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A B S T R A C T   

Heart disease is growing annually across the globe with numbers expected to rise to 46% of the population by 
2030. Early detection is vital for several reasons, firstly it improves the long-term prognosis of the patient by 
admitting them through the appropriate pathway faster, secondly it reduces healthcare costs by streamlining 
diagnosis and finally, in combination with management or treatment, it can prevent the progression of the 
disease which in turn improves the patient’s quality of life. Therefore, there lies an increasing need to develop 
assays which can rapidly detect heart disease at an early stage. The Dxcover® liquid biopsy platform employs 
infrared spectroscopy and artificial intelligence, to quickly analyse minute amounts of patient serum. In this 
study, discrimination between healthy controls and diseased patients was obtained with an area under the 
receiver operating characteristic curve (AUC) of 0.89. When assessing the heart failure vs all patients, which is 
most akin to what would be observed in a triage setting, the model when tuned to a minimum of 45% specificity 
yielded a sensitivity of 89% and an NPV of 0.996, conversely when sensitivity was set at a 45% minimum, the 
specificity was 96%, giving an NPV of 0.991 when using a 1.5% prevalence. Other models were assessed in 
parallel, but the performance of the ORFPLS model was overall superior to the other models tested. In this large 
scale (n = 404) proof-of-concept study, we have shown that the Dxcover liquid biopsy platform has the potential 
to be a viable triage tool in emergency and routine situations for the diagnosis of heart failure.   

1. Introduction 

Cardiovascular diseases (CVDs) are the main cause of death world-
wide. According to the World Health Organisation (WHO), almost 18 
million people die of CVDs every year, accounting for the 32% of all 
global deaths; moreover, cases are expected to rise to 46% of the pop-
ulation by 2030 [1,2]. Coronary artery disease (CAD), also called cor-
onary heart disease (CHD) or ischaemic heart disease, occurs when 
atherosclerotic plaques (i.e., fatty deposits) block or temporarily inter-
rupt the heart’s blood supply [3,4]. CAD is a major cause of more severe 

heart conditions, such as myocardial infarction (MI; i.e., heart attack), 
heart failure (HF), and atrial fibrillation (AF). A myocardial infarction 
occurs when there is a blockage to one or more of the coronary arteries 
which supply blood to the heart muscle. When a MI occurs the affected 
area of the heart muscle can become damaged or die which can lead to 
chest pain, shortness of breath and if left untreated a fatal heart attack. 
AF is a type of abnormal heart rhythm specifically in the upper chambers 
of the heart. It can cause blood to pool in the atria instead of being 
pumped around all chambers. 

HF is described as the general inability of the heart to pump the 
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least squares-discriminant analysis; RF, random forest; ROC, receiver operating characteristic; SVM, support vector machine. 
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blood around the body; it can be acute or chronic and tends to worsen 
over time if it is not diagnosed in a timely manner and symptoms are not 
controlled [5]. HF and AF can also develop without the presence of CAD, 
arising from hypertension (i.e. high blood pressure) or congenital heart 
diseases [4–6]. 

There are two common types of heart failure: ischemic cardiomy-
opathy (ISCM) and non-ischemic cardiomyopathy (NISCM). The former 
describes the condition whereby the heart is ineffective at pumping 
blood around the body; this can be due to comorbidities such as CAD or 
any sort of increase of plaque in the arteries which restricts blood flow. 
The latter, NISCM, is not as widely understood and can result from a 
number of sources such as genetic factors or auto-immune diseases. It 
can also vary significantly between populations, socioeconomic groups 
and geographical areas [7,8]. 

HF is currently diagnosed using an echocardiogram (EGC) or medical 
imaging (e.g. chest X-ray), while CAD may also involve coronary angi-
ography, magnetic resonance imaging (MRI) and/or computerised to-
mography (CT) investigations [9,10]. Prior to further diagnostics, a 
preliminary blood test is conducted, which assesses the levels of N ter-
minal pro-brain natriuretic peptide (NTproBNP) within the patient’s 
blood plasma [11]. This peptide hormone is released upon stretching of 
the heart walls or when the heart is under significant duress, it has a 
variable negative predictive value (NPV) between 0.88 and 0.98 
depending on the demographic and the concentration threshold of 
peptide found in the blood [12]. The benefits of this assay are similar to 
the Dxcover infrared assay, being non-invasive and can provide rapid, 
accurate results [13]. The issues however, are that this type of testing 
has reduced sensitivity at higher peptide concentration thresholds, it can 
be difficult to acquire and it is not specific to heart failure and other 
diseases such as respiratory failure, pulmonary embolism or chronic 
kidney disease may artificially inflate the peptide levels [9,12]. The 
spectroscopic liquid biopsy method could provide an alternative to this 
blood test and aid in the triage of heart failure. 

