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Abstract: This study delves into the complexities of fluid cleanup processes post-hydraulic fracturing
in unconventional gas deposits, focusing on the pivotal role of capillary pressure (Pc) correlations in
tight and ultra-tight formations. Utilising Geo2Flow software, this research evaluates the efficacy
of existing Pc models, identifying the Brooks and Corey model as notably precise for these forma-
tions, albeit recommending an adjustment to the pore size distribution index for a more accurate
representation of rock behaviours. Further investigation centres on the cleanup process in multiple
fractured horizontal wells, examining the impact of the Pc, matrix permeability, drawdown pressure,
and fracturing fluid volume. A significant portion of this study addresses the influence of interfacial
tension-reducing chemicals on post-fracturing production, highlighting their utility in ultra-tight
formations, but advising against their use in tight formations due to environmental concerns and
limited efficacy. The findings underscore the nuanced interplay between geological parameters and
fracturing fluid dynamics, advocating for tailored fluid cleanup strategies that enhance the hydraulic
fracturing efficiency while minimising the environmental impact. This comprehensive analysis offers
valuable insights into optimising fracture cleanup and understanding the underlying physics, thereby
contributing to more effective hydraulic fracturing practices.

Keywords: flowback cleanup; hydraulic fracturing; fracturing fluid; capillary pressure; IFT;
unconventional reservoirs

1. Introduction

The least polluting and emitting fossil fuel is thought to be natural gas. Due to its
abundance and environmental sustainability, it is also regarded as one of the most signifi-
cant energy sources for the future. Around the world, the use of natural gas is becoming
increasingly significant for producing electricity, industrial processes, and domestic heating.
The resources for natural gas are either conventional or unconventional. Despite being
less economically viable than conventional natural gas reserves and more challenging to
extract, there is a rising reliance on unconventional gas resources to meet the world’s energy
demands. Shale gas, gas hydrates, tight and ultra-tight gas sands, and coalbed methane are
all sources of unconventional gas plays. The considerable rise in gas consumption has led
to the development of further unconventional resources [1–3].

Fracturing, or hydraulic fracturing, is a prevailing technique for increasing the pro-
duction of wells in unconventional gas reserves. With this technique, a rock formation is
fractured by pumping a mixture of water, chemicals, and sand into a well under significant
pressure. Different companies have widely adopted fracturing, which extracts large quanti-
ties of natural gas from unconventional deposits, but it has also been met with opposition
due to environmental and health concerns [4–13].

Shale gas and tight gas sands are gaining popularity as unconventional resources.
Conversely, conventional natural gas reserves are exhausted because of their availability
and relative ease of access [14–20].
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The potential benefits and disadvantages of unconventional natural gas resources
need to be weighed against the larger picture of global energy demands and environ-
mental concerns. The environmental impact of extracting unconventional gas resources
and the possible health implications must be handled and examined, notwithstanding the
resources’ promise as a supply of natural gas. Companies and governments are developing
new technologies and laws to meet energy demands while lowering their negative effects
on the environment. Unconventional resources, thus, play a progressively essential role in
addressing global energy demands, notwithstanding the difficulties they present compared
to conventional reserves. Technologies and techniques, such as hydraulic fracturing, are
being developed to enhance the production of unconventional gas resources while min-
imising the environmental impact. As the world continues to face energy challenges, it
is crucial to consider the potential benefits and drawbacks of unconventional natural gas
resources in the context of the bigger picture of global energy demands and environmental
concerns [14–20].

Injecting large amounts of fracturing fluid, or FF, allows for the initiation and prop-
agation of cracks in unconventional reservoirs [21–26]. In the tight oil and gas sectors,
vertically drilled, hydraulically fractured wells were first drilled in Pennsylvania, a state in
the northeastern United States. Numerous experimental, computational, and field stud-
ies have been conducted to determine how the hydraulic fracture cleanup effectiveness
affects phase production in unconventional tight/ultra-tight formations [21,22]. Numerous
field experiments have demonstrated that gas output can be considerably hampered by
inadequate FF removal [27,28].

The physical characteristics of the FF, the formation’s characteristics, and the hydraulic
fracturing operation’s design all affect the volume of the flowback. A total of 10 to 70 percent
of the entire volume of the initially injected FF could make up for the flowback recovered
from the surface of a well [29,30]. More FF is often retained in a formation. Therefore, when
a formation has some micro fractures and higher matrix capillary pressures, the surface
flowback recovery is reduced [29,30].

