
Central Lancashire Online Knowledge (CLoK)

Title A Novel Approach for Solving N-Queen Problem Using Non-Sequential
Conflict Resolution Algorithm

Type Article
URL https://clok.uclan.ac.uk/53304/
DOI https://doi.org/10.3390/electronics13204065
Date 2024
Citation Moghimi, Omid and Amini, Amin (2024) A Novel Approach for Solving N-

Queen Problem Using Non-Sequential Conflict Resolution Algorithm.
Electronics, 13 (20).

Creators Moghimi, Omid and Amini, Amin

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.3390/electronics13204065

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

Citation: Moghimi, O.; Amini, A. A

Novel Approach for Solving the

N-Queen Problem Using a

Non-Sequential Conflict Resolution

Algorithm. Electronics 2024, 13, 4065.

https://doi.org/10.3390/

electronics13204065

Academic Editor: Flavio Canavero

Received: 5 September 2024

Revised: 29 September 2024

Accepted: 14 October 2024

Published: 16 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Approach for Solving the N-Queen Problem Using a
Non-Sequential Conflict Resolution Algorithm
Omid Moghimi 1 and Amin Amini 2,*

1 REDARC Electronics Pty., Ltd., Lonsdale, SA 5160, Australia; omoghimi@redarc.com.au
2 School of Engineering and Computing, University of Central Lancashire, Preston PR1 2HE, UK
* Correspondence: aiamini@uclan.ac.uk

Abstract: The N-Queens problem is a fundamental challenge in combinatorial optimization, com-
monly used as a benchmark for assessing the efficiency of algorithms. Traditional algorithms, such
as Backtracking with Forward Checking (BFC), constraint satisfaction problem (CSP) techniques,
Lookahead algorithms, and heuristic-based methods, often face challenges with exponential time
complexity, making them less practical for large-scale instances. This paper introduces a novel
algorithm, non-sequential conflict resolution (NSCR), which improves performance over traditional
algorithms through dynamic conflict resolution. The NSCR algorithm iteratively resolves conflicts
among queens by adjusting their positions, aiming to optimize both time complexity and memory
usage. While NSCR also operates within exponential time bounds, it demonstrates improved scala-
bility and efficiency compared to traditional methods. A significant strength of the NSCR algorithm
lies in its space complexity, which is O(n), and a time complexity that, while typically lower than
traditional methods, can reach O(n3) in the worst-case scenario. This linear space complexity is
highly advantageous, particularly when dealing with large problem sizes, as it ensures efficient use
of memory resources. Comparative analysis with the aforementioned algorithms shows that NSCR
offers superior resource management, using up to 60% less memory and reducing runtime by approx-
imately 50%, making it an efficient option for large-scale instances of the N-Queens problem. The
algorithm’s performance, evaluated on problem sizes ranging from 8 to 1000 queens, highlights its
ability to manage computational resources effectively, despite the inherent challenges of exponential
time complexity.

Keywords: N-Queens problem; non-sequential conflict resolution; combinatorial optimization;
backtracking algorithms; space complexity optimization; conflict resolution algorithm

1. Introduction

The N-Queens problem is a fundamental challenge in combinatorial optimization, of-
ten serving as a benchmark for evaluating the efficiency of various algorithmic approaches.
Traditionally, this problem has been tackled using backtracking methods, which, while
straightforward in implementation, suffer from significant drawbacks as the problem size
increases. Specifically, backtracking algorithms experience exponential growth in both time
and memory complexities as the number of queens increases, rendering these methods
impractical for large-scale instances [1–4]. This exponential growth necessitates the explo-
ration of more efficient alternative approaches that are capable of handling larger instances
of the N-Queens problem effectively.

Over the years, extensive research has been conducted to develop more efficient meth-
ods that overcome the limitations of traditional backtracking. One notable advancement is
Rakhya’s method, which significantly reduces the computational steps required to solve
large instances, such as the 30-Queens problem, achieving a solution in just 32 steps [2].
Similarly, Sosič and Gu introduced a local search algorithm based on conflict minimization,
which is capable of solving extremely large instances, such as the 3,000,000-Queens problem,

Electronics 2024, 13, 4065. https://doi.org/10.3390/electronics13204065 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13204065
https://doi.org/10.3390/electronics13204065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7081-2440
https://doi.org/10.3390/electronics13204065
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13204065?type=check_update&version=1

Electronics 2024, 13, 4065 2 of 11

in linear time without the need for backtracking [3]. This approach represents a major
leap in scalability, offering solutions where traditional methods fail. Additionally, Kralev
et al. proposed an optimized backtracking algorithm that reduces the time complexity from
exponential to quadratic by focusing on a specific subset of configurations, further demon-
strating progress in addressing the N-Queens problem more efficiently [4]. The N-Queens
problem has also been extensively studied within the framework of constraint satisfaction
problems (CSPs), which provide a structured approach to comparing the performance of
different algorithms across various problem sizes [5]. However, traditional backtracking
algorithms, when applied to the N-Queens problem, continue to suffer from exponential
time complexity, making them unsuitable for large values of ‘n’ [4,6].

