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 Abstract 

  
The objective of this work is a proof-of-concept dynamic assessment model for a terrestrial environment 

based on simple, relatively well known parameters.  The model has been developed to reproduce trends of 

137
Cs in a coastal heath dune ecosystem. This study has provided a useful tool for further research in 

radioecology as it can be further developed to include more radionuclides and calibrated to different 

ecosystems.  Model output has shown that the approach developed here for simulating radionuclide turnover 

by biota can reproduce realistic trends of 
137

Cs in a semi-natural environment.  The model includes the 

capability of calculating the dose to vegetation from externally deposited radionuclides.  This is a novel 

calculation that allows a more complete assessment of the risk to flora from radionuclides that are released 

by anthropogenic activities to the environment. The key aspects of the dynamic modelling approach are the 

calculation of an uptake rate by biota as a function of relatively well known parameters available in the 

scientific literature: the Concentration Ratio, biological half-life, and mass values for the organism and soil.  

 

The modelling approach uses the software package Modelmaker 4.0 to construct a compartmental model 

with flows between compartments to simulate the flow of 
137

Cs between different physical and biological 

components of the environment and to calculate the absorbed dose received by biota.  The flow of 
137

Cs 

between physical compartments is modelled using empirical formula derived from the scientific literature with 

deposition from the atmosphere modelled using a simple lumped parameter of the deposition velocity of 

137
Cs.  The migration of 

137
Cs from the top 0.1 m of soil is simulated using a simple clearance model that 

derives the migration rate of 
137

Cs based on empirical measurements from a sand dune ecosystem.  Biota 

are modelled using a reference animal and plant approach with data from the scientific literature used to 

model a generic detritivore, omnivore, carnivore, herbivore, and plant that have parameters and life histories 

resembling those in biota commonly found in heath dune ecosystems in the UK.  An initial warm-up run was 

carried out to represent the conditions at Drigg dunes in the years 1990-1995 using empirical data for 

atmospheric concentration of 
137

Cs at Drigg at this time.  This allowed sufficient time for the clean biota 

compartments to reach the level of 
137

Cs concentration prevailing in biota prior to a hypothetical accident 

release scenario. A second scenario is run to simulate the model results from a hypothetical accidental 

release of 
137

Cs.  This is modelled using the deposition data of 
137

Cs recorded at the Drigg dunes from the 

Chernobyl incident.  This data is used to model a hypothetical accident from the years 1996-2000.  

 

The dose hierarchy is as follows for the warm-up scenario: Detritivore > Vegetation > Omnivore > 

Carnivore > Herbivore.  For the warm-up scenario, the model showed that the highest dose received by 

vegetation is 0.08 μGy hr
-1

 within a few days after initial contamination and a dose of 0.06 μGy hr
-1

 by the 

end of the simulation period.  The highest dose received by the detritivore was 0.09 μGy hr
-1

.  The estimated 

absorbed dose by biota did not follow the same trend as the organism activity concentrations.  The soil 
137

Cs 

concentration has a larger effect on the absorbed dose and so occupancy factors were important in 

determining the absorbed dose.  

 



Sensitivity analysis shows model output for activity concentration is most sensitive to the Concentration Ratio 

parameter as varying this parameter has a linear effect on model output for herbivore activity concentration.  

The next most sensitive parameter tested was the biohalflife where a doubling of this parameter reduced 

herbivore activity concentration by just under 35% while the least significant parameter analysed was the soil 

migration rate where a doubling of this parameter decreased herbivore activity concentration by 20% 

compared to the default migration rate.  

The reference vegetation was modelled with a separate external and internal compartment to allow the effect 

of deposited 
137

Cs from the atmosphere and 
137

Cs taken up by vegetation roots from the soil to be accurately 

simulated as separate processes.  The significance of including an external vegetation compartment varied 

between the emergency and existing exposure scenarios. An external vegetation compartment had very little 

impact on the vegetation activity concentration for the warm-up scenario which had a low deposition rate.  

However, under the emergency scenario the externally deposited 
137

Cs caused a much larger spike in 

vegetation activity concentration in comparison with the spike seen in the reference animal biota.  The 

vegetation compartment reaches a peak of 3E04 Bq kg
-1

 for the emergency scenario, while the highest 

activity concentration reached by the animal biota is the herbivore at 14 Bq kg
-1

.  An independent data set 

from a heath dune ecosystem is required for model validation. 
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Variable Symbol Units 

   

Above ground biomass B kg 

Activity A Bq 

Activity per unit surface area ζ Bq m
-2 

Activity concentration C 
Bq per unit mass (kg) or volume 
(m

3
) 

Biological halflife TB1/2 d 

Decay constant λ d
-1 

Density ρ kg m
-3 

Deposition rate D Bq d
-1 

Deposition rate per unit surface 
area 

ς Bq m
-2

 d
-1 

Deposition velocity vd m d
-1 

Distribution coefficient Kd L kg
-1 

Dose to biota Ds Gy
 

Dose per unit concentration DPUC (Gy h
-1

)/(Bq kg
-1

) 

Effective release rate k d
-1 

Environmental halftime Tw d 

Expected lifetime of organism Elife d 

Interception coefficient μ m
2
 kg

-1 

Interception factor φ unitless 

Mass M kg 

Migration rate  r d
-1 

Number of atoms N N/A 

Number of stomata per leaf 
surface area 

n m
-2 

Physical halflife T1/2 years or days 

Porosity ω unitless 

Rainfall rate R m y
-1 

Release rate Rl d
-1 

Scavenging coefficient  s
-1 

Soil depth δ m 

Surface area S m
2 

Translocation rate TR m
2
 d

-1 

Uptake rate U d
-1 

Washout rate w d
-1 

Weathering rate WR d
-1 
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 Introduction 

 

Until the early 1990s, the main guidance from the International Commission on Radiological Protection 

(ICRP) recommended the standard of environmental control needed to protect humans will ensure that other 

species are not put at risk (ICRP, 1991).  Thompson (1988) showed there was a lack of supporting scientific 

data to back the ICRP's assumption that protecting humans will also protect top marine predators in the UK.   

Pentreath (1998) showed no internationally agreed criteria for protecting the environment from the effects of 

ionising radiation existed.  The ICRP has since changed its stance on environmental protection and a 

number of different assessment tools have been developed to assess the radiological exposure to 

non-human biota following radionuclide releases from anthropogenic activities.   

 

An established international framework for the protection of the environment from radiation exposure is still 

currently an evolving subject (Pentreath, 2009).  The effort to establish a system parallel to the protection of 

humans has been motivated by the need to fill a conceptual gap in radioprotection rather than a response to 

any specific environmental issue.  The ICRP have published recommendations that include an approach for 

developing a framework to demonstrate radiological protection of the environment (ICRP, 2007).  The 

recommendations also move from the previous approach on radiological safety based on practices and 

interventions to an approach based on three exposure situations of existing, planned, and emergency 

situations (ICRP, 2007).  These recommendations have been developed by the ICRP, most notably with the 

publication of their Reference Animal and Plants (RAP) report, which introduces the concept of Reference 

Animals and Plants, and defines a small set (ICRP, 2009). 

  

The main pathways for radionuclides in the environment are outlined in Wood et al. (2009b).  For the 

physical environment these are deposition from the atmosphere on to vegetation or soil and the subsequent 

removal of radionuclides from the vegetation surface or sequestering of radionuclides through the plant 

stomata.  Radionuclides deposited onto the soil will either be resuspended into the atmosphere or migrate 

through various processes such as leaching by water or dispersion through Brownian motion into deeper 

areas of the soil or into groundwater.  Radionuclides may also be incorporated or fixed into the soil by 

binding to certain parts of the soil matrix or enter the biological food-chain through various pathways such as 

ingestion or uptake by plant roots.  The methodologies used to estimate radionuclide concentrations in biota 

are key in the protection of biota from ionising radiation.   

 

There are a number of methodologies for assessing the activity concentration in non-human biota.  This can 

be estimated by using empirically derived Concentration Ratios (CRs).  CR = activity concentration in 

organism (Bq kg
-1

)/activity concentration in environment (Bq kg
-1

).  If the activity in an environmental medium 

is known, the activity in an organism can be estimated and the dose to biota calculated, provided a 

sufficiently accurate Concentration Ratio is available from the scientific literature.  Various assessment tools 

have been developed using the Concentration Ratio approach to allow the risk to the environment from 

radiological activities to be calculated such as  Copplestone et al. (2001)  and ERICA (Wood et al., 2009a)  

although their use in industry radioprotection is debated (Brownless, 2007).      
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When there is a pulse of radionuclides released to the environment, the radioactivity concentration of soil 

and biota may no longer be in equilibrium.  If the residence time of the radionuclides in the environment is 

shorter than the biological half-life there is no longer equilibrium of activity between the environment and 

organisms.  This means the use of Concentration Ratios will not be as accurate in estimating the activity 

concentration in biota and will result in an over-prediction in the biota dose assessment.  This over-prediction 

is a method favoured by regulators as it means they are more confident the assessed environmental risk is 

conservative and erring on the side of caution. 

    

Modelling assessments carried out in a marine environment by Vives i Batlle et al. (2008) showed that dose 

assessment from dynamic models on a time scale below 2 years can be considerably different to using a 

model that assumes equilibrium (Fig. 1).  In Figure 1 there is a difference in the dynamic model output for the 

winkle compared to the macrophyte.  This is due to the macrophyte being modelled with a biphasic release 

of internal radionuclides with a short initial release and a second slower release over longer time-periods 

while the winkle only has a single long-term phase (Vives et al. 2008). 

 

 

Under its statute, the International Atomic Energy Agency (IAEA) has the specific mandate to establish, in 

consultation and collaboration with member states and specialized agencies, standards for protection 

against ionising radiation.  The IAEA’s comprehensive standard of protection for all activities that involve 

radioactive substances is the International Basic Safety Standards (BSS).  The BSS, last published in 1996 

and currently under revision, expand and interpret the ICRP recommendations in practical terms while also 

Figure 1: Predicted dose rates for 
99

Tc in macrophyte and winkles in the 
Drigg area (taken with permission from Vives i Batlle et al., 2008). 
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considering the findings of other scientific organizations such as the United Nations Scientific Committee on 

the Effect of Atomic Radiation (UNSCEAR).  The EMRAS II project run by the IAEA aims to improve 

environmental modelling methods for assessing dose to biota through improving and exchanging data and 

models.  A number of technical documents based on the findings of working groups will be produced.  The 

Biota Modelling Group part of EMRAS aims to compare and validate models being used or developed for 

biota dose assessment as part of regulatory compliance monitoring of authorized planned releases.  

Providing an approach that is based on a few, well-known, simple parameters allows the feasibility of 

dynamic modelling for terrestrial ecosystems and its accuracy to be investigated.   