The oil and gas sector now emphasises optimising the fracturing fluid flowback for
a number of purposes, such as maximising the net profit and addressing environmental
concerns. Some techniques mitigate the FF flowback using a Tech-Flo hydraulic jet pump
to maximise the load recovery [31]. Simultaneously isolating the hydrocarbon from a well
stream helps hasten the safe recovery of a substantial amount of flowback. A flowback
service for multiple fractured horizontal wells (MFHWs) in unconventional fields has also
been made available by Halliburton [32]. CALIBR, a service offered by Haliburton, aims to
boost well performance by reducing the completion damage and maximising the long-term
output. The service enhances productivity and completion efficiency by continuously
monitoring, analysing, and controlling the flowback. Through the use of CALIBR, haz-
ardous flowback procedures can be avoided, the damage from fracture permeability can be
reduced, and the performance of a well can be improved. This is achieved by continuously
monitoring the well pressure, assessing the well performance, and adjusting the choke in
real-time. CALIBR, a flowback operation service offered by Halliburton, enhances well per-
formance by reducing the completion damage and maximising the long-term output. This
service employs real-time monitoring and analysis using high-resolution pressure gauges
like SPIDR®, allowing for precise adjustments to flowback processes based on continuous
data acquisition. Each flowback plan is customised to a well’s specific characteristics,
incorporating its design, previous completion activities, and field knowledge to optimise
productivity and minimise damage. Through an iterative process of continuous measure-
ment, analysis, and choke adjustment, CALIBR avoids aggressive flowback strategies that
could damage fracture conductivity, thus maintaining a well’s performance. Additionally,
the service mitigates potential damage-causing practices, reducing the risk of issues such
as proppant washout and fines migration. Overall, CALIBR’s comprehensive, data-driven
approach to flowback management maximises the economic value and long-term produc-
tivity of wells [32]. Holditch [25] studied how the productivity of fractured wells is affected
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by the growth of fluid saturation (FF), which is assumed to be water, and the reduction in
permeability in the area near a fracture. His goal was to determine the impact of damage
to the grid-like structure surrounding a fracture. He used a numerical simulator based on
finite differences to conduct his research. It was found that in low-pressure drawdown
conditions, where the drawdown pressure (DP) was only slightly greater than the capil-
lary pressure (Pc) of the matrix in tight formations (reservoirs with low permeability), the
effect of the capillary pressure was significant. He pointed out that water blocking takes
place when the matrix permeability (km) around a fracture declines by 99.9%, or when the
differential pressure (DP) is less than the capillary pressure (Pc) in the region where the
fracturing fluid (FF) has penetrated. The invasion depth of the FF in their matrix extended
up to 5 inches, and its distribution within the matrix adjacent to the hydraulic fracture was
consistent. His study did not examine the impact of the FF volume on the conductivity of
a fracture.

The decline in expected gas production is a complex process involving several factors,
including matrix permeability damage caused by two-phase flow and the efficacy of
cleaning up single fractured vertical wells. To understand these factors, researchers have
conducted extensive studies that have shed light on the underlying mechanisms that affect
gas productivity.

One important finding is that the Pc and Kr in the invaded zones are important factors
for the cleanup effectiveness in low-permeability reservoir rocks. This conclusion was
drawn by Pope et al. in 1996 [27], who determined a direct correlation between the gas flow
and flowback recovery by analysing data taken from the field. They suggested that when
liquid is produced from a hydraulic fracture, a corresponding space opens up, allowing
for gas to flow towards a well. As the load recovery increases, the gas production also
upsurges. To further investigate this, they examined the dependency of gas rates on the
flowback, and advised that higher flow rates lead to higher load fluid recovery.

Following their investigation, Gdanski et al. [28] examined the formation damage
caused by gas and fluid flow in the invaded zone and established a numerical model. They
noticed that damages to the fracture sand face significantly lower the gas productivity if the
permeability of the matrix in the invaded zone is reduced to 1% of the original permeability.
However, they overlooked the fact that a higher Pc results in more fluid being absorbed
into a matrix, which lowers the fluid saturation within a frack, increases the permeability
of gas within a fracture, and produces cleaner fractures.

The next important factor for gas production is the effectiveness of the cleaning up
of fractured wells. Ghahri et al. investigated this issue in 2010 [33], and showed that
cleaning up such wells in gas fields efficiently enhances gas productivity. Their findings
were based on numerical simulations and a detailed analysis of field data, and they proved
that cleaning up single fractured vertical wells can lead to significant improvements in
gas recovery.

These findings highlight the complex nature of gas production and the need to un-
derstand the underlying mechanisms that affect productivity. By building on the work of
earlier researchers, current and future studies can continue to shed light on this important
issue, aiming to improve gas recovery and meet the world’s growing energy needs.

