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Cyril Mani®", Tanya S. Paul?, Patrick M. Archambault*® & Alexandre Marois*>®

Deep-space missions require preventative care methods based on predictive models for identifying
in-space pathologies. Deploying such models requires flexible edge computing, which Open Neural
Network Exchange (ONNX) formats enable by optimizing inference directly on wearable edge devices.
This work demonstrates an innovative approach to point-of-care machine learning model pipelines by
combining this capacity with an advanced self-optimizing training scheme to classify periods of
Normal Sinus Rhythm (NSR), Atrial Fibrillation (AFIB), and Atrial Flutter (AFL). 742 h of
electrocardiogram (ECG) recordings were pre-processed into 30-second normalized samples where
variable mode decomposition purged muscle artifacts and instrumentation noise. Seventeen heart
rate variability and morphological ECG features were extracted by convoluting peak detection with
Gaussian distributions and delineating QRS complexes using discrete wavelet transforms. The
decision tree classifier’s features, parameters, and hyperparameters were self-optimized through
stratified triple nested cross-validation ranked on F1-scoring against cardiologist labeling. The
selected model achieved a macro F1-score of 0.899 with 0.993 for NSR, 0.938 for AFIB, and 0.767 for
AFL. The most important features included median P-wave amplitudes, PRR20, and mean heart rates.
The ONNX-translated pipeline took 9.2 s/sample. This combination of our self-optimizing scheme and

deployment use case of ONNX demonstrated overall accurate operational tachycardia detection.

NOW fifty years after the last Apollo mission, NASA and its partners are
planning the next exploration class efforts to send humans into deep space.
The first objective is to create a sustainable human presence on the Moon
and its orbit with the Lunar Gateway station. This outpost will serve as a
stepping stone slightly outside of Earth’s gravity well for missions toward
Mars and beyond'.

However, this new deep-space context breeds a new set of healthcare
challenges to human explorers. Long-duration deep-space missions severely
restrict ground resources capacity for medical assistance’. Previous low-
Earth orbit methods to attend to the crew’s health, such as emergency or re-
entry are no longer feasible’ in terms of spacecraft velocity change required
when astronauts are in Trans-Lunar Injection and 450,000 km from Earth.
Additionally, if an emergency arises during an orbit around the Moon with a
capsule on its far side, the astronauts are completely isolated from com-
municating with the flight surgeons for periods up to 34 min®. In future
Mars missions, the roundtrip communication delay of up to 44 min’ also

disqualifies recent advances in live augmented reality telemedicine with the
crew’s flight surgeon. In Mars missions, the closest emergency supplies and
help are at best 7 months away”.

This healthcare delivery context is challenging since space and its
microgravity environment are widely known for detrimental effects on
humans’ health. Studies observe severe reductions in bone tissue through
increased resorption, muscle mass atrophy linked to the lack of gravity, lung
volume decrease through the cranial displacement of the diaphragm and
abdomen, degradation of eyesight caused by the Spaceflight Associated
Neuro-Ocular Syndrome and drop in red blood cell count through
microgravity-caused hemolysis’.

Moreover, the literature reports that the spaceflight environment leads
to cardiovascular system degradation in the absence of adapted
countermeasures’. This degradation includes a decrease in left ventricular
mass’, changes in atrial structure/electrophysiology”'’ and loss of overall
cardiac contractility’, all of which predisposes the heart to arrhythmias.

"Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada. *Thales Research and Technology (TRT) Canada, Québec, QC, Canada. *Department
of Family Medicine and Emergency Medicine, Université Laval, Québec, QC, Canada. “School of Psychology, Université Laval, Québec, QC, Canada. *School of
Psychology and Humanities, University of Central Lancashire, Preston, Lancashire, United Kingdom. ®These authors contributed equally: Patrick M. Archambault,

Alexandre Marois. ></e-mail: alexandre.marois@psy.ulaval.ca

npj Microgravity | (2024)10:71


http://crossmark.crossref.org/dialog/?doi=10.1038/s41526-024-00409-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41526-024-00409-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41526-024-00409-0&domain=pdf
http://orcid.org/0009-0007-8248-5492
http://orcid.org/0009-0007-8248-5492
http://orcid.org/0009-0007-8248-5492
http://orcid.org/0009-0007-8248-5492
http://orcid.org/0009-0007-8248-5492
mailto:alexandre.marois@psy.ulaval.ca

https://doi.org/10.1038/s41526-024-00409-0

Article

Microgravity conditions are also associated with cardiac functional altera-
tions due to hemodynamic changes. These include fluid and pressure
redistributions and a decrease in plasma volume, which may set the stage for
changes in heart rhythm’, also potentially inducing arrythmias. For
instance, the absence of gravity and associated hydrostatic gradients
increases the mean arterial pressure in the torso while hypobaric and
hypoxic environments considered for future exploration-class missions''
decrease the partial pressure of O,. Both effects can induce tachycardia as the
heart attempts to redistribute pressure and supply sufficient oxygen".
Another potential arrhythmic pathophysiological pathway in space flight is
through cosmic radiation exposure, which can cause inflammation and a
decrease in microvascular density"’. Cellular damage can then result from
oxidative stress and tissue ischemia. The radicals produced by the oxidative
processes accelerate the development of atherosclerosis and enhance plaque
formation, particularly in the coronary ostia. Macrophages eliminate the
injured cells, which are then replaced with fibrosis. This fibrosis and calci-
fication can then alter the excitation conduction system and manifest
clinically as cardiac arrhythmias'. Finally, ventricular arrhythmias during
the Apollo program were linked to a reduction in total body potassium levels
due to increased urinary excretion—a potential outcome of muscle atrophy
during spaceflight'”. Thus, overall, spaceflight and high-altitude environ-
ments could be arrhythmogenic through four key mechanisms of influence
on the cardiovascular system: electrophysiological changes, structural
alterations, hemodynamic changes, heart tissue composition changes, and
electrolyte disturbance™".

This hypothesis aligns with numerous reports of observable cardiac
arrhythmias in spaceflight environments', ranking as the second most
frequent medical issue during the Mir program era’” and even prompting an
earlier return of a crewmember from Mir in 1987"”. However, these recorded
rhythm changes had no reported additional physiological adverse effects.
No causal link between the cardiac pathology and the above mechanisms
has also been empirically demonstrated'® since no deep-space missions past
Earth’s magnetosphere have systematically studied these mechanisms of
action through long-term electrocardiograms (ECG). Astronauts are also
screened for perfect cardiovascular health’, making physiological challenges
rarer to occur and notice. Thus, investigating and monitoring this gap in
research can help understand and mitigate how new deep-space missions
can aggravate cardiac fibrosis, contractility loss, atrial structure, and
potentially affect heart rhythm variations. If arrhythmias are undetected and
untreated, they could cause serious mission-threatening complications (i.e.
strokes and heart failures)'®.

