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Abstract
Building on recent developments in models focused on the shape properties of odds 
ratios, this paper introduces two new models that expand the class of available 
distributions while preserving specific shape characteristics of an underlying base-
line distribution. The first model offers enhanced control over odds and log-odds 
functions, facilitating adjustments to skewness, tail behaviour, and hazard rates. 
The second model, broadening flexibility on the shape of odds functions, describes 
these as quantile distortions. This approach leads to an enlarged log-logistic family 
capable of capturing these quantile transformations and diverse hazard behaviours, 
including non-monotonic and bathtub-shaped rates. Central to our study are the 
shape relations described through stochastic orders; we establish conditions that 
ensure stochastic ordering both within each family and across models under vari-
ous ordering concepts, such as hazard rate, likelihood ratio, and convex transform 
orders.
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I. Arab et al.

1  Introduction

The development of flexible distribution models is a key pursuit in statistical 
research, particularly in applications that require detailed control over distributional 
shape properties, such as survival analysis, reliability engineering, and actuarial sci-
ence. Naturally, the main goal is to introduce families of distributions allowing for 
fine tuning of some specific characteristic of interest. This is traditionally achieved 
by adding parameters to established families of distributions or by transforming char-
acterising functionals, such as survival or hazard functions. Some recent examples 
of this approach are Alzaatreh et  al. (2013), Kharazmi et  al. (2021) or Vasconce-
los et  al. (2024), focusing in practical statistical properties. Recent advancements 
have emphasized extending these frameworks to odds functions, providing a broader 
and potentially more versatile approach for representing complex real-world data. A 
simple and flexible model preserving monotonicity and shape properties of the haz-
ard rate is the Marshall-Olkin (MO) family of distributions, introduced in Marshall 
and Olkin (1997), and their extensions, whose usefulness continues to produce new 
applications (see Ameeq et al. 2024; Gómez-Déniz et al. 2024 or Lima et al. 2024 for 
some recent contributions). However, the popular proportional hazards rate (PHR) 
model, where the survival function is redefined by raising a baseline survival func-
tion to some power, falls beyond the MO family. On the other hand, it is well-known 
that increasing hazard rates lead to distributions with finite moments of every order, 
thus excluding the possibility of models with heavy-tails, while decreasing hazard 
rates seem less natural in applications. Therefore, there is convenience on broadening 
the approach to wider families of distributions. An alternative class of distributions, 
assuming increasingness of the odds function, has been recently studied by Lando 
et al. (2022) and Zardasht (2024). This class includes every distribution with increas-
ing hazard rate, and allows for heavy-tailed distributions and some bathtub-shaped 
hazard rates. Therefore, it is quite natural to explore models where we are interested 
in the proportionality of the odds function. Examples of model construction based on 
this idea have been followed by Bennett (1983); Collett (2023); Dinse and Lagakos 
(1983, 1984); Rossini and Tsiatis (1996) or Panja et al. (2024), while structural prop-
erties of such models have been studied in Kirmani and Gupta (2001) or Sankaran 
and Jayakumar (2008)

Bearing in mind the need to add flexibility to shape properties of the odds function, 
namely, monotonicity, increasing rate or degree of convexity, we propose two differ-
ent models that address the preservation of these characteristics. Being interested in 
shape properties expressed through the odds, we are naturally driven into studying 
structural relations expressed by stochastic ordering properties, instead of a more sta-
tistical and computational approach. We note that a similar approach has been studied 
in Cordeiro et al. (2014), concentrated on the control of the tail behaviour of the dis-
tributions, and in the statistical properties and estimation aspects, instead of the order-
ing relationships. The first model we propose, that we name the odds-Marshal-Olkin 
(oMO), adapts the proportionality idea to the odds function. In fact, the oMO model 
encompasses the proportionality of the odds and also of the log-odds, providing more 
flexibility, as applying a logarithmic transformation often leads to an affine relation. 
The usefulness of this adaptability is illustrated in Example 1 below. However, the 
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oMO model excludes the already mentioned PHR model, that, in general, produces a 
more complex odds function. Moreover, the oMO model, although attractive due to 
its simplicity, allows for limited preservation of interesting stochastic ordering rela-
tions or of shape properties. A second and more general construction, that we name 
distorted odds-Marshal-Olkin model (d-oMO), addresses these difficulties and shows 
a richer stochastic ordering structure. This broader model defines the odds function 
by transforming a baseline odds function through the quantile function of an enlarged 
log-logistic family of distributions (see Definition 5.1 below for details). This rela-
tion means that ordering relations within this new family of distributions translate 
into the d-oMO distributions, raising the interest in exploring also the properties of 
this enlarged log-logistic family.

The paper is structured as follows. Section 2 provides preliminary definitions and 
background essential for understanding the proposed models, including a review of 
stochastic orders and shape properties in distribution families. In Sect. 3, we intro-
duce the oMO model, with a focus on its properties and stochastic comparisons with 
the baseline distribution. Section 4 extends the model by defining a distorted odds 
ratio model, the d-oMO model, leveraging additional parameters to further control 
distributional shape. Finally, in Sect. 5, we explore the enlarged log-logistic distribu-
tion, detailing its implications for odds and hazard rate behaviours.

2  Preliminaries and basic definitions

We shall represent by X, F and f the baseline random variable, its cumulative and den-
sity functions (that we will be assuming to exist), respectively. Analogously, Y, G and 
g, possibly with some subscripts to denote parameters, will represent the new mod-
els to be studied. Moreover, survival functions are represented as F (x) = 1 − F (x) 
or G(x) = 1 − G(x). We shall refer to the random variables or to their distribution 
functions as is more convenient. In fact, the characterisations we will be discuss-
ing depend only on the distribution, so the random variables will appear only as a 
convenience. We recall the usual notions which were briefly mentioned in the Intro-
duction. Given a distribution function F, its hazard rate and reversed hazard rate are 
denoted with hF (x) = f(x)

F (x)
 and h̃F (x) = f(x)

F (x)  respectively, its odds function with 

ΛF (x) = F (x)
F (x)

= 1
F (x)

− 1, and its odds rate with λF (x) = Λ′
F (x) = f(x)

F
2(x)

. While 

the monotonicity of the hazard rate function has been extensively studied in the lit-
erature, for the odds function, which is always increasing, the interest relies on its 
growth rate, characterised by monotonicity of λF . These functions may be used to 
define some classes of distributions.

