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Abstract—In the upcoming years, it is anticipated that cy-
bercrime activities will be widespread in this ecosystem, which
has trillions of dollars in economic value. This report explores
a Blockchain-Facilitated Federated Security-Preserving Deep
Learning (BF-FSPDL) authentication and verification method
using immersive metaverse devices. Blockchain technology and
Federated Learning (FL) are merged not only to eliminate the
requirement of a trusted third party for the verification of the
authenticity of transactions and immersive actions, but also, to
avoid Single Point of Failure (SPoF) and Generative Adversarial
Networks (GAN) attacks by detecting the malicious nodes using
the majority voting mechanism. The developed approaches in this
research have been tested using Motion Capture Suits (MoCaps)
in a co-simulation environment with the Proof of Work (PoW)
consensus mechanism. The preliminary results prove the viability
of employing the proposed approaches in realising the objectives
presented in this report. The results suggest that the approaches
can prevent impersonation, identity theft, and theft of credentials
or avatars promptly before any transactions have been executed.
The proposed system will be tested with a larger number of nodes
involving the Proof of Stake (PoS) consensus mechanism using
several other metaverse immersive devices as future work.

Index Terms—Metaverse, Proof of Work (PoW), Proof of Stake
(PoS), Urban Twins (UTs), cybercommunities, cybersecurity, cy-
berthreats, blockchain, Single Point of Failure (SPoF), Generative
Adversarial Networks (GAN).

I. INTRODUCTION

Numerous urban metaverse use cases have already been
adopted by urban life to improve Quality of Life (QoL) by
overcoming spatial and temporal constraints, and the trend
suggests that this will accelerate exponentially in the years
to come. Ensuring secure and reliable urban metaverse cy-
berspaces requires addressing two critical challenges, namely,
cybersecurity and privacy protection. In the upcoming years,
it is anticipated that cybercrime activities will be widespread
in this ecosystem, which has trillions of dollars in economic
value. The techniques under “Internet of Everything (IoE)”
and Automation of Everything (AoE) [1] combine people,
organisations, processes, things, and data into a tangible, co-
herent framework known as Cyber-Physical Systems (CPSs).

CPSs are employed to create Cyber-Physical Social Systems
(CPSSs) that work together to create a smarter, more intercon-
nected world [2]. Accurate digital replication of real-world
fragments of urbanisation (Smart City (SC) Digital Twins
(DTs) (i.e., Urban Twins (UTs)) at various granularities can
be achieved in the virtual plane through UTs [3]. Readers are
referred to the previous studies [4], [5], [6], [7], [8] for the
examples of UTs.

The quality of resident experiences in the urban ecosys-
tem is improved by the use of advanced infusion metaverse
technologies (e.g., VR/AR headset, full haptic body suits, i.e.
Motion Capture Suits (MoCaps)). The abilities of these devices
can be instrumented to improve privacy and security when
paired with additional technological innovations like Federated
Learning (FL) and blockchain. In this paper, a blockchain-
facilitated approach, which uses metaverse-immersive devices
to generate Federated Security-Preserving Deep Learning
(FSPDL) models, is designed. This design, by avoiding Single
Point of Failure (SPoF) and eliminating a trusted third party
for the verification of the authenticity of models, can be
instrumented effectively against identity impersonation and
theft of credentials, identity, or avatars within urban metaverse
cyberspaces – without renouncing targeted functional abilities
of the immersive devices and the essential objectives of the
urban metaverse cyberspaces.

A. URBAN METAVERSE & CYBERTHREATS

Urban metaverse worlds/cyberspaces (i.e. Urban Metaverse-
as-a-Services (UMaaSs)) – an extension of residents and urban
society, where the virtual and the physically real blend and
are more organically integrated within the Cybercommunity
of Wisdom (CoW) and where real-person resident avatars,
government avatars, governmental entities, organisations, busi-
nesses, and avatars driven by Artificial Intelligence (i.e. AI
bots or virtual users) can interact – would impact urban ways
of living significantly on a global scale, with many prac-
tical implementations by democratising skills/assets within



an urban ecosystem. More detailed information about urban
metaverse cyberspaces can be reached in [9], [10], [11].