Solutions must be found to increase space crew medical autonomy by
empowering them with more on-board tools to monitor, study, detect and
address treatable and degenerative cardiovascular conditions'’. Focusing on
early diagnosis and prevention instead of a reactive approach would also
allow for earlier treatment of less severe conditions and increases chances of
recovery and mission success”. Potential solutions exist through the
introduction of wearables such as the Astroskin garment (Carré Technol-
ogies) and self-treatment software with integrated medical decision-support
systems (MDSS)"**". However, they could be more effective when combined
with machine learning (ML) models. Thus, a solution resides in developing
predictive models for in-space pathologies using biometric data streamed
from such biomonitoring wearables.

Such an approach could enhance the awareness of the crew of
pathologies developed on-board and enable faster reaction time in
case of medical emergencies”. Here, early detection enables faster
mitigation of symptoms and the start of treatment plans before ripple
effect degradation”. This approach is recognized as a priority by
governmental space agencies where, for example, a series of concept
studies were issued by the Canadian Space Agency (CSA) as part of
the Health Beyond Initiative where bio-diagnostics and decision-
support systems were two of four technology development areas of
interest (https://www.asc-csa.gc.ca/eng/funding-programs/
programs/stdp/contracts-awarded-for-the-development-of-health-
technologies-for-deep-space-missions.asp).

However, models must be deployed directly to the astronaut end-user
in deep space, to allow more independence from ground resources'’. In the
context of Mars missions, the roundtrip communication delays pose a
significant challenge in medical emergencies. Research by Romero and
Francisco indicates that out of 100 medical problems likely to occur during
deep space missions, about 31 to 42 require immediate treatment™, with 14
to 32 being acute, life-threatening emergencies like angina, anaphylaxis, or
sudden cardiac arrest, necessitating response within 15 min*. This urgency
underscores the need for the crew, particularly the Crew Medical Officer
(CMO), to be autonomous in providing medical care, as they cannot rely on
ground-based support. However, non-physician crew members often lack
the training for complex medical diagnoses, placing substantial responsi-
bility on the CMO. In cases where the CMO is incapacitated or unable to
respond, it represents a critical single point of failure in the medical response
pipeline. NASA’s Human Research Program (HRP) has identified this as a
key scenario in medical system design, requiring non-physicians to
administer emergency care™. One of such scenarios highlighted by NASA’s
Exploration Medical Capability (ExMC) involves the CMO experiencing an
irregular heartbeat during treadmill exercise, with a significant commu-
nication delay from Mars orbit. In such a situation, the crew must rely on an
autonomous on-board diagnostic system, which needs to classify the irre-
gular heartbeat in real time, immediately stop the treadmill to prevent
further injuries and guide non-physician crew members through emergency
responses, such as using an Automated External Defibrillator™. This sce-
nario emphasizes the necessity for real-time, independent diagnostic cap-
abilities on board the spacecraft’s limited computational resources,
achievable through edge computing. While these on-board ML computers
must be edge-optimized to be as compact and power efficient as possible to
limit consumption of the scarce solar energy produced on deep-space
vehicles (smaller solar arrays and weaker solar power in Mars), the case is
even stronger during Extra Vehicular Activities (EVAs) or planetary surface
explorations where connection might be lost to the main spacecraft systems
(underground exploration, crater prospection, etc.) which would require to
run these medical predictive models locally to the astronaut’s spacesuit, on
portable smart devices.

Edge computing is a model design philosophy, which in this case,
through tailored algorithms and efficient architectures, facilitates the pro-
cessing and analysis of medical data at the points of care by enhancing ML
model efficiency and enabling operation on various low-resource devices at
the point of care like flight computers and smartphones. This increases ML
model interoperability and deployability which has been a main focus of the
CSA in the 2019 request for proposals (https://www.asc-csa.gc.ca/eng/
funding-programs/programs/stdp/contracts-awarded-for-the-
development-of-health-technologies-for-deep-space-missions.asp). In the
context of limited on-board computational resources, this approach
improves the resilience of the medical diagnosis pipeline while allowing for
more accurate and quicker diagnoses and reducing reliance on Earth-based
connectivity to make real-time decisions about patient care'*”’on board the
spacecraft edge computing servers and spacesuit integrated smart devices.
Examples of edge architectures that enable such edge processing and ana-
lysis of data in real time include AWS Greengrass, Microsoft Azure IoT
Edge, and Google Cloud IoT Edge™. These are made possible through
containerization, which packages applications and their dependencies in a
container, for more efficient deployment. ML frameworks allowing infer-
ence on edge devices include TensorFlow Lite (TFLite), OpenVINO, Caffe2
and ONNX Runtime® (https://onnxruntime.ai/docs/).

Although various biometric models exist, not all exhibit such flexible
and edge-compatible architecture that is crucial in the deep-space context.
This limitation underscores the efforts of NASA’s EXMC, which is actively
pursuing the development of real-time on-board ML medical diagnostic
solutions such as the Exploration Medical Capability Clinical Decision
Support System Concept of Operations (ExMC CDSS ConOps) which is
specifically designed for deep-space missions and as required in its L4.1-
Lunar-CDSS-0053 requirement”, integrates compatible edge-processing
architectures for on-board processing capabilities.
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However, in deep-space medical emergencies, it is essential to strike a
balance between optimizing the efficiency of edge processes and main-
taining the interpretability of the ML model’s inferences. Here, interpret-
ability refers to both the model’s intrinsic ability to be understood (human-
intuitive decision process, etc.) and the generation of supporting informa-
tion (confidence intervals, feature importance, etc.) that can enhance the
interpretability of the MDSS inference, though may induce additional
computation time. On one hand, faster edge processing allows for near-real-
time inference at the point of care on devices within the same vehicle as the
patient, preventing further degradation of the patient’s condition in critical
moments. On the other hand, the interpretability of the system ensures that
the right decisions are made in situations where mistakes can be extremely
costly. For example, with a transparent and interpretable model, the algo-
rithm’s decision process can be easier to understand by a non-medically
trained crewmember and the CMO can confirm that the diagnosed
pathology is correct by quickly comparing this decision process to their own
expert diagnosis. Thus, finding the right balance between both edge infer-
ence speed and interpretability can reduce overall medical execution time as
they respectively lower reaction time on symptom appearance and increase
trust in the MDSS pipeline, accelerating execution. In consequence, ML
analysis interpretability and transparency are included as a NASA CDSS
requirement which defines transparency as the generation of additional
information that can enhance interpretability inference (L4.1-Lunar-CDSS-
0050)”. Thus, interpretability remained a central criterion throughout this
work, guiding design decisions due to its indispensable role in medical
autonomy and decision efficiency.

