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Abstract—The automation of vehicles is progressing from one
automation level to the next, with the goal of reaching level 5,
which involves no steering wheel, pedals, brakes, or windshield.
This is achieved by the vehicle taking on an increasing number
of autonomous decision-making tasks under the guidance of
intelligent control systems that are equipped with enhancing
sensor technologies and Artificial Intelligence (AI). Major vehicle
companies are competing to build the most experienced (AI-)
driver on the roads. In this report, how the intelligence of Self-
Driving Vehicles (SDVs) is being built by the automotive industry
for the efficient deployment of handover wheels is analysed and
applications of machine intelligence for SDVs are implemented
through video capturing using Deep Learning (DL). The results
show that i) the use of DL techniques as well as reinforcement
learning (RL) — Deep RL approaches — can contribute to the
intelligence of SDVs significantly and ii) SDVs, equipped with
advanced mechatronics systems, can be fully autonomous with
the level-5 automation as they are trained appropriately with
proper datasets.

Index Terms—Autonomous vehicles, self-driving vehicles,
driverless vehicles, sensor fusion, autonomous driving, vehicle
automation, deep learning, neural networks.

I. INTRODUCTION

Thanks to cyber-physical systems (CPSs) and enhanced
Al techniques, the “everyday things” in our environment
have become increasingly intelligent in recent years in the
aspects of Automation of Everything (AoE) and Internet of
Everything (IoE) [1], [2] enabling them to make decisions
with an increasing degree of autonomy and little to no
help from humans [3]], [4]. There are many applications
where the replacement of humans by machines is inevitable
as intelligent machines continue to advance. In the same
direction, vehicles including aerial vehicles are becoming
increasingly automated by taking on more and more tasks
in a diverse range of fields(e.g., logistics [5], agriculture [6],
landmine detection [7]]). All the big players in the automotive
industry envisage a future for driverless vehicles and they
have already taken notable actions within their manufactur-
ing phases [§8]], [9]. By utilising the vast amount of current
knowledge about sensors, actuators, telematics, and artificial
intelligence (AI) acquired from the level-3 and level-4 au-
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tonomy [10], the majority of automakers hope to implement
level-5 fully autonomous ground vehicles (FAGVs) on urban
roadways [8]]. Prototypes of autonomous vehicles (AVs) in
different automation levels [§] have already been tested for
millions of miles [11]]. In this report, how the intelligence of
Self-Driving Vehicles (SDVs) is being built by the automotive
industry for the efficient deployment of handover wheels is
analysed and then applications of machine intelligence for
SDVs are implemented through video capturing using Deep
Learning (DL), particularly, a Faster Region-based Convolu-
tional Neural Network (RCNN).

II. VEHICLE INTELLIGENCE AND INDUSTRY

Ross [12]] summarises 65 years of automotive baby steps
leading to autonomous ground vehicles (AGVs), from the 1948
invention of modern cruise control to the 2030 prediction
that half of all new cars will be autonomous, defying the
widespread belief from a few decades ago that computers
would never be able to operate a car. The major automotive
players all see autonomous cars as the way of the future, and
they have already made significant progress toward that goal
during the manufacturing phase, with strong backing from top
tech companies (e.g., Samsung [3], Intel, Nvidia, Mobileye,
Microsoft) as summarised in Table [Il Strictly speaking, those
players are heavily investing in and experimenting with au-
tonomous technology. It’s only a matter of time until one
of them introduces the first commercially available driverless
vehicle in the coming years [|13]], as SDVs are evolving to meet
the requirements of the stakeholders (i.e. cities, governors,
policymakers, legislators, organisations, manufactures, users,
pedestrians, and other traffic participants) [[14]]. The following
section gives an overview of some of the main technologies
incorporated into machine intelligence. Firstly, an insight into
the operational principles of current AVs is presented, with a
review of the approaches used by the pioneering companies in
SDVs. Next, 5G communications and their potential impact on
swarm intelligence in SDVs are discussed. Further, an analysis
of previously developed Al systems utilising both DL and
Reinforcement Learning (RL) is given.



TABLE I: Collaborations between the automotive industry
and technological companies to develop vehicle intelligence.
Autonomous vehicle models on Level 3, 4 and 5 .