Cybersecurity threats against the metaverse as well as
privacy concerns are analysed in [12], [13], [14], [15]. Vast
amounts of data including movements, preferences, emotions
and biometrics will be collected in the urban cybercommuni-
ties. This Big Data (BD) is subject to potential data breaches,
unauthorised access, and misuse of sensitive information [16].
New and effective approaches (e.g. [17]) are necessary to turn
large volumes of information into wisdom/insights at their sites
and to transfer the required abstract insightful form of the data
to the entities which demand this – considering the privacy and
security of data [18]. The cyberthreats that can be launched in
urban cybercommunities are elaborated in [19] with possible
countermeasures.

B. FEDERATED LEARNING & BLOCKCHAIN

FL, introduced by Google, has gained prominence as an
effective solution for addressing data silos, enabling collabo-
ration among multiple parties without sharing their data [20].
In FL, each entity trains its own data locally, and only the
locally generated model itself is sent to the central server to
aggregate all the models to form the final model for each
entity to utilise. The concepts and applications of FL are
analysed in [21]. From a technical standpoint, DL can be
performed in a collaborative manner, where a parameter server
is required to maintain the latest parameters available to all
parties [22]. Although local data is not directly shared with FL,
models trained on this data may also be spied on by malicious
adversaries, semi-honest parties, or honest but curious parties,
when local models are aggregated into a centre. Moreover,
under the circumstance of knowing the local model, spies
may adopt some attacks to restore the original data, which
indirectly leads to information leakage [23].

Privacy-Preserving Machine Learning (PPML) or more
specifically, Privacy-Preserving Deep Learning (PPDL)
schemes have been developed and employed to further
preserve sensible data and privacy while performing FL.
Multiple distributed encrypted data points can be uploaded by
their owners to a central server, collected by the platform, or
processed data models using specific agreed-upon transparent
DL training models, which are then later aggregated to
establish the global model without sharing the data itself.
The Homomorphic Encryption (HE) scheme allows data
to be processed without needing to decrypt it. SEALion,
CryptoNet [24], and CryptoDL are the early implementation
examples (trained networks) of the PPDL scheme via
encrypted outputs using HE. A PPDL system in which
many learning participants perform NN-based DL over a
combined dataset of all, without revealing the participants’
local data to a central server is presented in [25] using
asynchronous stochastic gradient descent, in combination
with HE. An FL-enabled network data analytics function
architecture with partial HE to secure ML model sharing
with privacy-preserving mechanisms is proposed in [26]. A
full HE scheme to the standard DNN, ResNet-20, is applied

in [27] to implement PPML. A universal multi-modal vertical
FL framework is proposed in [20] to effectively acquire
cross-domain semantic features on homomorphic-encrypted
data. FL mechanism is introduced into the deep learning of
medical models in Internet of Things (IoT)-based healthcare
system in [23] in which cryptographic primitives, including
masks and HE, are applied for further protecting local
models, so as to prevent the adversary from inferring private
medical data by various attacks such as model reconstruction
attack or model inversion attack or model inference attacks.
Considering a specific application of Human Activity
Recognition (HAR) across a variety of different devices from
multiple individual users, the vertical FL scheme is developed
to integrate shareable features from heterogeneous data
across different devices into a full feature space, while the
horizontal FL scheme is developed to effectively aggregate
the encrypted local models among multiple individual users
to achieve a high-quality global HAR model in [28], in which
a computationally efficient scheme resembling HE is then
improved and applied to support the parameter aggregation
without giving access to it, which enables heterogeneous
data sharing with privacy protection across different personal
devices and multiple users in building a more precise
personalised HAR model.

Urban metaverse cyberspaces should facilitate the exchange
of information in a trusted way through the metaverse ecosys-
tem built on decentralised blockchain technologies. Various
studies, by merging blockchain technologies and FL, aims to
address the shortcomings of FL such as Generative Adver-
sarial Networks (GAN) attacks and SPoF. Blockchain, with
its privacy-preserving mechanisms by verifying the training
process securely, has been recently employed to enable the
secure generation of FL in a distributed manner. A blockchain
FL (BlockFL) mechanism, enabling on-device ML without any
centralised, training data or coordination by utilising a consen-
sus mechanism is proposed in [29] to generate local models
on mobile devices by exchanging and verifying the parameter
updates via blockchain to avoid the aforementioned concerns.
BlockFL shows that a malicious miner will never form a new
blockchain whose length is longer than a blockchain formed
by honest miners and the overtake probability goes to zero
if just a few blocks have already been chained by honest
miners. Although the malicious miner begins the first Proof-
of-Work (PoW) – a decentralized consensus 160-bit secure
hash generation mechanism (SHA-1) – with the honest miners,
the larger number of miners prevents the overtake. Some
recent studies in the literature aim at reducing the cyberthreats
using automated detection and prevention approaches. Chen
et al. [30] aim to address the threat from GAN attacks pose
to collaborative deep learning and propose a model-preserving
FL framework, called MP-CLF, which can effectively resist the
GAN attack. An adversary detection-deactivation method for
metaverse-oriented FL is proposed in [31] to avoid GAN at-
tacks. A blockchain-based, differentially private, decentralised
DL framework, which enables parties to derive more accurate
local models in a fair and private manner, is proposed in [22].