Using isolated ECG results is not a definitive method for diagnosing 
heart failure and as such another test must be used in conjunction to 
increase the diagnostic performance. Additionally, ECG results must be 
interpreted by a GP, which can introduce a level of subjectivity and 
eventually lead to further diagnostic uncertainty. 

Despite the use of these technologies, HF and CAD are not easily 
diagnosed due to their complex symptomologies and somewhat vague 
presentations such as breathlessness or fatigue, making specific di-
agnoses difficult. In the first stages of HF, the pathology can develop 
with no symptoms at all or showing only minor symptoms when induced 
by physical activity. CAD presents with similar symptoms to HF, or 
presents itself with angina (i.e., chest pain) and/or heart attack [9,14]. 
Furthermore, angiography is a costly and invasive diagnostic method 
which could lead to various severe complications, such as artery 
dissection, and fatalities have also been reported [15]. Thus, a reliable, 
low-cost, and minimally invasive blood test that can quickly detect HF 
would be beneficial as an alternative or additional test, particularly 
where the uptake of the NTproBNP testing is not routine or can have a 
lengthy turnaround time. Furthermore, a rapid triage test would be of 
great value in emergency situations where a fast diagnosis is vital. 

Artificial intelligence (AI) and machine learning (ML) algorithms 
have gained interest in the diagnostics field for the classification of 
different pathologies, including CAD diagnosis [15–17]. In the past few 
decades, the clinical utility of infrared (IR) spectroscopy has been 
investigated for disease diagnostics in several fields, such as cancer 
research, infectious disease discovery and the early detection of Alz-
heimer’s [18,19]. In Biofluid spectroscopy has attracted the attention of 
many researchers because of the ease of sample collection and handling, 
combined with a minimal sample preparation [20]. Human blood serum 
contains over 20,000 different proteins and gains proteomes from sur-
rounding tissues and cells of the entire body; hence, it presents itself as a 
powerful clinical tool for its concentration of various biomarkers and 
diagnostic indicators of many pathologies [20]. 

Attenuated total reflection Fourier transform infrared (ATR-FTIR) 
spectroscopy has already been shown to be well-suited to current clin-
ical diagnostic pathways, not only for the reproducibility, but also for 
being cost-effective and easy to use. When coupled with machine 
learning, the technique has the potential to differentiate between dis-
ease classes [20–22]. 

In this study, we employed the Dxcover® liquid biopsy platform to 
primarily discriminate between patients suffering from HF including 
ISCM, NISCM and AF (i) vs healthy controls and (ii) vs symptomatic 
patients (those with known coronary heart disease but not heart failure); 
patients suffering from HF with NISM and AF (iii) vs healthy controls 
and (iv) vs symptomatic patients; (v) HF including ISCM, NISCM and AF 
vs healthy controls and symptomatic patients together, Table 1 sum-
marises these classes. The Dxcover approach can cut down on the sample 
processing, preparation and analysis time compared to the NTproBNP 
method which utilises an electrochemiluminescence immunoassay 
(ECLIA) this also requires expensive equipment, reagents and a speci-
alised setup. 

The aim of this feasibility study was to determine whether the 
Dxcover liquid biopsy platform could be utilised to identify patients with 
heart failure and discriminate between them and healthy controls as 
well as symptomatic patients in order to be considered viable as an 
alternative heart failure triage method. 

2. Materials and methods 

2.1. Sample collection 

The patient sample cohort consisted of 147 healthy controls (with no 
history of coronary artery disease, heart failure, or any other chronic 
illness, and they were not on any regular medication), 61 cardiac control 
patients determined to be Class I/Stage A according to the New York 
Heart Association (NYHA) functional classification (known coronary 
artery disease with no heart failure and in sinus rhythm), 51 patients 
with heart failure and non-ischaemic cardiomyopathy (termed as 
HFNOCAD for this analysis, included patients with known heart failure 
but no history of coronary artery disease), 75 patients with heart failure 
and atrial fibrillation (patients exhibiting atrial fibrillation with a known 
history of heart failure) and 70 patients with heart failure and ischaemic 
cardiomyopathy (in sinus rhythm). Table 1 details the patient groupings 
associated with each classification. The patients were grouped in such a 
way as the purpose of this work was to broadly identify and classify 
heart failure patients versus healthy or symptomatic controls. 