Beyond CSP techniques, backtracking algorithms have been widely applied to constraint-
based problems like the N-Queens problem. However, they often suffer from inefficiencies
due to redundant computations [7]. Traditional backtracking can lead to exponential
growth in computing time as the problem size increases, prompting the development of
various techniques to mitigate these inefficiencies [3]. For example, constraint propagation
and learning have been employed to reduce the search tree size and prevent the reoc-
currence of similar conflicts [7]. Gaschnig proposed an algorithm that eliminates most
redundant tests, achieving significant speedups for larger problems [8]. Stone and Stone
demonstrated that reordering the search to prioritize queens with fewer possible moves
can dramatically improve performance, solving problems up to n = 97 much faster than
traditional lexicographic backtracking [6]. Recent advancements in hybrid algorithms,
which combine elements from multiple approaches, have shown promise in further im-
proving the efficiency and scalability of solutions to the N-Queens problem. For example,
hybrid methods that integrate Genetic Algorithms (GAs) with local search techniques or
incorporate advanced mutation operators have been proposed to reduce the number of
queen clashes more effectively and accelerate convergence [9,10]. A recent study by El
Abidine [11] introduced an incremental approach to the N-Queens problem, demonstrat-
ing a polynomial time complexity of O(n2). This method constructs solutions for larger
n × n chessboards by incrementally building from solutions of smaller (n − 1 × n − 1)
boards, leveraging symbolic computation on the complement of the N-Queen graph and
complex graph theory concepts, such as maximum cliques and Kneser coding. While this
approach offers a theoretically efficient solution, its reliance on advanced graph-theoretic
constructs makes it more intricate and less adaptable for dynamic or real-time problem
instances. Despite these developments, the quest for algorithms that can efficiently handle
the N-Queens problem at larger scales without incurring prohibitive computational costs
remains ongoing.

The algorithm introduced in this paper seeks to overcome the limitations inherent in
traditional backtracking techniques, such as BFC, CSP, and Lookahead. These techniques
were chosen for comparison because they represent commonly used methods for solving
the N-Queens problem, providing a relevant benchmark for evaluating the performance
of the NSCR algorithm. While backtracking methods often suffer from exponential time
complexity and become impractical for larger problem sizes, they are effective for smaller
instances and offer a foundation for exploring more advanced optimization strategies.
By comparing against these traditional techniques, we demonstrate how NSCR offers
improved scalability and resource management, especially for larger instances of the N-
Queens problem, with lower time complexity and memory consumption compared to these
conventional methods in average cases.

The remainder of this paper is organized as follows: Section 2 describes the materi-
als and methods used, including a detailed explanation of the NSCR algorithm and the
experimental setup. Section 3 presents the results of the comparative analysis between
NSCR and other algorithms, highlighting key findings. In Section 4, we discuss the impli-
cations of these results, the algorithm’s performance, and its potential applications. Finally,
Section 5 concludes the paper by summarizing the main contributions and suggesting
future research directions.

Electronics 2024, 13, 4065 3 of 11

2. Materials and Methods

The N-Queens algorithms’ comparisons were written in the C# programming language
carried out on an 8-core AMD Ryzen 7 5700X CPU with 32 GB of main memory running
Windows 11. Three algorithms have been analyzed and compared against the developed
algorithm, including BFC, Lookahead, and CSP.

In contrast to traditional backtracking, which typically abandons a particular path
immediately upon detecting a conflict, the NSCR algorithm attempts to resolve conflicts
by moving the conflicting queen to a different position on the board before deciding to
backtrack. The NSCR algorithm employs a hybrid approach that combines iterative repair
with backtracking, a concept used in other heuristic solvers for combinatorial problems.
However, NSCR diverges significantly from traditional iterative repair methods by intro-
ducing a dynamic conflict resolution mechanism that adapts queen placements in real
time. Unlike conventional techniques, which often rely on fixed heuristics or predefined
adjustment rules, NSCR evaluates the conflict intensity and adjusts the queen’s position
based on the overall threat landscape at each iteration.