A privacy-preserving two-party distributed algorithm of back-
propagation which allows a neural network to be trained
without requiring either party to reveal the individual data to
the other is presented in [32].

Standard FL model generation tools based on wearable
devices can be provided by the main urban city, or the
developers of the metaverse devices, to users to train their
models in a standard way, through which messages can be
communicated between the entities in an automated manner
using advanced AI techniques. However, updated gradients
may reveal individual private or actual information when asso-
ciated with data attributes and structures. Therefore, encryption
mechanisms provide further privacy protection. Secure queries
on sensitive private data through the aforementioned models
without revealing their contents are possible using an agreed-
upon, encrypted subset of the feature vector. The content
of the query or input for trained models can be verified,
allowing for computation and then the result is returned
based on an authentication mechanism, e.g. HE. However, in
addition to the inefficiency of homomorphic-based encryption,
the authenticity of local or global models cannot be guaran-
teed without the authentication of a trusted third party. But,
every third party within the urban metaverse ecosystem is
untrusted, concerning privacy in particular, considering semi-
honest parties or honest but curious parties. Moreover, the
locally or globally pre-trained gesture models can be replaced
by cybercriminals with their recently trained models instantly,
particularly when the credentials of a user are hijacked. In
this sense, the main urban entity and its cybercommunity
entities (i.e. UMaaSs) should be addressing the concerns of its
residents appropriately, privacy concerns in particular, without
requiring the authentication of a third party, while immersing
themselves with urban experiences and executing their trans-
actions. Therefore, a blockchain-facilitated approach, which
is elaborated in Section II, is proposed in this research. The
proposed authentication and verification approach, the so-
called BF-FSPDL, addresses those aforementioned concerns.

C. IMMERSIVE DEVICES AND BODY SIGNATURE

Authentication of residents and verifying their true identities
without a third party or a central authority is imperative in
developing private and secure urban metaverse cybercommu-
nities. Regular identity checks are crucial to both address
fake avatars or avatars that have been stolen via unauthorised
access to user credentials and avoid their imminent adverse
consequences – such as breach of privacy and loss of as-
sets. Individual data that can be used for authentication is
composed of i) biographic identification data such as name,
surname, date of birth, and ii) biometric identification data
as biological characteristics (DNA, facial features, height,
fingerprints, iris features, vein features, and palm features)
and behavioural/gesture patterns (facial expressions, move-
ment patterns (gait), lip motion, emotion expression or re-
actions to interactions using physiological responses, voice
pitch patterns/prints, and speech patterns). Automated Emotion
Recognition (AER) and Automated Behaviour Recognition