Blood samples were collected at the Clinical Research Unit at the 
British Heart Foundation Glasgow Cardiovascular Research Centre 
(GCRC; Western Infirmary, Glasgow, UK), using a gold top BD vacu-
tainer tube (BD, USA) containing a clot activator and serum separating 
gel, samples were then centrifuged to separate the red blood cells from 
the serum component. The serum was then aliquoted into several cry-
otubes and stored at − 80 ◦C. Further information about the ethics 
approval can be found in the supplementary information. 

Table 1 
Each classification problem and details on patient symptomology.  

Classification problem Description  

(i) HF vs HEALTHY HF including ISCM, NISCM and AF vs Healthy controls  
(i) HF vs SC HF including ISCM, NISCM and AF vs Symptomatic 

patients  
(i) HFNOCAD vs 

HEALTHY 
HF including NISCM and AF vs Healthy controls  

(i) HFNOCAD vs SC Hf including NISCM and AF vs Symptomatic patients  
(v) HF vs ALL 

PATIENTS 
HF including ISCM, NISCM and AF vs Healthy controls 
and symptomatic patients  

L. Christie et al.                                                                                                                                                                                                                                 
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2.2. Sample preparation 

All serum samples were thawed at room temperature for 20 min. For 
each patient, 3 μL of serum was pipetted onto each of the three sample 
wells of a Dxcover® Sample Slide (Dxcover Ltd., UK), using a total of 9 
μL per patient. The prepared slides were then placed into a drying unit 
incubator (Thermo Fisher ™ Heratherm ™, GE) at 35 ◦C for one hour to 
control the drying dynamics of the serum droplets. 

2.3. Data collection 

The IR spectra were collected using a PerkinElmer Spectrum 2 FTIR 
spectrometer (PerkinElmer, UK) fitted with a Dxcover® Autosampler 
(Dxcover Ltd., UK). The spectral parameters used for acquisition were as 
follows; a range of 4000–450 cm− 1, a resolution of 4 cm− 1 and 16 co- 
added scans. A background measurement of the specified background 
well was taken prior to each sample analysis. The background mea-
surement is automatically subtracted from the sample spectra in order to 
account for environmental differences. Three replicates of each of the 
three sample wells were taken yielding a total of nine spectra per 
patient. 

2.4. Data analysis: pre-processing and classification 

Several spectral pre-processing methods were examined to assess 
their influence on the area under the receiver operating characteristic 
(ROC) curve (AUC) value for each classification. These included an 
Extended Multiplicative Signal Correction (EMSC), reducing the spectral 
range, normalisations, and finally a binning which reduces the resolu-
tion and smooths the spectra. These were all applied using the 
PRFFECTv3 software within the R Studio environment [23]. The 
pre-processing parameters used were different combinations for each 
classification problem, and are summarised in Table 2. 

Mean spectral plots were created for each disease class, and principal 
component analysis (PCA) was carried out to generate PCA scores plots 
and the corresponding loadings, which can highlight differences within 
datasets. 

Several models were investigated for their performance including 
support vector machine (SVM), partial least squares (PLS) and random 
forest (RF) and oblique-random forest partial least squares (ORFPLS). 
The ML algorithms were trained using a nested cross validation strategy. 
The patients were randomly split into a training (70%) and a test (30%) 
set. Model hyperparameters were selected by a grid search to optimize 
AUC for 5-fold cross-validation on the training set. Subsequently, the 
whole procedure was repeated 51 times using different training and test 
sets as this was determined to be the optimum number of resamples to 
maximise the AUC results. On each repeat, the model was trained on the 
training set and used to make predictions of the test set to assess the 
predictive performance. The statistics reported below are averages of 
the statistics obtained on each of the 51 test sets. 

3. Results and discussion 

3.1. PCA overview 

The data was first investigated for patterns and significant outliers 
using PCA. All classes were projected into the PC space to distinguish 
any obvious differences between each of the classes. Firstly, Fig. 1 shows 
the mean spectra for all classes after pre-processing; the spectra were 
reduced to 3500 – 1000 cm− 1 and EMSC was applied. 