Definition 2.1  We say that X or F have 

1.	 Increasing (decreasing) hazard rate, represented by F ∈ IHR( F ∈ DHR), if hF  
is increasing (decreasing);
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2.	 Increasing (decreasing) odds rate, represented by F ∈ IOR (F ∈ DOR), if λF  is 
increasing (decreasing);

3.	 Convex (concave) log-odds if log ΛF (x) is convex (concave).

The IHR and DHR families are well-known in the literature, while the IOR family 
has been receiving less attention. Some properties of the IOR class are studied in a 
systematic way in Lando et al. (2022). The DOR family is only briefly mentioned in 
Arab et al. (2024), and, also recently discussed in Chen et al. (2024), although with 
a different terminology. Note that F ∈ IOR (F ∈ DOR) is equivalent to the odds 
function ΛF  being convex (concave), so these odds rate classes describe a shape 
property of the corresponding distributions.

We now recall some common stochastic order notions that will be considered later.

Definition 2.2  Consider two distribution functions F1 and F2, with densities f1 and 
f2, respectively. We say that F1 is smaller than F21.	 In the usual stochas-
tic order, denoted as F1 ≤st F2, if F 1(x) ≤ F 2(x), for every x ∈ R;

2.	 In the hazard rate order, denoted as F1 ≤hr F2, if hF1(x) ≥ hF2(x), for every 
x ∈ R;

3.	 In the reversed hazard rate order, denoted as F1 ≤rh F2, if ̃hF1(x) ≥ h̃F2(x), for 
every x ∈ R;

4.	 In the likelihood rate order, denoted as F1 ≤lr F2, if f2(x)
f1(x) , is increasing.

5.	 In the dispersive order, denoted as F1 ≤disp F2, if F −1
2 ◦ F1(x) − x increases in 

x.

Given the alternative expression for the odds function, the following statement is 
straightforward.

Proposition 2.3  Given two distribution functions F1  and F2 , F1 ≤st F2  if and only 
if ΛF1 (x) ≥ ΛF2 (x).

The classes mentioned in Definition 2.1 defined by the monotonicity of the hazard 
or the odds rate may be characterised via a different type of stochastic order, namely 
the convex transform order which involves a shape restriction on the transformation 
that maps one distribution to the one being compared.

Definition 2.4  [van Zwet (1964)] Given two distribution functions F1 and F2, we say 
that F1 is smaller than F2 in the convex transform order, represented by F1 ≤c F2, 
if F −1

2 ◦ F1 is convex.

Let us now fix, for the sequel, two reference distributions: the standard exponential, 
with distribution function E(x) = 1 − e−x, and the standard log-logistic, with distri-
bution function L(x) = 1 − 1

x+1 = x
x+1 . It is well-known that F ∈ IHR (F ∈ DHR) 

if and only if F ≤c E  (F ≥c E). Analogously, as referred in Lando et al. (2022), it is 
easily seen that F ∈ IOR (F ∈ DOR) if and only if F ≤c L (F ≥c L).
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For a systematic study of properties of the stochastic orders defined above, and a 
number of other interesting stochastic order relations, and relations among them, we 
refer the interested reader to the monographs (Shaked and Shanthikumar 2007) or 
(Marshall and Olkin 2007).

3  The odds-Marshall-Olkin model

The study of the growth rate of the odds function is fundamental in the characterisa-
tion of distribution families that maintain specific shape properties such as the IOR, 
particularly in reliability and survival analysis. In this context, we introduce a modi-
fied proportional odds model that leverages the properties of the IOR and log-odds 
convexity to create new distribution families. This approach extends the Marshall-
Olkin method to the construction of families of distributions to the broader propor-
tional odds framework.

Definition 3.1  Let β, θ > 0. Given a baseline distribution function F, we define the 
odds-Marshall-Olkin (oMO) distribution function Gβ,θ by

	
ΛGβ,θ

(x) = βΛθ
F (x) = β

(
F (x)
F (x)

)θ

.� (1)

It is obvious that Gβ,1 has odds function ΛGβ,1  proportional to ΛF , while for G1,θ 
we have that log ΛG1,θ

(x) = θ log ΛF (x), that is, (1) covers the case of a model with 
proportional log-odds. The classical Marshal-Olkin model, for which there exists a 
huge literature, is obtained by taking θ = 1. It is also clear from (1) that the oMO 
model encompasses affine relations of the odds function with respect to the baseline 
distribution, thus going beyond the strict proportionality.

Taking into account that ΛGβ,θ
(x) = Gβ,θ(x)

Gβ,θ(x)
= 1

Gβ,θ(x)
− 1, it follows easily that, 

for each x ∈ R,

	
Gβ,θ(x) = βF θ(x)

βF θ(x) + F
θ(x)

, and Gβ,θ(x) = F
θ(x)

βF θ(x) + F
θ(x)

.� (2)

The following shape characterisation, for θ = 1, is a straightforward consequence of 
the convexity properties of the function βx

1−(1−β)x  when x ∈ [0, 1].

Proposition 3.2  If F is concave, then Gβ,1  for β ≥ 1  is also concave. If F is convex, 
then Gβ,1  for β ≤ 1  is also convex.

It is easily seen that the corresponding transformation for θ ̸= 1 and general β > 0 
is neither convex nor concave, so no conclusion about the convexity of Gβ,θ can be 
drawn.

From (2), the density and hazard rate functions for Gβ,θ are easily obtained:

1 3
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gβ,θ(x) = βθf(x) F θ−1(x)F θ−1(x)

(βF θ(x) + F
θ(x))2

,� (3)

and

	
hGβ,θ

(x) = βθhF (x) F θ−1(x)
βF θ(x) + F

θ(x)
= βθhF (x)

(
F (x)
F (x)

)θ−1
Gβ,θ(x)

F (x)
.� (4)

The effect of the parameters on the density of Gβ,θ is illustrated in Fig. 1. The param-
eter θ concentrates the distribution while creating lighter tails, whereas β shifts the 
concentration region to the left, skewing the distribution to the right and making the 
tail slightly lighter. Obviously, the interplay between the parameters provides control 
over spread and tail behaviour, offering an increased adaptability in applications.

Defining Tβ,θ(x) = βθ xθ−1

βxθ+(1−x)θ , the first equality in (4) may be rewritten as 

hGβ,θ
(x) = hF (x)Tβ,θ(F (x)), implying immediate shape characterisations for 

some distributions included in the oMO model.