Additionally, the research has replicated the numerically developed model outcomes
that Holditch (1979) indicated, which have since been used as a reference in several cleanup
simulation investigations [25]. According to their findings, the presence of FF in a zone that
has been invaded influences the total amount of gas recovery by diminishing the relative
permeability of the gas, which reduces the gas rate when compared to a scenario in which
FF was not pumped into a well. More significant FF recovery occurs during production
when the FF viscosity is reduced and, as a result, the FF mobility is increased. They also
emphasised that as the Pc rises, the FF penetrates deeper into a matrix, improving gas
production and reducing the FF interference.
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Ghahri et al. (2011) expanded on this study by thoroughly examining 16 important
parameters while utilising an experimental design and a surface model [33]. They showed
that the parameters relating to the FF cleanup within a fracture, particularly the kf, had a
considerable impact on gas production loss, or GPL [33].

The central processing unit (CPU) time needed for these two numerical experiments
was excessive [33]. As a result, the authors could only examine two simulation sets They
conducted additional research on flowback cleanup processes. They simplified the model
by reducing the number of parameters from 16 to 12 by removing four parameters that had
a minimal impact on the cleanup performance. This made it easier to explore more diverse
cleanup scenarios.

The study that was conducted by the same research team focused on different factors
that included the size of the pores, the force between interfaces, how easy it is for substances
to pass through the matrix and fracture, and the way that fluids move through these
structures. The study was expanded to cover a wider variety of cleanup situations in
gas reservoirs that are extremely tight. To achieve this, the researchers ran eighty-four
simulations that considered various factors, such as the amount of fluid injected, the
duration of the soak, the pressure at the bottom of the well, and the compactness of the
formation [33].

The study revealed that the cleanup process becomes slower and the gas produc-
tion loss becomes more significant as the formation becomes tighter (i.e., smaller km).
Likewise, the study demonstrated that when the pressure drawdown is low, the capil-
lary pressure (Pc) more significantly impacts the efficiency of the cleanup process than
before. A similar result was obtained when the soaking period was increased. Nasriani
and colleagues have conducted several studies on enhanced oil recovery, investigating
various techniques and strategies [29,30,34–39], while more recent works by Modebelu et al.
(2022) and Erimako et al. (2022) have focused on particular aspects of the process [40,41].
Nasriani et al. (2018) studied various factors impacting post-fracturing cleanup effective-
ness [30,36]. The study considered several variables, such as the length of the fracture, well
pressure, hysteresis, segregation due to gravity, mobility, immobility of the connate water,
and the volume of the injected fracture fluid. The results of the investigation revealed that
particular outcomes may arise when a considerable quantity of fracture fluid is injected
into formations with extremely high permeability; it significantly reduces the gas flow and
severely slows the cleanup procedure. Extending the soaking time or increasing the pres-
sure drawdown does little to improve the GPL in this situation. The researchers found that
hysteresis does significantly affect the efficiency of the cleanup process. The examination
of cleanup performance was extended to explore the influence of layered systems, and it
was discovered that the capillary pressure plays a more crucial role in the bottom layer
than in the top layers. Additionally, the mobility coefficient of the fluid in a fracture is
higher in the upper layer than in the lower layer. Furthermore, they suggested that using
an IFT reduction agent during fracturing operations could reduce gas production losses in
reservoirs with high water saturation levels.

Nasriani and Jamiolahmady (2019) expanded their research scope to include studies
conducted to examine the cleanup procedure that takes place after hydraulic fracturing in
wells with multiple horizontal fractures [29].

More precisely, the effect of wide-ranging horizontal lengths and fracture spacing in
MFHWs on the cleanup efficiency was studied. Furthermore, the researchers compared
the cleanup processes after fracturing in vertical wells (VWs) and MFHWs. Running the
numerical simulations for the sets consumed considerable CPU time.

In an effort to mitigate the significant computational burden associated with simula-
tion runs using a full factorial sampling (FFS) experimental design, and to accelerate the
computational process, the researcher adopted an alternative approach known as Latin
Hypercube Sampling (LHS). This novel sampling technique has emerged as a promising
solution for conducting high-dimensional experiments with fewer runs, thereby reducing
the overall CPU time required for simulations. They observed a difference in the trend
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of the km values between the base reference set and the VW set for multiple fractured
horizontal wells. The researchers identified that the shift in the flow geometry and well
completion technique resulted in a shift in the trend of the km in the set to a positive coef-
ficient value; previously, it was observed that the Km coefficient was negative in vertical
wells. Additionally, they discovered that the capillary pressure (Pc) variables played a more
crucial role in the sets, while the pertinent Corey parameters for the relative permeability
models for both the gas and FF in both a matrix and fracture were further impactful in
vertical wells.