(ABR) technologies can detect humans’ emotional/behavioural
states in real time using facial expressions, voice attributes,
text, body movements, and neurological signals and have a
broad range of applications across many sectors [33]. Using
these features to train networks and models raises privacy
and ethical concerns in various aspects. Privacy and ethical
concerns in applying AI for learning expressions and pat-
terns using the aforementioned individual features, which is
out of the scope of this research, are explored in [34] for
interested readers. The way of building DL gesture models
should consider these privacy and ethical concerns as well
as the regulatory framework. Humans, with their body and
behavioural/gesture signatures, are drastically different from
each other in many ways, and they can be identified based
on their biological or behavioural/gesture characteristics with
a high level of identification assurance. It is worth mentioning
that physics-based character skills of individuals can be gained
through reinforcement learning, which can improve the realism
of individuals regarding avatars [35] as well. Every action or
transaction during the immersive interaction of individuals can
be copied into the metaverse ecosystem. These consecutive
actions or transactions generate particular patterns, in other
words, a cyber identity of individuals, that differentiates them
from other users. Within this context, immersive metaverse
devices can help residents protect the boundaries of their
privacy despite the security and privacy challenges that come
with these devices, particularly VR/AR headsets. The ca-
pabilities of these devices can be instrumented to improve
privacy and security when combined with other technologies
such as blockchain and FL. The actions of residents can be
profiled through their bodies, coupled with advanced multiple
sensory technologies that are based on a variety of body
signatures, while interacting with the metaverse ecosystem,
particularly by using VR headsets and full haptic body suits,
i.e. MoCaps, equipped with multi-sensory abilities enabling
tactile sensation. Users immerse themselves with full-body
haptic suits including finger and full-body tracking sets, by
which every motion can be replicated in virtual worlds and
the real world with a bidirectional haptic interaction (e.g.
touch, and handshake in a virtual environment). A sequence of
these motions can build our unique body features by extracting
the patterns from users’ gesture cues, which leads to patterns
distinguishing us from the rest of the world. These patterns, i.e.
the distinctive individual signatures, can be utilised effectively
for authentication purposes via a diverse range of metaverse
technologies (e.g. VR/AR headsets, MoCaps, haptics gloves,
and Hand Tracking Toolkit (HTT)), different types of many
other Wearable Sensors (WSs)), which are improving with
larger sets of options and a diverse range of attributes. For in-
stance, Wearable Resistive Sensors (WRSs) that could directly
characterise joint movements are one of the most promising
technologies for hand gesture recognition due to their easy
integration, low cost, and simple signal acquisition [36].



Fig. 1: User-based FSPDL model generation with immersive
devices.1

II. METHODOLOGY

The urban metaverse cyberspaces and associated entities are
distributed on the decentralised public and private ledgers.
AI models are required to be trained at the edges locally
and encrypted update gradients need to be transferred to
construct larger or global models regarding the principles of
FL as expressed earlier in Section I-B. The FSPDL scheme,
based on transparency and personal consent, is developed
using the cyber gesture signature with wearable immersive
devices to protect users’ privacy and security while verifying
the authenticity of the subject, where the data subjects are in
more control with further security measures. Cyber signatures,
which make the subject different from other subjects, can
be built through their body languages using tightly coupled
immersive wearable metaverse devices as visualised in Fig. 1.
The pseudo codes of model training with a MoCap device
are presented on blockchain in Algorithms 1 and 2. More
specifically, Algorithm 1 shows the local training of the model
with epochs fed by the particular online instant features
acquired from the device, which is worn by one of the
active nodes on the blockchain whereas Algorithm 2 displays
the global model update with the blockchain operations for
verification of the update gradients acquired from all the active
nodes on the blockchain through block mining. Algorithm 1
is run by each node individually at the edges locally whereas
Algorithm 2 is run on blockchain by all the active nodes
where current nodes can leave and new nodes can join at
any time. It is imperative to employ a technique to determine
if adding the candidate blocks to the chain is appropriate

1Readers are referred to https://teslasuit.io/blog/teslasuit-
motion-capture-system/ for the MoCap and to
https://freedspace.com.au/tracklab/products/brands/manus-vr/optitrack-
gloves-by-manus/ for the HTT images.

Data: System input: IDMoCap.IP & IDMoCap.Port & meR.ID
Data: Instant input: F = {A1, A2, . . . , Asize} &

S =
{
F1, F2, . . . , Fepoch

}
Result: Alg. 2 < −− (UpdateQueue & IDMoCap & meR.id &

ContinueUpdate)
int iteration = 0;
bool ContinueUpdate = true;
=> Start data streaming from the device and parameter selection;
UDPServer udpserver = new UDPServer();
=> Thread for streaming data from IDMoCap;
Thread serverThread = new Thread(() => udpserver.Listen());
=> Thread for filtering targeted attributes,
F = {A1, A2, . . . , Asize};

Thread dataHandlerThreadAtr = new Thread(() =>
SubscribeToEvent(udpserver));

=> IDMoCap gesture parameters and local model training;
while ContinueUpdate == true do

=> Start streaming from the device;
[meR.Data ]= serverThread.Start(IDMoCap.IP,
IDMoCap.Port, meR.credentials);

=> Start filtering for attribute selection;
[F ] = dataHandlerThreadAtr.Start(meR.Data);
=> Add filtered attributes to data samples until reaching the

epoch size;
S += [F ];
=> Continue training until weight differences is very small as

such |wL − wL−1| ≤ ϵ ;
if (S.size == epoch) && (|wL − wL−1| > ϵ) then

iteration += 1 ;
=> Feed the local model training with
S =

{
F1, F2, . . . , Fepoch

}
;