This dynamic adjustment enables NSCR to explore alternative paths before resort-
ing to backtracking, thereby reducing unnecessary iterations and improving efficiency.
For example, when a conflict is detected, the algorithm evaluates multiple potential posi-
tions for the conflicting queen and selects the one with the least threat level, rather than
blindly following a preset adjustment. This selective adjustment process significantly
enhances the algorithm’s adaptability and reduces the likelihood of revisiting previously
explored configurations.

Moreover, while iterative repair methods often struggle with becoming trapped in
local optima or reaching suboptimal solutions, NSCR mitigates this issue by integrating
strategic backtracking steps. These steps allow the algorithm to escape local minima and
continue the search process, leading to more optimal placements. Empirically, this approach
has demonstrated improved performance compared to existing iterative repair techniques,
as evidenced by NSCR’s ability to handle larger problem sizes (up to 1000 queens) with
lower memory usage and shorter runtime.

While NSCR is not immune to suboptimal solutions, especially in highly constrained
configurations, its dynamic conflict resolution and selective backtracking strategy substan-
tially reduce the likelihood of such occurrences, ensuring more consistent and efficient
performance across various problem sizes.

This makes it more of a hybrid between backtracking and a local search or an iterative
repair method. The algorithm has a more complex state management system, using lists
to track which queens have been placed and which queens are in conflict. This contrasts
with more traditional approaches that typically rely on simpler mechanisms like recursion
with fewer explicit state variables. Instead of immediately backtracking when a conflict is
found, the NSCR algorithm tries to resolve the conflict by iteratively moving the queen in
question. This is not typically carried out in standard backtracking algorithms where the
algorithm would instead backtrack and attempt the next possible configuration.

Figure 1 shows the algorithm procedure to solve the N-Queens problem. It begins
with the initialization phase, where it sets up the necessary structures to keep track of
the queens’ positions on the chessboard, any conflicts that arise between them, and the
status of each queen’s placement. The chessboard is conceptualized as a grid, where each
queen is initially assigned a starting position. The first queen is placed on the board at a
predetermined position, which is typically at the beginning of the first column.

Electronics 2024, 13, 4065 4 of 11Electronics 2024, 13, x FOR PEER REVIEW 4 of 11

Figure 1. Flowchart for the NSCR Algorithm.

The pseudocode for the NSCR algorithm is presented (Figure 2), illustrating its

hybrid approach that combines iterative repair with backtracking. This pseudocode

provides a clear and detailed representation of the algorithm’s main steps, including

conflict detection, queen placement, and iterative adjustments, offering insight into its

structured problem-solving process for the N-Queens problem.

Figure 2. Pseudocode for NSCR Algorithm.

Figure 1. Flowchart for the NSCR Algorithm.

The pseudocode for the NSCR algorithm is presented (Figure 2), illustrating its hybrid
approach that combines iterative repair with backtracking. This pseudocode provides a
clear and detailed representation of the algorithm’s main steps, including conflict detection,
queen placement, and iterative adjustments, offering insight into its structured problem-
solving process for the N-Queens problem.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 11

Figure 1. Flowchart for the NSCR Algorithm.

The pseudocode for the NSCR algorithm is presented (Figure 2), illustrating its

hybrid approach that combines iterative repair with backtracking. This pseudocode

provides a clear and detailed representation of the algorithm’s main steps, including

conflict detection, queen placement, and iterative adjustments, offering insight into its

structured problem-solving process for the N-Queens problem.

Figure 2. Pseudocode for NSCR Algorithm. Figure 2. Pseudocode for NSCR Algorithm.

Electronics 2024, 13, 4065 5 of 11

Following this initial placement, the algorithm proceeds to place the subsequent
queens one by one. For each queen, it starts by attempting to place it in the first row of
the next available column. Once a queen is placed, the algorithm immediately checks for
conflicts. A conflict is detected if the newly placed queen is in the same row, column, or
diagonal as any of the previously placed queens. If no conflict is found, the algorithm
moves on to the next queen. If a conflict is detected, the algorithm takes corrective action by
attempting to move the current queen to a different position within the same column. The
movement is generally downward to the next row in the same column. This adjustment
aims to find a position where the queen is not under threat from any other queens. If
the queen reaches the bottom of the column without finding a conflict-free position, the
algorithm resets the queen to the top of the column and flags this column for re-evaluation,
marking the need for further adjustments. The algorithm also handles situations where
multiple conflicts are detected for a queen. In such cases, it prioritizes resolving these
conflicts by adjusting the positions of the queens involved. The current queen may be
moved further down the column or repositioned entirely, depending on the situation. This
process of conflict detection and resolution is iterative and continues until all queens are
placed on the board in positions where they do not threaten each other. Throughout the
process, the algorithm maintains a loop that repeatedly checks the board’s state after each
queen is placed. If a queen’s position causes conflicts, it will attempt to resolve these by
moving the queen or by backtracking and adjusting the positions of the previously placed
queens. This loop continues until all queens have been placed on the board without any
conflicts. At this point, the algorithm concludes, having successfully found a solution
to the N-Queens problem, where no two queens are in a position to attack one another.
The step-by-step nature of this algorithm ensures that each queen’s placement is carefully
considered and adjusted as necessary, making it a methodical approach to solving the
N-Queens problem. The use of conflict detection, position adjustments, and possible resets
allows the algorithm to methodically navigate through potential solutions, ultimately
arriving at a configuration where all queens coexist without threatening each other.