According to these results, the FF production was more adversely impacted than the
gas production in the set. In simpler terms, a greater Pc in MFHWs is more significant since
it causes more FF to be more absorbed into the rock, and leads to less opposition to gas
passage. It was also demonstrated that the MFHWs were cleaned up more quickly than the
VWs. This resulted from their sets having a greater gas production rate. A slower (faster)
cleanup was seen in reduced (increased) DP MFHW settings, comparable to those formerly
reported for the related VW sets. They concluded that while the fracture interference
and fracture spacing substantially impact the flow, they have little effect on the cleanup
performance of MFHWs with varying spacing between fractures.

Recent advancements in hydraulic fracturing and unconventional gas extraction have
significantly contributed to the efficiency and productivity of shale gas reservoirs. For
instance, characterising anisotropic geomechanical properties through nanoindentation
and upscaling approaches has provided a deeper understanding of formation behaviour,
which is critical for optimising hydraulic fracturing treatments [42]. Additionally, compu-
tational analyses of proppant transport and screen-out phenomena have highlighted the
complex interactions within fractures, leading to more effective fracturing strategies [43].
Experimental studies on the stable dispersion of coal fines during hydraulic fracturing
flowback have emphasised the importance of addressing particle mobilisation to enhance
the cleanup efficiency [44]. Furthermore, the probabilistic quantification of microparticle
segregation under electrostatic forces has provided new insights into preventing screen-out
during fracturing operations [45]. Innovative techniques, such as the co-application of
indirect hydraulic fracturing and micro-proppants have improved the pre-drainage in low-
permeability coals, highlighting the ongoing efforts to enhance gas recovery in challenging
formations [46].

Moreover, the integration of machine learning into reservoir management has
opened new avenues for predicting production and optimising resource extraction.
Srinivasan et al. (2021) demonstrated the potential of machine learning-assisted history
matching and production forecasting for shale gas reservoirs, which can significantly
improve decision-making processes and operational efficiency [47]. These recent studies
collectively underscore the critical role of technological advancements and interdisci-
plinary research in addressing the challenges of unconventional gas production, thereby
helping to meet growing global energy demands while mitigating environmental impacts.

This study aims to enhance the existing knowledge of hydraulic fracturing treatments
for real-world applications by building on prior research [3,14,15,20,30,31]. It specifically
explores the influence of an unconventional Pc on the performance of MFHWs. This
paper presents an in-depth analysis of Pc correlations applicable to tight and ultra-tight
formations, utilising Geo2Flow software (https://geo2flow.net/). Geo2Flow is an advanced
numerical modelling framework that integrates petrophysical, geological, engineering, and
geophysical data to accurately simulate groundwater flow and solute transport in porous
media. By matching 3D saturations to well logs, calculating precise 3D permeabilities,
and identifying reservoir compartments, Geo2Flow enhances the accuracy of reserve
estimations and subsurface models. Its interdisciplinary approach and robust algorithms
ensure that it handles both data-rich and data-poor environments effectively, making it a
valuable tool for environmental engineers and researchers [48].

https://geo2flow.net/
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An analysis of the Pc model, applied to 200 datasets from conventional, tight, and ultra-
tight formations, proves that the Brooks and Corey model, with just one specific parameter,
effectively represents the Pc data for unconventional plays. The results of this research
recommend constraining the pore size distribution index (λ) to a 0.3–1.5 range for a more
accurate portrayal of unconventional rock properties. The updated λ range is incorporated
into the model to more accurately represent the unconventional Pc characteristics.

Additionally, for these five datasets, a novel dimensionless terminology—analogous
to the gas production loss (GPL)—is introduced to study the influence of similar key param-
eters on FF production, which is a significant factor in the HF of unconventional reservoirs.

2. Methodology

A flowchart was used in this part to clarify the adopted analysis methodologies
and terminologies, as shown in Figure 1. A comprehensive assessment of the capillary
pressure (Pc) correlations for tight and ultra-tight formations was conducted. This analysis
utilised Geo2Flow software to examine the dependability of existing Pc correlation models
specifically for these formations [41,48]. Then, it was decided that the Pc data would be
best represented by Brooks and Corey’s model in unconventional plays. However, we
proved, for the first time, that the λ range for unconventional resources used in the Brooks
and Corey model must be adjusted to 0.3 to 1.5, rather than the 1 to 4 used in previous
works [30]. This Pc formulation adjustment improved the capillary forces’ representation
in unconventional tight/ultra-tight rock formations and made it more realistic. Then,
a multiple horizontal fractured well model initially created by [29] was utilised for the
sets. The dimensions of the model are shown in Table 1; the validation procedure for the
modified MFHW model is discussed elsewhere [30].