[αiteration, witeration] = localTrain(S);
=> place the obtained update parameters in queue;
UpdateQueue += (αiteration, witeration,timestamp);
=> Empty the sample array, S, for the next epoch feed;
S = “”;

else
=> Training has reached a satisfactory level, quit local

training and global uodates;
ContinueUpdate = false;

end
end

Algorithm 1: Individual authentication modelling
per immersive device: Local training (ID
={IDMoCap, IDHeadSetFace, IDHeadSetLip,
IDHandTrackingSet, . . . , IDsize}.

or not. Only trustworthy blocks with updates are allowed
to continue forward with the subsequent consensual block
thanks to the distributed validation mechanism, i.e., the voting
scheme in Alg.3 by avoiding GAN attacks and SPoF. To put
it another way, Alg.3, enabling other nodes to reject altered
data rapidly using hashes (i.e., signatures of data), combines
the voting results with the corresponding local models and
stores them in the successive consensual block if the voting
consensus is higher than the predetermined threshold value
(e.g. 50%) (i.e., V otingPercentage > V otingThreshold)
based on the accumulated votes as shown in Alg.2. From a
more technical standpoint, the gesture feature set for particular
attributes, F = {A1, A2, . . . , Asize}, of resident entities, R =
{R1, R2, . . . , Rsize}, need to be trained per individual with an
epoch sample size, S = {F1, F2, . . . , Fepoch}. Local weights
(wL) and global weights (wG) are synchronously updated after
every epoch iteration to generate particular vocal or gesture
models, MID, per immersive device, ID, as displayed in Eq. 1



Data: System input: meR & IDMoCap &
Blockchain(IDMoCap).genesis & PoW & VotingThreshold

Data: Instant input: Blockchain(IDMoCap).nodes &
UpdateQueue & ContinueUpdate

Result: & meR.MID & ledger
=> Blockchain node assignment;
Blockchain(IDMoCap).nodes += meR;
=> Nonce mining and global model update;
while (ContinueUpdate == true) || (UpdateQueue.Size > 0) do

if (UpdateQueue.Size > 0)) then
=> Get the gradient updates from the queue with FIFO;
UpdateParameters = UpdateQueue.updateparameters;
=> Download the last added block;
LastAddedBlock = Blockchain(IDMoCap).lastblock;
=> Get all the candidate blocks from nodes;
CandidateBlocks =

Blockchain(IDMoCap).nodes.candidateblocks;
=> Place the global updates in the candidate block;
Blockchain(IDMoCap).nodes(meR).candidateblock.body

(meR) = UpdateParameters;
=> Send the candidate block to all nodes in the

blockchain PoW;
Blockchain(IDMoCap).nodes.candidateblocks +=

Blockchain(IDMoCap).nodes(meR).candidateblock;
=> Run consensus hash generation mechanism to achieve

a hash smaller than the target value based on the
difficulty of PoW;

while (ContinueUpdate == true) || (UpdateQueue.Size >
0) do

hash = PoW.Operations;
if (hash < PoW.difficulty) then

=> Hashing is achieved. Inform all other nodes;
Blockchain(IDMoCap).newhash == hash;
Blockchain(IDMoCap).newblock =

Blockchain(IDMoCap).nodes(meR).candidateblock;
=> New block is added to the ledger if it is
authentic;

VotingPercentage <== Alg.3 <==
(LastAddedBlock &
Blockchain(IDMoCap).newblock);

if (VotingPercentage > VotingThreshold) then
Blockchain(IDMoCap).ledger +=

Blockchain(IDMoCap).newblock;
=> Delete the updated parameters from

queue;
UpdateQueue.first.Delete;

else
=> Block is not added as new block;
message(“The block is not found as authentic

and not added as new block”);
end

else if (Blockchain(IDMoCap).newhash.state ==
true) then

=> Hashing is achieved by another node;
=> New block is added to the ledger;
Blockchain(IDMoCap).ledger +=

Blockchain(IDMoCap).newblock;
end
else

=> Continue hashing;
end

end
end

Algorithm 2: Individual authentication and verification
modelling per immersive device: Global update with
blockchain.

where malicious devices connected to illegitimate models are
not included.

