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Abstract— This paper provides a detailed analysis that uses 

an Artificial Neural Network (ANN) in forecasting the seismic 

response in multistorey steel structures. A comprehensive 

framework has been developed to conduct a parametric study, 

with the intention of leveraging the outcomes from dynamic 

analysis, as inputs in the ANN. The framework explores the 

process of selecting earthquakes by utilizing seismic response 

spectrums and a nonlinear finite element (FE) model that 

introduces varied geometric properties, member sizes, and peak 

ground accelerations to derive eigenfrequencies, horizontal drift 

and base shear. Results indicate a satisfactory accuracy of the 

trained Artificial Neural Networks to predict the dynamic 

response. 
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I. INTRODUCTION 

Several methodologies have been developed the last years, 
emphasizing in using Artificial Intelligence tools to evaluate 
the structural response of different types of buildings and 
materials. The main concept of this approach, is to introduce 
a combination of traditional constitutive descriptions, 
including for instance damage mechanics, contact mechanics, 
plasticity and others [1], with machine learning tools that 
make use of relevant accumulated data, obtained either 
numerically or experimentally.  

In this context, several recent studies have been proposed, 
providing machine learning solutions including among others 
Artificial Neural Networks (ANNs) to capture the multi-scale 
response of masonry structures [2], the response of masonry 
under static or blast loads [3,4], the behaviour of reinforced 
concrete structures [5] as well as the response of steel 
structures under seismic actions [6,7,8]. More studies can be 
found in literature, emphasizing among others in the seismic 
response of buildings using machine learning applications [9-
19]. 

The proposed study adopts a machine learning (ML) 
framework for predicting the response of multistorey steel 
structures. Within finite element analysis (FEA), a parametric 
design is implemented by developing 1697 computational 
models, comprising 14 inputs and 9 outputs, with varying 
input parameters such as geometry, loading, and member sizes 
of structural steel buildings. The output of each simulation is 
the horizontal drift, the base shear, and the natural frequency. 
Input and output parameters are then fed into an ANN model 

to learn and predict the structural response of random multi-
storey steel buildings under seismic actions. 

 

II. ADOPTED METHODOLOGY 

A. Seismic actions 

The study employs past seismic events obtained from the 
Pacific Earthquake Engineering Research Centre (PEER) 
database. Selected seismic events provided the loading of the 
parametric finite element models, in the form of ground 
acceleration.  

In particular, seismic events exceeding the magnitude of 6 
Richter scale were evaluated, focusing on those potentially 
impacting the vibration response of the investigated 
structures. The selection process relied on fundamental 
periods computed from modal analyses using commercial 
FEM software. Events were chosen based on their potential to 
induce significant vibration, identified by matching peak 
response spectrum values to the computed fundamental 
periods. This ensured that the selected seismic events had the 
potential to trigger the response of structures with specific 
geometries and stiffness properties. Subsequently, FE models 
are constructed to generate damage states for each simulation. 

B. Parametric simulations 

A conceptual geometric design was developed to simulate 
real-life multistorey structures, ensuring practicality without 
compromising accuracy. Bay lengths in structural engineering 
typically ranges from 4m to 9m for optimal safety and 
functionality. Hence, two configurations providing 
dimensions equal to 6m x 4m x 3m and 6.5m x 5m x 3m (L x 
W x H), were studied to evaluate the impact of bay spacing on 
seismic responses and accommodate various design 
preferences. Structural steel buildings with 2 to 10 storeys and 
2 to 10 bays in each direction were considered.  

Member cross-sectional properties met the standards of 
the Southern African Steel Construction Handbook (2016). 
Member sizing under gravity loads followed SANS 10162-
1:2005 criteria. To cater to designers' diverse needs, a 
selection of five cross-sections was made. 

C. Developed finite element models 

For each of the parametric structural steel buildings, a non-
linear finite element model was developed. Structural steel 

mailto:gdrosopoulos@uclan.ac.uk
mailto:drosopoulosg@ukzn.ac.za


frames were simulated using beam finite elements while 
concrete slabs with shell elements.  