Figure 3 illustrates a step-by-step execution of the NSCR algorithm for solving the
4-Queens problem.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 11

Following this initial placement, the algorithm proceeds to place the subsequent

queens one by one. For each queen, it starts by attempting to place it in the first row of the

next available column. Once a queen is placed, the algorithm immediately checks for

conflicts. A conflict is detected if the newly placed queen is in the same row, column, or

diagonal as any of the previously placed queens. If no conflict is found, the algorithm

moves on to the next queen. If a conflict is detected, the algorithm takes corrective action

by attempting to move the current queen to a different position within the same column.

The movement is generally downward to the next row in the same column. This

adjustment aims to find a position where the queen is not under threat from any other

queens. If the queen reaches the bottom of the column without finding a conflict-free

position, the algorithm resets the queen to the top of the column and flags this column for

re-evaluation, marking the need for further adjustments. The algorithm also handles

situations where multiple conflicts are detected for a queen. In such cases, it prioritizes

resolving these conflicts by adjusting the positions of the queens involved. The current

queen may be moved further down the column or repositioned entirely, depending on

the situation. This process of conflict detection and resolution is iterative and continues

until all queens are placed on the board in positions where they do not threaten each other.

Throughout the process, the algorithm maintains a loop that repeatedly checks the board’s

state after each queen is placed. If a queen’s position causes conflicts, it will attempt to

resolve these by moving the queen or by backtracking and adjusting the positions of the

previously placed queens. This loop continues until all queens have been placed on the

board without any conflicts. At this point, the algorithm concludes, having successfully

found a solution to the N-Queens problem, where no two queens are in a position to attack

one another. The step-by-step nature of this algorithm ensures that each queen’s

placement is carefully considered and adjusted as necessary, making it a methodical

approach to solving the N-Queens problem. The use of conflict detection, position

adjustments, and possible resets allows the algorithm to methodically navigate through

potential solutions, ultimately arriving at a configuration where all queens coexist without

threatening each other.

Figure 3 illustrates a step-by-step execution of the NSCR algorithm for solving the 4-

Queens problem.

Figure 3. Step-by-step execution of the NSCR algorithm for the 4-Queens problem. Figure 3. Step-by-step execution of the NSCR algorithm for the 4-Queens problem.

Electronics 2024, 13, 4065 6 of 11

3. Results

Table 1 presents a comparative analysis of four algorithms, including NSCR, BFC,
Lookahead, and CSP. Each experimental test was conducted three times to ensure the
reliability and consistency of the results. The reported values represent the average of these
three runs. It was observed that the outcomes were consistent across all instances, with
negligible variation. This averaging process has been included to provide a more accurate
representation of the algorithm’s performance in terms of their runtime and memory usage
when applied to the N-Queens problem with varying numbers of queens (n = 8, n = 12,
n = 20, and n = 25). The newly developed NSCR algorithm demonstrates a consistent
and efficient performance, with its runtime gradually increasing from 1.22 ms for n = 8 to
2.38 ms for n = 25. This suggests that NSCR scales well as the problem size increases, likely
exhibiting a low polynomial time complexity for the given number of queens. In terms of
memory usage, NSCR also proves to be resource-efficient, with a modest increase from
0.312 KB to 0.457 KB across the same range of problem sizes.

Table 1. Comparative analysis of algorithm performance for the N-Queens problem.