ID = {IDMoCap, IDHeadSetFace, IDHeadSetLip,

IDHandTrackingSet, IDV ocalAtr, . . . , IDsize}
(1)

Data: System input: Blockchain(IDMoCap).nodes
Data: Instant input: LastAddedBlock &

Blockchain(IDMoCap).newblock
Result: VotingPercentage
AuthenticityNum = 0;
=> Voting by nodes for the trustworthiness of the new block;
foreach node ∈ Blockchain(IDMoCap).nodes do

if (LastAddedBlock ∈ Blockchain(IDMoCap).newblock) then
=> The block is tagged as “authentic”;
AuthenticityNum += 1;

else
=> Malicious node;
AuthenticityNum -= 1;

end
end
return VotingPercentage = (AuthenticityNum * 100) / num(nodes));

Algorithm 3: Determining the authenticity of the added
nodes by detecting the malicious nodes.

Residents in the cybercommunities, R, perform the PoW
operations with a block generation rate of λ and whoever is
successful in reaching a hash key, by finding a nonce that is
smaller than the target value based on the difficulty of PoW,
places the candidate block with their locally trained, updated
model gradient parameters along with the other emerging
models updated successfully by other nodes similarly with
the previous PoW operations. Then, they continue mining
with the agreed-upon PoW and update their model parameters
likewise obtained from the next local epoch operations until
their models converge to a solution that satisfies a targeted
accuracy rate, Acc, (i.e. |wG − wG−1| ≤ ϵ where ϵ is a
very small value). The last blocks during the training process
with block mining, which stores each resident’s individual
aggregated local model updates, are added to the blockchain
with their block headers and block bodies as a distributed
ledger (Fig. 1), and downloaded by other residents, R, as
nodes in the blockchain to carry on the next PoW operations
with a newly generated candidate block. The body of the
block has the last generated hash key corresponding to the
individual resident model. In other words, all the updated
particular models are transferred to the last block with the
hash keys that are used to update the gradients for those
models. All the other residents/miners quit the current PoW
operations when they receive the new block that is added
to the blockchain to download this block and start the PoW
operations from scratch, with the most recent updates using
their candidate blocks with their updates, which are distributed
to all other nodes. During this process, every resident, who
performs PoW for his/her model update parameter with a
successful hashing, verifies all the previous model updates
with the previous PoW operations as well, which are updated
by other residents for their model training. The residents
whose models have converged to a solution either stop the
PoW operations and leave the mining as a node or continue
as is to verify other residents’ model updates with their current,
successful updates, without providing further input updates
– considering that the mining reward is still applicable even
though data reward is no longer offered. In order for users in
metaverse cyberspaces to mine blocks and confirm each other’s



Data: System input:
MIDMoCap

= {R1(MIDMoCap
)
, R2(MIDMoCap

)
,

R3(MIDMoCap
)
, . . . , Rsize(MIDMoCap

)
}

Data: Instant input: F = {A1, A2, . . . , Asize} &
S = {F1, F2, . . . , Fk} & Rme(MIDMoCap

)
&

meR.PrivateKey & Rme(MIDMoCap
)
.meR.hash

Result: True & False & NoModel & NotSufficientlyTrained
bool ModelVal = False;
=> Find the user model;
Rme(MIDMoCap

)
= Blockchain(IDMoCap) < −− (meR.ID);

=> Proceed only if the user has a trained model;
if (Rme(MIDMoCap

)
== Null) then

=> The user has no pre-trained model for this immersive
device;

return null;
exit;

else
=> Proceed only for the authorised user with correct

credentials;
IsCredentials = Rme(MIDMoCap

)
< −−

(meR.PrivateKey, Rme(MIDMoCap
)
.meR.hash);

if (IsCredentials == True) then
=> Check if the model is trained sufficiently (Acc, (i.e.
|wG − wG−1| ≤ ϵ);

if (Rme(MIDMoCap
)
.LearningState ==

NotSufficientlyTrained)) then
return NotSufficientlyTrained;
exit;

else
=> Test the samples with their features until it

returns a true value;
foreach (F ∈ S) do

ModelVal = Rme(MIDMoCap
)
< −−

F = {A1, A2, . . . , Asize};
if (ModelVal == True)) then

=> Identity is proved;
return ModelVal;
exit;

else
=> Continue testing with next features (F)

in samples (S);
end

end
=> False is assigned to ModelVal if no true value is

not returned for any attribute set;
=> Most probably, the credentials have been stolen;
return ModelVal;

end
else

=> The user credentials are not verified to run the model;
=> Either the credentials are wrongly entered or the

avatar is impersonated;
return 0;
exit;

end
end

Algorithm 4: Proof of identity using blockchain-facilitated
FSPDL pre-trained models with immersive devices where
ID = IDMoCap.

