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Abstract

Neural networks have demonstrated remarkable effec-
tiveness in solving distinct real-world vision problems per-
taining to activity recognition and violence detection in
surveillance scenarios. The broad reliance on practicing
a single network for spatial and motion information col-
lection has made them less effective for long-term depen-
dency analysis in video snippets. Our work solves this
issue through a multi-network fusion strategy suitable for
real-world surveillance. Initially, the spatial information
is accessed from a compound coefficient strategy inspired
by a robust convolutional neural network (ConvNet). Next,
the pyramidal convolutional features from two consecutive
frames are obtained through LiteFlowNet. The output from
both the networks (ConvNet and LiteFlowNet) is separately
passed into a deep-gated recurrent Unit (GRU) that is as-
sembled for a skip connection. The latter obtained from
each GRU is fused and further propagated to the dense
layer for final decision. The results on the datasets and the
ablation study confirm our method’s efficiency, outperform-
ing the state-of-the-art methods. (Code: GitHub)

1. Introduction

Billions of daily captured videos during surveillance are
stored on hard drives for purposeful analysis. Their ex-
aminations may reveal unusual events or abnormal activi-
ties. These manual settings make the process tedious in rec-
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ognizing certain activities in massive data. An intelligent
system is highly demanded to combat these unusual events
for safety because their automatic detection with significant
accuracy to eliminate human efforts and tiresome monitor-
ing is challenging. Therefore, a machine-based intelligent
method is obligatory for detecting abnormal events, such as
violence detection (VD), for safeguarding. Violence is an
abnormal or aggressive action that harms or affects an ob-
ject’s state, human being, or pet through physical force. Its
detection from videos is mandatory for surveillance systems
to ensure safety.

Over the past decade, improvements in computer vi-
sion algorithms have enabled the execution of diverse vi-
sion tasks, including human activity recognition for secu-
rity [26]], robotics, human-computer interaction, etc. Large-
scale action recognition has improved exponentially owing
to the availability of large-scale datasets. The primary pur-
pose of these applications is to focus on specific sub-tasks,
such as anomaly detection, VD, egocentric activity recogni-
tion, etc. The most critical action recognition subset is VD,
which is overwhelmingly growing because of its applica-
tions in security, safety, crime prevention, etc. A wide vari-
ety of automatic VD can be performed through deep learn-
ing (DL) algorithms to secure surveillance. An imperative
aspect of VD in surveillance is considering both the spatial
and motion information in video frames to identify violent
scenes. Moreover, it is crucial to efficiently process video
frames to reduce computational complexity while ensuring
accuracy. In this regard, existing techniques have several
challenges, making them incapable of real-time processing.


https://github.com/FathUMinUllah3797/DDL_Network/blob/main/README.md

Most VD works are based on a single end-to-end trainable
network for both appearance and motion information col-
lection, which is less effective for extracting the most dis-
criminative features. Similarly, most methods are functional
in non-surveillance systems; that is, they can only oper-
ate on traditional camera data. Therefore, to efficiently ad-
dress all these challenges, we propose a novel multi-stream
network fusion framework to conduct VD on surveillance
videos, which includes the following contributions.

1. Existing ConvNet models apply a single scaling strat-
egy (depth, width, or resolution) to extract fine-grained
features. Their arbitrary scaling based on manual tun-
ing results in suboptimal accuracy and efficiency. We
strengthen this by employing EfficientNet ConvNet,
which applies the compound coefficient scaling to all
required model dimensions for fine-grained informa-
tion collection.

2. Feature extraction from sequential video data is con-
siderably time-consuming for motion information ow-
ing to its high dimensionality and computational com-
plexity. The proposed method uses LiteFlowNet, a
novel procedure developed initially for motion estima-
tion between two consecutive frames. To capture the
motion, we extract pyramidal ConvNet features from
the intermediate layers of LiteFlowNet, which is com-
paratively smaller and faster than the state-of-the-art
(SOTA) optical flow ConvNet models.

3. Sequential learning algorithms, such as long-short-
term memory (LSTM) and its variants, are popular
learning mechanisms that can learn long-term informa-
tion. However, their complex gated architecture and
storage units render real-time processing difficult us-
ing such methods. To solve this issue, a skip connec-
tion is established in its alternative gated recurrent unit
(GRU), which is simpler and faster than the conven-
tional LSTM.