The mean spectra for all classes overall appear very similar, but clear 
differences are evident within certain spectral areas, such as the lipid 
peak at 1740 and 2800 cm− 1 and the dip between the two amide peaks 
at 1650 and 1540 cm− 1. The PCA plot generated was investigated next 
to assess whether these spectral differences could differentiate classes 
from one another. Fig. 2 shows the overall PCA score plot along with the 
densities and PCs 1–4. 

To meet the needs of this study, the groups have been combined for 
some machine learning analyses as detailed in the introduction. For 
instance, groups 1–2–5 can be grouped into one heart failure (HF) 
category and groups 2 and 5 can be grouped into HF without any 
associated coronary artery disease (HFNOCAD), or in other words, heart 
failure with non-ischaemic cardiomyopathy. Table 1 in Section 2.1 
further describes these groupings. No obvious splits or clustering of 
classes can be observed in the PCA scores plots and the density plots 
overlap substantially (Fig. 2) suggesting supervised machine learning 
methods are required to extract the differences between disease groups. 

3.2. ROC overview 

A variety of ML models were applied to assess their ability to 
differentiate between disease classes. The AUCs were computed for each 
model type (i.e. PLS, RF, SVM and ORFPLS) based on 51 resamples and 
can be found in Tables 1–5 in the supplementary information. The best 
performing model based on the highest AUC of all classification types 
was the ORFPLS, for which results can be found in Table 3 below. The 
optimum preprocessing that was applied for this model differs between 
each classification due to different regions of the spectra being consid-
ered more important diagnostically than others. The diagnostically 
significant peaks can differ between each classification problem, and 
therefore require different preprocessing approaches to more easily 
highlight the small changes between classes. The breakdown of which 
strategies were utilised can be found in Table 2. 

Receiver operating characteristic (ROC) curves were created to 
assess model performance. Each classification has its own separate curve 
as plotted in Fig. 3. The AUC values are slightly different to those stated 
in the above table as they are calculated differently, the figure shows the 
AUC of the mean ROC curve across all 51 resamples, whereas the results 
in Table 3 show the mean of all AUCs across all resamples. The closer the 
value is to 1, the better the model is at discriminating between classes. 
The HF vs healthy problem yields the highest AUC as determined by the 
ORFPLS model (0.89). The model does not perform as well when 
attempting to distinguish between symptomatic controls, this could be 
due to the body responding similarly to a patient who has heart failure 
and a patient who has a condition such as hypertension for example, 
leading to similar signatures being picked up within the spectra. 

As well as determining the highest AUC values, the ORFPLS model 
was also tuned to 90% sensitivity and specificity respectively to assess 
the corresponding sensitivity or specificity when the other metric is set 
to a high threshold, these values are plotted in Table 4. This can also aid 
in comparisons to other techniques which may have values within this 
range. Points along the ROC curve can be selected to assess the value of 
sensitivity or specificity and its corresponding counterpart at that point. 
This is useful as clinical requirements can vary and so any point can be 
picked along the curve that matches what is required (screening or 
diagnostic tool). For example a 45% minimum threshold for specificity 
has been cited in previous studies involving liquid biopsies [24,25]. The 

Table 2 
Preprocessing strategies applied to each classification problem to yield the 
highest area under the receiver operating curve (AUC).  

Classification Pre-processing  

(i) HF vs Healthy Cut (1000–3700 cm− 1), EMSC, Min-max Normalisation, 
Binning of 4, Remove (1801–2799 cm− 1)  

(i) HF vs SC Cut (1000–1800 cm− 1), EMSC, Vector Normalisation  
(i) HFNOCAD vs 

Healthy 
Cut (1000–3700 cm− 1), EMSC, Min-max Normalisation, 
Remove (1801–2799 cm− 1)  

(i) HFNOCAD vs SC Cut (1000–1800 cm− 1), EMSC, Vector Normalisation, 
Binning of 8  

(v) HF vs Healthy 
and SC 

Cut (1000–3700 cm− 1, EMSC, Min-max Normalisation, 
Binning of 4, Remove (1801–2799 cm− 1)  
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sensitivities and specificities were recomputed based on either the cor-
responding sensitivity or specificity being set at a 45% minimum, 
Table 5 details these results. 