Size
(n)

NSCR
Runtime

(ms)

BFC
Runtime

(ms)

Lookahead
Runtime

(ms)

CSP
Runtime

(ms)

NSCR
Memory

(KB)

BFC
Memory

(KB)

Lookahead
Memory

(KB)

CSP
Memory

(KB)

8 1.22 3.12 2.44 0.34 0.312 2.570 0.398 0.062
12 1.62 3.4 2.46 0.36 0.352 2.586 0.422 0.078
20 1.69 2.30 32.67 6.60 0.422 2.625 2.445 0.109
25 2.38 3.38 169.95 10.94 0.457 2.648 2.469 0.133

In comparison, the BFC algorithm exhibits a slightly higher runtime than NSCR,
starting at 3.12 ms for n = 8, and, while it briefly improves at n = 20, it increases again at
n = 25 to 3.38 ms. This fluctuation in performance suggests that while BFC is effective
for certain configurations, it may not consistently handle larger instances as efficiently as
NSCR. Its memory usage remains relatively stable but higher than NSCR, indicating that it
consumes more resources while performing comparably or less efficiently.

The Lookahead algorithm, while initially competitive with runtimes close to those
of NSCR at smaller problem sizes, shows a significant deterioration in performance as n
increases. The runtime jumps dramatically from 2.46 ms at n = 12 to 32.67 ms at n = 20
and further to 169.95 ms at n = 25, revealing a steep exponential growth in complexity that
makes it unsuitable for larger problem sizes. Its memory usage also increases notably as
the problem size grows, further highlighting its inefficiency for more complex instances of
the N-Queens problem.

On the other hand, the CSP algorithm starts with the lowest runtimes among all
algorithms, demonstrating excellent efficiency for smaller problems with only 0.34 ms for
n = 8. However, as n increases, its runtime grows more significantly, reaching 10.94 ms at
n = 25, suggesting that while CSP is very efficient for small-scale problems, its performance
diminishes as the complexity increases. Nevertheless, CSP consistently uses the least
amount of memory, maintaining a minimal footprint from 0.062 KB to 0.133 KB, which
makes it particularly resource efficient.

Figure 4 depicts the runtime of the Iterative Conflict Resolution (NSCR) algorithm
as a function of the number of queens ‘n’ ranging from 8 to 1000. The data reveal a non-
linear increase in computational time, with the curve exhibiting a gradual ascent that
becomes markedly steeper as ‘n’ approaches the upper end of the spectrum. This trend
suggests that the algorithm’s time complexity scales at a rate slightly faster than linear,
potentially indicating a polynomial relationship. The observed increase in runtime is
consistent with the expected growth in computational overhead required to manage the
escalating complexity of resolving conflicts as the problem size expands.

Electronics 2024, 13, 4065 7 of 11Electronics 2024, 13, x FOR PEER REVIEW 7 of 11

Figure 4. Runtime of the NSCR algorithm as a function of the number of queens (n).

Figure 5 presents the memory utilization of the NSCR algorithm relative to the

number of queens. The linear trajectory of the graph indicates a direct proportionality

between the number of queens and the memory consumed by the algorithm. This linear

scaling suggests that the NSCR algorithm maintains a constant memory footprint per

additional queen, demonstrating its efficiency in terms of memory usage. Such linear

memory growth underscores the algorithm’s scalability, making it particularly

advantageous for handling large instances of the N-Queens problem where memory

constraints are a critical consideration.

Figure 5. Memory utilization of the NSCR algorithm across varying numbers of queens (n).

Figure 6 illustrates the number of iterations (or steps) executed by the NSCR

algorithm as the number of queens increases. The exponential curve depicted in the graph

indicates a rapid escalation in the number of iterations required as the problem size grows.

This exponential trend highlights the increasing computational complexity faced by the

Figure 4. Runtime of the NSCR algorithm as a function of the number of queens (n).

Figure 5 presents the memory utilization of the NSCR algorithm relative to the number
of queens. The linear trajectory of the graph indicates a direct proportionality between the
number of queens and the memory consumed by the algorithm. This linear scaling suggests
that the NSCR algorithm maintains a constant memory footprint per additional queen,
demonstrating its efficiency in terms of memory usage. Such linear memory growth under-
scores the algorithm’s scalability, making it particularly advantageous for handling large
instances of the N-Queens problem where memory constraints are a critical consideration.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 11

Figure 4. Runtime of the NSCR algorithm as a function of the number of queens (n).

Figure 5 presents the memory utilization of the NSCR algorithm relative to the

number of queens. The linear trajectory of the graph indicates a direct proportionality

between the number of queens and the memory consumed by the algorithm. This linear

scaling suggests that the NSCR algorithm maintains a constant memory footprint per

additional queen, demonstrating its efficiency in terms of memory usage. Such linear

memory growth underscores the algorithm’s scalability, making it particularly

advantageous for handling large instances of the N-Queens problem where memory

constraints are a critical consideration.