legitimacy as block miners, the authentication method that
this research proposes requires their cooperation. Users can be
incentivized to participate in block mining activities by earning
specific cryptocurrencies allotted to metaverse cyberspaces.
The creation of blocks in chronological order, through the
PoW consensus mechanism per ID, stops when no resident

remains as an active node, where all the models of residents –
per ID – that are expected to be completed as new nodes get
added to the blockchain to build their models. Local model
updates for all residents as nodes are aggregated at the last
block separately, leading to final global models that correspond
to individual residents. In other words, the blockchain expands
further when new residents join UMaaSs. The next block
which is being added to the distributed ledger has the most
recent model update where as the last block has the final model
itself. The final block is composed of the final aggregated
individual models of residents per ID as in Eq. 2 for ID,
MoCap, until new nodes join.

MIDMoCap
= {R1(MIDMoCap

)
, R2(MIDMoCap

)
,

R3(MIDMoCap
)
, . . . , Rsize(MIDMoCap

)
}

(2)

Residents upload their local true gradient updates (wL) to form
their model truthfully, with the required timestamp history
where models, generated using false parameters, cannot result
in authenticating the model owners during the use of the
particular immersive device. Every entity feeds the DL model
training process with the model-specific encrypted parameters
until the model converges to a desired solution. The original
user data is retained with the data owner as in FL and not
shared with third parties and all the communicated packets
are delivered between the entities using P2P/E2E ciphertexts
to avoid any possible data leakage, which aims to preserve
both the data’s sovereignty – and privacy, to a certain extent.
Updated gradients may reveal individual private or actual in-
formation when associated with data attributes and structures.
Therefore, encryption mechanisms provide further privacy
protection even though the updated gradients or communicated
packets have been anonymised. The above operations are
repeated for all ID using different blockchain forms.

Global gesture models, which are verified by other residents
in UMaaSs and employ a PoW consensus mechanism, are
deployed to be used for authentication mechanisms as proof,
which has been implemented in Algorithm 4, regularly during
the immersive actions/activities, when requested by any active
user in UMaaSs, or when required under particular circum-
stances such as before completing asset transactions to ensure
the identity of the other party. In our approach, the use of the
model to authenticate a resident with the blockchain-based
model can be allowed by the resident using the private key
and the last hash key that is associated with the particular
user-/device-based model in the body of the block. Here, the
blockchain is employed to provide trust among entities in mod-
elling gestures using every online training phase automated by
ID, i.e. epoch, by avoiding SPoF regarding the training in a
central server as in FL and not requiring a trusted third party
for the verification of the authenticity of the model and data
from which the model is generated. From a more technical
standpoint, the gesture feature set for particular attributes from
the particular immersive device, F = {A1, A2, . . . , Asize},
of the resident entity, R = meR, need to be run with the
model using a couple of sample size, S = {F1, F2, . . . , Fk}.



TABLE I: Parameters in Bi-LSTM-RNN [37].

The model results in either providing the authentication proof
with a successful outcome where one of the feature sets is
recognised or rejecting the authentication with an unsuccessful
outcome with no recognition for any of the attribute sets in
the sample array. Each entity knows nothing about the trained
data and its providers‘ identity while using the global ML
models in an automated manner with the entity parameters to
get a targeted classified outcome needed. The gesture models,
aiming at authenticating the other party through the use of
immersive devices, can be instrumented effectively against
the theft of credentials, identity, or avatars. Regular biometric
checks can be implemented with the proposed approach to
ensure that the avatar in action represents the intended person.