Company Model evel
Lyft AV HW and SW 4,5
Google AV SW 4,5
Audio + NVIDIA Audio A8

Tesla Tesla autopilot

BMW + Intel + Mobileye

VISION iNEXT [20]

Toyoto

- 5
Concept-i =, Lexus -

Toyoto + Microsoft
Volkswagen + NVIDIA

Toyoto Edge Cases
ID Buzz *

Yandex Yandex taxi

Renault Renault Symbioz

Renault Trezor

Rolls-Royce 103EX (customisable)

Volvo + Microsoft Volvo 360c

Ford + Lyft Ford Fusion

Chrysler + Lyft Chrysler Pacificas

Alphabet + Lyft Waymo (e.g., Koala)

Aptiv + Lyft Aptiv

Google + Lyft Aptiv

Uber + NVIDIA Aptiv

Rinspeed Rinspeed Oasis * 5
Rinspeed Rinspeed Yfos © 5
Rinspeed Rinspeed Snap

Rinspeed Rinspeed MicroSnap *

S-Class S 500 (no cockpit) °
F 015 Luxury in Motion ™
Future Truck 2025 1

Mercedes-Benz
Mercedes-Benz
Mercedes-Benz

el R R R R R R R e e e e e e e e I I e e e e e e e R R S R Al

Lyft Lyft
GM GM
Uber Uber taxi

A. Vehicle Intelligence With Sensor Fusion

The automotive industry spent about $100 billion globally
on research and development to foster innovation and maintain
its competitiveness [15]. Around $80 billion has been spent on
self-driving cars [16]. Waymo has spent over $1.1 billion so
far to develop its own internal capability, with particularly
large investments in simulation and mapping, as well as
real-world driving, training, and testing [I7]. The general
functional architecture of these systems consists of sensors,
Al for decision-making, control systems, actuators, machine-
to-machine (M2M) and machine-to-infrastructure (M2I) com-
munications.

Waymo has begun testing driverless cars on public roads
massively. It, formerly Google Self Driving Car Project, has
been one of the pioneering developers in AVs for the past
decade. As illustrated in Fig[l] Waymo’s system uses LiDAR,
a laser-based distance measurement sensor, to create a detailed
360°map of the surrounding area as the vehicle drives along.
Radar is also used to detect and measure the distance and
velocity of nearby objects. In addition, cameras are used to
recognise visual information from objects like traffic lights and
signs. To enable cars to make decisions, all the gathered data
is fused with machine learning methods like DL and machine
vision. Tesla is another major developer of driverless cars,

One of Waymo's three lidar systems that shoots lasers
so the car can see its surroundings. Waymo says this
lidar can detect a helmet two-football fields away.

/

A forward facing camera works with 8
others stationed around the car to provide
—— 360 degrees of vision.

Waymo's self-driving sensors are tightly
integrated into the hybrid minivan created
by Fiat Chrysler. N\

Radar sensors can detect objects \
in rain, fog, or snow. b

\

~—

Fig. 1: Overview of Waymo’s working principles .
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Fig. 2: Sensor fusion for Tesla’s Autopilot technology .

particularly, with level-3 automation. The main components
of Tesla include traffic-aware cruise control, autosteering,
auto-lane changing, side collision warnings, auto park and
summoning. Tesla employs surround-view cameras to identify
signs, traffic lights, and lanes in addition to radar to create
an image of the objects in front of the car. GPS is used to
determine the position of the car on the road, and ultrasound is
also utilised in 360° to identify any obstacles. Nvidia supplies
the processing power for the neural network created by Tesla
that fuses all of the input data. Notably, Tesla avoids the use of
LiDAR for their systems due to its high cost, complexity and
obtrusive appearance [19]]. Another company deeply invested
in the development of driverless vehicles is Volvo. Volvo is
developing both personal vehicles and vehicles such as trucks
to transport large, heavy goods over short, confined areas.

B. 5G Communication and Swarm Intelligence in SDVs

The use of fifth-generation (5G) with high capacity, high
speed, high data transmission rates, high reliability, high
availability and low-latency abilities increases the efficacy
of communication between SDVs with other vehicles and
infrastructure substantially [21]]. This ultra-low latency and
increased transfer speeds are key aspects of 5G that enable



the real-time processing and transfer of data that is required
for advanced M2M and M2I communications [22], [23].