Figure 5. Memory utilization of the NSCR algorithm across varying numbers of queens (n).

Figure 6 illustrates the number of iterations (or steps) executed by the NSCR

algorithm as the number of queens increases. The exponential curve depicted in the graph

indicates a rapid escalation in the number of iterations required as the problem size grows.

This exponential trend highlights the increasing computational complexity faced by the

Figure 5. Memory utilization of the NSCR algorithm across varying numbers of queens (n).

Electronics 2024, 13, 4065 8 of 11

Figure 6 illustrates the number of iterations (or steps) executed by the NSCR algorithm
as the number of queens increases. The exponential curve depicted in the graph indicates
a rapid escalation in the number of iterations required as the problem size grows. This
exponential trend highlights the increasing computational complexity faced by the algo-
rithm when attempting to resolve conflicts in larger configurations. The significant rise in
iteration count for higher values of n underscores the intensive nature of the algorithm’s
conflict resolution process, reflecting the substantial increase in the number of potential
conflicts that must be managed as the board size expands.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 11

algorithm when attempting to resolve conflicts in larger configurations. The significant

rise in iteration count for higher values of 𝑛 underscores the intensive nature of the

algorithm’s conflict resolution process, reflecting the substantial increase in the number

of potential conflicts that must be managed as the board size expands.

Figure 6. Number of iterations of the NSCR algorithm across varying numbers of queens (n).

4. Discussion

The performance analysis of the NSCR algorithm, demonstrated through a series of

experiments, reveals its considerable advantages over traditional methods for solving the

N-Queens problem. Unlike conventional backtracking algorithms, which suffer from

exponential time complexity, the NSCR algorithm manages to achieve a more manageable

growth in runtime. This improvement is likely due to its hybrid approach, which

combines elements of iterative repair and conflict resolution within a backtracking

framework. The algorithm’s ability to dynamically adjust queen positions, rather than

immediately backtracking upon detecting a conflict, significantly enhances its efficiency,

particularly for larger problem sizes.

When compared to other algorithms, the NSCR algorithm showcases a balanced

performance. While the CSP algorithm performs strongly for smaller problem sizes, it

struggles to maintain its efficiency as the problem size increases. Conversely, the

Lookahead algorithm, despite its initial promise, fails to scale effectively, with its runtime

increasing exponentially as the number of queens grows. Although the BFC algorithm

offers more stability, it does not consistently outperform NSCR, especially in larger

instances. A significant advantage of NSCR is its linear memory usage, which ensures that

the algorithm remains practical even as the problem size scales up to 1000 queens. This

contrasts sharply with the Lookahead algorithm, which not only suffers from an

escalating runtime but also shows increased memory consumption, making it less viable

for large-scale problems. The findings suggest that the NSCR algorithm is not only a viable

alternative to traditional methods, but is also a superior choice for solving large-scale N-

Queens problems, offering a balanced trade-off between computational efficiency and

resource utilization.

The performance of the NSCR algorithm was evaluated across problem sizes ranging

from 8 to 25 queens. As ‘n’ increased beyond 25, the other algorithms, such as BFC,

Lookahead, and CSP, experienced significantly longer runtimes, causing the computer to

Figure 6. Number of iterations of the NSCR algorithm across varying numbers of queens (n).

4. Discussion

The performance analysis of the NSCR algorithm, demonstrated through a series
of experiments, reveals its considerable advantages over traditional methods for solving
the N-Queens problem. Unlike conventional backtracking algorithms, which suffer from
exponential time complexity, the NSCR algorithm manages to achieve a more manageable
growth in runtime. This improvement is likely due to its hybrid approach, which com-
bines elements of iterative repair and conflict resolution within a backtracking framework.
The algorithm’s ability to dynamically adjust queen positions, rather than immediately
backtracking upon detecting a conflict, significantly enhances its efficiency, particularly for
larger problem sizes.

When compared to other algorithms, the NSCR algorithm showcases a balanced
performance. While the CSP algorithm performs strongly for smaller problem sizes, it
struggles to maintain its efficiency as the problem size increases. Conversely, the Lookahead
algorithm, despite its initial promise, fails to scale effectively, with its runtime increasing
exponentially as the number of queens grows. Although the BFC algorithm offers more
stability, it does not consistently outperform NSCR, especially in larger instances. A
significant advantage of NSCR is its linear memory usage, which ensures that the algorithm
remains practical even as the problem size scales up to 1000 queens. This contrasts sharply
with the Lookahead algorithm, which not only suffers from an escalating runtime but also
shows increased memory consumption, making it less viable for large-scale problems. The
findings suggest that the NSCR algorithm is not only a viable alternative to traditional
methods, but is also a superior choice for solving large-scale N-Queens problems, offering
a balanced trade-off between computational efficiency and resource utilization.