III. EXPERIMENTAL SETTINGS
The experiment was designed to test a cybercommunity

environment with 30 independent nodes in a co-simulated
environment. 2 users with MoCaps, indicating 2 nodes (Node-
A and Node-B) were incorporated into the co-simulation.
Miners were rewarded with 20 cybercommunity crypto coins
for each mined block. 2 powerful laptops (processor: 13th
Gen Intel(R) Core(TM) i9-13950HX, 2.20 GHz; RAM: 32
GB; cores: 24) were used by Node-A and Node-B and 1
workstation (processor: Intel Xeon Platinum 8280; RAM: 2.70
GHz; RAM: 128 GB; cores: 28; boosted: NVIDIA RTX 8000)
server was employed to simulate the remaining 28 nodes
in the co-simulated environment. Each simulated node was
assigned to one of the cores of the workstation as an individual
device. The nodes first trained their local models and then the
global models as explained in Section II. The process ended
when the gesture models of Node-A and Node-B converged
to a solution where the gesture training accuracies were over
0.95. The gesture models for other simulated nodes were
not trained for mined blocks while they were mining. The
training was conducted using Bidirectional Long Short-Term
Memory Recurrent Neural Networks (Bi-LSTM-RNN) with
the parameters presented in Table I.

IV. RESULTS
The required number of epochs to train the models of

Node-A and Node-B was 47 to reach the desired accuracy

rate of 0.95. All nodes, mining the blocks, almost received
a fair distribution of coins. The system checks the gesture
models when the nodes connect to the system or before
every transaction. The system can trigger an alert when Node-
A connects to the system using the credentials of Node-B
and vice versa it can detect Node-B when connected by the
credentials of Node-A. The system can discern genuine nodes
and impersonated users by analysing their gesture models
without requiring a third party to authenticate.

V. DISCUSSION AND CONCLUSION

The metaverse cybercommunities, using decentralised data
structures on private and public ledgers and interoperability
architecture, may not be managed by a single entity, which
makes it more difficult to track down and stop attackers.
Adverse events need to be detected in real time proactively
to avoid dire circumstances such as losing individual data,
NFTs, virtual real estate, cryptocurrency, or a breach of
privacy on the blockchain in which traceability of transactions
and actions is difficult to follow, due to the nature of the
blockchain ecosystem with a high level of data sovereignty
and privacy. Our research question was if we can turn the
abilities of immersive metaverse devices into the residents’
advantage in providing their security and avoiding a breach
of privacy. In a broader perspective, if it is possible to
build a trustworthy, urban metaverse cybercommunity, without
requiring a centralised authority/government to protect our
privacy or a third party to mediate between entities, e.g. for
a transaction. FL provides the opportunity to protect user
privacy and data sovereignty while leveraging the combined
intelligence of several dispersed nodes. However, FL, requiring
a third trusted body, suffers from GAN attacks and SPoF
concerning the central aggregator server, which not only
may put the entire process of thorough learning at risk, but
also, may jeopardise the timely and trustworthy authentication
and verification. This research designs a novel blockchain-
facilitated FSPDL (BF-FSPDL) authentication and verification
approach, based on physics-based characters of individuals
(i.e. body cyber footprint/identity – e.g. facial expressions,
movement patterns (gait), lip motion, emotional expression
or reactions to experiences using physiological responses,
voice pitch patterns/prints, and speech patterns) obtained from
immersive metaverse wearable devices (e.g. VR/AR headset,
MoCaps, haptics gloves, HTT). In this way, cyber signature
models (Section I-C), with a diverse range of attributes, can
be built step by step, verified by other residents and placed
in blockchain ledgers to be deployed whenever needed to
verify the authenticity of the residents/avatars even if all the
credentials are in the hands of cybercriminals.

This research mainly focuses on mitigating the cyberthreats
of “credentials theft” , “identity falsification & impersonation”,
“Identity theft”, and “Avatar theft”. The preliminary results
prove the viability of employing the proposed approaches in
realising the objectives in this report. More explicitly, the
results suggest that the approaches can prevent impersonation,
identity theft, and theft of credentials or avatars promptly



before any transactions have been executed. The proposed
system will be tested with a larger number of nodes involving
Proof of Stake (PoS) consensus mechanism using several other
metaverse immersive devices.

VI. LIMITATIONS
A limited number of nodes (i.e., 30) were included in the

experiments due to the limited computing resources and the
computational difficulties of PoW. A network of devices must
expend considerable computing power to perform the PoW
consensus mechanism in the blockchain. Large amounts of
energy are needed for PoW at scale as more miners/nodes
join the network with expanding computing resources. The
use of PoS consensus mechanism can compensate for such
shortcomings. Therefore, we would like to test our system
using this mechanism with several other metaverse immersive
devices in our future studies and compare the results obtained
from the implementations of PoW and PoS with a larger
number of nodes in our further papers.
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