The outcome of such developments with regards to AVs
would include the transfer of the vehicle’s sensory data,
including position, direction, intent and potential faults to
surrounding vehicles and smart domains, such as Smart City
(SC) or motorways to allow for proper planning and fore-
warning to prevent accidents [23]], [24]. Additionally, the
reception of information from cloud and edge services, as
well as smart domains, would be enabled to assist in route
planning by the vehicle [25]. Emergency services, such as
ambulances could transmit data regarding their presence to
ensure other vehicles open a path, allowing quicker travel
times. Other aspects include navigation, communication, ef-
ficiency, entertainment and safety [22f]. These are just some
of the benefits provided by enabling Vehicle-to-Everything
(V2X) communications through the implementation of 5G
which could be revolutionary for all modes of transport.

C. C. Deep Learning & Reinforcement Learning & Deep
Reinforcement Learning

DL uses an approach like that of a human brain to process
data and recognise patterns. It uses a neural network through
which data is passed through each node where it is trans-
formed by mathematical operations. This network outputs a
score for each potential output, the highest score being the
decision. This technique uses back-propagation to calculate
the cost value (the difference between the output and the
actual classification) and to adjust the weightings between the
node connections to minimise this cost value [26]]. DL needs
substantial training which requires large datasets of known
data, significant computational power and time.

An autonomous agent in RL learns by interacting with its
environment using discretised state/action steps of a contin-
uous environment (exploration) and a reward function (i.e.,
reward signal) to accomplish an assigned task with transition
probability, T, (< S, A, T, R >). The agent receives a reward
at each changing state naturally from the environment for
desired actions (exploitation) within a goal of maximising the
cumulative scalar rewards received over its lifetime for reach-
ing the optimal policy, 7*, in other words, the highest expected
sum of discounted rewards (long-term profits) during their
interactions with the environment over time. Q-learning has
been applied to solve various real-world problems since it was
developed in [27], but it is unable to solve high-dimensional
problems where the number of calculations increases drasti-
cally with the number of inputs [28] as in SDVs. Recently,
Deep Neural Network (DNN) with brain-like computation
has dominated the market with various application areas,
in particular, computer vision, signal and natural language
processing. DNN enables representation learning with artificial
neural networks (NNs) using multiple layers of abstract data
representations and leads to the power of generalisation in real-
life applications with the efficient discovery of generalisable
features in high-dimensional data.

Deep RL (DRL), with goal-directed behaviour and represen-
tation learning with the ability to learn different levels of ab-
straction from data, has emerged as a very effective approach
by combining the strengths of two successful approaches — RL
and DNN - to overcome the representation problem of RL as
function approximators that leads to generalisation allowing
self-driving agents to generalise knowledge to new unseen
complex situations. DRL can be defined as a function approx-
imation method in DNN to generalise past experiences to new
situations with by mapping them to near-optimal decisions
using generalisable optimal policies. DRL, in particular, with
most commonly used Deep Q-Networks (DQN), has been
found successful in addressing high dimensional problems
with less prior knowledge. DRL addresses the problem of
long-term optimisation within state space and time-varying
environments considering Bellman‘s discounted cumulative
reward through iterations. Recent revolutionary advances in Al
using the learning principles of biological brains and human
cognition has fuelled the development and use of DRL in
numerous fields [29] such as Atari games [30]], poker [31],
multiplayer games [32]], and board games [33]], [34], [35]], [36].
DRL have surpassed human-level performance in many appli-
cations. Can SDVs exceed human performance using DRL?
Can self-driving with high dimensional problem space harness
DRL to build systems that can learn and mimic human-
driver-like problem-solving capabilities by rapidly acquiring,
generalising and mapping driving knowledge to new driving
tasks and situations with complex dynamics?