Theorem 3.3  1.	 If F ∈ IHR and β ≤ 1, then Gβ,1 ∈ IHR.
2.	 If F ∈ DHR and β ≥ 1, then Gβ,1 ∈ DHR.
3.	 If F ∈ IOR, then, for θ ≥ 1, Gβ,θ ∈ IOR.

Proof  The result is immediate once we verify the monotonicity properties of Tβ,θ. 
It is easily verified that Tβ,θ is monotone only for θ = 1, that Tβ,1 is increasing for 
β ≤ 1, and that Tβ,1 is decreasing for β ≥ 1. With regard to the preservation of the 
IOR property, it follows directly from (1) taking into account that θ ≥ 1. � □

Note that, as for Proposition 3.2, when θ ̸= 1, no conclusion can be drawn about 
the monotonicity of the hazard of Gβ,θ, as the corresponding Tβ,θ is not monotonous. 

Fig. 1  Densities of the baseline distribution Γ(4, 1) and Gβ,θ
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However, shifting our interest for the odds rate, part 3. in Theorem  3.3 provides 
results for θ ≥ 1. Therefore, the odds rate shows greater flexibility in capturing the 
varying behaviours of model (1).

Given that Gβ,θ is a transformation of F, it is natural to compare the baseline with 
the transformed distribution. Specifically, we are interested in understanding how the 
transformation applied to F affects key reliability properties and relationships.

Theorem 3.4  1.	 If β ≤ 1, then F ≤lr Gβ,1.
2.	 If β ≥ 1, then F ≥lr Gβ,1.

Proof  It is easily verified that gβ,1(x)
f(x) = β

(1+(β−1)F (x))2 , so the result follows imme-
diately. � □
Corollary 3.5  1.	 If β ≤ 1, then F ≤rh Gβ,1, F ≤hr Gβ,1 and F ≤st Gβ,1.
2.	 If β ≥ 1, then F ≥rh Gβ,1, F ≥hr Gβ,1 and F ≥st Gβ,1.

Proof  This is an immediate consequence of Theorem  3.4 and Theorem  1.C.1 in 
Shaked and Shanthikumar (2007). � □

Note that when θ = 1, the following explicit bounds for hGβ,1  are immediate: 

1.	 For β ≤ 1, βhF (x) ≤ hGβ,1(x) ≤ hF (x),
2.	 For β ≥ 1, hF (x) ≤ hGβ,1(x) ≤ βhF (x).

The previous results mention comparability for Gβ,1. This choice for θ is the only 
one allowing for comparability results, as stated next.

Corollary 3.6  For θ ̸= 1 , F and Gβ,θ are not comparable with respect to the usual 
stochastic order. Therefore, they are also not comparable with respect to ≤hr , ≤rh  
or ≤lr  stochastic orders.

Proof  We need to look at

	
Gβ,θ(x) − F (x)sgn= F (x)θ−1

βF (x)θ + F (x)θ
− 1,

so, the conclusion follows by analysing the sign of Sβ,θ(x) = (1−x)θ−1

βxθ+(1−x)θ − 1, for 

x ∈ [0, 1]. Differentiating, one finds S′
β,θ(x)sgn= (1 − x)θ − βxθ−1(θ − x). For θ ̸= 1, 

one has Sβ,θ(0) = 0, S′
β,θ is positive for x near 0 if θ > 1, and is negative if θ < 1. 

Finally, noting that Sβ,θ(1) = −1 if θ > 1, and Sβ,θ(1) = +∞ if θ < 1, the first part 
of the result is proved. The second part is a consequence of Theorem 1.C.1 in Shaked 
and Shanthikumar (2007) � □

1 3
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Example 1  As an example of the usefulness of model (1), we consider the data of Vet-
eran’s Administration lung cancer trial reported by Prentice (1973), that was analysed 
using a proportional odds model by Bennett (1983). The data describes the survival 
days of the 97 patients that had no prior treatment and two covariates, a performance 
status and tumor type. The analysis separated patients in two groups: low perfor-
mance status (less or equal to 50) and high performance status. As noted in Bennett 
(1983), the log-odds of the two groups have, approximately, a constant difference, 
suggesting an affine relation, which served as a justification to apply a methodology 
based on a proportional odds model. However, running a linearity approximation 
test between the two sets of odds or log-odds clearly indicates that a linear relation 
between the odds can only explain about 75% of the variability observed in the data, 
while assuming the linearity of the log-odds, one can explain about 90% of the vari-
ability. Moreover, the estimates of the linear coefficients clearly suggests using model 
(1) with β = 4.4324 and θ = 0.6822. Besides, the group with high performance sta-
tus has 72 observations, while the low performance status only contains 25 points. 
Therefore, to estimate the distribution, it is convenient to take as baseline distribution 
the one describing the high performance status group and then use the parameters 
mentioned above to get an estimate for the distribution of the survival days for the 
low performance status group. For the high performance status an estimate suggests 
a Γ(1.13, 116.6). Hence, the density function for the survival of the low performance 
status group is approximated by

	

g4.4324,0.6822(x) = 4.4324 × 0.6822 f(x)F −0.3178(x)F −0.3178(x)(
4.4324F 0.6822(x) + F

0.6822(x)
)2

where f(x) and F(x) are, respectively, the density and distribution functions of the 
Γ(1.13, 116.6) distribution. Taking into account Theorem 3.3, although the particular 
F is IOR, we cannot derive the same property about G4.4324,0.6822.

Note that, by construction, the oMO model leads to ordering or shape properties 
only for θ = 1. Although the underlying motivations were of a different nature, the 
model discussed in the next section allows for results with θ ̸= 1.

4  The distorted odds-Marshall-Olkin model

The previous section studied stochastic ordering relations between distributions 
defined by a specific transformation of the odds function, having in mind the pos-
sibility of mixing the proportionality of the odds ratio and of the log-odds ratio, each 
controlled by an appropriate parameter. Observe that the odds function of the Gβ,θ 
distribution appears as a distortion of the odds ratio ΛF  of the baseline distribution 
function F, adding a layer of flexibility in modelling the shape of the odds function. 
The model introduced in Definition 3.1 mimics the construction of the PHR model, 
where a survival function is transformed into F θ(x) for some θ > 0. However, the 
PHR model is not covered by the family of distributions introduced in Definition 3.1. 

1 3
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In fact, the odds function for the PHR model is of the form (1 + ΛF (x))θ − 1. It is 
worth noting that this latter form corresponds to transforming the underlying dis-
tribution F by the quantile function of a Pareto distribution with survival function 
(x + 1)− 1

θ . This observation will be explored later in Sect.  5 in more generality. 
Nevertheless, the general form of the odds function for the PHR model suggests an 
extension of the transformation used in Definition 3.1, targeted at fine tuning the tail 
behaviour of the odds rate.