4. After conducting the experiments, we empirically
proved that the proposed method outperformed SOTA
using standard surveillance benchmarks. The ablation
study on its variants further verified its performance in
real-time surveillance systems.

2. Proposed Method

The functional details of our VD framework are divided
into three sections and are depicted in Fig. First, the
data acquisition is explained, followed by our feature ex-
traction strategy. Section [2.3]discusses the learning proce-
dure adopted in the activity sequence.

[ Layers [ Channels [ Resolution [ Operation ]

1 32 224 x 224 Conv3x3

1 16 112 x 112 MBConvl, K3x3

2 24 112 x 112 MBConv6, K3x3

2 40 56 x 56 MBConv6, K5x5

3 80 28 x 28 MBConv6, K3x3

3 112 14 x 14 MBConv6, K5x5

4 192 14 x 14 MBConv6, K5x5

1 320 7x17 MBConv6, K3x3

1 1280 7x7 Convl x1 & Pooling & FC

Table 1. EfficientNet: Architectural details of baseline networks.

2.1. Data Acquisition

The data are acquired using surveillance cameras in-
stalled to monitor human activities. The input frames from
the video data are passed to a feature extraction step, which
collects concrete information using two networks for spatial
and pyramidal feature extraction. The length of the input
frames prior to the feature extraction depends on the nature
of the network. The first network obtains a single frame to
extract the spatial features, whereas the second network re-
ceives two consecutive frames to estimate the motion flow
between the two frames. These steps are performed on-
line, whereas the training (offline) uses publicly available
surveillance benchmarks collected in real-world scenes (de-
tails are given in Section Next, each dataset is divided us-
ing a standard data-splitting procedure (i.e., training: 70%,
testing: 20%, and validation: 10%) for experiments. Fur-
ther details of the data settings for VD training are given

in[3
2.2. Feature Extraction Timeline

The feature extraction timeline consists of dual networks
in charge of spatial and motion feature collection to learn
the activity sequence. The details of each network are pro-
vided below:

2.2.1 Spatial Feature Collection

ConvNets are developed for fixed resource purposes, and
their performance is boosted via different scaling strategies.
To extract spatial features, we employ EfficientNet, which
is more accurate and efficient than existing ConvNets. Us-
ing various resources, there are several ways to scale up
networks to improve and boost their performance. For in-
stance, ResNet-18 can be scaled up to ResNet-200 through
layer (depth) adjustments, whereas MobileNets [13] and
WiderResNet [31] are scaled through network width (chan-
nels). Existing methods demonstrate that network width
and depth are essential for improving ConvNet performance
via effective scaling for better accuracy. Accordingly, Effi-
cientNet uses a compound scaling method to scale up all
width, depth, and resolution dimensions of MobileNets and
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Figure 1. Overview of the proposed VD framework in video surveillance. 1) Data acquisition, showing videos acquired from the surveil-
lance cameras. 2) Two networks responsible for spatiotemporal and pyramidal feature extraction. 3) The deep GRU learns the features
from both networks in the learning phase. The features obtained from both networks are fused in the FC layer for the final VD output.
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Figure 2. Detailed architecture of the EfficientNet that extracts
spatiotemporal features.

ResNet. The compound scaling method uses a compound
coefficient () that uniformly scales the width, resolution, and
depth of the network: depth: D = o, width W = Y, res-
oluion R =~ st a-f2 -2 ~2,a>1,>1v>1.
Here, D, W, and R are constants determined by the hy-

perparameter tuning technique known as grid search. Simi-
larly, (), which manages the available resources for scaling,
is specified by the user. The constants indicate how addi-
tional resources can be assigned to the network dimensions.