DRL for AVs: Autonomous driving has been suggested as
an application suited to deep reinforcement learning. DRL
for autonomous driving vas surveyed in [37]. Recently, DRL,
using Q-learning, has been immensely employed to solve the
path planning problem and maze problems of robots [38]].
Vitelli and Nayebi [39] created a deep Q-network (DQN)
combining convolutional and recurrent NNs (CNN & RNN)
with reinforcement learning to successfully control a car
in a simulated 3D environment. However, this example did
prove to be less stable than other current methods. A similar
approach was presented by [40] which again focused on
integration of RNN & CNN, with the addition of attention
models. This paper was successful in early testing. Kendall
et al. [41] developed the first physical vehicle with deep
reinforcement learning used to control the vehicle. The only
input is a monocular image and the reward is simply the
distance travelled without a safety driver intervening. The
vehicle can explore continuously until the driver deems an
action unsafe, this is then relayed back into the system, with
all computation executed on-board. The method was able to
train the vehicle to follow a lane in under 30 minutes. Kendall
et al. [41] points out that although successful, a better reward
system will be required, as human intervention decreases as
the system improves, weakening the training input signal.
With these early work, it certainly shows that DRL has some
potential in AVs, as the system can dynamically adapt to new
environments with extensive training or pre-built 3D mapping.



III. DEVELOPMENT OF VEHICLE INTELLIGENCE

This report shows how machine intelligence of SDVs for
state and situation awareness (SSA) can be developed using
visual perception. More specifically, this paper proposes a
system for detecting and recognising other vehicles, their
positional states, traffic signs, and road structures including
lanes using DL approaches. To accomplish this, two systems
have been designed. The first system uses a convolutional
neural network (CNN) trained on cropped images of interested
objects such as traffic signs, road signs, and vehicles. The
system is used as a proof of concept for the use of DL for
recognition tasks and serves as practice for the secondary
system. The second system uses a Faster RCNN to detect
objects in videos, draw a bounding box around them and
classify their types. The following two sections detail each
system.

A. Design of Machine Intelligence with CNN Detector

The CNN detector is trained on around cropped images of
objects as depicted in Table [lI} from the German Traffic Sign
Benchmark dataset [42]. To prepare the dataset, all images
have been converted to grayscale and resized to 205x205
pixels. This step is used to improve the processing speed of the
system. For training, the images are randomly split into 80%
training and 20% validation sets. A CNN has been defined
including the following layers; image input, convolutional
layer, batch normalisation layer, ReLU layer and max-pooling
layer. These layers are repeated twice more, with a doubled
number of filters for each instance of the convolutional layer.
At the end of the network, a fully connected layer, softmax
layer and classification layer are used to determine the final
output.

30 epochs have been determined as enough to ensure a satis-
factory output accuracy, but not so much as to risk overfitting.
With a trained detector, labelled test images (previously unseen
by the classifier) can be passed through the system to assess
its performance. Negative images (images without any object
in interest) are input to evaluate the specificity of the detector.
The detector will output a confidence score for each class that
it is trained on, the highest scoring class being the most likely
to be true, and therefore used as its determination. A threshold
is set to determine the confidence value at which the detector
is most accurate. A true positive (TP), false positive (FP),
true negative (TN) and false negative (FN) rate are recorded
through testing. A positive is any image given a value above
the threshold by the classifier, and a negative image is any
value below. As the images are labelled, which images are
true and false is already known. These values can be used
to establish the sensitivity and specificity of the system at
a given threshold, using this in a ROC curve can be used
to evaluate the optimal threshold value. Additionally, text-to-
speech is used to audibly output the names of the objects
identified by the detector.

TABLE II: Dataset used for CNN traffic sign detector.

Traffic Sign Training Test
Images Images

30 2120 100

50 2150 100

70 1880 100

80 1760 100

Ahead Only 1099 100

Keep Right 2125 100

No Lorry 1910 100
Overtaking

Priority Road 2205 100

Roadworks 1421 100

Yield 2223 100

Negatives 583

vh

TABLE III: Dataset used for CNN traffic sign detector.