Electronics 2024, 13, 4065 9 of 11

The performance of the NSCR algorithm was evaluated across problem sizes ranging
from 8 to 25 queens. As ‘n’ increased beyond 25, the other algorithms, such as BFC,
Lookahead, and CSP, experienced significantly longer runtimes, causing the computer to
halt. Therefore, the comparative analysis was conducted up to n = 25, where the NSCR
algorithm consistently demonstrated superior efficiency and scalability. For example, the
NSCR algorithm achieved an average runtime of 1.22 ms for n = 8, compared to 3.12 ms
for BFC and 2.44 ms for Lookahead, and maintained a manageable performance as the
problem size increased.

On the other hand, it was noticed that the NSCR algorithm encounters an issue when
the number of queens is six, leading to an infinite loop. This problem arises due to the
nature of the algorithm, where for n = 6, the first and last queens perpetually threaten
each other, preventing a solution. To address this, instead of placing the first queen in the
first row, first column, it is recommended to place it in the fourth row, first column. The
NSCR algorithm can be viewed as a specialized variant of backtracking that integrates
iterative repair and conflict resolution within the backtracking framework. Unlike the
traditional “abandon and retry” approach, it dynamically attempts to resolve conflicts
before deciding to backtrack. While it shares the high-level objective of incrementally
constructing a solution and backtracking when needed, its implementation is more complex,
incorporating additional steps to optimize the search process, making it distinct from
standard backtracking methods.

The NSCR algorithm operates deterministically by always placing the first queen in
the first row and first column, leading to consistent behavior across different runs for the
same value of ‘n’. The time complexity of the algorithm is determined by its key operations:
initializing lists with O(n) complexity, checking for threats with O(n) complexity, and
resolving conflicts through the queen placement function, which operates in O(n2) time. As
these steps are consistently executed in the same sequence for a given n, the overall time
complexity can reach O(n3) in the worst case, particularly when extensive conflict resolution
is necessary. This worst-case scenario typically occurs in configurations with dense conflicts,
where multiple queens require iterative adjustments across multiple columns. In such
cases, the algorithm must perform repeated conflict resolution steps, resulting in increased
computational effort. However, the NSCR algorithm employs a hybrid approach that
combines iterative repair and conflict resolution strategies, which helps to mitigate the
impact of worst-case complexity. By dynamically adjusting queen positions rather than
immediately resorting to backtracking, the algorithm effectively reduces the number of
iterations needed to resolve conflicts. Consequently, while O(n3) complexity represents the
theoretical worst case, the practical performance of NSCR often exhibits significantly lower
time complexity, with the runtime only increasing from 1.22 ms to 2.38 ms between n = 8
and n = 25, demonstrating a more manageable growth. The space complexity remains O(n)
due to the storage requirements for the lists used in the algorithm. This analysis highlights
that while the algorithm’s behavior is consistent, it can still exhibit high computational
costs in complex scenarios, such as when n = 6, where specific difficulties arise.

5. Conclusions

The NSCR algorithm introduced in this study represents a significant advancement
in solving the N-Queens problem, particularly when dealing with large-scale instances.
Through extensive comparative analysis, the NSCR algorithm has consistently demon-
strated its superiority over traditional methods, including BFC, Lookahead, and CSP
algorithms. This performance is particularly notable in terms of both runtime and mem-
ory efficiency, where the NSCR algorithm excels by maintaining low polynomial time
complexity and linear memory growth, even as the problem size increases.

The hybrid nature of NSCR, which effectively integrates dynamic conflict resolution
within a backtracking framework, is central to its success. This approach allows the algo-
rithm to adaptively manage conflicts among queens, avoiding the pitfalls of conventional
methods that often suffer from exponential growth in complexity. By dynamically adjust-

Electronics 2024, 13, 4065 10 of 11

ing queen positions rather than resorting to immediate backtracking, NSCR optimizes
the search process, making it both more efficient and more scalable. This capability is
especially critical in large-scale scenarios where traditional algorithms may falter or become
impractical due to resource constraints.

Moreover, the consistent performance of NSCR across various problem sizes highlights
its reliability and versatility. Unlike some traditional approaches that may perform well only
under specific conditions or for smaller problem sizes, NSCR offers a balanced solution
that can handle a wide range of instances effectively. Its linear memory usage further
underscores its practicality, ensuring that the algorithm remains feasible even for extremely
large configurations.