For example, while deep learning (DL) has shown promising
results in detecting tachycardia in ECG signals®, it often lacks this
crucial transparency in its categorization processes, frequently func-
tioning as a ‘black box’ despite recent advances in interpretability”’. In
our context, the goal was not to discover new relationships through
black box algorithms, but rather to enable the inference of tachycardia
from interpretable features whose relationship could be visualized and
understood by the CMO for reasons outlined above. Thus, DL models
were not included in this work and the CDSS currently being developed
by NASA requires the use of ML (L4.1-Lunar-CDSS-0069), with no
mention of DL requirements”. Additionally, DL’s inherent high
computational requirements relative to ML make it less optimal for
edge device deployment in a real-time inference perspective, reducing
its relevance to the scope of this study. DL would increase crucial
computation time in emergencies and rely on larger, dedicated com-
puters sensitive to solar flares and cosmic rays, thereby introducing
single-point failures in the medical pipeline compared to the ML edge
computing alternatives.

In this work, tachycardias will be used as a case study to demonstrate
such a deep-space bio-monitoring predictive approach. They are great
candidate pathologies since they are detectable with lightweight ECGs
integrated in an already long history of wearable cardiac biomonitors flown
to the International Space Station (ISS) and Mir'’. Tachycardias are also
mostly treatable once detected with a range of accessible drug and cardio-
version therapies™, but can seriously deteriorate if not acted upon'®. Thus,
this work could have a measurable positive impact on mission and health
outcomes if implemented.

Specifically, this first stage to our research has focused on Atrial
Fibrillation (AFIB) and Atrial Flutter (AFL). AFIB was selected as it is the
most prevalent kind of tachycardia, characterized by erratic, chaotic elec-
trical impulses in the upper chambers of the heart (atria), which result in a
rapid heartbeat”. AFIB may be transient, but some episodes do not resolve
without treatment. AFIB treatment protocols are feasible by medically
trained astronauts as they can be simply addressed with a cocktail of rate
control medication (metoprolol, diltiazem, or digoxin), rhythm control
medications (procainamide, vernakalant, ibutilide, propafenone, or fleca-
nide) and direct oral anticoagulants (dabigatran, rivaroxaban, apixaban,
edoxaban) or warfarin™. AFL episodes, similarly to AFIB, may resolve on
their own but can require treatment to avoid further symptoms. However,

the ECG of patients with AFL is more organized than AFIB and maintains a
regular heart rate”. AFL is treated similarly to AFIB. Both types of tachy-
cardia are diagnosed using an ECG and have very similar signal processing,
denoising requirements™ and demonstrate repeated recognizable patterns
eligible for an ML approach.

This work reports the development and evaluation of the proposed
biomonitoring predictive model approach using an ONNX-formatted
machine-learning model pipeline approach. Our specific case study
demonstrates the detection of periods of normal sinus rhythm (NSR), AFIB
and AFL from a wearable 2-lead ECG. To define the needs of a ML pipeline
optimized for such deployed deep-space inference, this paper will thus
present the validated ML model algorithm and strategy highlighting six
main contributions:

1. The demonstration of state-of-the-art denoising and preprocessing
approaches for data extracted from physically active patients wearing
bio-monitoring devices in a spacecraft’s high instrumentation and
electromyographic noise environment while minimizing edge-
computing requirements;

2. The implementation of ECG morphological and temporal feature
extraction methods;

3. The development of a versatile triple-nested hyperparameter, para-
meter, and feature training scheme for a modular multivariable ML
pipeline;

4. To our knowledge, the very first use of the ONNX format at the
intersection of healthcare and deep-space edge computing;

5. The demonstration of ONNX-optimized inference performance on an
Android edge device available in a deep-space context; and

6. The validation of this ONNX model performance against cardiologist
labelling and the specific performance in detecting NSR, AFL and AFIB
rhythms from raw data.

Additionally, our ML pipeline defined and ranked the highest impact
features and hyperparameters to obtain high-accuracy NSR, AFL and AFIB
identification.

Methods

Pipeline overview

As shown in Fig. 1, the pipeline used in the development and inference
environments of the ML model is divided into seven main components:
Databases, Pre-processing, Denoising, Feature Extraction, Model Devel-
opment, Evaluation and Edge Inference. This pipeline was designed as a
modular system, allowing for additional databases, features and continuous
improvements to the process independently of the rest of the system. Fig-
urel will be referred to in the next sections, which will dive into the methods
used in each step of the signal processing pipeline.

Databases

In the signal processing pipeline development, two types of databases were
used. The first provided a range of ECG recordings with various levels of
natural and artificial noise to fine tune the denoising process for an analogue
aerospace noise environment. The second set focused on collecting NSR,
AFIB and AFL rhythms to train the model.

Denoising databases. This first subset of datasets is a collection of ECG
recordings of which the leads were separated. These recordings were
selected for their noise features; they are all from monitored patients in a
state of exercise, stress and surrounded by electrical equipment, which
created analogue noise sources similar to a deep-space monitoring con-
text. All these datasets also contain ECG recordings of patients at rest thus
providing a reference for the denoising process covered in a later section.
1. MIT-BIH Noise Stress Test Database (https://physionet.org/content/
nstdb/1.0.0/)””: Twelve half-hour ECG recordings and three half-hour
noise recordings that are characteristic of ambulatory ECG recordings
were recorded.
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Fig. 1| Overview of the machine learning development and operational pipeline.
This figure illustrates the workflow used for ECG signal processing and machine
learning, seperating the development (blue) to the operational (orange) environ-
ment flows. In the development environment, the workflow starts with ECG data
sourced from various databases, followed by pre-processing steps like extraction,
normalization, and down-sampling. The denoising stage applies techniques such as
Fast Fourier Transform and signal reconstruction. Feature extraction focuses on
detecting QRS peaks and deriving temporal and morphological features. Model
development involves cross-validation, feature selection, and hyperparameter

B : Development Environment [l : Operational Environment

optimization, leading to model evaluation through test set evaluation and confusion
matrices. In the deployed operational flow, the trained model is converted to the
ONNX format, optimized with ONNX Runtime for edge inference and then uses the
signal processing workflow of the development environemnt to feed operational
data to the model. This allows results in the target edge inference on an Android
device. Arrows indicate the sequential progression from data acquisition through
processing, model development, and final deployment which is managed through
Python scripts, ensuring a seamless transition from development to deployment.

2. MIT-BIH ST Change Database (https://physionet.org/content/stdb/1.
0.0/): 28 ECG recordings of varied durations, the majority of which
were made during exercise stress tests and show transitory ST
depression, are included in this database.

3. EPHNOGRAM  (https://physionet.org/content/ephnogram/1.0.0/):
An electrocardiogram and phonocardiogram database created from 24
patients aged 23 to 29 years old who participated in 30-minute stress
tests with fitness equipment.