Usually, the FLOPS of a convolution is proportional to
D,W?2, and R?, which means that doubling the value of the
network depth will also increase the FLOPS by four times.
However, convolutions usually dominate the computational
cost of ConvNets. The baseline network (EfficientNet-B0)
consists of 18 layers with a defined number of channels and
resolutions. The features obtained from the final layer are
forwarded into a deep GRU, where they are analyzed for
long-term dependencies in the sequence. A visual represen-
tation of EfficientNet is shown in Fig.[2] and its architectural
details are reported in Table[T]

2.2.2 Pyramidal Features Extraction

ConvNet has attained significant achievements in vision-
related tasks, including action/activity recognition. Activ-
ity recognition involves pattern collection regarding motion



and visual information that changes in a video sequence.
Visual pattern representation in still images has attained
SOTA performance since the introduction of AlexNet.
However, the content representation in video frames re-
mains a highly challenging task. To deal with this problem,
researchers have proposed obtaining features from the space
volume, 3D ConvNet, spatiotemporal attributes [12], etc.
However, reasonable results are still lacking. Therefore,
along with visual content, motion is a significant parameter
in a video sequence that can precisely explain a particular
activity. The most commonly used approach is optical flow,
which can effectively capture the motion details. However,
these approaches fail to capture the smallest movements and
extract the precise flow contained in the frame sequence. To
address this challenge, we exploit a ConvNet-assisted opti-
cal flow-based model known as LiteFlowNet [14], a mod-
ified version of FlowNet2. This network can be executed
quickly and can extract slight motions, helping to represent
activity/violent actions in videos. Therefore, the pyramidal
ConvNet features obtained from LiteFlowNet can be repre-
sented as activity/violent action received in the video data.

Two lightweight networks specialized in pyramidal fea-
ture extraction to estimate the optical flow from Lite-
FlowNet, an end-to-end DL architecture, were trained
on two labeled optical flow images via supervised learn-
ing to generate a flow within two consecutive frames.
LiteFlowNet has a processing pipeline similar to that of
FlowNet2. Because the spatial dimension of the feature
vector contracts in the feature encoder and the flow field
expands in the decoder, the two sub-networks are named
NetC and NetE. NetC transforms an input image into two
pyramids with high-dimensional features. NetE comprises
the cascaded flow and regularization tools and estimates the
flow fields from low to high spatial resolution. First, the
entire network extracts semantic features from each image
by processing pairs of images. The correlation layer depicts
the change between the two images by combining their se-
mantic representations. In the proposed technique, we ex-
tracted the pyramidal features from the intermediate layer
of LiteFlowNet, capable of motion extraction from a pair of
images provided after the correlation layer. This layer com-
pares the patches between two feature maps obtained from
the pyramidal pipeline. The feature maps obtained from
this convolutional layer contain 128 channels with dimen-
sions of 10 x 8. Each feature map is convoluted via average
pooling; subsequently, representative features are obtained.
Average pooling is used because it precisely reduces dimen-
sionality by capturing all feature effects in the kernel as the
mean value.

2.3. Fusion and Learning Phase

Recurrent neural networks (RNN5s) are specifically de-
signed for learning sequence data and are extended forms

of conventional feedforward neural networks. RNNss utilize
recurrent hidden states to process the sequence in which the
activation of the hidden states at each time step depends on
the activation value in the previous time steps [8]]. Simi-
larly, many studies underline the vanishing gradient prob-
lem of RNNs when there are long-term dependencies in the
sequence [21]. To overcome these problems, researchers
have introduced LSTM and GRU. LSTM contains gated re-
current units, such as input, output, forget gates, and mem-
ory cells, which make the LSTM structure complex. Con-
sequently, LSTM networks require significant computations
for sequence processing. However, the GRU includes only
two gates, namely, reset and update gates, and contains one
activation unit, which makes the GRU effective at process-
ing sequential data in real-time. In the proposed method,
skip connections are added instead of using a fully con-
nected GRU. Usually, going deeper into the LSTM or GRU
structure, the model suffers from the vanishing gradient
problem, which is efficiently solved by adding skip connec-
tions in the GRU layers. Li et al. [[19]] visualized different
DL structures to observe their internal structures. Accord-
ingly, they reported that this connection helps to keep the
loss function chaotic, which leads to convex loss and makes
it easy to fall into a local minimum. GRU represents se-
quential dependencies in data and contains recurrent units
similar to the LSTM, which propagate the pattern flow in
the recurrent units. The mathematical representation of the
GRU processing is stated in Eqgs. [T]- @}

hl = (1 —2)hi_y + 2lh] (1)

zf = o(W.xy + U,hy) 2)

h = tanh(Wax, + U(ry o hy_1))’ 3)
rl = o(Wea, + Uphy)? @)

The linear interpolation h{_l computes the activation hJ
in GRU ;™ unit at the time step ¢, hidden state in the pre-
vious time step, and activation of the current hidden state
h]_,. In our case, h] = 1024 features are obtained from the
two consecutive frames at ¢. zg is an update gate working
as a specific kernel that decides how much each unit activa-
tion needs to be updated. GRU has several functionalities
in LSTM, such as the linear sum of the current and previ-
ous hidden states. ] is a hidden state computed at a certain
time in the same way as in conventional RNNs. Similarly,
r¢ 1s the reset gate; a value close to zero indicates that the
information of the previous state is forgotten.