 

Legal requirements for investigating the environmental impact of radionuclides released from anthropogenic 

activities include the European Habitats and Wild Birds Directive which requires the impact of ionising 

radiation on Natura 2000 sites to be assessed.  The Water Framework Directive includes the need to assess 

the impact of a range of chemicals including radionuclides as a carcinogen.  The ICRP's framework for 

describing situations in which exposure to radiation may occur has three scenarios: planned, existing and, 

emergency.   The emergency situation is particularly likely to produce non-equilibrium conditions for which a 

dynamic modelling approach is more appropriate for assessing radiological risk. 

 

Dune ecosystems provide a good case study within the UK for assessing radiological risk as many of these 

sites are protected habitats or contain protected species.  The Drigg coastal dunes near the Sellafield 

nuclear site are part of the Drigg Coast Natura 2000 site and contain the protected species natterjack toad 

(Bufo calamita)  and great crested newt (Triturus cristatus).  Also, many coastal ecosystems are in close 

proximity to the UK's nuclear facilities.  The dune environments at Drigg (Wood et al., 2008) and at other 

dune environments near Sellafield (Wood et al., 2009b) have had empirical data collected from them so 

there is a database of information available for parameters in a prototype dynamic assessment model. 
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 Objectives 

 

The primary objectives of this study are to:  

 

1. Produce a proof-of-concept dynamic model for assessing the environmental risk to terrestrial 

environments from ionising radiation.   

 

2. Analyse the results of the prototype assessment tool for calculating biota activity concentration and 

absorbed dose to biota from 
137

Cs in a coastal heath dune ecosystem for an exposure situation 

involving low levels of 
137

Cs atmospheric concentration. 

 

3. Analyse the results of the prototype assessment tool for calculating biota activity concentration in a 

coastal heath dune ecosystem for an emergency exposure situation involving relatively high levels of 

137
Cs atmospheric concentration. 

 

4. Perform a sensitivity analysis on key model parameters: the Concentration Ratio, the biological half-

life, and the soil migration rate for their affect on herbivore activity concentration. 

 

5. Perform a sensitivity analysis on the weathering rate for the affect on vegetation activity 

concentration. 
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 Methods 

 Model design 

 Model overview 

 

Simulating the risk to biota in this study is carried out using the Modelmaker 4.0 software.  This allows the 

user to create compartments that represent different components of the sand dune ecosystem.  Arrows from 

the different compartments allow the changing concentration of radioactivity to be dynamically modelled over 

a given time period.  So, for example, the radioactivity, or activity, A, in a compartment (in units of Bq) can be 

calculated as NA  where N = number of atoms, 

T 2/1

)2ln(

 
is the decay constant (d

-1
), ln(2) = 0.693 

and T1/2 is the physical half-life of the radionuclide.  From every compartment there is an outgoing flow 

representing the decay of the radionuclide.  The decay rate can be entered in Modelmaker as A
dt

dA
 .  

Modelmaker is designed primarily for simulating a number of sub-processes that can be combined to 

represent the behaviour of a larger more complicated system and so is appropriate for the design of a 

biokinetic model.  The user interface of Modelmaker provides a schematic of the completed dynamic model 

(Fig. 3) and how various sub-processes are combined to model the dynamics of activity concentration for a 

terrestrial environment. 

 

It is the radionuclides in a compartment which are the source of the activity.   A number of different pathways 

can contribute to the uptake of radionuclides by terrestrial biota.  These pathways cover a range of different 

processes such as radionuclide transport in the atmosphere, environmental contamination through 

deposition to the soil and the actual uptake of radionuclides by biota.  The importance of different pathways 

can change over time after the initial release of radionuclides from an accident event.  In an emergency 

scenario, the initial plume or shine path and initial uptake processes such as inhalation will be significant 

pathways to consider for absorbed dose.  The initial environmental contamination will come from the 

deposition of radionuclides from the atmosphere to vegetation or the soil.  As the period of time from the 

initial release of radionuclides increases the important pathways to consider will be those that affect the 

change of radionuclide concentration in different soil compartments such as the rooting zone and how this 

affects the concentration of radionuclides within biota.  The key uptake parameter in the modelling approach 

developed here is the Concentration Ratio.  This relates the concentration of activity in biota to the 

concentration of activity in the top 0.1 m of soil.  Therefore, it is the pathways that will have a significant 

effect on radionuclide concentration in the top 0.1 m of soil that is considered in the dynamic model 

developed in this study.  Wood et al. (2009b) provides a conceptual overview of the main nuclide fluxes in a 

sand dune ecosystem (Fig. 2), which provides the conceptual basis of the prototype dynamic model 

developed here.   
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In this study the model is only used for the radionuclide 

137
Cs.  This is due to the model being at the proof-of-

concept stage so the demonstration of model output for only one radionuclide that is likely to have a 

relatively large amount of data availability in the scientific literature is sufficient.  The model is run using 

annual parameters and data averaged over 12 monthly time steps.  This is appropriate for medium to long 

lived radionuclides that have a half-life consisting of many years.  For shorter lived radionuclides the model 

would have to be adapted to include accurate sub-annual data for processes such as variation in deposition 

rate of radionuclides from the atmosphere caused by changes in rainfall levels. 

 

 

Figure 2: Conceptual model of the main radionuclide fluxes in a coastal sand dune ecosystem 
near the Drigg dunes ecosystem.  (a) is the flux of anthropogenic radionuclides (b) uptake by 
biota (c) routes of return from biota to the environment through excretion, mortality etc.  Arrows 
indicate the direction of flow for radionuclides.  Diagram from Wood et al. (2009b). 
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Figure 3: Modelmaker user interface and schematic of the biokinetic model for the uptake and release of 
137

Cs by non-human biota developed for this study.  Physical processes of atmospheric deposition, soil 
migration, and weathering of 

137
Cs from external vegetation are fixed parameters as is the translocation of 

137
Cs from the external vegetation to the internal vegetation via stomatal uptake.  The dynamic pathways 

assessed by this study are internal uptake and release by biota.  It is the dynamic biological pathways that 

this study is primarily focussed on reproducing. 
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 Biological turnover of radionuclides 

 

In radioecology the uptake of radionuclides by animals and plants in an environment can be represented by 

two well-known parameters: 

 

sC

C
CR o  (1) 

 

where: 

CR = Concentration Ratio 

Co = Activity concentration of organism (Bq kg
-1

) 

Cs = Activity concentration of soil (Bq kg
-1

) 

 

The Concentration Ratio is an equilibrium parameter that can be used for this study where the focus is on 

internal pathways.  There is a simple way to put the Concentration Ratio as a function of the number of 

atoms in organism and soil (No and NS) when the system has reached equilibrium, as well as the total mass 

of soil and organism, MS and Mo, using the equation NA  where:  

 

  

 

o

s

s

o

s
s

o
o

M

M

N

N

M
N

M
N

CR  (2) 

 

The second key quantity is the biological half-life (TB1/2), which is the time it takes for 50% of radionuclides 

taken up by an organism to be released from the organism through biological processes. This process is 

symbolised as: 

 

 

 

 

 

 

 

 

There is a simple way to calculate the uptake and release rates as a function of the Concentration Ratio and 

TB1/2 , by assuming equilibrium which is when the uptake and release flows are equal, so that: 

 

 os NRlNU  (3) 

 

Figure 4: Schematic representation in Modelmaker of uptake and 
release of radionuclides by biota. 

Soil

Organism

Uptake

Release



9 

where: 

U = uptake rate (d
-1

) 

Rl = release rate (d
-1

) 

 

 

2/1

)2ln(

BT
Rl  (4) 

          

 

 

s

o

Bs

o

N

N

TN

N
RlU

2/1

)2ln(
 (5) 

   

 

The ratio 

s

o

N

N
 at equilibrium can be put as a function of the Concentration Ratio and the masses using 

s

o

s

o

M

M
CR

N

N
 (from Eq. [2]): 

 

 

s

o

B M

M
CR

T
U

2/1

)2ln(
 (6) 

       

So, with equations [4] and [6] simple dynamic uptake and turnover of radionuclides by biota can be modelled 

as a function of two parameters (Concentration Ratio and TB1/2), which are commonly found in the literature, 

plus the mass values for both the organism and the soil compartment. 

 Radionuclide loss from vegetation 

 

In addition to the processes described above the vegetation compartment in the model has additional uptake 

and loss processes.  Loss of externally deposited radionuclides is estimated using a weathering rate.  This is 

calculated using a weathering constant of 4.22 (derived from empirical evidence in IAEA, 1996) and 

multiplying by the activity concentration in the vegetation external compartment.  The weathering rate is 

calculated using the environmental half-time of a radionuclide.  This is the time necessary for one-half of the 

activity to be removed from a certain part of the environment of interest, such as the vegetation, by 

environmental processes.  The formula used is: 

 

     

WT
WR

)2ln(
           (7) 
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where: 

WR = the weathering rate (d
-1

) 

Tw = environmental half-time (d) 

 

An environmental half-time is taken from the review of data in IAEA (1996) which reports a range of 

environmental half-times reported in the literature for 
137

Cs.  A range of values from 40-60 days are reported 

over what the IAEA considers as long-term (IAEA, 1996) which is a period of at least 2 months.  As long-term 

data wasn't available for grassland, the environmental half-time for pasture was used.  As the longest 

reported half-time of 60 days is used here, the derived weathering rate is considered conservative for leafy 

vegetation.   

 

The additional uptake process is translocation.  The radionuclides are transferred from the external part of 

the plant leaf to the internal part of the plant leave via the stomata, which is referred to as translocation. The 

translocation rate, TR (m
2
 d

-1
), of washed-out particles back into the plant is assumed to be    

 

 loSwSTR   (8) 

 

where: 

 

So = open surface area of leaf   

Sl = surface area of leaf (m
2
) = 1.10E-02

 
m

2
 (this study, taken from an average of 20 leaves sampled at 

random in a temperate environment of various different unknown species) 

w = washout rate = 0.012 day
-1 

(Chamberlain, 1991) 

 

So is assumed to be the number of stomata per surface area multiplied by the stomata surface area. 

Number of stomata per vegetation surface area = 3.00E08 m
-2 

(Pachepsky & Acock, 1996). 

Stomata surface area is calculated as: 

 

       
4

2

s

s

l
S        (9) 

 

where: 

ls  = width of epidermis ≈ stomatal length (m) 

Ss = stomata surface area (m
2
) 

 

ls  = 2.50E-05 m (Pachepsky & Acock, 1996).  Therefore the Ss = 4.00E-10 m
2
. 
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 Deposition of radionuclides 

 

The deposition of radionuclides is assessed using the simplified approach of a deposition velocity to simulate 

wet and dry deposition as one lumped parameter.   