Arrhythmia databases. The arrhythmia datasets were used for the model
training phase. They are all supervised, meaning they have rhythm
annotations independently made by cardiologists following the Associa-
tion for the Advancement of Medical Instruments convention®, indi-
cating each heartbeat superclass and each rhythm segment behavior for
NSR, AFL and AFIB among others. A large majority of these datasets
originate from the Arrhythmia Laboratory at the Beth Israel Deaconess
Medical Center, Massachusetts Institute of Technology. They have been
obtained through the open-source PhysioBank repository, a digital
archive maintained by the United States National Institutes of Health. The
MIT Databases have shown to be performant in training a ML model”.
1. MIT-BIH Arrhythmia Database (https://physionet.org/content/
mitdb/1.0.0/)* (MITDB): 48 half-hour ambulatory ECG recording
snippets from 47 participants are included in this dataset. A total of
4,000 24-hour ambulatory ECG recordings were taken from a
population that included a mix of in and outpatients at a 360-Hz
sampling rate.
2. MIT-BIH Atrial Fibrillation Database (https://physionet.org/content/
afdb/1.0.0/)"': 25 long-term ECG recordings of people with AFIB are

5. Chapman University and Shaoxing People’ Hospital Database (https://
www.kaggle.com/datasets/bjoernjostein/shaoxing-and-ningbo-first-
hospital-database): The dataset contains 45,152 labelled 10-second 12-
lead ECGs at 500 Hz.

6. China Physiological Challenge in 2018 (https://www.kaggle.com/
datasets/bjoernjostein/china-physiological-signal-challenge-in-
2018)*: This dataset, gathered from 80 healthy individuals, contains
continuous ECG recordings made over 24h, totaling more than
200,000 annotated ECG at a 500-Hz sample rate.

Since model performance is highly dependent on the composition of
data used, Table 1 reports the database-specific number of 30-second ECG
samples for each studied cardiac rhythm, a subset of the original databases.

Pre-processing

In the pre-processing step decomposed in Fig. 1, data is extracted from the
different heterogenous databases with the wfdb library (https://www.
physionet.org/files/wfdb/10.7.0/wpg.pdf) and is harmonized to a single
normalized dataset that can be used in the next pipeline sections. First, the
data is imported for all raw leads, patients and databases into a hierarchical
data file format, here HDF5, using the h5py Python library (https://docs.
h5py.org/en/stable/). This allowed for variable format datasets and variable-
length strings—optimal for preprocessing of unequal length samples—by

Table 1| Number of 30-second ECG samples for each cardiac
rhythm label studied

Dataset NSR  AFIB  AFL
sampled at 250 Hz in this database (mostly paroxysmal). MIT-BIH Arrhythmia Database 602 102 20

3. MIT-BIH Normal Sinus Rhythm Database (https://www.physionet. T 275 597 213
org/content/nsrdb/1.0.0/): This database contains 18 long-term ECG
recordings sampled at 128 Hz from individuals with no major ~_MIT-BIH Normal Sinus Rhythm Database FYHED 0 0
arrhythmias; the patients include 5 men and 13 women between the ~ Long Term Atrial Fibrillation Database 22,834 7358 0
ages of 20 and 50. Chapman University and Shaoxing People’ Hospital 608 593 148

4. Long Term Atrial Fibrillation Database (https://physionet.org/  Database
content/ltafdb/1.0.0/)**: 84 long-term ECG recordings of people with Ghina Physiological Challenge in 2018 918 1098 0
paroxysmal or persistent AFIB are included in this database. Records Total 78.083 10488 513
can last anywhere from 24 to 25 h and are sampled at 128 Hz.
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mapping contents to Python object arrays. Leads are separated, but the
patient identification numbers are conserved as metadata for database
properties used in ML functions (discussed in the Model Development and
Evaluation section). The data was then cut into non-overlapping 30-second
samples*. At this point, the HDF5 hierarchy integrated this metadata,
turning into a parameter-driven ECG-sample database, which also tracked
which samples are temporally consecutive to separate them downstream.

The ECG samples were then normalized first using the wfdb library to
downsample at a 128-Hz standard rate to match the lowest database sample
frequency of 128 Hz (LTAFDB)*. This standard frequency still respected
Nyquist frequency requirements to avoid aliasing™ on important frequency
ranges discussed in the next section. Invalid values were also removed by
comparison with a rolling average, units uniformed thanks to a dictionary of
standards, values centered on the x-axis by subtracting the mean and then
scaled between upper and lower bounds set at 1 and —1. These last two steps
allowed to pad shorter ECG samples with zeroes to maintain the standard
30-second length. Each ECG sample was then attributed a single-label
rhythm definition as meta-attribute (AFL, AFIB, NSR) based on the original
datasets’ cardiologist ECG rhythm annotations, thus enabling the super-
vision of the model in later steps. In case of conflicts, if the sample contained
both an NSR and tachycardia label, the tachycardia label was maintained
and if there are two tachycardia labels, the sample is discarded. Samples
containing any other types of tachycardia than the ones studied were
automatically discarded. The result of this step was a pre-processed syn-
thesized database containing only relevant 30-second samples of the
rhythms studied, which tracked the original database, original ECG number
(patient), temporal order, lead, data, and arrhythmia label.

Denoising and feature extraction

Considering the high electromagnetic noise interference environment on a
spacecraft”’, and the physical activity context in which the ECG data might
be recorded, a foundation of this work was to develop an effective denoising
procedure tailored to the deep-space edge computing context. To enable
proper inference, this denoising algorithm detected and removed noise
without compromising important biometric data, as shown in Fig. 2.

The first step of the denoising algorithm was to identify the noise to
discard. Using the lunar gateway as a reference for new-generation deep-
space spacecraft environments, its 400-Hz power supply will be converted to
60 Hz for experiments and commercial equipment”. Thus, three types of
ECG frequencies need to be removed™: under 3-4 Hz (baseline wander
noise, muscle artifacts, breathing), over 50-60 Hz (spacecraft power inter-
face, instrumentation noise), and electrode motion artifacts. This is in line
with literature raising the importance of maintaining frequency modes
under 15 Hz that contain most ECG components (P and T waves) and
modes between 30-60 Hz that contain most QRS complex information™.
Thus, the frequencies between 4-60 Hz were conserved as shown in Fig. 2.

To reduce computational strain on space-based edge devices, the
denoising algorithm started by detecting noise using a Fast Fourier Trans-
form (with the SciPy library) to find the significant presence of frequencies
under 4 Hz and above 60 Hz. The significance is defined by a larger mag-
nitude than the mean of the border frequencies.

If significant noise was detected, the algorithm used Variational Fre-
quency Mode decomposition (VFMD) with the vmdpy library, for signal
deconstruction and reconstruction. In the literature, VEMD is the preferred
choice for AFIB and AFL over other denoising algorithms like filtering or
independent component analysis. It outperforms in post-cleaning QRS
complex recognition, signal-to-noise ratio improvement*’ and spectrum
tailoring, a vital feature for handling yet undefined deep-space noise profiles.

Thus, with a resampling frequency of 256 Hz, the mode decomposition
was evenly distributed between 0 and 128 Hz (Nyquist frequency™) with 32
modes (K = 32) of range 4 Hz each. The signal was then reconstructed using
sub-bands 2-15 (4-60 Hz, j = [2, 15]).