Table 1. MFHW model.

Lf (m) wf (m) Horizontal
Length (m)

Number of
Fractures Xres (m) Yres (m) Zres (m)

90 0.004 600 7 2000 2000 40

Once the MFHW model was validated, five scenarios were considered. The five
different scenarios are as follows:
Scenario 1. The base reference set.
Scenario 2. A set with a modified Lambda range.
Scenario 3. A set with a different injected FF.
Scenario 4. A set with a different Km range.
Scenario 5. A set with a larger drawdown.

It should be highlighted that each set consisted of 1000 simulation runs in which the
12 pertinent parameters were varied within their variation ranges. The ranges of all the
pertinent parameters are shown in Table 2. A full explanation of the sampling approaches
used in this work can be found elsewhere [29]. All the scenarios used Latin Hypercube
Sampling (LHS) to generate the required simulation runs, and then a mathematical surface
methodology was used to match an accurate model to the results from each set. Finally,
the results from these sets were examined. A list of the sets that were analysed is shown in
Table 3.
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Figure 1. The workflow of this study.

Table 2. Parameters’ variation ranges.

Parameter Min Max

kf (D) 1 30
km 1 µD 100 µD
λ 1 4

IFT (mNm/m) 2 50
ngm 1.5 5
nwm 1.2 4

kmaxg 0.5 1.0
kmaxw 0.05 0.6

ngf 1.5 5
nwf 1.2 4

kmaxg 0.5 1.0
kmaxw 0.1 0.75
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Table 3. MFHW set analysed.

Set
Name

No. of
Fracks

Horizontal
Length

(m)
DP (Psi) FVR

Shut-In
Time

(Days)
kf (D) km

(µD) Lam Sampling
Approach

Number
of Runs

Default
Values 7 600 1000 2 2 1–30 1–100 1–4 LHS 1000

Set 8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Set 30 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.3–1.5 ✓ ✓
Set 31 ✓ ✓ ✓ ✓ ✓ ✓ 0.01–1 ✓ ✓ ✓
Set 32 ✓ ✓ ✓ 10 ✓ ✓ ✓ ✓ ✓ ✓
Set 33 ✓ ✓ 4000 ✓ ✓ ✓ ✓ ✓ ✓ ✓

“✓” means the same value as the base case scenario, if a value is given it means a new value is considered instead
of the default value in the base case scenario.

2.1. An In-Depth Assessment of the Pc Formulas for Unconventional Plays

This section presents the findings from a comprehensive analysis of different Pc
correlations applied to unconventional formations, utilising Geo2Flow software [39]. For
this research, 200 Pc datasets, collected from tight and ultra-tight formations in western
U.S. basins were examined, with the measurements provided by the University of Kansas
Center for Research and presented to the U.S. Department of Energy [40].

This study specifically examined various J-function models to investigate capillary
force irregularities in tight and ultra-tight sands. This part discusses the initial and adapted
Leverett J-functions, other J-function models, and the associated fit error indicators as
applied to these unconventional formations.

2.1.1. The Leverett J-Function

Leverett (1941) [49] showed that in reservoir rocks with an identical lithology but
varying porosity and permeability, the capillary pressure could be normalised using a
single function, known as the Leverett J-Function. Rather than plotting the Pc against the
Sw, Leverett instead used the J-Function, as detailed in Equation (1)

J(Sw) =
Pc

γcosθ

√
k
φ

(1)

where γ is the surface tension, θ is the contact angle, k is the permeability, and φ is
the porosity.

According to Leverett’s method, a small set of J-functions can effectively represent
the Pc characteristics across the rocks within an entire reservoir. Leverett’s findings imply
that, for a specific rock type, most Pc curves can align with one J-function. Essentially, one
J-function can encompass multiple Pc curves.

2.1.2. J-Function Displacement, Jd

The threshold value that the non-wetting phase must surpass to penetrate the rock is
represented by the J-function displacement, Jd. This value aligns with the displacement
pressure, Pd (also referred to as the threshold pressure, Pe), as will be outlined later in
Equation (9) or the Pc curve. When the Pd is substituted into Equation (10), the Jd is
obtained. In this study, all the Pc functions are dependent on the Jd, as it establishes the
location of the fluid contacts.

2.1.3. The Model Proposed by Thomeer

In 1960, Thomeer [42] demonstrated that plotting the logarithm of the capillary pres-
sure against the logarithm of the saturation of the non-wetting phase produces a hyper-



Energies 2024, 17, 5822 9 of 30

bolic curve. He introduced a J-function model, detailed in Equation (2), to represent
this relationship.