In summary, the NSCR algorithm not only addresses the limitations of existing meth-
ods but also sets a new standard for solving the N-Queens problem. Its ability to scale
efficiently and maintain performance across different scenarios makes it a valuable tool for
researchers and practitioners in combinatorial optimization. The innovative strategies em-
bedded within NSCR provide a strong foundation for future research, potentially inspiring
the development of even more advanced algorithms that can tackle complex combinatorial
challenges with greater efficiency and effectiveness.

Author Contributions: Conceptualization, O.M.; Algorithm Development, O.M.; Validation, O.M.
and A.A.; Formal Analysis, A.A.; Methodology, A.A.; Investigation, A.A.; Resources, A.A.; Data
Curation, A.A.; Writing—Original Draft Preparation, O.M.; Writing—Review and Editing, A.A.;
Visualization, A.A.; Supervision, O.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data supporting the findings of this study are available upon reasonable
request from the corresponding author.

Acknowledgments: The authors acknowledge the use of ChatGPT by OpenAI solely for the purpose
of paraphrasing certain sections of this manuscript. The authors conducted all other aspects of the
research, analysis, and writing independently.

Conflicts of Interest: Author Omid Moghimi was employed by the company REDARC Electronics
Pty., Ltd., The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Izadkhah, H. Backtracking Algorithms. In Problems on Algorithms; Springer: Cham, Switzerland, 2022. [CrossRef]
2. Rakhya, S.; Singh, S. Rakhya’s method: A case-based approach to solve n-queens problem. In Proceedings of the 2014 11th

International Conference on Electronics, Computer and Computation (ICECCO), Abuja, Nigeria, 29 September–1 October 2014;
IEEE: Piscataway, NJ, USA, 2014; pp. 1–8. [CrossRef]

3. Sosic, R.; Gu, J. Efficient local search with conflict minimization: A case study of the n-queens problem. IEEE Trans. Knowl. Data
Eng. 1994, 6, 661–668. [CrossRef]

4. Kralev, V.; Kraleva, R.; Chakalov, D. Development of an Application for Interactive Research and Analysis of the N-Queens
Problem. Int. J. Adv. Sci. Eng. Inf. Technol. 2021, 11, 1811–1818. [CrossRef]

5. Ayub, M.A.; Kalpoma, K.A.; Proma, H.T.; Kabir, S.M.; Chowdhury, R.I.H. Exhaustive study of essential constraint satisfaction
problem techniques based on N-Queens problem. In Proceedings of the 2017 20th International Conference of Computer
and Information Technology (ICCIT), Dhaka, Bangladesh, 22–24 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.
[CrossRef]

6. Stone, H.S.; Stone, J.M. Efficient search techniques—An empirical study of the N-Queens Problem. IBM J. Res. Dev. 1987, 31,
464–474. [CrossRef]

7. Lynce, I.; Manquinho, V.; Marques-Silva, J. Backtracking. In Wiley Encyclopedia of Computer Science and Engineering; Wiley:
Hoboken, NJ, USA, 2009; pp. 283–289. [CrossRef]

8. Gaschnig, J. A general backtrack algorithm that eliminates most redundant tests. In Proceedings of the 5th International Joint
Conference on Artificial Intelligence (IJCAI), Cambridge, MA, USA, 22–25 August 1977; p. 457.

9. Agarwal, K.; Sinha, A.; Hima Bindu, M. A Novel Hybrid Approach to N-Queen Problem. In Computational Science and Its
Applications—ICCSA 2012; Springer: Berlin, Germany, 2012; pp. 519–527. [CrossRef]

https://doi.org/10.1007/978-3-031-17043-0_14
https://doi.org/10.1109/ICECCO.2014.6997584
https://doi.org/10.1109/69.317698
https://doi.org/10.18517/ijaseit.11.5.14523
https://doi.org/10.1109/ICCITECHN.2017.8281850
https://doi.org/10.1147/rd.314.0464
https://doi.org/10.1002/9780470050118.ecse033
https://doi.org/10.1007/978-3-642-30157-5_52

Electronics 2024, 13, 4065 11 of 11

10. Jain, V.; Prasad, J.S. Solving N-queen Problem Using Genetic Algorithm by Advance Mutation Operator. Int. J. Electr. Comput.
Eng. (IJECE) 2018, 8, 4519–4523. [CrossRef]

11. El Abidine, A.Z. An Incremental Algorithm to Solve the N-Queens Problem in Polynomial Time. Alex. Eng. J. 2023, 67, 157–167.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.11591/ijece.v8i6.pp4519-4523
https://doi.org/10.1016/j.aej.2023.01.031

	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References