 

 soildair SvCD  (10) 

 

 

Where: 

D
 
= deposition rate (Bq d

-1
) 

Cair = activity concentration in air (Bq m
-3

)
   

vd = deposition velocity (m d
-1

) 

Ssoil = surface area of soil (m
2
)  

 

The deposition velocity of radionuclides from the atmosphere is different for dry deposition and wet 

deposition associated with precipitation due to the different processes involved.  However, in reality, the 

processes overlap and a clear separation is often not possible. This is especially true when modelling the 

deposition of radionuclides over long timescales.  In such cases, it should be possible, as is done in common 

practice, to lump dry and wet deposition and to apply a generic interception fraction for vegetation which is 

empirically derived from observations (IAEA, 1996).  The focus of this study is on annual timescales so a 

lumped parameter for wet and dry deposition is used which has the advantage of keeping the model simple 

to use and adapt to other ecosystems.  Over sub-annual timescales this approach may become a 

disadvantage due to the loss of accuracy and the need to have separate dry and wet deposition velocities 

and to model temporal variations in the rate and type of precipitation. 

 

The data for atmospheric concentration of 
137

Cs used in the dynamic model is taken from the fallout data 

from the BNFL and Sellafield Ltd environmental monitoring reports recorded in the consulting report Bryan et 

al. (2004).    Many of the measurements taken from that report for the Drigg location were unable to record 

high enough atmospheric 
137

Cs concentrations to be detected by the monitoring devices.  As a result the 

values from the Sellafield south-side perimeter recorded in Bryan et al. (2004) were used. The justification is 

that fallout predominates over Sellafield discharges at all but the nearest distances to the plant, and fallout in 

the Sellafield locations and Drigg should be similar.  Sea-to-land transfer is assumed to be small enough due 

to the very low sea-to-land transfer at Drigg calculated using the UKAEA model (Bryan et al., 2004) that this 

is a reasonable approximation.  

 Soil migration of radionuclides 

 

Concentration Ratios used in the model are calculated from measured soil activity concentrations to a depth 

of 0.1 m, therefore, this is the depth from which the change in soil activity over time is modelled.  This is 
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modelled using a simple clearance model and assuming a constant deposition rate:  

soil
soil ArD

dt

dA
)(  (11) 

 

where 

D = the deposition rate (Bq d
-1

),  

λ = the decay constant (d
-1

,)  

r = migration rate (d
-1

) 

t = time (d) and  

Asoil = soil activity (Bq)  

This has the following solution: 

tr

soilsoil e
r

D
A

r

D
tA )())0(()(  (12) 

 

This equation is used to give the migration rate on an annual time-scale by giving values to the parameters 

and isolating r for 
137

Cs.  The time-step used in the model to produce the results section, however, is a 

monthly time-step so the annual migration rate is divided evenly over the time-steps used in the model runs 

to produce the results section.  

Table 1: Empirical soil data used for calculating radionuclide migration rate of 
137

Cs from top 0.1 m of soil. 

Source Location Date  0.1 m (Bq kg
-1

 dw) 

Rudge (1989) Dune heath Jun-86 274 

Wood (2010) Dune heath Mean (2006) 74.6 

  Net loss over 20 yrs 200 

 

Multiplying the activity concentration provided by Rudge (1989) and Wood (2010) in Table 1 by the soil 

density of 1250 kg m
-3
 given by Wood et al. (2009a) and the soil depth of 0.1 m will give the soil activity per 

unit surface area (Bq m
-2

).  This parameter, ζsoil, can be substituted for activity into equation 12 to give the 

migration rate of activity from the top 0.1 m of soil.   Doing this requires a deposition rate per unit surface 

area, ς, to be substituted in place of D.  Therefore the units for deposition rate in this case are given as 

(Bq m
-2
 d

-1
), an average over the 20 years from 1986 to 2006 provided by Dr. Mike Wood.  Therefore the 

values used are: 

 

ς = 1.34E-01 (Bq m
-2
 d

-1
)
 
(Dr. Mike Wood pers. corres.) 

t = 7.31E03  (d) 

λ = 6.29E-05 (d
-1

)
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ζsoil(0) = 3.43E04 (Bq m
-2

)  

ζsoil(t) = 9.33E03 (Bq m
-2

) 

 

Putting these values into equation (12) gives: 

0331.7)0529.6()
0529.6

0134.1
0443.3(

0529.6

0134.1
0333.9 ErEe

rE

E
E

rE

E
E  

 

This gives a value of r = 1.23E-04 day
-1

.  However, the data from Rudge (1989) is taken from dunes nearer 

in proximity to Sellafield and the Low Level Waste Repository than the data from Wood (2010).  Therefore, 

this migration rate can only be taken as a useful approximation for this study. 

 Dose to biota 

 

The general approach used in this study for developing reference biota follows that recommended by the 

ICRP 108 publication (ICRP, 2009).  ICRP (2009) does include some parameters for reference biota such as 

shape dimensions.  However, these do not have to be used for all reference biota developed for estimating 

the radiological risk to biota.  The reference biota developed for the dynamic model for this study is done 

using parameter values from different sources besides just ICRP (2009).  The parameters used for the 

reference biota and their sources are presented in Table 4.   

 

Dose is calculated using the approach in Copplestone et al., (2001).  The dose to biota is derived primarily 

through the use of dose per unit concentration (DPUC) factors.  These relate the concentration of activity 

either in the soil or within the organisms to the amount of energy absorbed by the biota.  The DPUCs for the 

model are taken from Copplestone et al. (2001) except for 
137

Cs deposited onto the external vegetation.  The 

DPUC values for externally deposited 
137

Cs are calculated by this study.  For the assessment of dose it is 

necessary to estimate the fraction of energy which is absorbed by the organism. The dose rates can then be 

calculated. Therefore, the shape of the organism will have an important influence on the energy absorbed by 

the organism.  In Copplestone et al. (2001) organisms are assumed to have a simplified ellipsoid shape.   

 

The organism dimensions will affect the amount of energy absorbed from ionising radiation.  It is important 

the DPUC values are calculated assuming similar dimensions to the reference organism developed.  This 

means that although a woodlouse is a detritivore it is used to represent the carnivorous beetle as it is the 

organism used in Copplestone et al. (2001) with the most similar dimensions to the reference carnivore 

developed for this study.   For the assessment of external dose simple formulae are used to estimate dose in 

an infinite or semi-infinite absorbing medium.  The organism mass influences the organism internal activity 

concentration and so will influence the absorbed dose.   
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The amount of dose received depends on a number of factors including the radiation emitted by the source, 

the density of the surrounding media, and the size of the organism.  The basic quantity for measuring 

absorbed energy is the Gray (Gy).  This measures the amount of energy absorbed per unit mass of an 

organism and is usually summed over a specific time period such as an hour to give the 

units (Gy h
-1

)/(Bq kg
-1

) for the DPUC and (Gy h
-1

) for the dose to biota.  Different types of radiation can vary 

in their biological effects when absorbed so there is the need for an effective dose unit.  The energy 

absorbed is often converted using a weighting factor that varies according to the type of radiation. Dose is 

calculated as: 

Ds = C
biota

 x DPUC
int

 + (fsoil + 0.5fsurface + fair x (reduction factor)radiation type)C
soil

 x DPUC
ext

  (13) 

 

Ds = dose to biota (Gy h
-1

) 

C
biota 

= activity concentration of biota (Bq kg
-1

) 

C
soil 

= activity concentration of soil (Bq kg
-1

) 

DPUC
int

 = Dose per unit concentration for internal activity (Gy h
-1

)/(Bq kg
-1

) 

DPUC
ext

 = Dose per unit concentration for activity in soil (Gy h
-1

)/(Bq kg
-1

) 

fsoil = fraction of time organism spends in soil 

fsurface = fraction of time organism spends on soil surface 

fair = fraction of time organism spends above the ground surface 

reduction factor = factor by which the radiation dose rate above the ground surface is lower than that within 

the soil itself.  This is zero for α and low energy β radiation and 0.25 for high energy  β and γ ray photons. 

 

Here, a new approach is given that allows the dose from radionuclides deposited on to the vegetation 

surface to be taken into account.  The total unweighted dose from surface-deposited radionuclides is then 

calculated as: 

    

4

1

4

1

1

i i

surf

i

surf

i

plant

surf

i

surf

isurf DPUC
SV

DPUCCDs  (14) 

            

Where
surf
iC is the activity concentration on plant surface per unit mass of plant, equivalent to the activity per 

unit surface area 
surf

i multiplied by the surface area/volume ratio SV
-1

 and divided by the plant density ρplant. 

Furthermore, i is the summation index for the radionuclides (5 for the free fraction and 4 for the unattached 

and attached fractions).  The Environment Agency R&D 128 random sampling (Monte Carlo) VB code that is 

used for internal dosimetry was used to provide a summation of the probability of absorption over trajectories 

selected by choosing at random a point of origin and a point of destination, both inside the ellipsoid 

representing the grass.  This code was used but with modified parameters to establish the point of origin on 

the ellipsoid surface and modified absorbed energy functions to take into account that, at very low energies, 

the absorbed fraction for deposited activity tends to 0.5 instead of unity.  This approach was used to 

generate DPUCs for 
137

Cs deposited on the vegetation surface (Table 3). 
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Table 2: DPUCs used in model taken from Copplestone et al. 2001.   

137
Cs Vegetation Herbivore Carnivore Detritivore Omnivore 

       

  (Gy h
-1

/Bq kg
-1

) (Gy h
-1

/Bq kg
-1

) (Gy h
-1

/Bq kg
-1

) (Gy h
-1

/Bq kg
-1

) (Gy h
-1

/Bq kg
-1

) 

            

Internal, low 

energy beta 2.4E-07 2.4E-07 2.4E-07 2.4E-07 2.4E-07 

Internal, beta and 

photon 9.5E-05 1.4E-04 1.2E-04 1.3E-04 1.5E-04 

Total 9.6E-05 1.4E-04 1.2E-04 1.3E-04 1.5E-04 

            

External, low 

energy beta 1.06E-10 1.32E-11 7.25E-11 2.64E-11 9.14E-12 

External, beta and 

photon 3.73E-04 3.31E-04 3.51E-04 3.39E-04 3.22E-04 

Total 3.7E-04 3.3E-04 3.5E-04 3.4E-04 3.20E-04 

 

Table 3: DPUCs calculated for this study for 
137

Cs deposited on vegetation surface 

 DPUC for 
137

Cs on vegetation surface  

(Gy h
-1

/Bq kg
-1

) 

  

Internal, low energy beta 1.20E-07 

Internal, beta and photon 2.70E-06 

Total 2.82E-06 

 

 Reference biota 

 

Default biota parameters for mass and dimensions are taken from the Reference Animals and Plants Report 

(ICRP, 2009).  The shape of biota for assessing dosimetry is simplified by assuming biota take the form of 

solid ellipsoids.  Occupancy factors are taken from Copplestone et al. (2001) while the Concentration Ratios 

are shown in Table 4.  The biohalflife or TB1/2  for vegetation is taken from observational results from Avery 

(1996).  For the animal biota the data for biohalflife is calculated using the principle of allometry. This 

principle is based on experimental data that shows metabolic processes are related to their mass and can be 

modelled according to the relationship XY  where Y and X are size related measures, and α and β are 

constants determined by observational data (Higley et al. 2003).  The turnover of radionuclides is thought to 



16 

be controlled by metabolic processes and so the allometric function 
237.0

2/1 22.13 MTB
 can be used to 

predict the biological halflife (Higley et al. 2003).  The scaling constants 13.22, which includes appropriate 

unit conversions, and 0.237, which is the allometric scaling factor which relates body mass, M, to biological 

elimination of contaminant, for Cs have been taken from parameters used for the FASTer dynamic model in 

FASSET (2003) which derived the constants from the EPIC report (Beresford et al., 2003). 