3. Experimental Results

This section describes the overall experimental proce-
dure, dataset details, results, and empirical assessment. We
included details regarding system design and implementa-
tion settings. The method’s effectiveness is confirmed on



three benchmark datasets, namely, RWF-2000 [[7] (denoted
as D1), Surveillance Fight [2] (D2), and Hockey Fight [3]]
(D3) datasets; the achieved results are discussed in detail.
Finally, the proposed method is compared against the base-
line methods.

Frame Video Sample | Frame
Dataset | Samples | resolution length in each rate
(sec) class
D1 2000 Variable 5 1000 30
D2 300 Variable 2 150 20-30
D3 1000 360x240 | 1.6~1.96 500 25

Table 2. Statistics of the VD datasets.

3.1. Platform Configuration

The system implementation includes data loading, pro-
cessing for training, and other configuration settings. Our
method was developed in Python version 3.6 using the Spy-
der integrated development environment. We used the well-
known DL framework Keras with Tensorflow (version 2.4)
as a backend to extract the spatial features. The system set-
tings for this process utilized a Windows 10 operating sys-
tem with Nvidia GeForce RTX 2060 GPU. However, pyra-
midal features were extracted using another popular DL,
Caffe, with Ubuntu as the operating system. Other de-
tails include significant libraries, such as OpenCV, related
to computer vision. The Windows 10 operating system was
used with the previously explained settings to fuse both net-
work features.

[ Technique | Dataset [ ACC (%) [ PRE [ REC [ Fl-score |
D1 84.60 0.8447 0.844 0.844
ConvNet D2 79.20 0.8357 | 0.807 0.789
D3 88.62 0.8858 | 0.886 0.885
DI 73.40 0.7344 | 0.725 0.727
LiteFlowNet D2 53.13 0.2656 | 0.500 0.346
D3 47.25 0.2362 | 0.500 0.320
D1 90.10 0.8998 | 0.900 0.900
Proposed Method D2 96.69 0.9690 | 0.965 0.966
D3 98.62 0.9860 | 0.986 0.986

Table 3. Investigation of different networks and their comparative
analysis against the proposed method using VD datasets.

3.2. Datasets for Experiments

We explored surveillance datasets for usage in the evalu-
ation of the methods. These datasets consist of two classes:
violent and non-violent actions. The statistical details of
these datasets are presented in Table 2] Further information
regarding each dataset is given as follows.

RWF-2000 (D1) is the most challenging dataset, re-
cently introduced by Cheng et al. [7]. It contains videos
of indoor and outdoor real-world surveillance environments
against diverse backgrounds during the day and night. The

captured scenes belong to only surveillance and are not
modified into other forms. Another dataset is Surveillance
Fight (D2) [2], which consists of indoor and outdoor real-
world surveillance videos from day and nighttime. Most of
the videos are captured in stores, outways, industries, en-
trances to buildings, shops, etc., making the dataset signifi-
cantly challenging. The Hockey Fight (D3) [3]] comprises
two classes of videos taken from a hockey playground (the
National Hockey League). The actions of violence and non-
violence were recorded when players were colliding and
hitting each other.

D1 D2 D3
Violent [ NV [ Violent [ NV | Violent [ NV
Violent 1991 225 163 2 415 7
NV 260 2427 8 130 4 374

Table 4. Confusion matrix of our method over all three datasets.
Non-violent is indicated as NV in this table.

3.3. Results and Discussion

This section explains the results and evaluation of our
method using empirical analysis. An ablation study is also
conducted to validate the effectiveness of our method. For a
fair analysis, each network is connected by the deep GRU,
which has a skip connection. The evaluation metrics are the
area under the curve (AUC) (see Fig. E]), precision, recall,
and accuracy, commonly used in VD tasks. Our method’s
competence is assessed using AUC values and the ROC
curve. Similarly, the accuracy and corresponding loss are
plotted to visualize the model’s performance throughout the
training session.