Traffic Sign No. of Images

Pedestrian 1085
Crossing
@ Signal Ahead 925
@ Stop 1820

B. Design of Machine Intelligence with Faster RCNN Detector

CNNs are well suited for image classification, however,
for object detection, RCNNs (Region-CNN) can be more
informative. RCNNs use selective search to generate multiple
bounding boxes (called region proposals) within an image. A
CNN is then used to classify the objects within the bounding
boxes, these are given a score and are usually passed to
a bounding box regressor to fine-tune the bounding box
position [43]]. Faster RCNN is an advanced RCNN that uses a
region proposal network (RPN) instead of the computationally
exhaustive and time-consuming selective search method [44].
The Faster RCNN used for this system uses the pre-trained
ResNet-50 CNN to extract features from the input images.
The extracted features are then used in the RPN to generate
object proposals [45]]. Finally, the proposed objects are passed
to a CNN trained on the objects to determine their class. CNN
is trained using the LISA dataset, which includes the region of
interest (ROI) values for the bounding boxes in each image;
these are used as additional input during training. The data set
is split into 80% training and 20% test sets as exemplified
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Fig. 3: Training phases of the CNN detector.

in [M The Faster RCNN is tested similarly to the CNN,
again obtaining sensitivity and specificity values using various
threshold values so the optimal value can be determined. The
class name of the most prominent sign (highest score) is also
audibly output using text-to-speech.

IV. EXPERIMENTAL RESULTS

In this section, the training and testing results for both
systems are presented and evaluated. Further, additional sub-
systems to enhance the overall system are detailed and results
are given, this includes; text-to-speech, lane-detection, distance
measurement and driving instructions.

A. CNN

Training the CNN using the German Traffic Sign Bench-
mark dataset produced a network with an accuracy of 93.78%.
This accuracy was deemed suitable, as it surpassed 90%,
and so was next tested using unseen images and negatives.
Training phases are shown in Fig. 3] Upon testing the system,
it was found that, although the sensitivity of the network was
generally good, it had poor specificity. This could be attributed
to several things including; poor-quality dataset images, too
much similarity between trained objects or an insufficient
training set. Two different negative sets were tested, the first
with traffic signs other than those trained, and the second with
images completely absent of signs.

Evaluation of the ROC curve generated by multiple tests
found that the similarity value of 0.99 would be the ideal
threshold value as shown in Fig.[4] due to it having the greatest
balance between sensitivity and specificity. Overall, the system
worked well for classifying images of the trained objects. The
development of this system provided a good experience for
working with NNs and a strong basis for developing the Faster
RCNN system.

B. Faster RCNN

The LISA dataset [46]] was first prepared by extracting the
file path information and bounding box values for the selected

CNN ROC Curve
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Fig. 4: The ROC curve for the CNN detector indicates that
the similarity value of 0.99 would be the ideal threshold.

Faster RCNN ROC Curve
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Fig. 5: ROC curve generated using multiple threshold val-
ues. Note: after 0.5, the sensitivity/specificity values did not
change. This indicates a self-set threshold of 0.5 by the system.
Note, data labels represent threshold value.

classes from the datasets accompanying the CSV file. This data
was saved in MATLAB in a format compatible with the Faster
RCNN object detector function. Initially, each class was saved
to an individual set, and one detector was trained for each
class. Preliminary testing showed these detectors performed
well, however, using separate detectors is not satisfactory, and
allows more room for errors. Consequently, the image data



signalAhead

Fig. 6: Faster RCNN detected and drawn bounding boxes with
labels around two signal ahead signs.

Fig. 7: Faster RCNN detected and drawn bounding boxes with
labels around two stop signs.

were combined into one file, with one bounding box column
for each sign class. An accuracy of 100% was achieved in
training this detector.

A ROC curve was generated with multiple thresholds as
shown in Fig. [5] Generally, the threshold at which sensitivity
and specificity are best balanced is optimal, in this case, that
would be between 0.5 and 0.6 — the nearest point to the top
left corner of the ROC. Preliminary tests on random images
with and without the trained objects showed good results. The
system was able to accurately draw bounding boxes around
multiple objects of different classes, including a confidence
score and class name (Figs. [6and [7). Additionally, the system
can audibly output the class name of the most prominent sign.
If no sign is present, the system will produce no score and will
label the image accordingly. To establish the optimal threshold
value, the process used for the CNN detector was utilised.
Findings indicate that the detector has a self-set threshold of
0.5, any image that scores lower will be classed as negative.