The results gained when setting the minimum metric to at least 45% 
appears to provide a more clinically viable overall result when consid-
ering the implementation of this as a triage tool as opposed to aiming for 
the highest possible sensitivity or specificity, as the counterpart value 
decreases sharply when the metric is > 90%. For HF vs healthy and 
symptomatic patients, which most mimics what would be observed in a 
triage setting, when the sensitivity is set to a minimum of 45% the 
specificity is 96%, the corresponding NPV would therefore be 0.991 
when the prevalence is assumed to be 1.5% in accordance to the trend in 
the general population of all European adults [26]. Alternatively, when 
aiming for a minimum of 45% specificity, the model gives a sensitivity of 
89% and an NPV of 0.996. Both 45% minimum tuned models provide an 
excellent NPV which surpasses the current peptide blood test NPV 
metric but is slightly less in overall sensitivity when tuned to 45% 
specificity. Therefore, the model used can be chosen depending on 
clinical requirements, be they as a screening tool (higher sensitivity) or a 
diagnostic tool (higher specificity). A range of prevalences were also 
investigated to better capture the increase in prevalence upon increasing 
age and the associated NPVs, these results can be seen in Table 6. 

The NPV, sensitivity and specificity of the currently used NT-proBNP 
assay can vary depending on the range of the protein within the blood 
(at higher concentrations the sensitivity of the assay decreases) as well 
as the age of patient. These values can range between 0.88 and 0.98 for 
the NPV, 90% and 99% for the sensitivity and 43% and 76% for the 
specificity [12]. 

3.3. Feature importance 

A feature importance plot was generated for each classification using 
the ORFPLS model and can be seen in Fig. 4. These show the regions/ 
wavenumbers within the spectrum that are deemed the most important 
for discriminating between classes. 

When assessing the discrimination ability of the model to distinguish 
between HF against healthy patients, important regions were discovered 
across the full spectrum, from 3700 to 1000 cm− 1. At the higher 
wavenumber region, a common important feature is the lipid peak be-
tween 2900 and 2800 cm− 1. Lipid regions being determined as diag-
nostically important is a common theme throughout all classifications 
here; this could be due to heart diseases being intrinsically correlated 
with high levels of cholesterol or fat within the blood and as such, this 
region is determined as diagnostically significant when attempting to 

detect heart failure [28]. This hypothesis is supported by the fact that 
when classifying against heart failure patients with no coronary heart 
disease the lipid regions appear less important, and different bio-
molecules are deemed more important for this problem. 

For the classifications versus symptomatic patients, the optimum 
preprocessing cut the spectra to the fingerprint region 
(1800–1000 cm− 1) as the most important discriminators were found to 
be located within this section. There is a peak in common for both of HF 
and HFNOCAD vs SC at around 1400 cm− 1 which can be attributed to 
lipids/fatty acids. 

Interestingly, for HF vs healthy and symptomatic patients, the amide 
I peak and falling edge at 1640 cm− 1 appear prominent in the impor-
tance plot. This could be due to the influence of combining healthy and 
symptomatic patients causing this particular area to be of compounded 
importance as opposed to the lipid peaks, which are still defined as 
important regions, particularly the 2800 cm− 1 peak which is compara-
ble to its neighbouring amide A peak at ~3300 cm− 1. Amide peaks are 
one of the largest within a serum spectrum and are often found to be of 
diagnostic significance as they relate to vibrations within protein mol-
ecules which have been shown to be suggestive of disease state [29]. 

3.4. Summary 

Implementation of the Dxcover infrared spectroscopic liquid biopsy 
could aid in the triage of heart failure as a bench top system that requires 
only a blood draw from a patient. This is a rapid test which can yield 
results in just 15 min as opposed to currently used methods which can 
have a longer turnaround time as well as specialist personnel. Blood 
serum testing is already performed routinely within medical settings and 
as such the pathway already exists for a liquid spectroscopic biopsy to 
inhabit this space. The most widely used blood test (NT-proBNP) yields 
an NPV of between 0.88 and 0.98, a sensitivity of between 90% and 99% 
and a specificity between 43% and 76%, depending on the concentration 
threshold (sensitivity worsens as peptide concentration in the blood 
increases) [12]. The Dxcover liquid biopsy gives an NPV of between 0.97 
and 0.99 at a specificity of 45% and sensitivity of 89% or when tuned to 
45% sensitivity, specificity is 96% and NPV is between 0.94 and 0.99. 
The true advantages of the latter assay lie in the speed and ease of 
analysis and interpretation of results. Both tests require confirmatory 
imaging or further diagnostics, so speeding up the primary triage step 
can get patients into the correct treatment pathway faster. 