Once the ECG signal denoised, 17 features were extracted (summar-
ized in Table 2) which can be split into two categories: heart rate variability
(HRV) features to track the time-domain intervals between the QRS

complexes (min/max/mean heart rate, ’MSSD, PRR50, PRR20, and SDSD,
SDRR) and morphological features (P/Q/R/S/T median peak amplitude and
P-Q/Q-R/R-S/S-T median peak delay) to track the shape of the QRS
complexes. These are conventionally used metrics in cardiology, chosen to
enable tachycardia inference from features whose impact and relationships
would be familiar to a CMO with basic cardiology training, as opposed to

model-generated abstract signal behavior features™.

Model development and evaluation

Model type selection. The initial phase of model development involved
choosing a model type suitable for deep-space arrhythmia inference.
While initial experimentation was done with a multinomial regression
model, a decision tree classifier was ultimately selected (demonstrating
the pipeline’s modularity, as the architecture change took less than an
hour). This complies with NASA’s L4.1-Lunar-CDSS-0060 requirement
for deep-space clinical decision support system, which recommends
logistic regression, decision tree and random forest amongt other ML
algorithms™. Compared to the other suggested model architectures, this
decision was driven by the fact that decision tree classifiers provide a
more interpretable inference process for the CMO and the ability to
assess feature importance while maintaining high accuracy—essential
attributes in operational medicine. In contrast, logistic regression tends
to be less accurate’” and random forest, although accurate, is less
interpretable™.

Training Procedure. At this stage of the pipeline, the HDF5 dataset
contained a large set of normalized and denoised ECG samples each with
17 features and a rhythm label. These labels and associated features
served as benchmarks during the training phases, and as validation sta-
tistics during the testing phases of the designed cross-validation approach
in the supervised training procedure.

Cross-validation is a recognized approach to optimize model perfor-
mance and avoid biases such as overfitting. There are different potential
methods in cross-validation, such as simple k-fold, leave one out, stratified
cross-validation or double cross-validation. Within the presented pipeline,
we introduced nested subject-independent cross-validation specifically to
reduce the bias in combined hyperparameter tuning and model selection by
limiting exposure to a subset of the dataset provided by the outer cross-
validation procedure™. This approach, combined with a holdout test data set
for final model evaluation, simultaneously optimized for the features,
hyperparameters and parameters of multiple model instances by comparing
different configurations. The designed process consisted of six steps as seen
in Fig. 3. 1) Prompting the user with the number of models (y) to train and
compare in a run as well as how many features () to track. To reduce model
complexity, a subset of 7 features was randomly selected for each model out
of the 17 available, creating y feature description arrays and y feature value
arrays. A solution array was also created with the cardiac rhythm of each
sample. This allowed us to extract label statistics for each run. The next steps
were then performed for each y model instances. 2) Stratified splitting of
outer train and holdout test datasets at an 80%-20% ratio. 3) Starting an
outer cross-validation on the training subset with stratifiedKfold of the
scikitlearn Python library (https:/scikit-learn.org/stable/). Here the dataset
was split into equally distributed 10 folds and cross-validated for parameter
tuning. 4) Nesting an inner stratified 3-fold cross-validation, where a grid
search evaluated the model fit of different hyperparameters on the last fold
based on a macro-F1 score. RandomCV of the scikit library was originally
implemented to coarsely converge towards to a sensible hyperparameter
domain after which GridSearchCV was deployed to result into the best
model through finer hyperparameter tuning. 5) Returning the best hyper-
parameter fit to the outer loop to continue parameters tuning. 6) Finally,
each y model’s best fit (parameters and hyperparameters) underwent a last
evaluation on the holdout set. The most performant model was then
selected, and its characteristics (tracked features, parameters) recorded. The
importance (f8) of these features was also recorded, with the feature_-
importances function in scikitlearn.
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Fig. 3 | Flowchart of the model training and optimization process for parameters
and hyperparameters. This figure illustrates the flowchart of the model training and
optimization process for parameters and hyperparameters. The process starts with y
models, represented by the blue and grey sets at the top, each with different feature
spaces. These models are trained and compared to identify the best-performing one.
The main workflow involves an outer resampling process (10 k-fold cross-valida-
tion) to estimate performance. In this stage, 80% of the data (blue) is used for
training, and 20% (orange) is held out for testing. Within the outer resampling loop,
an inner resampling process (3 k-fold cross-validation) is used to tune parameters.
Grid search is employed to optimize hyperparameters, macro F-1 scores, and
rhythm-specific F-1 scores. The tuned parameters from the inner resampling are
then applied to the training data in the outer resampling loop. Arrows indicate the
flow of data from training to testing and the application of tuned parameters at
each stage.

Five methodologies were maintained across dataset operations to
optimize training performance:

1. The seeds used in each part of this training procedure were stored in a
separate file to ensure replicability.

2. To avoid over-fitting for patients or specific recordings, all samples
from the same patient and recording were within the same subdivided
training set.

3. Similarly, no temporally dependent samples were consecutive in the
training sets.

4. At least one completely new ECG type (new patient and ECG
recording source), on which the model was not trained, was held in the
test dataset to validate how the model reacted to new ECG variations.

5. While the cross-validation stratification ensures that the properties
between training sets were maintained, there were no forced
proportionality on the ECG rhythms in the datasets. The model is
trained on the same pathological proportions as it would be exposed to
in a medical context to avoid overfitting for more rare
rhythms (i.e., AFL).

The new randomization seed of each prompted splitting and reshuf-
fling process was stored in the seed bank. Overall, this training procedure
was designed to be modular, feature-agnostic, arrhythmia-agnostic and

model architecture agnostic to avoid impeding future expansions to this
work or on the interoperability feature of a downstream ONNX integration.

Model evaluation. The models were evaluated based on the confusion
matrices generated by aggregating the final 10-fold cross-validation of the
training set and by testing on the holdout set. From these matrices and
their true positives (TP), false negatives (FN) and false positives (FP), the
rhythm-specific Accuracy, Recall, Precision and F1 score were computed,
where each rhythm was considered the positive class and the others
negative.

For each model and their rhythms, the mean and standard deviation of
this F1 score was obtained for the aggregated 10-fold cross validation and
test set. The macro-F1 score was then calculated by obtaining the average of
the mean F1 score for each rhythm’s cross validation and test set. The final
selected model had to first pass the threshold F1 score of 0.75 for each
rhythm—to ensure holistic performance—and was then selected to max-
imize the macro-F1 score. This method was chosen since F1 scoring was
determined in literature as a more meaningful evaluation for imbalanced
datasets, which ours is considering the low proportion of AFL in Table 1.
The Results section contained a tabulated representation of the generated
results on which the models were evaluated.