 

Reference biota are selected to provide a range of feeding strategies as feeding ecology of animals is 

important for the transfer of radionuclides between trophic levels and radionuclide uptake (Wood et al., 

2009b).  The reference biota modelled is selected to provide a range of behaviours and physiologies to allow 

the results to be extrapolated to a range of biota.  The reference biota modelled and the parameters used are 

shown in Table 4.  

 

Table 4: Reference biota modelled and parameters used. 

RAP Mass (kg) T1/2bio 

(days) 

Concentration Ratio  

(Wood et al. 2009b 

except vegi spike) 

Dimension (cm) 

(all from Wood et al. 

2008 except vegetation 

which is estimated by 

this study using the  

process explained in the 

Methodology section). 

Occupancy factors 

(All from Copplestone 

et al., 2001). 

 x y z In 

Soil 

Soil 

Surface 

Air 

Earthworm 

(Detritivore)  

5.24E-03 3.81 2.35E-02 

 

10 1 1 1 0 0 

Bee 

(Herbivore)  

5.89E-04 2.27 6.53E-02 

 

2 0.75 0.75 0 0.1 0.9 

Beetle 

(Carnivore) 

5.89E-04 2.27 1.77E-02 

 

2 0.75 0.75 0 1 0 

Rat 

(Omnivore) 

0.314 10.05 1.71E-02 

 

20
 

7.5 7.5 0.6 0.4 0 

Vegetation 

(spike) 

9.40E-04 2.53 6.93E-01 1.30

E-01 

5.50E-05 2.50E-04 0 1 0 
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 Model scenarios 

 Ecosystem selection - Drigg dunes 

 

The ecosystem being modelled is the heath sand dune part of the Drigg dune ecosystem, a primarily acidic 

dune system supporting large areas of Atlantic decalcified fixed dunes (Wood et al., 2008).  The ecosystem 

covers about 6 km
2
 of land and is bound by the Irish Sea and the inner Esk Estuary.  The ecosystem 

includes embryonic, shifting white, fixed grey, and fixed heath dunes with the majority of dunes consisting of 

fixed grey and heath dunes (Wood et al., 2008).  The dunes are kept in a semi-natural state by grazing 

livestock.  The majority of vegetation consists of marram grass (Ammophila arenaria) and red fescue 

(Festuca rubra) (Wood et al., 2008).  A varied amount of biota is present with heather and lichens prevalent 

in varying degrees throughout the ecosystem with protected species such as rare small adder’s tongue fern 

(Ophioglossum azoricum) also present.  A range of fauna is present including the invertebrate northern dune 

tiger beetle (Cicindela hybrida), birds such as the large skylark (Alauda arvensis) and meadow pipits (Anthus 

pratensis), and small mammals including the field mouse (Apodemus sylvaticus) and field vole (Microtus 

agrestis).  Reptile species include the European adder (Vipera berus) and the common lizard (Lacerta 

vivipara) (Wood et al., 2008). 

 Warm-up run: 1990 – 1995. 

 

The ICRP Recommendations (ICRP, 2007) recognise three types of exposure situations.  Planned exposure 

is the planned introduction of radioactive sources; existing exposure situations of historical radiation sources; 

and emergency exposure situations with the unplanned release of radionuclides.  The simulating of biota 

uptake as a warm-up period is necessary as all compartments are empty when the model is initially set up.  

Having a warm-up period allows the model to reproduce the activity prevailing in the biota before the 

hypothetical emergency exposure scenario.  The model is run using atmospheric concentration data of 
137

Cs 

form 1990-1995  to allow sufficient time for the biota activity compartments to 'warm-up' and allow the 

assessment of model output for a scenario with low levels of atmospheric 
137

Cs.  This is done to allow a 

comparison of model output for low levels of atmospheric 
137

Cs with high levels of atmospheric 
137

Cs which 

may occur in an emergency scenario.  Appendix 1 gives the empirical data of atmospheric levels of 
137

Cs 

from 1990-1995 which are used in the model from the years 1990-1995.  The soil activity concentration is 

calculated using the empirical data for 1986 taken from Rudge (1989) and the simple clearance model 

described above. 

 Emergency exposure scenario: 1996 – 2000. 

 

A second hypothetical scenario is run to simulate the model results from a hypothetical accidental release of 

137
Cs.  This is modelled using the empirical deposition data recorded at the Drigg dunes from the Chernobyl 

incident.  This allows the simulation of an emergency exposure scenario with an unplanned, relatively high 

release of 
137

Cs into the atmosphere.  The soil activity concentration is calculated using the empirical data for 
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1986 taken from Rudge (1989) and the simple clearance model described above.  The model is run from the 

years 1996 – 2000, using the deposition data from Bryan et al. (2004).  This means there is a switch in the 

type of empirical data used for the model runs when compared with the warm-up run.  The emergency 

exposure scenario uses the empirical data for the amount of 
137

Cs deposited to soil following the Chernobyl 

incident as measured by Bryan et al. (2004) (specific data cannot be shown in this study as it is confidential 

due to the report being used for commercial purposes and permission has not been given by the authors to 

publish the data, only to use in model runs).  This is different to the approach used for the warm-up, which 

has empirical measurements of atmospheric concentration of 
137

Cs as the input data and uses a deposition 

velocity to calculate the subsequent levels of 
137

Cs deposited to the soil.  The reason for this is a deposition 

velocity could not be attained for 
137

Cs under emergency conditions.  The use of the deposition velocity in 

this study is for long-term low levels of atmospheric 
137

Cs and so its use in an emergency scenario will 

greatly over-predict the levels of 
137

Cs deposited to the soil.  The main purpose of this study is to investigate 

the accuracy of the biota uptake and release model developed here and so it is more important to ensure the 

validity of the environmental data used for the model scenarios.  Using the deposition data from Bryan et al. 

(2004) ensures the hypothetical scenario developed for this study is based on a feasible situation given what 

is known about the operational past of nuclear installations.  As with all other data, the deposition values are 

averaged over 12 monthly time-steps.    

 Sensitivity analysis 

A sensitivity analysis is carried out on the model to investigate the effect of varying a number of different 

parameters on model output.  The effect of varying the Concentration Ratio, biohalflife, and soil migration 

rate on the reference herbivore activity concentration during the model warm-up scenario is investigated.  

The sensitivity analysis varies the parameter values at 1.25, 1.5, and 2 times the original values with results 

expressed as a % variation from the model output using the original parameter values.  This means the 

sensitivity analysis is the outcome for model output caused by varying the parameter values with a maximum 

ratio of 2:1.  The herbivore results are taken as representative of the other animal biota.  The effect of 

varying the weathering rate for externally deposited 
137

Cs on the overall concentration of 
137

Cs in the 

reference vegetation is investigated during the emergency exposure scenario.   This is done by varying the 

weathering rate parameter by 1.25, 1.5, and 2 times the original values.  These results are also expressed as 

a % variation from the model output using the original parameter values. 
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 Results 

 Warm-up model run 

 Biota activity concentration 

 

From the reference animals, the herbivore has the highest activity concentration (Fig. 5).  Unsurprisingly, the 

hierarchy of biota activity follows the ranking of Concentration Ratios.  It can be seen that the biota reach a 

peak in activity concentration quickly relative to the annual time-scale with a subsequent steady predictable 

decrease in activity.  The pattern of steady decrease in biota activity (Fig. 5) mirrors the pattern of steady 

decrease in soil activity due to the soil migration of 
137

Cs (Fig. 6).  The herbivore activity concentration 

reaches a peak of 16.85 Bq kg
-1

 while the omnivore has the lowest activity concentration at 4.35 Bq kg
-1

.  

The omnivore peak is delayed slightly compared to the other animal biota while the peak activity of the 

detritivore is slightly later than that of the herbivore and carnivore.  This is expected as the biohalflife of the 

reference omnivore is over 4 times that of the reference carnivore and herbivore. 

 

Vegetation activity concentration is far higher than for animal biota (Fig. 6).  The vegetation has a high 

activity concentration level from the first time step due to the inclusion of the external component and the 

137
Cs deposited from the atmosphere.  The highest level reached over the 5 years is 179 Bq kg

-1
 with the 

 

Figure 5: Predicted biota activity levels for the period 1990 – 1995 with one month time-step.  
Animal biota activity concentration hierarchy: herbi>detri>carni>omni. 
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activity concentration more closely matching soil activity concentration as 
137

Cs is removed from the external 

vegetation.  Fig. 6 shows a peak in activity concentration of vegetation very soon after the initial uptake at 

the start of the model run.  An increase in deposition soon after the start of 1991 means there is slight 

increase in the vegetation activity concentration followed by steady decrease as the deposited 
137

Cs are 

removed from  the external compartment.  As this happens, the vegetation concentration levels more closely 

match the trend in topsoil activity concentration.  The peak activity concentration is around 10 times that of 

the nearest animal biota.  By the end of the warm-up period the vegetation activity concentration is still 

around 10 times that of the nearest animal biota.  The vegetation activity concentration follows a similar 

pattern to that shown in Fig. 5 with the overall trend following the decreasing soil activity concentration.  

However, Fig. 6 does show a slight increase, or 'blip' in the vegetation activity between the years 1991 and 

1992.  This is due to slight increase in atmospheric levels of 
137

Cs recorded at this time and the associated 

increase in 
137

Cs deposited onto vegetation. 