Definition 4.1  Let α ≥ 0, β, θ > 0. Given a baseline distribution function F, we 
define the distorted odds-Marshall-Olkin (d-oMO) distribution functions Gα,β,θ by

	 ΛGα,β,θ
(x) = β

(
(α + ΛF (x))θ − αθ

)
.� (5)

It is obvious that the model introduced in Definition 3.1 is a particular case of (5), 
taking α = 0, while the PHR model is obtained by choosing (α, β, θ) = (1, 1, θ). 
Moreover, note that this extended model unifies the proportionality models we have 
discussed (odds, log-odds and hazard rate), offering seamless transition between 
them.

Taking into account that ΛGα,β,θ
(x) = 1

Gα,β,θ(x)
− 1, the following explicit rep-

resentation for the distributions Gα,β,θ introduced in Definition 4.1 is immediate:

	
Gα,β,θ(x) = 1

1 + β((α + ΛF (x))θ − αθ)
,� (6)

while the density function is represented as

	
gα,β,θ(x) = βθ(α + ΛF (x))θ

F (x)(αF (x) + F (x))
G

2
α,β,θ(x)f(x) = βθ(α + ΛF (x))θ−1 G

2
α,β,θ(x)
F (x)

hF (x).

Remark 4.2  The distribution function Gα,β,θ can be written as

	
Gα,β,θ(x) =

β
(
(α + (1 − α)F (x))θ − (αF (x))θ

)

F
θ(x) + β

(
(α + (1 − α)F (x))θ − (αF (x))θ

) .� (7)

In the special case where α = 1, G1,β,θ is the recently defined MPHR model intro-
duced in Balakrishnan et al. (2018). Das and Kayal (2021) later extended this model 
by incorporating a scale parameter, calling it MPHRS. Similarly, our models can be 
generalised by introducing a scale parameter in the same way.

Remark 4.3  The family of distributions Gα,β,θ depends on three parameters. Here 
is a brief description of the effect of each one of them. All the parameters, as they 
increase, shift the mass towards the origin, introducing skewness and lighter tails. 
The parameter β has a small effect on the mass shifting, affecting mainly mass con-

1 3
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centration. The parameter θ has a dramatic effect in both shifting the mass closer 
to the origin and the concentration (take into consideration the vertical scale of the 
plots), hence contributing very significantly to skewness and lighter tails. An illustra-
tion of these effects can be found in Fig. 2.

Although it seems that the Gα,β,θ family is not closed under formation of maximums, 
that is, in general the distribution of the form Gn

α,β,θ(x), n ≥ 2, is not included in 
the d-oMO model, we may still find an extreme geometrical stability property (see 
Marshall and Olkin 1997).

Theorem 4.4  Let X1 , X2 , . . . be independent and with distribution function Gα,β,θ, 
for some fixed values of α ≥ 0 , β, θ > 0 , and consider N, independent from the Xn , 
with geometric distribution, P(N = n) = p(1 − p)n−1 , n ≥ 1 , for some p ∈ [0 , 1 ]. 
Define U = min{X1 , . . . , XN } and V = max{X1 , . . . , XN }. Then, the distribution 
function of U and V are Gα, β

p ,θ and Gα,βp,θ, respectively. Or, equivalently, the family 

of distributions Gα,β,θ has geometric extreme stability.

Proof  Proceeding by conditioning, the distribution function of U is

	
F U (x) =

∞∑
n=1

G
n

α,β,θ(x)p(1 − p)n−1 = pGα,β,θ(x)
1 − (1 − p)Gα,β,θ(x)

.

Using now the representation for Gα,β,θ that follows from (7), the result is immedi-
ate. The case of V is treated analogously. � □

4.1  Preservation of monotonicity properties

Given the expressions above, we have the following representation for the hazard 
rate function for the distributions in the d-oMO model:

	
hGα,β,θ

(x) = gα,β,θ(x)
Gα,β,θ(x)

= βθ(α + ΛF (x))θ−1

1 + β
(

(α + ΛF (x))θ − αθ
) · hF (x)

F (x)
= βθhF (x)Tα,β,θ(ΛF (x)),

Fig. 2  Densities of the baseline distribution (Γ(4, 1)) and Gα,β,θ
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where

	

Tα,β,θ(x) = (α + x)θ−1 (x + 1)

1 + β
(

(α + x)θ − αθ
) , x ≥ 0.� (8)

Hence, we may prove monotonicity properties for hGα,β,θ  look-
ing at the monotonicity of Tα,β,θ, which will be addressed via 
Uα,β,θ(x) = 1

Tα,β,θ(x) , for simplicity. After differentiation and some sim-

ple algebraic manipulation, one gets U ′
α,β,θ(x) = Dα,β,θ(x)

(x+1)2(α+x)θ , where 
Dα,β,θ(x) = β(1 − α)(α + x)θ +(βαθ − 1)(θx + α + θ − 1), and the sign of U ′

α,β,θ 
coincides with the sign of Dα,β,θ. We have that D′

α,β,θ(x) = θβ(1 − α)(α + x)θ−1 
+θ(βαθ − 1) and D′′

α,β,θ(x) = (1 − α)βθ(θ − 1)(α + x)θ−2. Therefore, 
D′′

α,β,θ(x)sgn= sgn((1 − α)(θ − 1)), so D′
α,β,θ is either increasing or decreasing. Now, 

the sign of Dα,β,θ(0) = αθβθ − α − (θ − 1) will play a significant role.

Theorem 4.5  Let Gα,β,θ be given by (5) and Dα,β,θ be the polynomial defined above. 

1.	 If Dα,β,θ(0) < 0, (1 − α)(θ − 1) < 0, and F ∈ IHR, then Gα,β,θ ∈ IHR.
2.	 If Dα,β,θ(0) > 0, (1 − α)(θ − 1) > 0, and F ∈ DHR, then Gα,β,θ ∈ DHR.
3.	 If α = 1 or θ = 1, β ≤ 1 and F ∈ IHR, then Gα,β,θ ∈ IHR.
4.	 If α = 1 or θ = 1, β ≥ 1 and F ∈ DHR, then Gα,β,θ ∈ DHR.