Initially, ConvNet was evaluated using D1, and the corre-
sponding results are reported in Table[3] Spatial features ob-
tained from the frames were extracted via ConvNet to iden-
tify violent and non-violent patterns. Similarly, the accu-
racy (ACC), precision, recall, and F1-score obtained using
ConvNet on the D1 were 84.60%, 0.8447%, 0.8441%, and
0.8444%, respectively. From these results, we observe that
ConvNet performed the best on D3. In ConvNet, a com-
pound scaling strategy is justified by the logic that if an
input image size is larger, the network needs more layers
and channels to increase the receptive field and capture the
detailed patterns. Accordingly, the same network acts as an
end-to-end framework, where the features are extracted, and
the respective output is designated as violent or non-violent.

Next, LiteFlowNet extracts pyramidal features and con-
sists of a two-stream network containing filter weights
shared across the streams. The streams act as feature de-
scriptors, transferring the image into a pyramid of multi-
scale high-dimensional features from the highest spatial res-
olution to the lowest spatial resolution. These pyramidal
features are generated through stride convolutions, where a
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[ Methods | Core operator [ Accuracy (%) |
Dipon et al. [10] 1-3D conv 86.00
Kunal et al. [6] ConvLSTM 85.97
Qiming et al. [22] | RCN 87.50
Ming et al. [[7] FGN 87.20
Herwin et al. [15] | Spatial Motion Extractor 88.50
Yukun et al. [27] SPIL 89.30
Piotr et al. [4] Sliding window 93.70
Proposed method | Two-stream 94.50

Table 5. Comparative analysis of the proposed method against
SOTA VD methods in terms of accuracy using the D1.

factor reduces the spatial resolution in the pyramids. Com-
pared to ConvNet, this network performs slightly worse on
D1, achieving 73.40% accuracy. However, its accuracy on
D2 and D3 is 53.13% and 47.25%, respectively. Further-
more, the best performance was achieved by our method,
where the features obtained from the two networks were
fused to produce the desired results. A deep GRU fol-
lows each network with a skip connection, which is later
propagated into a fully connected layer. In this manner,
the outputs from each FC layer are fused using a con-
catenate function, and the final feature map with a size of
2024 is forwarded to the FC. For further inspection of our
method, other metrics, such as confusion metrics, AUC, and
ROC, were computed, showing the correct and incorrect
VD. The ROC curves of our method for all three datasets
are presented in Figs. [3] (a), (b), and (c), respectively. The
qualitative results of our method using D1 are shown in
Fig. [d which verifies its effectiveness and exceptional per-
formance. Similarly, the confusion metrics of our method
for all three datasets are reported in Table[d]

Furthermore, the processing speed of the proposed
model is 1.15 sequences per second, complemented by
33.03 MFlops (Million Floating Point Operations per Sec-
ond), with a size of 5.27 MB and 455,098 parameters.
These metrics underscore the model’s performance and ef-
ficiency in processing single sequences, which is vital for

[ Methods | Core operator [ Accuracy (%) |
Seymanur et al. [2] LSTM 72.00
Fathu et al. [29] ConvNet 74.00
Seymanur et al. [[1] VIT 84.60
Min-Seok et al. [17] Motion Saliency Map 92.00
Mustageem et al. [18] | Temporal Convolution 92.50
Proposed method Two-stream 96.69

Table 6. Results assessment of the proposed method against SOTA
VD methods in terms of accuracy using the D2.

[ Methods | Core operator [ Accuracy (%) |
Ismael et al. [24] Elastic cuboid trajectories 82.50
Chen et al. [11] Positive and unlabeled learning 85.20
Javad et al. [23] HOMO, SVM 89.30
Herwin et al. [15] | Spatial Motion Extractor 98.20
Saba et al. [16] Deep CNN 92.89
Ismael et al. [25] Hybrid features 94.60
Jing et al. [30] Kernel extreme learning machine 95.05
Febin et al. [9] SIFT, Movement 96.50
Setal. [5] DDE 98.27
Fathu et al. [28] RNN 98.50
Jietal. [20] DenseNet 98.30
Proposed Method | Two-stream 98.62

Table 7. Results assessment of our method against SOTA VD
methods using the D3.

real-time applications. The MFlops metric highlights the
model’s computational efficiency. Additionally, the small
model size indicates its optimization for resource efficiency.