 

 

The impact of including an external compartment can be examined by running the model using just uptake 

from the soil (Figure 7).  This graph shows an almost identical pattern in the activity concentration of 

vegetation to Fig. 6.  The only noticeable exception is there is no slight increase in the vegetation activity 

concentration between the years 1991 and 1992 in Figure 7.  The highest activity concentration reached in 

Fig. 7 is 179 Bq kg
-1

 very quickly after the initial contamination.  The overall trend is the same as that 

followed by the uptake and release of 
137

Cs by the animal biota.  This means that that the vegetation activity 

 

Figure 6: Specific activities for topsoil (0 – 0.1 m) and vegetation from 1990-1995 with 

monthly time-step.  Fresh weight for vegetation and dry weight for soil. 
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concentration in this scenario mirrors the trend followed by the soil activity concentration with a steady 

decrease caused by the soil migration rate of 
137

Cs.  At the end of the warm-up period the vegetation activity 

concentration is 128 Bq kg
-1
 which is the same as at the end of the model run in Fig. 6 with the activity 

concentration still much larger than the reference animal biota.  The herbivore has the highest animal activity 

concentration and by the end of the warm-up run this has a concentration level of 12 Bq kg
-1

 and so the 

vegetation has an activity concentration 10 times that of the herbivore even without including the external 

compartment.  This shows that with low amounts of 
137

Cs deposition over long time periods the uptake of 

137
Cs into the internal compartment dominates the vegetation activity concentration. 

 

 

 Dose to biota  

 

The dose to biota over the warm-up period is shown in Figure 8.  In assessing the dose to biota all pathways 

described in the methodology section are included in the assessment.  This includes 
137

Cs deposited to the 

external vegetation compartment, 
137

Cs deposited and incorporated within the soil, and 
137

Cs taken up by 

biota.  The highest dose is received by the detritivore worm while the lowest is received by the herbivore bee.  

The dose to biota decreases in a predictable pattern that reflects the decreasing soil 
137

Cs concentration and 

the decreasing availability of 
137

Cs for biota uptake due to various soil processes such as the migration of 

137
Cs to deeper soil.  The dose hierarchy follows a pattern of: Detri > Vegi > Omni > Carni > Herbi (Fig. 8).  

The herbivore has over double the internal activity concentration of 
137

Cs compared to other animal biota 

(Fig. 8) but receives the lowest dose for the warm-up period.  This is because of the influence on the total 

 

Figure 7: Comparison of vegetation and soil activity concentration with only an internal 
vegetation compartment from 1990 - 1995 with monthly time-step. 
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absorbed dose from external 
137

Cs within the environment and other factors besides the internal biota activity 

concentration of 
137

Cs.  Life history, particularly the proportion of time spent within the soil, and other 

parameters such as size dimensions affect the dose that biota receive.  The reference detritivore and 

omnivore are assumed to spend the largest amount of time living in the soil with the detritivore worm 

assumed to spend its full life within the soil and the omnivore rat spending 60% of the time there. 

 

The highest dose received by vegetation is 0.08 μGy hr
-1 

and a dose of 0.06 μGy hr
-1

 by the end of the 

simulation period.  The highest dose received by the detritivore was 0.09 μGy hr
-1

 and 0.06 μGy hr
-1

 by 1995.  

The omnivore and carnivore had highest doses of 0.07 and 0.05 μGy hr
-1
 respectively and 0.05 and 0.03 

μGy hr
-1

 by the end of the model run.  For herbivore, the highest dose was 0.03 μGy hr
-1

 and the lowest dose 

was just under 0.02 μGy hr
-1

.  Therefore, the reference detritivore had the largest change in absorbed dose 

over the simulation period while the herbivore had a change of just 0.01 μGy hr
-1

. 

 

 

 

Figure 8: Dose rate of biota for simulation from 1990-1995 with monthly time-step.   Dose rate 
hierarchy is: Detri > Vegi > Omni > Carni > Herbi. 
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 Model sensitivity analysis 

 

Comparing biota activity concentration with the soil activity concentration shows that, after the initial uptake 

phase, the activity concentration of biota follow the pattern of soil activity concentration.  As soil activity is 

largely controlled by the migration rate it is important to look at the effect this has on biota uptake.  Fig. 9 

shows the effect of varying the soil migration rate up to double the rate derived from empirical observation 

and used as the default value in the model.  Increasing the migration rate by 25% shows around a 5% 

decrease in the activity uptake by the herbivore by the end of the model run.  Soil migration has less of an 

effect closer to the beginning of the model run and so shouldn't have much of an effect during the initial 

uptake period.  However, over time the effect of increasing the soil migration rate has a larger impact on 

biota activity (Fig. 9). 

 

Varying the Concentration Ratio has a linear impact on the model output for biota activity (Fig. 10).  This is 

similar to previous studies on dynamic modelling (Vives i Batlle et al., 2008).  The biohalflife has an important 

effect during the initial uptake by biota but has decreasing influence as time increases after the initial uptake 

(Fig. 11).  The effect of varying the biohalflife is more variable than the other parameters included in the 

sensitivity analysis.  Increasing the biohalflife by 25% results in varying the herbivore activity concentration 

by up-to just under 15%.  An increase of 50% results in a variation of 25%.  A 75% increase in the biohalflife 

causes a decrease in activity concentration of up-to just under 35%.  Doubling the biohalflife results in a 

decrease of the model output of just over 40% during the initial uptake by biota.  Therefore, the model is 

most sensitive to the various factors tested in the order: Concentration Ratio>biohalflife>soil migration rate. 

 

Figure 9: Sensitivity analysis of the effect of varying soil migration rate on herbivore activity concentration 
with the effect expressed as % variation from their default values. Monthly time-step used. 
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Figure 10: Sensitivity analysis of the effect of varying the concentration ratio on herbivore activity 
concentration with the effect expressed as % variation from their default values.  Monthly time-step used. 

 

 

Figure 11: Sensitivity analysis of the effect of varying the biohalflife on herbivore activity concentration with 
the effect expressed as % variation from their default values.  Daily time-step used.  
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Accident scenario 

 

Another hypothetical scenario is run to simulate the model results from a hypothetical accidental release of 

137
Cs.  The hypothetical scenario developed for this study is based on a feasible situation that could arise 

given what is known about the operational past of nuclear installations.  This is modelled using the empirical 

deposition data recorded at the Drigg dunes from the Chernobyl incident.  This allows the environmental 

impact of an emergency exposure scenario to be assessed with an unplanned, relatively high release of 

137
Cs into the atmosphere by using the deposition data from Bryan et al. (2004).  Figure 12 shows the model 

simulated trends from the hypothetical accident scenario simulated from the years 1996-2000.  The trends 

show the vegetation compartment to have a much higher activity concentration than the other compartments.  

The vegetation compartment reaches a peak of 3E04 Bq kg
-1 

with an activity of 156 Bq kg
-1 

reached by the 

end the of the model run.  The peak soil concentration reached is 1320 Bq kg
-1

 (dw).  The highest activity 

concentration reached by the animal biota is the herbivore at 14 Bq kg
-1

.  The detritivore highest 

concentration was 5 Bq kg
-1

, carnivore 3.7 Bq kg
-1
, and omnivore 3.6 Bq kg

-1 
(Fig. 12).  

 

Figure 12: Activity concentration trends (fw for biota, dw for topsoil) from a hypothetical accident scenario 
using the atmospheric data recorded at Sellafield from 

137
Cs released by the Chernobyl accident with a 

monthly time-step used. 
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The weathering rate includes all physical processes that contribute to the removal of 
137

Cs from the 

vegetation such as wind removal or being washed off.  For 
137

Cs radionuclides deposited onto vegetation 

there is an initial removal of these radionuclides through processes such as bouncing off or being blown off 

while the remainder are retained on the surface which may be removed through longer term weathering.  

The weathering rate refers to this longer-term removal of 
137

Cs radionuclides as the dose to biota is being 

assessed on an annual time-scale.  The weathering rate used in Fig. 12 is derived from empirical evidence in 

IAEA (1996) from observations that included woody vegetation.  The weathering rate of leafy vegetation that 

comprises most vegetation at dune ecosystems has been observed to be higher.  
137

Cs incorporated into 

woody plant parts will be less subject to removal by rain and fog than 
137

Cs incorporated into leafy plant parts 

(IAEA, 1996) so the weathering rate used in the dynamic model will give a conservative estimate of 
137

Cs 

removal from the external compartment.   

 

A sensitivity analysis of the weathering rate for the accident scenario shows this parameter can have a big 

impact on vegetation activity concentration when there is large deposition of 
137

Cs (Fig. 13).  Doubling the 

weathering rate decreases the vegetation activity concentration by up to 85%.  An increase of the weathering 

rate by 25% causes a decrease in vegetation activity concentration of up to 45% compared to using the 

default weathering rate.  With the weathering rate at 1.5 times the default value the vegetation activity 

concentration varies by over 70% while the weathering rate at 1.75 times the default value causes a variation 

in activity concentration of over 80%.  The largest variation in activity concentration doesn't occur at the peak 

of the vegetation activity concentration but occurs a year later after the peak in vegetation activity 

concentration.  Before the accident event the variation caused by the weathering rate is much less than after 

there is a significant deposition of 
137

Cs. Once there has been a significant period of time of (4 years) after 

the accident event the weathering rate again doesn't have a large effect on the vegetation activity 

concentration (Fig. 13).  This indicates that only with a high deposition rate will the weathering rate be a 

significant factor to consider in assessing the activity concentration of vegetation.  This is backed up by the 

very close similarity of results in Figures 6 and 7, as these are scenarios with a low atmospheric deposition 

rate. 
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Figure 13: Sensitivity analysis of the effect of varying weathering rate on vegetation activity concentration 
with effect expressed as % variation from the default weathering rate of 4.22 year

-1
.  A monthly time-step is 

used for model runs. 
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 Discussion 

 Model simulations 

 

The hierarchy of biota activity concentrations for the model simulation from 1990 – 1995 can largely be 

explained in terms of the Concentration Ratio used.  The large influence that this parameter has on biota 

uptake can be seen from the sensitivity analysis of the Concentration Ratio for the herbivore reference 

animal (Fig. 10).  This is consistent with other dynamic modelling approaches (Vives i Batlle et al, 2008) and 

unsurprising given that all the biota uptake processes are modelled using this lumped parameter.  The large 

activity concentration of vegetation in comparison to the animals during the warm-up scenario is largely due 

to the conservative Concentration Ratio derived from ERICA in the absence of site specific data.  

 

Biota dose follows a different hierarchy to the activity concentration and so highlights the importance of other 

parameters used in developing the reference animals and plants.  The model uses the ICRP (2009) RAP 

report values as the default for the animal biota parameters, however, these values can be adapted for 

specific scenarios.  The occupancy factors seem to be more important than the Concentration Ratio for 

determining the dose rate for animals.  This is because of the influence of the external dose from 
137

Cs in 

soil.  The detritivore and omnivore are the only two organisms assumed to spend any time in the soil, with 

detritivore worm assumed to spend its whole life underground and the omnivore rat assumed to spend the 

majority of time underground.  The dose rates to these animals may even be an underestimation as only the 

137
Cs from the top 10cm of soil is used in the dosimetry calculations.  As they are underground, these 

animals are more likely than the other biota to be receiving a significant dose from 
137

Cs deeper than 10cm.  