Fig. 1. Overall mean spectra for all five subclasses, including + /− 1 standard deviations.  
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Fig. 2. Principal component analysis scores plot of all disease classes showing the cumulative variance across PC1-PC4, with PC density plots. Group 1 = Heart 
Failure (ischaemic cardiomyopathy), 2 = Heart Failure No Coronary Artery Disease (non- ischaemic cardiomyopathy), 3 = Symptomatic Controls (coronary artery 
disease without heart failure), 4 = Healthy Controls, 5 = Heart Failure (atrial fibrillation). 

Table 3 
Area under the receiver operating curve (AUC), sensitivity and specificity ob-
tained using the oblique random forest partial least squares (ORFPLS) model for 
prediction of the test set for each classification reported. The statistics are av-
erages over 51 resamples.  

Classification AUC Sensitivity (%) Specificity (%) 

HF vs Healthy  0.89  80.0  84.1 
HF vs SC  0.74  64.0  71.4 
HFNOCAD vs Healthy  0.85  75.5  79.6 
HFNOCAD vs SC  0.74  80.4  52.4 
HF vs Healthy and SC  0.82  75.1  77.1  

Table 4 
Corresponding sensitivity and specificity values when alternate metric is set to 
90%.  

Classification Sensitivity (%) (At 90% 
Specificity) 

Specificity (%) (At 90% 
Sensitivity) 

HF vs Healthy  66  50 
HF vs SC  36  23 
HFNOCAD vs 

Healthy  
69  48 

HFNOCAD vs SC  32  33 
HF vs Healthy and 

SC  
60  42  
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4. Conclusions 

Rapid diagnosis of heart failure is vital for improving patient out-
comes, as well as reducing cost and streamlining the patient pathway. 
The current method of a quantitative blood test prior to further di-
agnostics provide a good NPV, however the pathway could be improved 
in both cost and time by using the Dxcover liquid biopsy in the primary 
triage step. This method yields an NPV between 0.94 and 0.99, an AUC 
of 0.82 with a sensitivity of 45% and a specificity of 96% or when tuned 
to 45% specificity, sensitivity is 89% and NPV is between 0.97 and 0.99 
when assessing the heart failure patients vs healthy controls along with 
symptomatic controls. The results of this proof-of-concept show promise 
however further analysis in the form of a full-scale clinical trial would be 

required to fully assess the assay performance and applicability for 
implementation into the current pathway. 

CRediT authorship contribution statement 

Loren Christie: Conceptualization, Methodology, Formal analysis, 
Visualisation, Writing – original draft, Writing – review & editing. 
Alexandra Sala: Conceptualisation, Methodology, Visualisation, 
Writing – review & editing. James M. Cameron: Conceptualisation, 
Methodology, Investigation, Writing – review & editing. Justin J. A. 
Conn: Software, Formal analysis. David S. Palmer: Software, Supervi-
sion, Writing – review & editing. William J. McGeown: Conceptuali-
zation, Project administration, Review and editing. Matthew J. Baker: 
Conceptualization, Methodology, Writing – review & editing, Project 
administration, Supervision, Funding Acquisition. Jane Cannon: 
Investigation and Resources. John Sharp: Investigation and Resources. 

Table 5 
Sensitivities and specificities when corresponding metric is set at a minimum of 
45%.  

Classification 
problem 

Sensitivity (%) (at 45% 
specificity) 

Specificity (%) (at 45% 
sensitivity) 

HF vs Healthy  92  97 
HF vs SC  82  86 
HFNOCAD vs 

Healthy  
91  97 

HFNOCAD vs SC  84  86 
HF vs Healthy and 

SC  
89  96  

Fig. 3. Receiving operator characteristic curves detailing the trade-off between sensitivity and specificity for all 5 classification problems. Heart failure (NOCAD) vs 
Healthy patients (blue), Heart failure (NOCAD) vs Symptomatic patients (purple), Heart failure (ISCM and AF) vs Healthy (yellow), Heart failure (ISCM and AF) vs 
Symptomatic (red) and Heart failure vs Healthy and symptomatic patients (green). 

Table 6 
Negative Predictive Value at differing prevalence based on age demographics.  

Age range Prevalence of HF 
(%) 

NPV at high 
sensitivity 

NPV at high 
specificity 

All adults  
[26]  

1.5  0.996  0.991 

> 65 [27]  5.5  0.986  0.968 
> 70 [26]  10  0.974  0.940  
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