The longitudinal and transverse beams of the steel frames 
were connected to a 250 mm thick continuous slab to enhance 
rigidity and structural integrity. It is noted that slabs were 
positioned on each floor level to improve shear, torsional, and 
lateral stability, representing response aspects of a 
conventional multistorey steel building. A beam element 
formulation was employed for dynamic analysis, utilizing line 
elements for the steel frame and linear mesh to accurately 
model the system. Mesh refinement to 500 mm element size 
was implemented for the frame, while a course element size 
of 1500 mm was assigned to the slab, to optimize 
computational efficiency.  

To sustain lateral damping stiffness, bracing elements are 
strategically positioned at the first and last bay in each 
direction. Structures spanning more than 6 bays feature 
additional bracing at the central bay. Configurations with less 
than three bays adopt a single braced bay, except for structures 
exceeding 6 storeys, necessitating two braced bays. A uniform 
application of equal leg angles measuring 100 mm x 100 mm 
x 10 mm ensures consistent lateral resistance throughout the 
parametric design, obviating the need for shear walls. 

Beam-column elements connecting to the weak axis of 

columns are kept pinned (no moment resistance) to account 

for the low moment capacity about the column’s y-axis, whilst 

beams connecting to the strong axis (flange) are fixed, which 

led to uniaxial strong-axis bending.  

Material properties were defined using a nonlinear von 
Mises plasticity criterion for steel and linear elastic properties 
for concrete slabs. Nonlinear time history (transient) analysis, 
incorporating also "large deflections," was undertaken to 
evaluate the structural behaviour of each steel building over 
the duration of each seismic event. 

The seismic response of the structure was derived using 
fixed boundary conditions at the base, preventing translation 
and rotation in all three directions, simulating a fully 
embedded foundation. In addition, a fixed damping ratio of 
0.05 and a damping frequency matching the structure's 
fundamental frequency from modal analysis were applied to 
represent inherent energy dissipation.  

Directional ground accelerations time-history in x, y and z 
directions providing the seismic loading were assigned, 
replicating the ground motion of the earthquake.  

Each simulation captured the horizontal drift at top, 
middle, and bottom levels in both directions, as well as the 
base shear and eigenfrequencies. These parameters will be 
used to train the ANN and provide an insight into each 
structure's overall seismic performance, effectiveness of 
various geometries, and potential damage under different 
earthquake events. 

D. Artificial Neural Networks 

The introduction of a data-driven approaches has 
significantly reduced the gap between theoretical design and 
actual construction in the industry. By combining 
experimentally derived or numerically obtained data, these 
data-driven approaches have proved to yield accurate and 
effective results. However, it seems that the advancement of 
research in machine learning techniques for steel structures is 

not yet fully developed and there are aspects that can further 
be investigated, adopting models that consider various factors 
such as different steel connections (fixed and pinned), damage 
states, geometric configurations, member sizes, and types of 
loading. 

Among the most widely used machine learning 
approaches in data-driven structural engineering, is the one 
adopting Artificial Neural Networks (ANNs). The predictive 
capabilities of ANNs are exploited to minimize computational 
costs, and provide designers additional tools for a fast and 
accurate prediction of the seismic response, either in a 
preliminary or in a more final design stage. This reduces the 
likelihood of discrepancies and design errors. 

Developing an effective ANN model necessitates a 
comprehensive parametric study with a wide array of input 
and output parameters, enhancing the accuracy and efficiency 
of the prediction tool. 

In this study, parametric non-linear dynamic simulations 
were conducted and input-output parameters obtained from 
these simulations are included in a dataset. The developed 
dataset is then used to train, validate and test a neural network. 
Leveraging the capabilities of the Levenberg-Marquardt (LM) 
and Bayesian regularization algorithms, the training process 
employed iterative weight adjustments and rapid convergence 
to achieve accurate output approximation. These algorithms 
aim in minimizing the error function and identifying optimal 
weight configurations, leading to the desired output values. 

The training data, validation data, and testing data were 
split in a 70% / 15% / 15% ratio, respectively. This allocation 
ensures sufficient data for training the model, validating its 
performance, and evaluating its generalization capabilities on 
unseen data. 