Scalability to Other Violence Forms:

The proposed method is currently based on two classes (vi-
olent and non-violent), where “’violent” refers specifically to
fights. However, there are other forms of violence, such as
falling, road accidents, robbery, shoplifting, etc. Although
these are different types of anomalies, our method can be
extended and modified to consider them. For these anoma-
lies, the UCF-Crime dataset, which includes these types of
incidents, can be used.



Figure 4. Qualitative results of the proposed method for a VD task
conducted on D1 dataset, which is chosen owing to the variety
of its content. The proposed method correctly predicts the out-
put classes that can be observed from the 1%, 2"d, and last rows;
whereas an incorrect prediction occurs in the 37¢ row owing to the
speedy movement of several people. Next, violence is detected
as non-violence in the 4" row because it initially occurs behind
the box. Terms such as V, NV, GT, and PL indicate Violent, Non-
violent, Ground Truth, and Predicted Label, respectively.

3.4. Comparative Assessment of Our Method

This section explains the comparative analysis of our
method through an assessment against SOTA. VD methods
mainly assess their results based on accuracy and their core
operators. We perform the assessments using these met-
rics to measure the effectiveness of our method. Assess-
ing D1, 3D-human skeleton points were formulated from
videos in and applied to interaction learning on a 3D
skeleton point. Furthermore, the authors of proposed
skeleton point interaction learning (SPIL) for modeling the
interaction between skeleton points. Next, a dual spatiotem-
poral convolutional network was proposed in [10] which ex-
tracted spatial and temporal information from video frames
using 1D, 2D, and 3D-ConvNet. Similarly, along with the
attention mechanism, a long-term recurrent convolutional
network (RCN) was proposed in [22]. The method
formed the D1 and implemented several networks, such as

3D-ConvNet, optical flow, and flow-gated network (FGN).
The results for D1 are presented in Table[5] A wide range
of surveillance-based VD methods have emerged that use
the D2, such as the method in [2]], which proposed differ-
ent LSTM-based approaches to deal with surveillance VD.
Authors in [29] proposed a method for precise VD using
the analysis of video patterns in surveillance. In [}, differ-
ent approaches were applied for VD and vision transformer
(ViT). Another method in combined 2D-ConvNets and
applied a frame-grouping strategy to make 2D-ConvNet ca-
pable of learning spatiotemporal representations in videos.
The results related to the D2 dataset are presented in Ta-
ble[al

Regarding D3, the method evaluation was done via an
optical flow-based method [23]], where a histogram of op-
tical flow magnitude and orientation (HOMO) was intro-
duced. Another method [24]] proposed spatiotemporal elas-
tic cuboid trajectories to model different motions specific to
the fight. Authors in [30] presented a three-dimensional his-
togram (3D-HOG), combining feature pooling technology
and bag-of-visual-words. 3D-HOG features are extracted
at the block level from videos, where K-means clustering
is applied for visual word generation. The method in [9]
proposed a cascaded-based VD technique using movement
filtering and motion boundary SIFT. A method in intro-
duced a multi-manifold positive and unlabeled algorithm.
Similarly, a framework based on deep discriminative em-
bedding (DDE) using residual spatiotemporal autoencoders
was proposed that was learned via V2AnomalyVec embed-
ding [B]. The method proposed in advanced the VD
using Hough Forest and 2D-ConvNet. The results for the
D3 dataset are presented in Table[7]

4. Conclusion

This study addressed the challenges of working with spa-
tial and motion features for VD from videos using a multi-
stream approach. Spatial and pyramidal features were ex-
tracted via efficient ConvNet and LiteFlowNet models, re-
spectively, fed into GRUs. Both GRUs were implemented
with a skip connection approach, and their output was fused
to provide the final feature map for VD. Our results sur-
passed SOTA by significant margins, showing superiority
of our method. In the current study, VD practice was per-
formed using single-view surveillance videos. In the future,
we aim to develop a multi-view VD dataset and evaluate
its performance using different variants of ConvNets and
RNNE.
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