Additionally, since our triple nested optimization approach was
designed to outperform regular ML pipelines, each decision tree model’s
performance was compared to a baseline logistic regression pipeline
throughout development. Logistic regression was selected as baseline as it is
closest to decision trees in terms of interpretability, a central criterion®”. This
comparison was achieved by generating for both the development and
baseline models a multiclass, one-vs.-all receiver operating characteristic
(ROC) curve for each cardiac rhythm, where each rhythm was consecutively
treated as positive and all the other classes as negative. These are then micro-
averaged into one ROC curve to give a general sense of each model’s per-
formance. Micro-averaging was used over macro-averaging as it is prefer-
able for highly imbalanced dataset as it was the case with ours™. This
imbalance is why weighted confusion matrices were used for evaluating the
model since the NSR over-representation would obscure any relevant results
in unweighted confusion matrices.

Selected model architecture. Following the optimization scheme
presented in Fig. 3, the selected version of the decision tree classifier used
the entropy criterion based on the Shannon information gain and the
following hyperparameters: a maximum depth of 9, a minimum of
30 samples to split an internal node, a minimum of 5 samples to be at a
leaf node and no class weight balancing per the non-proportional training
rules to avoid overfitting,

Edge inference

After the best scikit-kit learn decision tree model was selected, it was first
converted to an ONNX format. ONNX is an open-source standard model
format that can seamlessly import almost any popular DL and ML
framework™ by supporting a wide variety of neural network architectures
(https://github.com/onnx/onnx) without the need for extensive conversion,
unlike TFLite. The philosophy of the ONNX approach is also to be plat-
form-agnostic, which means that models trained on one platform can be
deployed on a variety of edge devices all running different operating systems
and architectures, as opposed to OpenVINO, which is optimized for Intel
architectures. As mentioned in the Introduction, this interoperability of
platforms and frameworks has been a priority for state space agencies, which
wish to integrate multiple healthcare models from different development
streams in central medical decision support platforms while avoiding
compatibility issues or the need for separate computing devices and oper-
ating systems'’. In that objective, the ONNX format is an essential tool to
maximize interoperability, deployability and software architecture redun-
dancy crucial to the edge inference context of restricted deep-space com-
putational resources since any model can operate on any available device,
hence being chosen as the format for this model.

npj Microgravity | (2024)10:71


https://github.com/onnx/onnx

https://doi.org/10.1038/s41526-024-00409-0

Article

One-vs-Rest Multiclass ROC Curve

1.0 1
0.8 1
i}
3 0.6 1
4
2
=
%)
o
o
$ 0.4 1 i
'g . micro-average ROC curve (AUROC = 0.880)
{> = = |R micro-average ROC curve (AUROC = 0.769)
_': —— ROC curve for NSR (AUROC = 0.978)
-_' = _ROC curve for AFL (AUROC = 0.752)
0.2 1 " —— ROC curve for AFIB (AUROC = 0.882)
v/ LR ROC curve for NSR (AUROC = 0.885)
.:/ Jid LR ROC curve for AFL (AUROC = 0.658)
||,l, LR ROC curve for AFIB (AUROC = 0.780)
0.0 ¥ === ROC curve for chance level (AUROC = 0.50)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 4 | Receiver operating characteristic (ROC) curves of the developed model
and a linear regression model to compare inference performance for each cardiac
rythm studied. This figure is a visual representation of the inference performance of
our model (depicted in dark colors) and a linear regression model (LR, depicted in
lighter versions of each color) through a receiver operating characteristic (ROC)
curve for the three cardiac rhythms studied. The plot includes ROC curves for
Normal Sinus Rhythm (NSR), Atrial Flutter (AFL), and Atrial Fibrillation (AFIB),
along with their respective area under the ROC curve (AUROC) scores. The ROC
curve for the chance level is shown with a dashed line. The model’s micro-average
ROC curve has an AUROC of 0.880, while the LR micro-average ROC curve has an
AUROC of 0.769. Specific AUROC scores for each rhythm include 0.978 for NSR
(model) and 0.885 (LR), 0.752 for AFL (model) and 0.658 (LR), and 0.882 for AFIB
(model) and 0.780 (LR). The plot effectively demonstrates the superior performance
of our model compared to the linear regression model across different cardiac
rhythms.

The inference at the end user—here astronauts—is possible through
ONNX Runtime, a lightweight open-source edge inference engine for
ONNX format models. It first optimized the selected model for deployment
on low-resource edge devices using a variety of techniques deployed through
ONNX Runtime, including constant folding and node fusion/elimination to
reduce memory and computation requirements (https://github.com/
microsoft/onnxruntime). Then, it enabled the deployment of the model
and operator configuration files on the device through mobile-configured
containerization.

Overall, ONNX enables to bridge the gap between model development
and deployment on edge devices without any loss of accuracy or perfor-
mance, by enabling lightweight edge computing capacity for medical ML
applications in deep space where power for computational resources is
limited.

Considering that many flight-proven wearable bio-monitors use
Android OS, this study demonstrated inference of the ONNX runtime
model on an Android edge device as proof of the operational use case. This
was achieved by first exporting the sklearn model to the ONNX format using
the onnxmitools library (https://github.com/onnx/onnxmlitools) and the
convert_from_sklearn method. The ONNX model was then optimized as
discussed above and translated into a dual-optimized model file (.ort) and
operator configuration file (onnxruntime package). Note that while the
Scikit or ONNX format do not inherently perform quantization or pruning,
which was neither performed manually, it could be executed by ONNX
Runtime as part of model compression algorithms. Both files were then
deployed to the Android device. To do so, the Android Studio development

environment was installed in Samsung S10 running Android 13. The
ONNZX Runtime library was then imported into the Android project as a
module where it was included in the build.gradle file with all the necessary
dependencies. Then, the ONNX runtime engine was initialized in the
Android app, the ONNX model loaded and the input data provided for
inference. The model was run with the ONNX Runtime engine, which
processes the pre-recorded ECG input data and provided the inference
service.

Results

Model development

Figure 4 compares the inference performance of the final version of the
developed model and the classical logistic regression pipeline ran in parallel.
Our model justified its added complexity by presenting a better area under
the ROC curve (AUROC) in each category (NSR: 0.978 vs. 0.885, AFIB:
0.882 vs. 0.780 and AFL: 0.752 vs. 0.658, for our decision tree model com-
pared to the logistic regression, respectively). Overall, the micro-averaged
ROC curve for our model had an AUROC of 0.880 compared to 0.769 for
the logistic regression.

Model Inference Evaluation

Our model performance is further illustrated with Fig. 5. where weighted,
multiclass cardiac rhythm confusion matrices show strong relative True
Positive proportions in both the training set (NSR: 0.998, AFIB: 0.901,
AFL: 0.902) and in the test set (NSR: 0.999, AFIB: 0.890, AFL: 0.900) as
illustrated by the predominantly diagonal heatmap. This performance is
also tabulated in Table 3 through F1 scoring of the confusion matrices.
The selected model had a macro F1 score of 0.899 with specific cross-
validation mean scores of 0.993 for NSR, 0.938 for AFIB, and 0.767 for
AFL. The inference performance for each rhythm was thus above the 0.75
F1 score threshold. Following the training, the test set performance
exceeds the 10-fold cross-validation mean with increases of F1 scoring for
each rhythm as NSR detection scored 0.994, AFIB 0.944, and AFL 0.803.
The main features the selected model tracked (and their associated feature
importance f3) were the P-wave median peak amplitude (0.69), PRR20
(0.14), mean heart rate (0.10), max heart rate (0.02), SDRR (0.02), PRR50
(0.02) and SDSD (0.01). Accuracy was high at 98.9% for NSR, 98.6% for
AFIB, and 99.7% for AFL.