Figure 1 illustrates the process proposed in this study for 
developing a data-driven solution, aiming to predict the 
seismic response of multistorey steel structures. 

III. RESULTS AND DISCUSSIONS 

Modal analysis indicates that shorter buildings with a fixed 
plan layout exhibit a lower fundamental period, implying 
increased rigidity. Furthermore, reducing bay spans and 
increasing the size of member cross-sections decrease the 
fundamental period and enhance structural stiffness. Tuning 
the damping frequency with the natural frequency is 
theoretically expected to significantly reduce the horizonal 
drift. 

First a brief insight is provided on the results of the 
parametric simulations. The outcomes of the parametric 
transient structural analysis, utilizing nonlinear time-history 
simulations, delineate the horizontal drift patterns across a 
range of geometric configurations and stiffness parameters. 
Figures 4 and 5, provide the drift magnitudes and a scaled-up 
deformation shape in the x and z directions for a single 
simulation taken from the parametric study. The building 
comprises 10 by 7 bays and 7 storeys with 6 m x 4 m spans 
and a 305 x 305 x 240 section. It is pertinent to recognise that 
the maximum drift in both directions is observed at the top of 
the building, occurring at 10 sec in the x-direction (shown in 
Figure 2) and at 8.93 sec in z-direction (shown in Figure 3). 
Thereafter, the maximum drift response from the time-history 
is taken as input for parametric design.  



In Figure 6 the horizontal displacement (drift) due to 
seismic loading is provided for 7 storey buildings, with 
increasing number of bays and for different bay dimensions. 
According to this figure, consistent diagrams for the 
horizontal drift across each spanning bay are derived. Thus, 
the graphs exhibit a similar pattern per direction, for the two 
bay spanning distances. Maintaining all other parameters 

constant, this pattern suggests a high degree of correlation 
among the variables. The identified consistency in the data 
patterns highlights the potential success of utilizing machine 
learning techniques in this analysis, since it is expected that 
training of the ANN for such data (depicting some sort of 
“consistency”) will reach a proper accuracy. 

    

Fig 1. The proposed data-driven scheme 

 
Fig 2. Time-history drift response in the x-direction 

 
Fig 3. Time-history drift response in the z-direction 

 

Fig 4. Horizontal drift (mm) and deformation shape in z-direction  
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Fig 5. Horizontal drift (mm) and deformation shape in z-direction  

 

Fig 6. Drift obtained for varying number of bays and span dimensions     

The training of the ANN is also discussed in the following 
lines. To reduce the mean square error (MSE) generated by 
the ANN, the values of the input and output parameters are 
normalized  in the range -1 to 1. In addition, after preliminary 
investigations aiming to evaluate the optimal number of 
neurons per hidden layer, 20 neurons per hidden layer were 
used to enhance the predictive accuracy. The Levenberg-
Marquardt and the Bayesian Regularization algorithms were 
adopted to implement the training. 

The error and the accuracy of the training, validation and 
testing of the ANN are provided in Table I. In particular, 
results of the training, validation and testing of the ANN 
provide correlation factors R for the corresponding regression 
diagrams, that are close to 1, for the three categories (as shown 
in Table I) and an MSE converging to zero, representative of 
a successful neural network training.  

Given the complexity of seismic design and the number of 
simulations that have been conducted during the study, the R-
value in each category is judged as satisfactory. The relevant 
regression diagrams depict real-predicted output values in 45° 
line, with a relatively small proportion of points diverging. 

To further verify the capacity of the trained ANN to 
predict the dynamic response of steel buildings, comparisons 
between predicted output and output obtained from finite 
element analysis simulations were conducted, for input 
parameters not included in the developed dataset. Thus, the 
precision of the outcomes was evaluated by comparing the 
results from the ANN with those generated by the FE software 
(Ansys) utilizing a new input dataset.  

Table II compares the performance of the two ANNs in 
predicting outputs for a 6 by 3 bay, 5-storey structure designed 
with a bay spacing of 6.5 m x 5 m and a member size of 533 
x 210 x 138 mm. Both methods provide reasonably accurate 
approximations of the Ansys-generated results for all 
evaluated features.  