Proof  In the first case, D(x) < 0 for every x > 0. Hence U ′
α,β,θ is always negative, 

so Uα,β,θ is decreasing and, therefore, Tα,β,θ(x) = 1
Uα,β,θ(x)  is increasing, so the 

conclusion is straightforward. The remaining cases are analogous, reversing signs 
and monotonicity directions for cases 2. and 4. � □

Note that this result extends Theorem 3.3, allowing now for an interplay of the 
different parameters. Moreover, it is the presence of the parameter α that allows con-
cluding about the monotonicity of the hazard rate for θ ̸= 1, which was out of reach 
in Theorem 3.3.

The preservation of the monotonicity of the odds ratio is easily described in analo-
gous terms, extending the final part of Theorem 3.3.

Theorem 4.6  1.	 If θ ≥ 1 and F ∈ IOR, then Gα,β,θ ∈ IOR.
2.	 If θ ≤ 1 and F ∈ DOR, then Gα,β,θ ∈ DOR.

Proof  Just note that λ′
Gα,β,θ

(x)sgn= λ′
F (x)(α + ΛF (x)) + (θ − 1)λ2

F (x), and the con-
clusion is immediate. � □
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4.2  Stochastic comparisons between Gα,β,θ  and F

We now address some stochastic ordering relations between the baseline distribution 
F and the family of transformed distributions Gα,β,θ in the d-oMO model.

Theorem 4.7  1.	 If θ > 1 and αθ−1βθ > 1, then Gα,β,θ ≤st F .
2.	 If θ < 1 and αθ−1βθ < 1, then Gα,β,θ ≥st F .

Proof  We need to characterise the sign of

	
Gα,β,θ(x) − F (x) = 1

1 + β((α + ΛF (x))θ − αθ)
− 1

ΛF (x) + 1
= H(ΛF (x)),

where H(x) = 1
1+β((α+x)θ−αθ) − 1

x+1 , which has the same sign varia-
tion as P (x) = x − β(α + x)θ + αθβ. After differentiation, we have 
P ′(x) = 1 − θβ(α + x)θ−1 and P ′′(x) = −βθ(θ − 1)(α + x)θ−1. When 
θ > 1, P ′′(x) < 0, so P ′(x) is decreasing. If P ′(0) = 1 − βθαθ−1 < 0 it follows 
that P ′(x) < 0, for every x > 0, hence P(x) is decreasing. Since that P (0) = 0 we 
have the negativeness of P(x). The case θ < 1 is handled analogously. � □

Sufficient conditions for the hazard rate order follow immediately by remarking 
that

	
H∗(x) =

hGα,β,θ
(x)

hF (x)
= βθTα,β,θ(ΛF (x)),

where Tα,β.θ is defined by (8). Noting that H∗(0) = αθ−1, taking into account the 
properties of Tα,β.θ mentioned above, the following statement is obvious.

Theorem 4.8  1.	 If αθ−1 > 1 and Tα,β,θ is increasing, then Gα,β,θ ≤hr F .
2.	 If αθ−1 < 1 and Tα,β,θ is decreasing, then Gα,β,θ ≥hr F .

For a characterisation of the monotonicity of Tα,β,θ, please see the discussion 
preceding Theorem 4.5.

Now, the likelihood order follows easily.

Theorem 4.9  1.	 Assume that θ > 1 and F ≤hr Gα,β,θ. Then Gα,β,θ≤lrF .
2.	 Assume that θ < 1 and F ≥hr Gα,β,θ. Then Gα,β,θ≥lrF .

Proof  Note that

	

gα,β,θ(x)
f(x)

= βθ(α + ΛF (x))θG
2(x)

F (x)(αF (x) + F (x))
= βθ(α + ΛF (x))θ−1

(
G(x)
F (x)

)2

.

The monotonicity of the first parenthesis of the final expression on the right is fully 
defined by the sign of the exponent, while the monotonicity of the second term 
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depends on monotonicity the hazard rate order between the distributions F and 
Gα,β,θ. � □

5  An enlarged log-logistic family of distributions

We have treated the oMO and d-oMO models, introduced in Definitions 3.1 and 4.1 
by defining distributions through their odds functions, as distortions of some given 
underlying odds function ΛF . Naturally, we may instead consider the new odds func-
tion as a distortion of the initial distribution function F. We mentioned, just before 
Definition 4.1, that the odds function for the PHR model corresponds to transforming 
F by the quantile function of a Pareto distribution. This approach may be extended to 
the full class of models considered in Definition 4.1, leading to the introduction of a 
new family of distributions.

Definition 5.1  The enlarged log-logistic distribution with parameters α ≥ 0, 
β, θ > 0, denoted with ELL(α, β, θ) has distribution function

	

Kα,β,θ(x) = 1 − 1
(

x
β + αθ

) 1
θ + 1 − α

, x ≥ 0.� (9)

The parameters β and 1
θ  are obviously scale and shape parameters, respectively, and 

α is a second shape parameter, having an effect on the asymmetry, skewness, and tail 
weight of the distribution. Moreover, it is straightforward to verify that K0,1,1 is the 
standard log-logistic, already introduced before and denoted with L, while K0,β,θ 

represents the log-logistic with distribution function Lβ, 1
θ
(x) = 1 −

(
( x

β ) 1
θ + 1

)−1
. 

Moreover, the distributions K1,β,θ correspond to the Pareto family.
Explicit expressions for the density kα,β,θ, hazard rate hα,β,θ, and quantile func-

tion K−1
α,β,θ for the distribution function Kα,β,θ are given below:

	

kα,β,θ(x) =

(
x
β + αθ

) 1
θ −1

βθ

((
x
β + αθ

) 1
θ + 1 − α

)2 , hα,β,θ(x) =

(
x
β + αθ

) 1
θ −1

βθ

((
x
β + αθ

) 1
θ + 1 − α

) , x ≥ 0.

and

	
K−1

α,β,θ(u) = β

((
1

1 − u
+ α − 1

)θ

− αθ

)
, u ∈ [0, 1].

An illustration of the effect of the parameters is shown in Fig.  3, describing the 
behaviour of the density function. It is clear that mass concentrates near the origin, 
with a shift to the right for α < 1 and θ < 1. Moreover, due to the exponent of the 

1 3

Page 13 of 22    107 



I. Arab et al.

form 1
θ − 1, the concentration of mass near the origin varies in opposite directions 

with respect to the parameters α or β, depending on whether θ < 1 or θ > 1. On the 
other hand, increasing θ produces heavier tails.