Additionally, the ONNX-adapted ECG pipeline only took 9.2 seconds
per 30-second sample of raw data to run on the Android device. Thus, this
allows sufficient time for the ECG recording to finish and the edge device to
be ready for the next round of pre-processing and inference.

Discussion

The objective of this work was to present the performance and detailed
structure of an ML pipeline and model optimized for the detection of NSR,
AFIB, and AFL rhythms in ECG recordings with the use of the ONNX
format at the intersection of healthcare and deep-space edge computing.
Overall, the modular nested training scheme and its resulting model based
on morphological and HRV features provided accurate detection of
tachycardia with lower identification of AFL compared to AFIB and NSR in
raw ECG recordings.

The overall evaluation of the model shows a well-rounded perfor-
mance with accuracies over 95%, a 14% higher AUROC micro average score
compared to a logistical regression trained on the same dataset and a 0.914
macro-F1 score. It is important to compare these two last metrics, since
optimizing the F1 score (ie., the harmonic mean of precision and recall)
allows to identify as many positive examples as possible, regardless of the
number of false positives. On the other hand, AUROC is useful in the
context of classification problems where the cost of false positives and false
negatives is different”. In our case, both the AUROC and F1 scoring are
high, and the cost of a false positive and false negative are low. In our deep-
space mission context, a false positive would require the crew’s medical
officer to simply review the ECG once the rhythm would be falsely flagged,
and a false negative would not be very costly in a constant biomonitoring
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Fig. 5 | Weighted confusion matrices of the train sets (left), and holdout test set
(right). This figure presents weighted confusion matrices for the training set (left)
and the holdout test set (right). The confusion matrices display the classification

performance of the model across the three cardiac rhythms studied : Normal Sinus
Rhythm (NSR), Atrial Fibrillation (AFIB), and Atrial Flutter (AFL). Each cell in the
matrices shows the proportion of true labels (rows) correctly or incorrectly pre-

dicted as specific labels (columns). High values along the diagonal indicate correct

Test Set: Weighted Confusion matrix
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classifications, while off-diagonal values indicate misclassifications. For the training
set, the model shows high accuracy with NSR (0.998), AFIB (0.901), and AFL (0.902)
correctly classified. Similar performance is observed in the test set, with NSR (0.999),
AFIB (0.89), and AFL (0.9) correctly classified. The color intensity reflects the
classification accuracy, with darker colors representing higher accuracy.

Table 3 | Classification performance of the selected model

Cardiac Mean F1 Score  F1 Score standard Test Mean
Rhythm (10-Fold CV) deviation (10-Fold CV) Set Accuracy (%)
NSR 0.993 0.03 0.994 98.9

AFIB 0.938 0.03 0.944 98.6

AFL 0.767 0.11 0.803 99.7

Macro 0.899 0.06 0914 -

F1 Score

context with more occasions to flag arrhythmic patterns in subsequent 30-
second windows.

As for operational performance, the ability to process the entire
pipeline from raw data to inference in 9.2 s, thus less time than it takes for the
sliding window to complete a 30-second recording, also indicated the effi-
ciency of such an approach for an efficient real-time cardiac arrhythmia
flagging system. The performance was not noticeably hindered by the
presence of large amounts of noise thanks to variable mode deconstruction
and reconstruction conserving the valuable signal information.

Table 3 shows the test set performance being systemically better than
the training set, scoring higher in class-wise F1 scoring (cf. Table 3), since the
model was then fully trained. It is not the case for the aggregated mean score
of the cross validation since the first folds have low performance, lowering
the average. However, this behavior does not translate to the weighted
confusion matrix in Fig. 5 since this increase in performance, while notable,
is overshadowed by the much smaller sample space.

As for feature importance, it puts emphasis on P-wave amplitude and
HRYV values since the absence of an organized P wave in atrial fibrillation or
the presence of an atrial flutter wave in atrial flutter represents atrial activity
which is a crucial component to AFIB and AFL*®. Similarly, arrhythmias in
general are characterized by fast heart rate, which is tracked in this model
through the PRR20 and heart rate features.

As shown in Table 4, the performance of this model is competitive and
promising compared with relevant literature reporting similar use of ML
workflows to identify a range of tachycardia on ECG datasets. While few
papers study a combination of the same rhythms, combined group of
datasets, training approach (nested cross-validation), evaluation metrics
(AUROC, accuracy and F1 score), and edge computing inference—which
illustrates the innovation in this work—the end inference performance can

still be used as benchmark. Jekova et al.” obtained a macro F1 score of 0.767
by using the PhysioNet 2021 Challenge database and a grid search over
dense neural network (DenseNet) architectures over five training runs.
Similarly to this work, their model gave more weight to the characteristics
related to the P-wave pattern and heart rate values. On the same dataset,
Plesinger et al.”’ and Kamaleswaran et al.”~* both used a Convolutional
Neural Network approach but the latter with a Bagged Tree Ensemble
approach, which respectively provided macro F1 scores of 0.70 and 0.81.
Ojha et al.”® used a DL Long Short-Term Memory (LSTM) approach to
obtain a macro F1 score of 0.927, slightly above the performance of our
model. However, ML models typically require less computing power than
DL models®, thus our approach stays competitive in our edge computing
context where slightly better inference cannot be at a much higher com-
puting cost. As an outlier in the literature that is mostly based on open-
source datasets, Chang et al. used their own proprietary dataset of
65,932 samples of ECG to also train a long short-term memory model which
gave a macro F1 score of 0.891. Their work could perhaps provide
inspiration for a next stage of our research since their model tracked 12
arrhythmia pathologies thanks to the size of their proprietary dataset and the
implicit control they have over it resulting in few rhythms with F1 scores
under 0.9.°%7%"% Given that the macro F1 score of this work is above most
values reported in the literature (cf. Table 4), we can also conclude that this
overall approach which leverages methods in nested cross-validation loops,
denoising and lightweight optimized edge inference through the ONNX
format—a deployment process synthesized in Fig. 6a in the operational
space environment—represents a gain in performance. This reinforces the
decision to pursue with ML rather than DL to increase deployability and
interpretability while maintaining high-performance inference. Our
approach is also valuable specifically in medical research as our modular
pipeline allows for easy integration of new pathologies and model archi-
tectures as it iterates on all features and updates the hyperparameters and
parameters at once. This enables a specialized inference for each medical
condition or pathology, which might depend on different features. There is
no need to rebuild the pipeline for each new cardiovascular model based on
ECG data. In fact, as mentioned in Section 2.5, the modular pipeline has
demonstrated the capacity to train a different model architecture with only
minor adjustments.