S = 1 − 10
−( G

Log( J
Jd

)
)

(2)

where S is the reduced saturation, Jd is the J-function displacement, J is the J-function value,
and G is the pore geometric factor.

2.1.4. The J-Function Model Proposed by Brooks–Corey

Brooks and Corey (1966, 1964) developed a model using a bundle of capillary tubes to
characterise a porous media, introducing the following terms [50,51]:

S = (
Jd
J
)
λ

= (
Jd
J
)

1/a0

(3)

Equation (3) corresponds to Equations (1) and (2) for the capillary pressure curve.

2.1.5. The J-Function Model Proposed by Bentsen–Anli

Bentsen and Anli (1977) suggested a J-function model expressed by Equation (4) [52].

S = e(
Jd−J

a0
) (4)

2.1.6. The Model of Skelt–Harrison

Skelt and Harrison (1995) proposed a J-function model characterised by two specific
parameters, detailed in Equation (5) [46]. In contrast to the previous models, this model
uniquely incorporates two parameters: a0, serving as the scaling factor for the Pc, and a1,
which functions as the exponent for the scaled Pc.

S = 1 − e−(
a0

J−Jd
)

a1
(5)

Skelt and Harrison first presented their model for relating the height above the free
water level and the Pc. Reformulating this relationship through the J-function yields
Equation (5).

2.1.7. O’Meara Unimodal J Approach

Similar to the Skelt–Harrison J-function model, the O’Meara Unimodal J-function
model incorporates two distinct parameters, a0 and a1, and is represented by Equation (6).

S =
1
2

erfc(
Log( J−Jd

a0
)

a1
) (6)

In O’Meara’s model, the erfc function denotes the complementary error function. This
model is characterised by two distinct parameters: a0, which signifies the median of the
associated lognormal distribution, and a1, which indicates the variance of that distribution.

2.2. Analysis of Pc Correlations

To evaluate the appropriateness of the specified Pc correlations for ultra-tight rocks,
200 Pc datasets were integrated into Geo2Flow. In Geo2Flow software [39], the data fit
quality is determined through either the least absolute deviations approach or the least
squares technique, with both assessed by an ‘error in fit’. This error metric, applied to n
data points (xi, yi) following the function y = f(x), is calculated as the sum of the squared
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deviations between the actual data points and their corresponding values when using the
least squares method, as outlined in Equation (7):

∆ =
n

∑
i=1

[yi − f(xi)]
2 (7)

In the case of the least absolute deviations (LADs) approach, the error is defined as the
total of the absolute differences between the data points and their respective corresponding
values, as indicated by Equation (8):

∆ =
n

∑
i=1

|yi − f(xi)| (8)

Notably, a lower ∆ value indicates an improved curve fit. This work utilised the least
squares method (LSM). For this task, all the datasets were initially formatted in Excel to
align with the requirements of Geo2Flow before importing them into the software. Five
different models were examined. Figure 2 illustrates the imported Pc datasets in relation to
the saturation, with the Pc expressed in Bar. The corresponding J-functions, derived using
specific K, φ, IFT, and contact angle values, are displayed in Figure 3.
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Five different models were evaluated as follows: three single-parameter models
(Brooks and Corey, Thomeer and Bentsen, and Anli) and two dual-parameter models (Skelt–
Harrison and O’Meara Unimodal). The Pc datasets were fitted using the least squares
method (LSM), with the associated fit error values for each model outlined in Table 4.
For the full dataset, Table 4 presents the error values for the five models. The Thomeer
model, notably, provided the most accurate fit, while the Bentsen and Anli model had
the highest error when assessing all the data. The models with dual parameters generally
produced more precise Pc predictions due to their greater adaptability; however, the
Thomeer model, despite being a single-parameter model, performed better than many
others. The Brooks and Corey model was the second most accurate among the single-
parameter models. To improve the assessment of these models’ reliability in unconventional
formations, the Pc datasets were divided into three categories: conventional (k > 0.1 md),
tight (0.001 < K < 0.1 md), and ultra-tight (K < 0.001 md), with the conventional datasets
being excluded from further analysis. The LSM was reapplied to the unconventional data,
and the resulting error values for each model are shown in Table 4. For the tight Pc data,
Table 4 includes the error values for the Thomeer, Brooks and Corey, Bentsen and Anli, Skelt–
Harrison, and O’Meara models. The Brooks and Corey model was found to be the most
accurate among the single-parameter models, while the Skelt–Harrison model performed
best among the dual-parameter models. For the ultra-tight Pc data, the error values in
Table 4 indicate that the Brooks and Corey model, along with Thomeer’s, were the best-
performing single-parameter models, while the Skelt–Harrison and O’Meara Unimodal
were superior among the dual-parameter models. Table 4 also shows that the Bentsen and
Anli model was the least accurate for both the tight and ultra-tight Pc datasets, while the
Brooks and Corey model was the most effective for these unconventional categories.