The outputs derived from both ANNs were distinctive yet 
nearly equivalent, indicating a successful training network and 

confirming the capacity of predicting seismic responses of 
steel structures indicating suitability for performance-based 
seismic design. The results in Table II show that the 
Levenberg-Marquardt method exhibits a marginal improved 
output prediction than the Bayesian Regularization method, 
with a lower computational cost. Despite the divergence in 
their optimization strategies, both techniques yield 
satisfactory R-values and predictions, maintaining accuracy 
above 75%. This observation underscores the robustness of 
the neural network, indicating a well-conditioned model 
where outputs during training, validation, and testing closely 
match expected outcomes, indicative of minimal bias or 
variance. 

 

IV. CONCLUSIONS 

 A first effort is presented in this study, aiming to evaluate 
the response of structural steel multi-storey buildings under 
seismic actions, using machine learning. This work aims to 
contribute to performance-based seismic engineering, by 
integrating novel computational tools and established 
methodologies to achieve optimal design outcomes.  

Throughout this study, the efficacy of ANNs in capturing the 
intricate nonlinear behaviour of multistorey steel structures 
under seismic loading has been extensively examined. The 
findings underscore that ANNs offer a robust framework for 
accurately forecasting various seismic responses, including 
horizontal drifts, base shear, and eigenfrequency, exhibiting 
notable efficiency and precision when compared to 
conventional computational approaches. Furthermore, by 
harnessing the capabilities of ANNs, engineers can efficiently 
explore a diverse array of design scenarios and optimize 
structural configurations to enhance seismic performance 
while reducing time and design costs. 

 In addition, a coupling is attempted between finite element 
analysis and artificial neural networks. Integrating advanced, 
nonlinear dynamic finite element simulations with ANNs, 



represents a significant step towards performance-based 
seismic engineering.  

 By leveraging ANNs, this approach aims to streamline the 
design process by potentially bypassing traditional steps such 
as material characterization, modal analysis, and 
static/dynamic calculations or alternatively, offer a further 
insight on the structural response before those procedures are 
fully developed. This effort may lead to cost-effective design 
and also reduce significantly the underlying computational 
cost. 

 Furthermore, the approach may simplify the design 
process by potentially mitigating the need for extensive 
seismic expertise, leading to improved design consistency and 
ultimately safer buildings. In addition, the application of 
ANNs for predicting seismic responses on multistorey steel 
structures presents a significant advancement to seismic risk 
assessment.  

However, it is essential to recognise the inherent challenges 
associated with ANNs, including the need for an extensive 
dataset, model interpretability and overfitting, and the ability 
to generalize and predict unseen data. Addressing these 
challenges requires continuous research endeavours and 
collaborative efforts among structural engineers and 
academia. 

As the refinement and validation technique of ANN models 
progress, their widespread application stands to greatly 
improve the safety and sustainability of the built environment 
in seismic active regions. 

TABLE I.  TRAINING, VALIDATION AND TESTING OF THE NEURAL NETWORK 

 Levenberg-Marquardt Bayesian Regularization 

 Observations MSE R-value Observations MSE R-value 

Training 1194 0.0198 0.9817 1442 0.0206 0.9780 

Validation 256 0.0205 0.9816 - - - 

Testing 256 0.0161 0.9854 255 0.0312 0.9669 

TABLE II.  TESTING THE TRAIN ANN ON RANDOM INPUT DATA 

 Ansys Levenberg-Marquardt Bayesian Regularization 

Eigenfrequency (Hz) 1.11 1.21 1.36 

    

Roof drift x-direction (mm) 2.27 2.11 2.04 

Mid-height drift x-direction (mm) -1.43 -1.62 -1.43 

Bottom drift x-direction (mm) -0.49 -0.50 -0.47 

    

Roof drift z-direction (mm) 9.97 10.13 10.33 

Mid-height drift z-direction (mm) -7.82 -6.94 -7.04 

Bottom drift z-direction (mm) 0,8 1.15 0.78 

    

Base Shear x-direction (kN) 26 904.8 27 731.57 27 379.23 

Base Shear z-direction (kN) 12940 13 876.4 9 914.3 
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