A limitation of this ML pipeline stemmed from the scarcity of open-
access ECG data obtained from space missions, as this data is often
proprietary or confidential. Thus, this work depended on ECG data
collected on Earth which may not perfectly replicate in-space conditions.
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0.8

0.91

PhysioNet Challenge2017 0.81

NSR, AFIB, others

Plesinger et al. (2017)%°
Chang et al. (2021)%

NSR: 96.5, AFIB: 99.1, AFL: 98.2

0.909
0.889
0.983
0.992

0.947

0.971

0.818

Proprietary 65,932 samples of 10s  0.891
AFDB

NSR, AFIB, AFL, others
NSR, AFIB, AFL, others

0.984
0.997

0.816

Petmezas et al. (2021)%
Kim et al. (2022)%

99.2

0.829
0.958
0.989
0.993
0.991

Macro1: 0.916, Macro2: 0.932

1: MIDB
2: AFDB

NSR, AFIB, AFL, others

99.35

0.995

99.2

0.925

0.994
0.973

NSR, AFIB, AFL, other CUDB, MITDB, AFDB 0.962

Guan et al. (2021)%°

99.3

0.926
0.974

0.927

99.2

0.915

0.927

MITDB

NSR, AFIB, AFL, VFIB

Ojha et al. (2023)*°

However, using terrestrial ECG data from analogue noise and exercise
contexts, including those from wearable devices, acted as a useful
starting point for developing and testing a first deep-space ECG mod-
eling tool and pipeline. Now proven with terrestrial data, this work, and
its ML pipeline—unchanged by potential spaceflight ECG variations—
can thus offer a replicable, interoperable, and innovative foundation for
more accurate future model development trained on in-space ECG data
when it becomes available.

Notwithstanding the model’s benefits outlined in section 4.2, it is
also important to note that currently the development of the model—
contrary to the edge inference—is extremely resource-intensive in time
and computational power as the grid search and nested cross-validation
approach is exhaustive in terms of solution space but also calculations.
Thus, there is room for improvement in optimizing the development
side of the model. A path to decrease this computational load might be in
investigating less resource-intensive denoising techniques for low-noise
situations where currently complex methods are used to clear small
amounts of noise. A two-step approach could be beneficial. Rewriting
the pipeline in a programming language closer to machine code (i.e.,C,C
++) could also be an improvement. The current pipeline also requires
large memory bandwidth, which might not be possible on slower hard
drives in legacy space hardware such as the ISS. With lightweight
inference, the pipeline should follow suit.

As can be noticed in the class-wise F1 scoring, AFL was the weakest
identified rhythm. This is for a variety of reasons. The main being that
AFL is rare in the population with estimations of only 0.088% experi-
encing it per year”. ECG recordings containing it are thus very scarce,
causing imbalanced datasets such as those used in this research. Addi-
tionally, AFL, when recorded is combined under AFIB® or with AFIB
and AFL under AF such as in Jekova et al.”” which studied binary clas-
sification AF/non-AF *. Additionally, the number of samples in Table 1
are generally lower than in literature on similar databases®, since it
reflects the strict label conflict resolution method implemented to
maximize classification performance, which is discussed in the pre-
processing section. Another reason behind the weaker AFL scoring is
that it is often misclassified as AFIB since they are quite similar. It is also
widely described in literature that AFL generally has more inaccurate
detection™. Due to this imbalance, accuracy was calculated but not used
in evaluating the mode as a viable confidence metric. With unbalanced
datasets, the model may achieve high accuracy by simply identifying the
majority class all the time, while performing poorly on the minority
class. This is because the contribution of each class to the accuracy is
weighed equally, regardless of the actual number of examples in each
class. F1 scores consider the relative importance of each class, making it a
better metric for this study. A future study would benefit from more AFL
recordings to balance the dataset.

While this solution addresses the emergent need for advanced point-
of-care health systems in deep space, it is also very relevant for Canadian
northern and remote communities. They experience similar situations of
physical isolation, with sometimes very large distances to health centers,
which make them unpractical and functionally impossible to reach on a
regular basis for periodic screenings and for emergencies”’. These com-
munities also experience information isolation like astronauts on the far side
of the moon as extreme weather events can incapacitate an already unreli-
able connectivity infrastructure for extended periods of time’". Thus, their
experience of a flawed universal healthcare coverage could benefit from
affordable at-home diagnostic tools. These can provide regular diagnostics
to a central hospital center, which can then convene the patient when the
situation requires their transfer such as depicted in Fig. 6b. This perspective
is even more relevant in the context of the United States’ Food and Drugs
Administration (FDA) approving of algorithms for human healthcare. A
total of 58 out of 520 of FDA-approved algorithms are related to
cardiology”. As for mass adoption in Earth devices and integration in space
medical decision-support system, this algorithm would have to integrate
interoperability standards.
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Fig. 6 | Model deployment examples for real-time
health monitoring in different operational envir-
onments. This figure illustrates model deployment
examples. a Model development and edge deploy-
ment process for deep-space operational context
and CMO dashboard. The workflow includes model G

development with scikit-learn, conversion to ONNX 7 P

format, optimization for mobile using ONNX
Runtime, and inference on an Android device. This
enables real-time monitoring of AFIB and AFL on a
smartphone used by a medical officer aboard a
spacecraft. b Similar deployment for remote bio-

monitoring of patients in areas with limited
healthcare access. Data from a remote patient is
transmitted via satellite to a hospital, allowing doc-
tors to review results and provide timely interven-

tions. This figure contains modified Shutterstock
royalty-free stock images from a paid plan allowing
for OA academic publication use under the Shut-
terstock Standard License, and modified iStock-

Photo images from a free plan allowed for OA
academic publication use under the iStockPhoto
Standard License.

Model Development

‘ tearn. ®e, Conversion to ONNX format
°

@ model.onnx
% Optimization for mobile
ONNX
RUNTIME

° Inference on Android device

AFIB: 95% 5
AFL: 45%

Overall, this work demonstrates the performance of a decision tree
classifier based on morphological and hear rate data and how its
deployment and inference capability on edge android devices can
facilitate the work of CMOs in extreme environments such as in deep
space and in remote communities. The modular and easily upgradeable
pipeline can be extended in future work to integrate different types of
tachycardia and biometric sources to serve as a more holistic model of
human health factors in space. Such a final model could be imple-
mented in terrestrial remote healthcare contexts to stream wearable
data, enable constant screening without having to go to a health center,
facilitates physician online monitoring in addition to live telemedicine,
and can justify in-person intervention when a suite of patterns is
detected.

Data availability

The datasets analysed in this study are open source and published online at
the URLs provided in the methods section along with each dataset
description. No additional data collection was conducted on human sub-
jects, thus complying with the Declaration of Helsinki.

Code availability
The code used in the course of this study is available from the corresponding
author upon reasonable request.
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