This under prediction may be cancelled out partly by the conservative prediction of 
137

Cs being deposited 

because of the lack of a resuspension factor, although, this is uncertain without more detailed empirical data 

to validate model predictions.  The herbivore bee spends the least time near the soil with 90% of its life 

assumed to be in the air and this would appear to be largely the reason for having the lowest dose rate for 

the warm-up period. 

 

The dominance of occupancy factors as a parameter determining biota absorbed dose may be radionuclide 

specific, which should be considered if the model is expanded to include other radionuclides.  The half-life 

and chemical nature of radionuclides, which determines their interaction with the environment, will affect the 

importance of different pathways in contributing to the absorbed dose of radiation received by biota.   
137

Cs 

incorporated into the soil matrix contribute much of the dose received by biota from 
137

Cs as this radionuclide 

has a half-life long enough for the 
137

Cs radionuclides to become incorporated into the soil matrix in 

significant quantities.  The rate of decay of 
137

Cs also means the external dose from the plume released in an 

accident scenario from a nuclear facility is unlikely to be a significant factor in determining dose to biota.  

However, for radionuclides with a short half-life such as 
131

Iodine the dose from the plume should be 

considered.  Therefore, the dynamic model in this study isn't suitable for considering short lived radionuclides 
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such as 
131

I without including pathways that are important in the short-term after the initial release of 

radionuclides in an accident scenario.  This is likely to include pathways such as the resuspension of 

radionuclides from the soil, deposition of radionuclides onto animal fur and skin, and the inhalation of 

radionuclides.  The chemical nature of 
137

Cs also means that the pathways most significant in determining 

the absorbed dose of biota will be different for radionuclides with a significantly different chemical nature.  

For example, for radionuclides that are less available for uptake through the plant rooting system such as 

241
Am, the biological pathways are likely to be of less importance while the physical pathways determining 

the interaction of radionuclides with the soil matrix are likely be more important.  This is particularly the case 

for long lived radionuclides such as 
238

Pu.  

 

The sensitivity analysis of the weathering rate for the accident scenario resulted in the largest variation from 

the default occurring a year after the peak activity concentration.  It is not clear why this should be the case.  

The effect that varying the weathering rate has with a large deposition of 
137

Cs compared with the warm-up 

scenario shows that the inclusion of a vegetation external compartment is only important for when there is a 

large deposition rate.  An important process for coastal environments not considered as part of the 

deposition of 
137

Cs is the sea-to-land transfer.  Hill et al. (2008) indicates this is not as significant a process 

for the transfer of 
137

Cs but sea-to-land transfer is particularly effective for transporting actinides.  If the 

model is expanded to include these radionuclides the influence of sea-to-land transfer should be included.   

 

Fig. 13 shows a difference in shape before and after the peak values of % variation from the default 

weathering rate.  Before the large deposition of 
137

Cs that results from the emergency scenario throughout 

the year 1996 there is more of a fluctuation in vegetation activity concentration caused by uptake and loss 

processes.  After the large deposition of 
137

Cs it is the concentration of 
137

Cs in the external vegetation 

compartment that dominates the vegetation activity concentration.  Therefore, the smooth decrease in 

activity concentration that is seen in Fig. 13 after the peak value is as a result of the weathering rate being 

the dominant process in affecting the activity concentration as the vegetation gradually losses the deposited 

137
Cs from various processes such as removal by rainwater, which is modelled by the weathering rate 

parameter.   

 

The sensitivity analysis for the weathering rate does not produce a linear response in model output.  With a 

large deposition event the weathering rate becomes more influential in determining the vegetation activity 

concentration.  However, from the sensitivity analysis it can be seen that the impact of the weathering rate 

decreases with each increase of the parameter value.  This means increasing the weathering rate does not 

produce a linear effect on the vegetation activity concentration as the influence of other parameters such as 

root uptake become a limiting factor on the level of influence the weathering rate can have on model output. 

 

The sensitivity analysis varied parameter values from 1.25-2 times the model default values for equal 

comparison of the effect each variable has on model output.  However, this has a limitation as the possible 
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range of values for the selected variables may be more than a maximum of double.  For example, the range 

of Concentration Ratio values found in Wood et al. (2009b) for carnivorous invertebrates range by an order 

of magnitude.  The biohalflife of 
137

Cs is calculated using an allometric approach and so the range of values 

for this parameter will be similar to the range of organism sizes found in an ecosystem.  For soil migration 

rate, Kirchner et al. (2009) reports 11 measured values of the migration rate for radiocaesium from Chernobyl 

fallout with the maximum value around 8.5 times the lowest recorded value.  For the weathering rate, 

Chamberlain (1991) reports a range of empirical values for radionuclides from 0.023 - 0.6 day
-1

.  The large 

range of Concentration Ratio values in comparison to the other variables further highlights the importance of 

the Concentration Ratio parameter in terms of the large impact it can have on model accuracy. 

 

The results don't consider the impact of biota life cycle or span.  A correction factor is used by FASSET 

(2003) to estimate the activity concentration correcting for lifespan: 

 

                

                                        k
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Where:  

 

Ccorr(t) is the corrected activity concentration in the organism at death (Bq kg
-1

) 

C(t) is the activity concentration in the organism calculated without consideration for the life time (Bq kg
-1

) 

k  is the effective release rate of the radionuclide from the animal body by radioactive disintegration 

and via biological processes (d
-1

) 

Elife is the expected life time of the organism (d) 

 

This is useful for comparing the model output with empirical data with regards to model validation.  That is 

outside the scope of the current study where the aim is to reproduce realistic overall trends in biota activity 

concentration. 

 

 Model parameters 

 

The model can be separated into three elements.  The physical component, biological processes, and 

dosimetry.  Each part contributes to the overall model uncertainty.  Analysis of the different parameters for 

each of these elements is given below.  

 

 Physical processes 
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The physical component consists of deposition, weathering from vegetation, and soil migration of 

radionuclides.  The physical component has a large amount of simplification for each of the processes 

modelled and so contains a large amount of uncertainty.  The deposition of radionuclides is controlled by a 

number of factors including: particle diameter, physical processes such as Brownian motion and impaction 

(Garland, 2001), and atmospheric conditions such as wind speed, precipitation, and boundary layer height 

(Nelson et al., 2002).  The representation of these different processes and factors is often done by 

representing dry deposition and scavenging of radionuclides by precipitation with the use of a simple 

deposition velocity, vd (Sportisse, 2007).  More detailed models will represent the physical processes behind 

particle deposition.  For example, the gravitational settling velocity of particles can be modelled 

mathematically using Stokes formula (Sportisse, 2007). 

 

Radionuclides can be removed by wet deposition through two processes of rainout where particles are 

impacted by falling raindrops and washout where particles are incorporated into clouds by acting as 

condensation nuclei.   Wet deposition is modelled as a separate process in more complex models such as 

the NAME pollutant dispersion model developed by the UK Met Office after the nuclear accident at 

Chernobyl.  This includes a scavenging coefficient defined as 
baR  where = scavenging coefficient, R 

is the rainfall rate and a and b are coefficients based on observational data for different types of precipitation 

(e.g. dynamic, convective, rain and snow) and the two different deposition processes: rainout and washout 

(Nelson et al. 2002).  In Nelson et al. (2002) the scavenging coefficient is given in units of s
-1

 and the rainfall 

rate as (mm hr
-1

).  The approach in this study simplifies these processes into one lumped parameter: the 

deposition velocity.  The main purpose of this study has been to simulate biota uptake and release 

dynamically.  This means less consideration has been given to physical processes.  A more complete study 

would model the deposition of radionuclides and the interaction of radionuclides with soil and loss processes 

from vegetation in more detail.   

 

The advection and dispersion of radionuclides through the atmosphere is not included in this model as 

empirical atmospheric concentrations are used.  A number of modelling approaches can be used to simulate 

the atmospheric transport of radionuclides.  Many of which are adapted from and used for the application of 

general pollutant transport.  The ADMS model developed by CERC environmental software company is often 

used in industry for predicting the atmospheric transport of radiological plumes (Carruthers et al., 1994).  The 

spread of a plume and the spread of radionuclides from different emission sources relies on a complex set of 

parameters and factors such as the variation of the level of turbulence in the boundary layer of the 

atmosphere.  It is outside the scope of this study to investigate the dispersion of radionuclides from their 

source. 

 

An interception factor can be used to calculate deposition onto vegetation surfaces (Chamberlain, 1970).  

This models wet and dry deposition together with Chamberlain (1970) providing a formula that relates the 

interception fraction with the amount of standing biomass: 
Be1  where φ = interception factor, B = 
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above ground biomass (dry weight) of vegetation per unit area (kg m
-2

), μ = interception coefficient (m
2
 kg

-1
).  

The interception factor includes wet and dry deposition.  Over shorter time periods it is more appropriate to 

model wet and dry deposition separately but many modelling approaches model both processes using one 

parameter but have a higher deposition velocity to account for the increased deposition during rainfall (IAEA, 

1996). 

 

The dynamic model developed in this study assumes a percentage of deposited 
137

Cs is intercepted by the 

vegetation.  This percentage is equal to the percentage of ground covered by the vegetation.  The effect of 

surface roughness on the interception of 
137

Cs is not included in this study.  Bunzl et al. (1989) measured 

total deposition of caesium isotopes and 
106

Ru in a spruce forest and nearby grassland following the 

Chernobyl incident.  The difference in deposition between the two surface types was equivalent to a 

deposition velocity of 5 mm s
-1

 for 
137

Cs and 6.6 mm s
-1

 for 
106

Ru.  Future development of the dynamic should 

look to improve the accuracy of vegetation interception by including the effect of surface roughness. The 

large activity concentration of vegetation during the dynamic model accident scenario highlights the impact of 

including an external vegetation compartment.  Assessment tools that don't explicitly model radionuclides 

deposited onto vegetation surfaces may be significantly underestimating the risk to biota during an accident 

scenario.  This is backed up by empirical evidence that shows root absorption to be the dominant route of Cs 

uptake by vegetation until 1986 at Drigg.  The Chernobyl event meant direct surface deposition became the 

more important route of Cs accumulation by vegetation (Rudge et al. 1993). 

 

The processes of wet and dry deposition are two separate processes. However, in reality, the processes 

overlap and a clear separation is often not possible.  As the results of Hoffman et al. (1992) indicate, values 

of vegetation interception remain nearly constant if the plants can dry between the rainfall events. However, 

such simplified approaches are not appropriate for the modelling of deposition over short time periods.  At 

sub-annual scales the impact of variations in rainfall and the need to model this explicitly becomes important 

rather than having just one deposition velocity. 

