluate the performance of the proposed network model,
the most widely used object detection evaluation metrics
were used in the experiments, which include Intersection
over Union (IoU), precision rate, recall rate, average mean

precision (mAP), F1-score and detection speed (inference
time per image).

Fig. 5. Some predictions results from the BoWFire dataset [48], (a)-(c)
are the results for the original YOLOv5 and (d)-(f) are the results for the
proposed YOLOv5. The detection results show that the proposed YOLOv5
can mark out more areas where flames and smoke are present in the pictures
and there are no false detections in pictures with flame-like objects.

TABLE I
PERFORMANCE METRICS ON THE TEST SET

Network mAP@0.50 AP@0.50 AP@0.50 F1 avg IoU
(%) smoke (%) fire (%) score (%)

YOLOv5 82.93 91.17 74.86 0.83 73.51
Proposed 92.54 96.35 88.71 0.85 68.34

A. Comparison of models‘ performances on Prediction

Once the original and the proposed YoloV5 networks
have been trained (see Sect. IV-B), their performance was
evaluated through a fivefold cross-validation procedure. Table
I, shows that the optimised YOLOv5 outperforms the original
YOLOv5 across most of the evaluation metrics considered
and the optimised one has more true positives (real fire
identification) and fewer false positives than the original
YOLOv5 network when detecting images that could be easily
confused as flames as shown in Fig. 5. However, the location
of objects detected by the original YOLOv5 network is
on average more accurate in terms of IoU experimental
values. This is because the original YOLOv5 retains more
convolutional layers than the optimised network, although
the inference speed is much slower, 1 FPS compared to 9
FPS as shown on Table III.

Fig. 6. Evaluation on the Raspberry Pi platform: the detection result of the
image obtained in real time from the web camera, with the live detection
frame rate in the top left corner of the detection screen.



TABLE II
PARAMETER COMPARISON OF THE PROPOSED DETECTION MODEL

UNDER DIFFERENT PRUNING RATES.

Pruning Rate(%) mAP@0.5(%) Parameters/106 Model Size(MB)
Baseline 93.7 7.02 14.1

80 82.3 0.89 1.95
70 89.7 1.54 3.34
60 91.2 2.30 4.64
50 93.2 2.85 5.66

B. Analysis of the model pruning results

Once determining a scale factor γ = 0.005 for sparse
training, then the effectiveness of model pruning was verified
using pruning rates of 0.5, 0.6, 0.7 and 0.8 to the sparsely
trained model. Parameter comparison of the proposed detec-
tion models for different channel pruning rates are tabulated
on Tab. II, According to Tab. II, all 4 evaluation metrics were
reduced for different channel pruning rates. After performing
fine-tuning training, the mAP recovered to 84.87%, 92.5%,
92.65% and 93.41% respectively. Fine-tuning revealed that
the channel pruning rate of 70% achieved the best balance
between accuracy and inference speed, which resulted in a
better model compression with less loss of average accuracy.

TABLE III
PERFORMANCE METRICS ON THE COMPARISON EXPERIMENT

Network Clock Speed Power CPU Usage CPU Temp FPS
(GHz) (W) (%) (◦C)

YOLOv5 0.6 5.70 93 47 0.41
YOLOv5 1.8 7.70 95 58 1.06
YOLOv5 2.0 8.10 97 67 1.16
Proposed 0.6 5.20 60 43 3.02
Proposed 1.8 7.02 58 47 7.23
Proposed 2.0 7.28 64 50 8.57

Comparison results on the performance metrics are tab-
ulated on Tab. III.As presented the proposed algorithm in-
creases the inference speed by a factor of 7.4 at all clock
speeds, reaching a highest value of 8.57 FPS at 2GHz CPU
clock speed. In addition, the proposed network achieves a
reduction of the CPU usage in the range of 35% (from high
90s to low 60s) which also translates in a 25% reduction of
CPU temperatures. Compared to the state-of-the-art literature
presented in previous sections, this work increases inference
speed by 50% and reduces the CPU usage by 35%. Finally,
the proposed work achieves a 10% reduction in electrical
power consumption which prolongs operation run-time and
range of applications involving small UAVs. As research
shows [51] the battery run-time is not linear but exponential.

C. Optimized YOLOv5 on Raspberry Pi Platform

In order to map the proposed model on the RPi-4B plat-
form, the onnx-runtime framework was used to implement
the proposed network structure. The runtime environment
was installed on the RPi-4B, and the PyTorch weights were
converted to the onnx format. A web camera was used to
acquire live video at a size of 320 × 320 pixels and pass it

frame by frame to the processing board where the flames and
smoke were detected. The model detection results are shown
in Fig. 6. The performance of the RPi was approximately 7-9
FPS and the accuracy remained at approximately 92.5%. It
is worth noting that the optimised YOLOv5 model on the
RPi platform is over 7 times faster and uses less CPU usage
and power consumption than the original YOLOv5, as shown
in Tab. III. In the case of deploying a RPi as an on-board
computer on a small UAV, the optimised algorithm can use
the remaining CPU usage for other purposes of computing.
Furthermore, less power consumption will increase battery
runtime and range which are of utmost importance for
small UAV patrol missions. Finally, it is worth noting that
the accuracy of the proposed algorithm is not affected by
deviations in the bird eye view angle.

VI. CONCLUSION

The work reported in this paper improves the performance
of the YOLO model by replacing the lightweight backbone
network, sparsely training the model, pruning and fine tuning.
The optimised YOLOv5 produced the highest mAP of 92.5%
compared to the ordinary YOLOv5s model and could detect
at 7-9 FPS on the RPi-4B, indicating that the optimised model
can detect potential fires excellently on a low computing
power embedded platform. Furthermore, the optimised model
use 35% less CPU usage than the original YOLOv5 because
of the reduction in Flops, memory usage, and parameters
during the optimisation process. The reduced CPU usage
also translated to 25% reduction in CPU temperature. The
approach uses both software and hardware level acceleration
and the experimental results show that the proposed forest
fire detection system is more suitable for small UAV-based
fire detection tasks in terms of power consumption, size and
weight compared with the NVIDIA Jetson Nano. Overall, the
optimisation of the YOLOv5 model improves the detection
accuracy and inference speed. The deployment approach
in this study reduces the difficulty of deploying the deep-
learning fire detection model on edge devices.
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