It is now evident that ΛGα,β,θ
(x) = K−1

α,β,θ ◦ F (x), highlighting the role of Kα,β,θ 
in modelling the distortion of the odds function. Therefore, ordering properties within 
the Kα,β,θ family translate easily into the distributions in the d-oMO model, the con-
vexity of the odds of Gα,β,θ being the most obvious, corresponding to the convex 
transform order between Kα,β,θ and F. In other words, the convexity properties of 
the baseline distribution F with respect to Kα,β,θ are inherited by Gα,β,θ. Recall 
that the convexity of the odds function defines interesting classes, namely the IOR 
and DOR families of distributions (see Lando et al. 2022). This naturally leads to an 
interest in exploring stochastic ordering relationships within the family of distribu-
tions defined by (9).

The increasingness of the hazard rate or the odds rate is simple to characterise, as 
described next.

Theorem 5.2  1.	 If α + θ > 1 then Kα,β,θ ∈ DHR, for every β > 0.
2.	 If θ ≤ 1 then Kα,β,θ ∈ IOR, while if θ ≥ 1 then Kα,β,θ ∈ DOR.

Fig. 3  Some plots for the density of Kα,β,θ
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Proof  For part 1., note that

	
h′

α,β,θ(x) = −
(

θ

(
x

β
+ αθ

) 1
θ

+ (1 − α)(θ − 1)

)
.

Since h′
α,β,θ(0) = −(α + θ − 1), it follows that h′

α,β,θ(x) < 0 for every 
x ≥ 0, given that h′ is decreasing. For part 2., the odds rate of Kα,β,θ is given by 

λKα,β,θ
(x) = 1

βθ

(
x
β + αθ

) 1
θ −1

, so the conclusion is obvious. � □

The following result characterises the ≤st-order comparability within the ELL 
family.

Theorem 5.3  Assume the parameters α ≥ 0 , β, θ > 0  and α1 ≥ 0 , β1 , θ1 > 0  
of the enlarged log-logistic distribution functions (9) satisfy one of the following 
assumptions: 

(ST1)	 θ < θ1, αθ−1βθ < αθ1−1
1 β1θ1 and α1(1 − θ) − α(1 − θ1) ≥ 0;

(ST2)	 θ = θ1, β < β1, αθ−1β < αθ1−1
1 β1 and (1 − θ)

(
αθ

1β1 − αθβ
)

> 0.

Then Kα,β,θ ≤st Kα1 ,β1 ,θ1 .

Proof  For the general set of parameters (α, β, θ) denote Kα,β,θ(x) = 1 − Kα,β,θ(x), 
and define

	
V (x) = 1

Kα,β,θ(x)
− 1

Kα1,β1,θ1(x)
=

(
x

β
+ αθ

) 1
θ

−
(

x

β1
+ αθ1

1

) 1
θ1

+ α1 − α.

Noting that Kα1,β1,θ1(x) − Kα,β,θ(x)sgn= V (x), the proof is concluded if we prove 
that V (x) ≥ 0, for every x ≥ 0. It is obvious that V (0) = 0. We separate the two 
cases, according to which assumption is satisfied. 

(ST1):	 We have V (+∞) = ∞ × sgn
(

1
θ − 1

θ1

)
= +∞. Differentiating, we find 

	
V ′(x) = 1

βθ

(
x

β
+ αθ

) 1
θ −1

− 1
β1θ1

(
x

β1
+ αθ1

1

) 1
θ1

−1

,

	  so V ′(0) = α1−θ

βθ − α
1−θ1
1

β1θ1
> 0. Now, if we prove that V ′(x) ≥ 0, for every 

x ≥ 0, it follows that V is increasing, hence V (x) ≥ 0, and the conclusion fol-
lows. Therefore, we need to prove that 

	

V ′(x) ≥ 0 ⇔ P (x) =

(
x
β + αθ

) 1
θ −1

(
x
β1

+ αθ1
1

) 1
θ1

−1 ≥ βθ

β1θ1
.
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	  Noting that P (0) = α1−θ

α
1−θ1
1

> βθ
β1θ1

 and P (+∞) = +∞, we now look at the 

monotonicity of P. Differentiating, one observes that P ′(x)sgn= L(x), where 

L(x) = 1
ββ1

(
1
θ − 1

θ1

)
x + 1−θ

θ

α
θ1
1
β − 1−θ1

θ1
αθ

β1
. The assumptions imply that both 

the slope and intercept of L(x) are positive, hence P is increasing, implying that 
P (x) ≥ βθ

β1θ1
, thus V ′(x) = 0 has no solution.

(ST2):	 This case is treated analogously, so we just highlight the relevant dif-
ferences. We now have V (+∞) = ∞ × sgn

(
1
β − 1

β1

)
= +∞, and 

P ′(x)sgn= (1 − θ)
(
αθ

1β1 − αθβ
)
, assumed to be positive.� □

The previous result allows for an immediate pointwise comparison of the odds 
ratio of the Gα,β,θ family.

Corollary 5.4  Let Gα,β,θ be given by (5). Under either of the assumptions of Theo-
rem 5.3, it holds that ΛGα,β,θ

(x) ≤ ΛGα1 ,β1 ,θ1
(x) for every x ≥ 0 .

Proof  Remember that ΛGα,β,θ
(x) = K−1

α,β,θ(F (x)). Under the assumptions of Theo-
rem 5.3, we have that Kα,β,θ(x) ≥ Kα1,β1,θ1(x), for every x ≥ 0. But this is equiva-
lent to K−1

α,β,θ(x) ≤ K−1
α1,β1,θ1

(x) for every x ≥ 0, so the result follows immediately. 
� □

Recalling the characterisation of the ≤st-order using the odds function (see Propo-
sition 2.3), the previous result can be rewritten as follows, describing conditions for 
the usual stochastic order within the distributions of the d-oMO model.

Corollary 5.5  Let Gα,β,θ be given by (5). Under either of the assumptions of Theo-
rem 5.3, it holds that Gα1 ,β1 ,θ1 ≤st Gα,β,θ.

Conditions for the particular case of one parameter comparison, correspond-
ing to the ELL that characterise the PHR, the proportional odds or the proportional 
log-odds models, are immediate from Theorem 5.3. We state the result, for sake of 
completeness.