 

A potentially important factor not accounted for is the temporal variation in the rate that determines loss of 

deposited radionuclides from the external vegetation compartment.  Analysis of the removal rate from 

different crops due to a mixture of dry and wet Pu deposits showed the weathering rate, WR,  to vary from 

from = 0.025 d
-1

 to WR = 0.065 d
-1 

(IAEA, 1996).  Chamberlain (1991) reports a range of loss rates from 

vegetation from 2.3 – 6.9E-07 s
-1 

with the rate of loss not critically dependent on the type of radionuclide, the 

size of the particles or variability in rainfall.  Bondietti et al. (1984) measured the time for activity 

concentration to decrease by half to be 130 d for 
7
Be on semi-dormant pasture.  This is the highest value 

reported by IAEA (1996). This is largely due to the differences in the rate of loss processes such as the 

shedding of leaves and cell turnover between dormant and growing vegetation.  Seasonal factors have been 

shown to have an effect on vegetation weathering and radiation concentration.   With the highest growth 

rates occurring from spring to autumn this has a dilution effect on activity concentrations (IAEA, 1996).   The 

life stage of vegetation being modelled may also be a factor as this can affect uptake and excretion rates.  

Growth dilution processes have been observed to slow down as a plant grows (IAEA, 1996).  
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IAEA (1996) has shown there is a rapid initial phase in the removal of radionuclides deposited on the surface 

of vegetation followed by another long-term phase of removal over a period of 60 d.  In one study, a fine 

spray of Chernobyl rainwater was applied to grass grown in pots. One half of the pots were protected against 

rain, but watered during the whole experimental period with the other pots not protected against rainfall.  For 

the uncovered plots the weathering rate is about a factor of 2 shorter than for the plots protected against 

rainfall.  In both cases, the initial loss is very rapid followed by a phase of slower removal of radionuclides 

from the vegetation surface (Ertel et al. 1989).  The dynamic model developed for this study uses a single 

half-life derived from the slower, long-term loss of radionuclides to describe the weathering of deposited 

137
Cs.  Given the observed time-dependence of weathering, this could lead to an  over-estimation of the 

contamination of plants after a large deposition event.  However, the use of a single weathering rate is 

appropriate for estimating contamination due to routine releases or for estimating the concentrations over 

annual timescales. (IAEA, 1996).  If the model were to be adapted for sub-annual timescales then it may be 

necessary to have weathering rates to cover both the rapid initial loss and slower long-term weathering. 

 

The sensitivity analysis shows that soil migration rate has increasing importance on the effect of biota activity 

concentration as time increases.  The default value of 0.045 m year
-1

 used in the model is an empirically 

derived value.  It is possible to calculate the theoretical migration rate using rainfall divided by a retardation 

factor: 

 

        
)( dsoilK

R
r      (16) 

 

where: 

r = migration rate in soil (y
-1

) 

δ =  soil depth (0.1 m) 

ρsoil = soil density (loose sand) = 1442 kg m
-3 

 (Curry et al., 2004) 

ω = Porosity = 0.463 (Curry et al., 2004) 

Kd = distribution coefficient for 
137

Cs in sand = 0.27 m
3
 kg

-1
 (IAEA, 2010) 

R = Average rainfall rate at Drigg = 1.1 m y
-1

 (Dr. Andy Smith, pers. communication) 

 

This gives a migration rate of 0.03 m year
-1

 which shows that the empirical value for Drigg dunes used in this 

study is slightly faster than expected.  However, this is a close agreement plus the rainfall data for Drigg 

dunes is an average value and so the theoretical calculation might match the empirical data more accurately 

if more accurate rainfall data is used. 

 

The above calculation is a simplification of the more sophisticated modelling of soil migration that can be 

done using the convection-dispersion modelling approach (CDE).  The CDE approach assumes that the 
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convective velocity is equal to the mean pore water velocity with the retardation effect applied.  The 

horizontal migration of radionuclides can be modelled using a similar approach by applying the retardation 

factor to an effective dispersion coefficient.  The approach used in this study is considered a 'black-box' 

approach and, with the depth of soil compartment being arbitrarily set, the CDE model is considered the 

preferred approach (Kirchner et al., 2009).  However, the close agreement between the simplified theoretical 

approach and the 'black-box' approach, and as the black-box compartmental approach is based on empirical 

data from the Drigg dunes, the default migration rate should be accurate over annual time scales for this 

study. 

 

The basic physical processes controlling radionuclides in soil is the convective transport by water flow, 

dispersion caused by spatial difference in convection velocities, movement by nuclides within liquid by the 

process of diffusion, and the physico-chemical interaction with the soil matrix (Kirchner et al., 2009).  The 

common approach for the sorption of dissolved radionuclide ions to the soil matrix is the use of the 

distribution coefficient: 

 

      

l

s

d
C

C
K      (17) 

 

where: 

Kd = the distribution coefficient (L kg
-1

) 

Cs = activity concentration for the solid phase (Bq kg
-1

) 

Cl = activity concentration for the liquid phase (Bq L
-1

) 

 

This assumes that the activity concentration in the solid phase is in equilibrium with the activity 

concentrations in solution and that exchange between these phases is reversible (IAEA, 2010).  The time 

since a radionuclide is incorporated into the soil can affect the Kd value as a fraction of the radionuclides may 

become fixed by the solid soil phase (IAEA, 2010).  A number of soil factors can affect the sorption of 

radionuclides such as the cation exchange capacity (CEC) and the radiocaesium interception potential (RIP) 

(IAEA, 2010).  This process of soil fixation is assumed to be accounted for in this study by the conservative 

approach to estimating the migration of radionuclides from the plant rooting zone. 

 Biological processes 

 

The main source of uncertainty in predicting the uptake of radionuclides by biota is the Concentration Ratio.  

Figure 11 shows the biohalflife (TB1/2) parameter can also have a large influence on biota activity 

concentration in the early stages of the warm-up scenario, when the organism compartment has low levels of 

activity concentration.  The model predicts a much larger 
137

Cs uptake for vegetation compared to animal 

biota.  The Concentration Ratio used for vegetation is taken from the ERICA database as no site-specific 
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value was available.  The ERICA approach generally provides an over prediction for 
137

Cs as this is usually 

used as a regulatory screening model (Wood et al., 2008).  Future model development should derive more 

accurate Concentration Ratios for vegetation in dune ecosystems.  Concentration Ratio values derived from 

sites more appropriate to the Drigg dunes, i.e. closer in location or from similar ecosystems, may already be 

available in the literature that haven't been picked up by this study.  If such Concentration Ratio values were 

used in the model these are likely to produce more accurate model output. 

 

Using the Concentration Ratio provides ease of use as just one parameter is required.  However, this 

introduces a larger amount of variability.  Other modelling approaches attempt to model radionuclide uptake 

through food ingestion and inhalation rates (Sample et al., 1997).  An allometric approach  can be used to 

simulate uptake and, as used in this study, turnover of radionuclides (Higley et al., 2003).  The parameters 

used were taken from Beresford et al. (2003), which was concerned with predicting the uptake of 

radionuclides by Arctic biota.  This may lead to uncertainty within the model but the parameters from 

Beresford et al. (2003) were the most appropriate available.  The reason for using the Beresford et al. (2003) 

parameters is because these parameters were derived from biota most similar to those found in the Drigg 

dune ecosystem which could be found by this study.  Parameters more accurate for sand dune biota may 

already be available that were missed by this study.  Further research is required to derive more accurate 

allometry parameters for dune biota.  The use of allometry means the model is assuming the release rate is 

dependent on animal size.  Higley et al. (2003) has shown this to be an accurate way of estimating 

radionuclide release in biota.  

 

It has been suggested that inhalation may be a secondary route of radiocaesium uptake in terrestrial 

ecosystems (Avery, 1996; Copplestone et al., 2000). However, due to high measurement uncertainties, it is 

not possible to determine whether inhalation of 
137

Cs is contributing to the tissue distribution observed.  The 

model also doesn't explicitly include dose from radionuclides deposited directly onto fur or skin.  Also, the 

current approach assumes that radionuclides are uniformly distributed throughout the biota.  This is a 

simplification as radionuclides accumulate more in some tissues of the organism than in others (ICRP, 2009).  

This is difficult to model as there are few consistent datasets that exist for the distribution for of radionuclides 

in terrestrial biota tissue (ICRP, 2009).  This can be particularly important for larger animals higher up in the 

food chain such as large mammals where it is important to consider the dose to specific organs such as the 

liver and gonads.  An approach that can be used is to modify the dosimetry methodology by modelling the 

organs as simplified ellipsoids within the body and considering the dose from radionuclides homogeneously 

distributed within the body and from a radiation source within the organ (ICRP, 2009). 

 

Many sand dune small mammals typically have a home range that is larger in sand dune ecosystems 

compared to other habitats such as woodland (Akbar and Gorman, 1993) and so organisms may be more 

likely to migrate out of the area being considered, resulting in a different dose than predicted.  Seasonal 

variations in body burden have been observed in woodland ecosystems (Toal et al., 2001).  This has been 

attributed to seasonal differences in the activity concentration of food that form part of the mammal's dietary 
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intake.  For example, the consumption of fungal fruiting bodies increases autumnal body burden (Toal et al., 

2001).   

 

The time-step used in the model is monthly.  This has the potential to capture seasonal variations in body 

burden and the underlying physical and biological processes provided data that captures these variations is 

used.  The data used in the model is annual data and so seasonal variations discussed above aren't capture.  

The annual data is divided evenly over the 12 monthly time-steps.  While using a monthly time-step allows 

seasonal variations in processes affecting the uptake of radionuclides to be modelled it does mean the 

model isn't appropriate for some radionuclides.  Using the monthly time-step isn't appropriate for 

radionuclides such as 
131

I that may be significant in the inventory of radionuclides released in an emergency 

scenario.  This radionuclides has such a short half-life that a sub-monthly time-step is required to accurately 

estimate the absorbed dose.  This also means that the significant short-term processes important soon after 

an emergency scenario for 
131

I such as the initial shine path and dose from the plume released can't be 

effectively modelled using the monthly time-step. 

 

The model is generally applicable to a wide range of biota as the biological processes can be adapted for a 

wide range of organism sizes and habitat ranges due to the use of allometry and occupancy factors.  For 

some biota, it may be important to consider different life stages of an organism.  The different dimensions 

and behaviours exhibited by some biota as they change life stages such as from caterpillar to butterfly or as 

amphibians develop will significantly affect the absorbed dose received and this must be considered if the 

model is applied to specific species or extended for other reference biota.     

 Dosimetry   

 

Various areas of improvement are required for assessing dose to biota.  Models for the tissues of vegetation 

are lacking such as for the xylem and meristem (Pentreath, 2009).  This study highlights the need to consider 

radionuclides deposited externally onto vegetation.  Dose assessment may also be improved by considering 

the non-uniform distribution of internally incorporated radionuclides such as the distribution of radionuclides 

specifically within internal organs, shielding layers such as skin or fur and using geometries more accurate in 

shape than simple ellipsoids. 