Table 4. Error-in-fit analysis.

J Function
Model Name

Error in Fit for All
Pc Datasets

Error in Fit for Tight
Pc Datasets

Error in Fit for
Ultra-Tight Pc

Datasets

Models with one
model-specific parameter

Thomeer 6.26 × 10−3 9.97 × 10−3 2.89 × 10−2

Brooks and Corey 8.91 × 10−3 8.64 × 10−3 2.91 × 10−2

Bentsen and Anli 1.49 × 10−2 1.21 × 10−2 2.95 × 10−2

Models with two
model-specific parameters

Skelt-Harrison 6.68 × 10−3 7.86 × 10−3 2.87 × 10−2

O’Meara Unimodal 7.09 × 10−3 8.49 × 10−3 2.86 × 10−2

2.2.1. Evaluation of the Brooks and Corey Model

The results demonstrate that the Brooks and Corey model effectively fits both the
tight and ultra-tight datasets. The evaluation of five distinct J models was conducted
for the Pc datasets for tight formations (0.001 md < K < 0.1 md) and the Pc datasets for
ultra-tight formations (K < 0.001 md), as described in previously. A range of datasets
from these categories were analysed. For each dataset, the Brooks and Corey model was
applied to ascertain the typical λ characteristic of these unconventional datasets. The
findings show that the Brooks and Corey model accurately represents both the tight and
ultra-tight datasets.

Table 5 displays a selection of the evaluated data, detailing the sample dataset names,
K, φ, estimated λ, J-function displacement, and curve-fitting error metrics. The estimated λ

for these samples spans from 0.313 to 1.49. To demonstrate the high correlation between the
Brooks and Corey model and the observed data, two specific sample datasets were chosen
as follows: a tight and an ultra-tight dataset.
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Table 5. The λ analysis.