Corollary 5.6  For the enlarged log-logistic distribution functions (9) we have that: 

1.	 If α ≥ α1 ≥ 0 and θ ≤ 1 then Kα,β,θ ≤st Kα1,β,θ for every β > 0.
2.	 If β ≤ β1 and θ ≤ 1 then Kα,β,θ ≤st Kα,β1,θ for every α ≥ 0.
3.	 If θ < θ1 ≤ 1, αθ1−θ > θ

θ1
 and 1−θ

αθθ
> 1−θ1

αθ1 θ1
 then Kα,β,θ ≤st Kα,β,θ1  for every 

β > 0.
We now prove a general set of conditions providing the ≤hr-comparability within 

the ELL family.
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Theorem 5.7  Assume the parameters α > 0 , β > 0 , θ > 0  and α1 > 0 , β1 > 0 , 
θ1 > 0  satisfy the following assumptions: 

(HR1)	 (i) βθαθ−1 ≤ β1θ1αθ1−1
1 , and (ii) βθαθ ≤ β1θ1αθ1

1 ,

(HR2)	 θ < θ1,
(HR3)	 (1 − α1)(θ1 − 1) ≥ 0,
(HR4)	

( 1
α − 1

)
(θ − 1) ≤

(
1

α1
− 1

)
(θ1 − 1).

Then Kα,β,θ ≤hr Kα1 ,β1 ,θ1 .

Proof  We shall prove that

	

V (x) = 1
hα1,β1,θ1(x)

− 1
hα,β,θ(x)

=β1θ1

(
x

β1
+ αθ1

1

)
+ (1 − α1)β1θ1

(
x

β1
+ αθ1

1

)1− 1
θ1

− βθ

(
x

β
+ αθ

)
− (1 − α)βθ

(
x

β
+ αθ

)1− 1
θ

≥ 0,

which clearly implies the conclusion. We start by noting that, taking 
into account (HR1-i) and (HR2), V (0) = β1θ1αθ1−1

1 − βθαθ−1 ≥ 0 and 
V (+∞) = ∞ × sgn(θ1 − θ) = +∞, hence the conclusion follows if we prove that 
V is increasing. Direct differentiation gives

	
V ′(x) = θ1 − θ + (1 − α1)(θ1 − 1)

(
x

β1
+ αθ1

1

)− 1
θ1

− (1 − α)(θ − 1)
(

x

β
+ αθ

)− 1
θ

,�(10)

so, given (HR2) and (HR3), the nonnegativity of V ′ follows if we prove that

	

Q(x) = β
1

θ1
1

β
1
θ

(
x + βαθ

) 1
θ

(
x + β1αθ1

1

) 1
θ1

≥ (1 − α)(θ − 1)
(1 − α1)(θ1 − 1)

.

It is easily seen that (HR3) and (HR1-ii) imply that Q′(x) ≥ 0 for every x ≥ 0, hence 
Q is increasing. Finally, (HR4) means that Q(0) ≥ (1−α)(θ−1)

(1−α1)(θ1−1) , so the theorem is 
proved. � □

Theorem 5.7 does not allow to choose α = 0, therefore leaving out of the com-
parisons the important case of the log-logistic distribution L, as the expression (10) 
means, when taking x = 0, that α appears as a denominator. The way out of this can 
be sorted adapting the expressions above by continuity when α → 0.

Corollary 5.8  Assume the parameters β > 0 , 0 < θ ≤ 1  and α1 > 0 , β1 > 0 , 
θ1 > 0  satisfy (HR2) and (HR3). Then K0 ,β,θ ≤hr Kα1 ,β1 ,θ1 .
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Proof  With respect to the proof of Theorem 5.7 note that, after allowing α → 0, we 
need that θ ≤ 1 to fulfill the appropriate version of Q(0) = 0 ≥ θ−1

(1−α1)(θ1−1) . � □

Moreover, note that Theorem 5.7 proof’s argument depends crucially on θ < θ1, 
and breaks down if we assume equality of these two parameters.

Corollary 5.9  Assume the parameters α > 0 , β > 0 , θ > 0  and α1 > 0 , β1 > 0  are 
such that α > α1 , βαθ−1 ≤ β1 αθ−1

1  and

	




ifθ ≥ 1, (1 − α)β 1
θ ≤ (1 − α1)β

1
θ
1 ,

ifθ ≤ 1, βαθ < β1αθ
1.

Then Kα,β,θ ≤hr Kα1 ,β1 ,θ.

Proof  Rewrite the function

	

V (x) = 1
hα1,β1,θ(x)

− 1
hα,β,θ(x)

=
(
β1αθ

1 − βαθ
)

θ + (1 − α1)β1θ

(
x

β1
+ αθ

1

)1− 1
θ

− (1 − α)βθ

(
x

β
+ αθ

)1− 1
θ

.

The assumptions imply that V (0) ≥ 0 and V (+∞) ≥ 0, possibly equal to +∞. The 
equation V ′(x) = 0 translates into

	
1 + βαθ − β1αθ

1
x + β1αθ

1
= β

β1

(
1 − α

1 − α1

)θ

,

which may have at most one root for x ≥ 0. Moreover, V ′(0) = α−α1
αα1

> 0, therefore 
V starts increasing at x = 0. Hence, V (x) > 0 for every x ≥ 0, and the conclusion 
follows. � □

Again, as for the general result, Corollary 5.9 does not include the case α = 0, but 
this can be handled in exactly the same way as in Corollary 5.8.

Corollary 5.10  Assume the parameters β > 0 , θ > 0  and α1 > 0 , β1 > 0  are such 
that β

1
θ ≤ (1 − α1 )β

1
θ
1 . Assume, further, than one of the following conditions is 

satisfied: 

(HR5)	 (1 − α1)(θ − 1) ≥ 0;

(HR6)	 (1 − α1)(θ − 1) < 0 and α1 + (1 − α1)β1− 1
θ

1
(1−αθ

1)1− 1
θ −β

(β1(1−αθ
1)−β)1− 1

θ
≥ 0.

Then K0 ,β,θ ≤hr Kα1 ,β1 ,θ.
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Proof  We need to look now at the sign of

	
V (x) = 1

hα1,β1,θ(x)
− 1

h0,β,θ(x)
= β1αθ

1θ + (1 − α1)β1θ

(
x

β1
+ αθ

1

)1− 1
θ

− βθ

(
x

β

)1− 1
θ

.

We have V (0) = β1αθ−1
1 θ > 0. Moreover,

	

V (+∞) =




∞ × sgn
(

(1 − α1)β
1
θ
1 − β

1
θ

)
if 1 − 1

θ
> 0,

β1αθ
1 if 1 − 1

θ
< 0.