 

Also there is a requirement for further study into the Relative Biological Effectiveness (RBE) of radiation for 

non-human biota (Pentreath, 2009).  This is particularly true for alpha-emitting radionuclides as models tend 

to have high variation in their dose assessment from alpha-emitters (Vives i Batlle et al., 2007) and many 

animals and plants have high levels of naturally occurring alpha-emitters and the use of weighting factors are 

useful to normalise background dose (Pentreath, 2009).  However, dosimetric parameters contribute less to 

the overall uncertainty than the radioecological parameters (Avila et al., 2004). 

 

Salbu (2009) highlights a need to research the effects of low chronic doses on biota.  This study backs this 

up with the dose to biota in the warm-up scenario coming from low chronic doses.  The main concern for 

biota, unlike human radioprotection, is population level effects.  An effect at population level means there is 
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an adverse effect at the individual level, but an effect on individuals will not always result in population level 

effects.  The endpoints of most significance for environmental protection are those most likely to affect 

population size and structure: morbidity, mortality, reduced reproductive success, and chromosomal damage.   

 

The lethal dose for 50% of the population LD50 for the wild grass barley has been measured at 20 Gy (Holt 

and Bottino, 1972).  A dose rate of over 24 mGy day
-1

 has been observed to reduce the fertility of rye grass 

(Holt and Bottino, 1972).  The dose measured during the model run 1990-95 is well below this value.  The 

highest animal biota dose was measured for the reference detritivore worm which had a peak dose of 0.09 

μGy hr
-1

.  5-20 Gy dose has been observed to inhibit the growth of epidermal cells of earthworms (Suzuki 

and Egami, 1983) and 264 mGy day
-1
 to cause abnormalities in offspring earthworms (Hertel-Aas et al., 

2007).  Again the modelled dose to reference biota is well below this value.  For small mammals a dose of 

10mGy day
-1
 may have some fertility effects with previous studies finding reduced germ cells in male and 

female rats (Erickson, 1978).    Mortality effects are seen at 23 mGy day
-1

 with a reduced lifespan of 11-30% 

seen in mice.  Small insects are more resilient to radiation effects with a range of LD50 values for adults 

observed from 20-3000 Gy
 
(ICRP, 2009).  The results for the 1990-95 run would appear to show that the 

there is no significant risk to the environment in this time period.  Indeed at very low doses there is evidence 

that some single-celled organisms benefit from radiation exposure (Planel et al., 1987). 

 Regulatory modelling 

 

The need for dynamic modelling for non-human biota in a regulatory context is a topic of debate within 

industry (Brownless, 2007).  Many factors are under consideration and this includes the need to take action 

for species, even endangered species, during the acute phase of an accidental release, when non-

equilibrium conditions are most likely to happen, when there is likely a risk to humans (Copplestone et al., 

2004).  Here is presented a way to dynamically model 
137

Cs uptake using simple parameters.  Other dynamic 

models have been developed that are based on ingestion rates of food (Toal et al., 2001).  Such an 

approach requires research to find out the dietary contents of biota and  how this varies seasonally.  The 

approach by Toal et al. (2001) allows the calculation of seasonal variations in activity concentration required 

for a sub-annual dynamic approach.  Increased 
137

Cs concentrations in roe deer have been observed in 

summer and autumn, attributable to increased ingestion of fungi during these months (IAEA, 2009).    

 

The dynamic model produced by this study may be able to run on a sub-annual basis but this would require 

the researching of seasonal Concentration Ratio values for which no database currently exists.  This may 

allow the time lag in transfer of 
137

Cs between trophic levels observed in earlier studies (Reichle & Crossley, 

1969) to be incorporated into the dynamic model.  A seasonal fluctuation in vegetation from Drigg in 
137

Cs 

concentration was observed with a second peak of Chernobyl 
137

Cs in the late summer or autumn of 1987. 

Several processes may contribute to this phenomenon, including remobilisation of Cs prior to autumn die-

back, leaf ageing and seasonally reduced translocation (Rudge et al., 1993).  It is these sorts of sub-annual 

variations that aren't adequately modelled annually and that would need to be included in a sub-annual 

modelling approach. 
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Using the model in a regulatory context also requires considering the applicability and implications of  

incorporating additional radionuclides that have different properties to 
137

Cs.  As discussed above, pathways 

need to be added to for short lived radionuclides such as 
131

I to include processes such as the resuspension 

of radionuclides from the soil, deposition of radionuclides onto animal fur and skin, and the inhalation of 

radionuclides.  These pathways will be more important in assessing the absorbed dose in the short-term 

after the release of radionuclides.  Also, the monthly time-step used in the model will not be appropriate for 

radionuclides with a half-life on a sub-monthly timescale as this will not adequately capture the absorbed 

dose received by biota.  The chemical nature of 
137

Cs means it is more available for biota uptake relative to 

many other radionuclides.  This means for radionuclides such as 
241

Am, the biological pathways are likely to 

be of less importance while the physical pathways such as sea-to-land transfer will be more important in 

determining dose to biota.  The interaction with the soil matrix will be particularly important for longer lived 

radionuclides that aren't as readily incorporated into the food-chain compared with 
137

Cs, such as 
238

Pu, in 

determining the dose to biota.   

 

A dynamic model in a regulatory context allows the potential impact of accidents on the environment to be 

more accurately quantified.  This would allow regulators to assess the suitability of future nuclear installations 

in a more comprehensive way as the impact on biota from accident scenarios can be explicitly considered.  

This allows regulators and other stakeholders such as conservation organisations to have more confidence 

that nuclear installations such as those being considered as part of the UK's nuclear new build programme 

over the next 10-15 years will be built on locations that ensure adverse environmental impacts are as low as 

reasonably practicable.  Dynamic modelling allows nuclear companies to demonstrate they have considered 

potential emergency situations and the possible impact on the environment.  This allows nuclear companies 

to address issues and implement procedures that are optimal for minimising the absorbed dose to biota. 

 

Current regulatory guidelines for the protection of non-human biota are still not as formalised as for human 

protection.  The scientific framework for protecting the environment from ionising radiation should be based 

on the framework for protecting humans (Pentreath, 2009).  The protection of humans is relatively well 

defined with recognised standard dose limits and an established protection framework in comparison to 

environmental protection from ionising radiation. The concept and objective of environmental protection often 

differs widely between countries.  The ICRP is trying to establish the scientific basis for environmental 

protection.  The main focus of the ICRP is to prevent environmental effects at the population level.  The need 

to give advice on the level of protection required to protect the environment given the incomplete scientific 

knowledge of the effect radiation exposure has at the population level is being addressed through the use of 

Derived Consideration Reference Levels (DCRL) (Pentreath, 2009).  These are being derived through the 

application of current knowledge of radiation effects on biota to a limited number of representative 

organisms.  Together with the Reference Animal and Plants concept this is being used to help inform 

management decisions under the three ICRP exposure scenarios and provide a framework for 

environmental protection that can be updated as new data is collected. 
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The acute dose required for an effect on mammals is 1-10 Gy but a comparison with other biota is difficult 

because of differences in experiments and time scales.  According to Pentreath (2009) dose rates of 0.1 

mGy day
-1

 are required for a reasonable chance of some effects in higher vertebrates and pine trees, 1-10 

mGy day
-1

 for lower invertebrates, and 10-100 mGy day
-1 

for various invertebrates.  Some more detailed 

effects are given in the dosimetry section above.  Current IAEA recommendations give figures for 

environmental protection of an acute dose of 0.1 Gy for terrestrial biota and a chronic dose of 1 mGy
 
day

-1 
for 

animals and 10 mGy day
-1 

for plants (Delistraty, 2008).  A time period of <1 day is seen as the exposure 

period of an acute scenario while chronic exposure covers a significant portion of an organism's lifetime 

(IAEA, 1992). 

 

In practice many approaches use a tiered system to screen out sites and organisms of negligible concern 

(Beresford et al., 2010).  This is an iterative process with the initial screening levels designed to be simple 

with minimal input requirements that applies a conservative assessment level of risk to biota or environments 

to allow them to be removed from the assessment process with a high degree of confidence.  The added 

level of data requirements for a dynamic model and the added uncertainty from requiring more parameters 

means dynamic modelling is most suited to the later tiers in assessment models that require a more in-depth 

risk assessment.  The regulatory use of models requires a high degree of confidence.  Empirical data for 

model validation is required to gain confidence in the dynamic modelling approach developed here for it to 

be considered for use in a regulatory context. 
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 Conclusions 

 

  A new generic dynamic model for the assessment of risk to terrestrial biota from ionising radiation 

has been developed for 
137

Cs 

 

 The model has the potential to be extended for other radionuclides provided other pathways 

highlighted in this study are included such as sea-to-land transfer for the actinides 

 

 A novel approach for calculating the absorbed dose to vegetation from externally deposited 

radionuclides is presented in this study 

 

 Two proof-of-concept scenarios have been presented to show the assessment capabilities of the 

dynamic model 

 

 The model has been calibrated to the conditions of a coastal heath dune ecosystem but can be 

updated and adapted as new data becomes available and for different radionuclides and ecosystem 

scenarios 

 

 Sensitivity analysis shows model output for activity concentration is most sensitive to the 

Concentration Ratio parameter 

 

 The 
137

Cs deposited onto vegetation accounts for a large amount of the activity concentration when 

the exposure scenario includes a large atmospheric deposition rate 

 

 An external vegetation compartment doesn't have a large effect on vegetation activity concentration 

for scenarios with a low atmospheric deposition rate 

 

 To have confidence in the model, an independent data set from a heath dune ecosystem is required 

for model validation 
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Appendix 1: Atmospheric 137Cs concentrations from British 
Nuclear Fuels Limited and Sellafield Limited environmental 
monitoring reports 

 

The data presented here is the atmospheric concentration of 
137

Cs published in the yearly environmental 

monitoring reports of British Nuclear Fuels Limited and Sellafield Limited.  This data is from a location that is 

south of the Sellafield nuclear facility just outside the perimeter fence.    

 

Table A1-1: Atmospheric concentration of 
137

Cs for each year from 1986-2006 as recorded in Sellafield and 
British Nuclear Fuels environmental monitoring reports measured from a location close to Sellafield nuclear 
facility just outside the south site perimeter. 

Year Atmospheric concentration of 
137

Cs from 
Sellafield south site perimeter (mBq m

-3
) 

  

1986 5.00E+00 

1987 7.09E-02 

1988 4.35E-02 

1989 3.55E-02 

1990 8.50E-02 

1991 7.62E-02 

1992 2.70E-02 

1993 1.05E-02 

1994 9.00E-03 

1995 1.00E-03 

1996 1.00E-02 

1997 1.00E-02 

1998 8.75E-03 

1999 3.00E-02 

2000 7.00E-03 

2001 9.00E-03 

2002 8.50E-03 

2003 9.00E-03 

2004 1.00E-02 

2005 1.10E-02 

2006 9.00E-03 
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