1) Testing on Video: To simulate a real-life application,
the system has been tested on a video of Tesla driverless
carﬂ By analysing the video frame-by-frame, the system can
detect and correctly identify all signs in the video with high
certainty. This proves the system will be applicable in a real
vehicle. 2) Driving Information Speech Output: The system

Thttps://www.youtube.com/watch?v=tIThdr305Qo

Fig. 8: Still of driverless car video with Faster RCNN traffic
sign detector implemented. This frame shows two stop signs
are detected with high certainty.

has been used for outputting driving information based on
the detected objects. Firstly, a simple text-to-speech function
has been incorporated into the system, which will output the
class name of the object detected. This would be useful as
it could inform a driver in a semi-autonomous vehicle, or
passengers in a driverless vehicle. The system uses a Java
file that uses natural language processing to output text-to-
speech from MATLAB whilst using multiple threads. This
allows the system to undertake multiple tasks simultaneously
without crashing. For validation, when the vehicle in front is
detected as being too close, a message will output informing
the user of the car’s distance and that the vehicle’s speed is
reducing.

3) Lane & Vehicle Detection: The trained systems has
been integrated into the system that monitors the distance
to the vehicle ahead, as well as the road lanes. The sensor
configuration values are required to generate a birds-eye view
of the road and to create a vehicle coordinate system
(Fig. ). A segmentation technique is used to identify lane
marker pixels from the road. This process is repeated with
each frame to allow the system to hold the lane marker
position. This is useful for detecting accidental lane departure
and autonomous lane switching. Additionally, a pre-trained
aggregated channel features (ACF) object detector is used to
detect other vehicles in the frame. The vehicle coordinate
system is used to calculate the location of detected vehicles.
This is a critical component for allowing automatic braking
and forward collision aversion. These tasks make use of multi-
threaded programming to ensure they can run simultaneously
with other system tasks. Two videos have been used to test
the efficacy of this system, (Figs. [I0] and [TT).

V. DISCUSSION AND CONCLUSION

Full automation is anticipated to become a reality in the
near future and will bring significant benefits, particularly to
the transport and logistics sector [38]. The developers of the
SDVs technology are claiming the safest driving on roads with
the most experienced (self-) driver and promising a variety of
benefits, particularly to 1) reduction of the number of accidents
and traffic fatalities caused by human errors (e.g., driving



Fig. 10: SSA in Video 1 — instant relative positioning of other
vehicles with respect to the ego vehicle.

fatigue, distraction), 2) reduction of health-care costs and
other financial losses caused by traffic accidents, 3) ride-hail,
delivery, logistics and transportation companies for reducing
their driver costs, 4) disabled and old people to make them
independent (e.g., blind), 5) reduction of traffic congestion,
road stress, and parking space needs, 6) people who do not
like driving, and 7) comfort of passengers with optimised
and standardised movement of vehicles (e.g., most convenient
turning, acceleration, deceleration) [@]]

This study shows guidance about how to develop the ma-

Fig. 11: SSA in Video 2 — instant relative positioning of other
vehicles with respect to the ego vehicle.

chine intelligence of SDV using DL. A CNN that can classify
cropped images of traffic objects showed good results when
shown images of the trained objects. However, the specificity
of the system is severely lacking, with a considerable number
of false-positive results when shown negative images. These
issues could be rectified by increasing the size and quality of
the dataset. On the other hand, the Faster RCNN has shown
promising results for implementation into an autonomous
vehicle. The system can accurately detect and classify multiple
targeted objects within an image and draw a labelled bounding
box around each. Sensitivity and specificity values above 0.9
were achieved during testing. The Faster RCNN detector has
been incorporated into a lane and vehicle detection system
as well as the instant relative positioning of other vehicles
with respect to the ego vehicle to prove that the system can
successfully work as a subsystem within a driverless vehicle.
Additionally, text-to-speech has been incorporated to provide
driving instructions and information for passengers.

SDVs are expected to achieve certain missions within
rapidly changing multi-complexity high-dimensional urban
environments — partially observable, multiagent, stochastic,
sequential, dynamic, and continuous environments El In prac-
tice, autonomous driving consists of multiple tasks with
conflicting multiple objectives. An optimal decision, with
sequential decision-making, is supposed to be generated at
each state/instant concerning the predictions based on the
uncertain behaviours of diverse road users involving bicyclists,
and pedestrians within complex urban road structures such
as intersections and crosswalks. DRL, with its success in
a diverse range of fields, seems a promising approach in
improving the machine cognition of SDVs to mitigate the
uncertainties in dynamic traffic.
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