Therefore, under our assumptions, V (+∞) = +∞ for every θ > 0. Seek-
ing for extreme points of V, we need to solve V ′(x) = 0, which translates into 
P (x) = x

x+β1αθ
1

= β
β1

1
(1−α1)θ . It is easy to verify that P is increasing, P (0) = 0, 

P (+∞) = 1, and the right hand side of he equation is less or equal than 1, so this 
equation has exactly one solution, equal to x0 = ββaαθ

1
β1(1−αθ

1)−β
. Assuming (HR5), 

it follows that V ′(x) ≥ 0, for every x ≥ 0, hence V remains positive. If assuming 
(HR6), V has a minimum at x0, and our assumptions mean that V (x0) ≥ 0 so, again, 
we conclude that V stays positive, thus concluding the proof. � □

Finally, a characterisation of convex transform order relationships.

Theorem 5.11  For the enlarged log-logistic distribution functions (9) we have that: 

1.	 If θ ≤ θ1 and α(θ1 − 1) + α1(1 − θ) ≥ 0, then for every β, β1 > 0, 
Kα,β,θ ≤c Kα1,β1,θ1 .

2.	 If θ ≥ θ1 and α(θ1 − 1) + α1(1 − θ) ≤ 0, then for every β, β1 > 0, 
Kα1,β1,θ1 ≤c Kα,β,θ.

Proof  First note that as the β is a scale parameter and the convex transform order is 
invariant with respect to scale parameters, we may assume that β = β1 = 1. We need 
to look at the convexity/concavity of

	
ψ(x) = K−1

α1,1,θ1
◦ Kα,1,θ(x) =

((
x + αθ

) 1
θ + α1 − α

)θ1

− αθ1
1 .

Simple differentiation and simplification show that 
ψ′′(x)sgn= (θ1 − θ)

(
x + αθ

) 1
θ + (1 − θ)(α1 − α). Therefore, ψ is convex if 

θ1 − θ ≥ 0 and ψ′′(0) = α(θ1 − 1) + α1(1 − θ) > 0, and it is concave if both these 
two inequalities are reversed. � □

The following particular cases are now obvious.

Corollary 5.12  For the enlarged log-logistic distribution functions (9) we have that: 
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1.	 If θ ≥ 1, then for every α ≥ 0, L = K0,β,1 ≤c Kα,β,θ ≤c K0,β,θ.
2.	 If θ ≤ 1, then for every α ≥ 0, K0,β,θ ≤c Kα,β,θ ≤c K0,β,1 = L.

Remark 5.13  As mentioned above, the IOR family may be characterised as the class 
of distributions that are dominated, with respect to the convex transform order, by 
the standard log-logistic K0,1,1( which is equivalent, for this purpose, to K0,β,1, for 
every β > 0). Denote with Dα,β,θ the family of distributions that are dominated, with 
respect to the convex transform order, by the Kα,β,θ distribution. Then, we have that 
IOR = D0,β,1, for every β > 0. Moreover, the transitivity of the ≤c-ordering implies 
that, for θ ≥ 1 and α ≥ 0, IOR = D0,β,1 ⊂ Dα,β,θ ⊂ D0,β,θ. This inclusion implies 
that, for this choice of parameters, the IOR class remains nested within this more 
general family, hence meaning that the requirement that G ∈ Dα,β,θ is less stringent 
that G ∈ IOR. As emphasized in Lando et al. (2022), the IOR already encompasses 
several well-known distributions with interesting shape properties, namely, allows 
heavy tailed distributions or for bathtub shaped hazard rates.

In Theorem 4.6, we described conditions implying the monotonicity of the odds 
rate λGα,β,θ . This monotonicity, following the Lando et  al. (2022), translates into 
either Gα,β,θ ≤c L = K0,1,1, equivalent to Gα,β,θ ∈ IOR, or L = K0,1,1 ≤c Gα,β,θ, 
equivalent to Gα,β,θ ∈ DOR. We may now describe a more general form of the con-
vex transform relations between the Gα,β,θ and Kα,β,θ families of distributions.

Theorem 5.14  Let Gα,β,θ be described by (5) and Kα1 ,β1 ,θ1  as in (9). If F ∈ IOR 
and θ, θ1 ≥ 1 , then Gα,β,θ ≤c Kα1 ,β1 ,θ1 . On the other hand, if F ∈ DOR and 
θ, θ1 ≤ 1 , then Kα1 ,β1 ,θ1 ≤c Gα,β,θ.

Proof  Assume that F ∈ IOR and θ, θ1 ≥ 1. Due to the invariance of the convex 
transform order with respect to scale parameters, we may assume β1 = 1. Hence, we 
want to prove the convexity of

	
ψ(x) = K−1

α1,1,θ1
◦ Gα,β,θ(x) =

(
β

(
(α + ΛF (x))θ − αθ

)
+ α1

)θ1
− αθ1

1 .

Differentiation shows that

	
ψ′(x) = βθθ1

(
β

(
(α + ΛF (x))θ − αθ

)
+ α1

)θ1−1
λF (x) (α + ΛF (x))θ−1

,

which, under our assumptions, is clearly increasing, so ψ is convex. The second state-
ment is proved analogously. � □

Theorem 5.15  Let Gα,β,θ be described by (5) and Kα1 ,β1 ,θ1  as in (9). If 
F ∈ IOR, θ, θ1 ≥ 1  and ββ1 θθ1 f (0 )αθ−1 αθ1 −1 ≥ 1 , then Gα,β,θ ≤disp Kα1 ,β1 ,θ1 . 
On the other hand, if F ∈ DOR, θ, θ1 ≤ 1  and ββ1 θθ1 f (0 )αθ−1 αθ1 −1 ≤ 1 , then 
Kα1 ,β1 ,θ1 ≤disp Gα,β,θ.
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Proof  The result follows by studying the monotonicity of the function 
ϕ(x) = K−1

α1,β1,θ1
◦ Gα,β,θ(x) − x. Observe that if F ∈ IOR and θ, θ1 ≥ 1, ϕ′ is 

increasing while the additional assumption ensures that ϕ′(0) ≥ 0, establishing the 
nonnegativeness of ϕ′. The second part of the theorem follows in a similar manner. 
� □

Remark 5.16  Notice that Kα1,β1,θ1(0) = Gα,β,θ(0) = 0. Thus, under the same con-
ditions as in Theorem 5.15 we can easily get the respective results for the usual sto-
chastic order by applying Theorem 3.B.13(a) of Shaked and Shanthikumar (2007).
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