Sample Data Set Name Permeability, md Porosity % λ Jd Error in Fit

A-IPE-HG-195 0.0086 11.8 1.080 0.0540 2.06 × 10−3

A-IPE-HG-120 0.00062 5.5 0.462 0.0326 3.23 × 10−5

A-IPE-HG-141 0.0011 12.8 1.062 0.0228 8.80 × 10−4

A-IPE-HG-142 0.0062 7.3 1.042 0.0377 1.40 × 10−3

A-IPE-HG-112 0.008 10.5 1.179 0.0546 2.01 × 10−4

A-IPE-HG-114 0.00957 10.2 1.497 0.0703 8.60 × 10−4

A-IPE-HG-128 0.0199 12 0.458 0.0555 4.63 × 10−4

A-IPE-HG-168 0.0364 9 0.613 0.0776 5.50 × 10−4

A-IPE-HG-77 0.0416 9.5 0.386 0.0345 7.41 × 10−4

A-IPE-HG-76 0.0512 9.8 0.492 0.0394 5.18 × 10−4

A-IPE-HG-60 0.067 15.4 0.565 0.0827 2.79 × 10−4

A-IPE-HG-101 0.0728 14.1 0.575 0.1242 3.16 × 10−4

A-IPE-HG-167 0.0978 9.8 0.743 0.1016 1.99 × 10−4

A-IPE-HG-9 0.137 11.4 0.556 0.0492 3.63 × 10−4

A-IPE-HG-14 0.00016 3 0.670 0.0550 1.99 × 10−4

A-IPE-HG-34 0.00025 4.5 0.766 0.0079 5.04 × 10−4

A-IPE-HG-130 0.000064 8.2 0.694 0.0231 2.84 × 10−4

A-IPE-HG-52 0.000343 5.5 0.704 0.0489 4.46 × 10−5

A-IPE-HG-132 0.00028 4.2 0.951 0.0875 4.00 × 10−3

A-IPE-HG-137 0.000374 3.7 0.357 0.1016 1.36 × 10−3

A-IPE-HG-19 0.00039 4.2 0.826 0.0560 7.43 × 10−4

A-IPE-HG-93 0.00025 7.8 0.664 0.0348 7.17 × 10−4

A-IPE-HG-27 0.00021 4.3 0.487 0.0173 5.43 × 10−4

A-IPE-HG-31 0.00034 5.7 0.475 0.0493 7.57 × 10−6

A-IPE-HG-110 0.00117 8.4 0.513 0.0341 7.42 × 10−4

A-IPE-HG-55 0.000088 3 0.749 0.0500 7.31 × 10−4

A-IPE-HG-37 0.00227 10.2 0.538 0.0252 1.13 × 10−4

A-IPE-HG-109 0.00029 4 0.313 0.0351 1.18 × 10−4

A-IPE-HG-118 0.0189 10.2 0.921 0.0525 6.27 × 10−5

A-IPE-HG-119 0.00247 9.7 0.561 0.0320 2.36 × 10−4

A data point from the tight data group had a permeability (K) of 0.0086 md and a
porosity of 11.8%, with an error in fit of 2.06 × 10−3, indicating minimal deviation. Figure 4
illustrates the close match between the Brooks and Corey model fit and the actual data
for this set, showing a λ of 1.08 and a J-function displacement of 0.054. The ultra-tight
sample had a permeability (K) of 0.00016 md and a porosity of 3%, with an error in fit
of 1.99 × 10−4, suggesting an excellent fit. Figure 5 illustrates the almost exact alignment
between the Brooks and Corey model fit and the observed data, characterised by a λ of 0.67
and a J-function displacement value of 0.055.

2.2.2. Concave-Down Effect

Certain Pc (or Leverett J) curves exhibit a concave-down section where dead volume
errors become evident when the apparent Pc displacement, or the related displacement
value for the J-function, is noted at a wetting phase saturation below 1. Figure 6 highlights
this dead volume error in a dataset. For wetting phase saturations between 1 and 0.97,
some of the data points indicate that the non-wetting phase can more readily penetrate
the rock. However, when the J-function value exceeds 0.04, the curve characteristics shift,
making it harder for the non-wetting phase to enter. At this threshold, a discontinuity
or change in the curve shape occurs, which the Brooks and Corey model cannot capture,
linking it to the dead volume errors in the Pc measurements. Hence, this effect should be
adjusted to avoid it being mistakenly interpreted as a change in rock characteristics, as
illustrated in Figure 7.
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In Pc studies, the dead volume is defined as the quantity of a fluid (such as mercury)
that is presumed to fill the core sample but is, in reality, retained within the core holder
or has penetrated the surface vugs or irregular features. According to Shafer & Neasham
(2000) [53], this adjustment is known as the closure correction. In cases where a dead
volume is identified, it is essential to modify the experimental data, as it fails to reflect the
genuine capillary characteristics of the core sample.

These observations indicate that the Brooks and Corey model, with its single specific
parameter, provides a simple yet accurate representation of Pc data in unconventional
rocks. It is important to note that these findings are derived from core samples from basins
in the western U.S., reflecting a specific range of properties. Furthermore, the findings
of this research indicate that to effectively characterise the behaviours of unconventional
tight and ultra-tight rocks, the λ needs to be limited to a range of 0.3 to 1.5. Previously, a
broader index range (from 1 to 4) was applied in a MFHW cleanup study, which requires
the adjustment to align with the findings presented in the following sections.

2.3. Developing, Modifying, and Validating the Model

The MFHW model was established using ECLIPSE 100 [54] to study the cleanup
operation of multiple fractured horizontal wells. The equations and underlying physics
utilised in Eclipse are thoroughly explained elsewhere [54]. Seven fractures were added to
the 600 m long horizontal well in the new pre-fractured MFHW model. Instead of using a
global refinement around the fractures, the MFHWs were built using local grid refinement
(LGR). Using LGR allowed the authors to capture, with a minimal CPU time increase,
the impact of changing the flow parameters in the SRV. The model’s initial pressure was
7500 psi, and the average matrix porosity was 15%. The dimensions of the numerical
models are shown in Table 1. The model is shown in Figure 8. The set numbers denote the
sequence in which they were performed as a subset of a much larger set of simulations; not
all are included in this article. During the post-fracturing stage of the numerical modelling,
a controlled bottom-hole flowing pressure was applied to produce both gas and fracturing
fluid (FF), which was found to be water. As shown in Figure 8, the fracture half-length is
90 metres, as mentioned in Table 1.
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Figure 8. The modelled MFHW.

For the FF, the relevant compressibility and viscosity were calculated as 0.000005
(1/psia) and 0.5 cp, respectively. In the MFHW scenario’s presumed base reference sets, the
FF injected during the hydraulic fracturing stage was twice the volume of the fracture. It
is important to note that a two-day period of well shut-in applied immediately after the
FF injection and before flowback production. The method for validating the amended VW
model and its governing equations was previously discussed [30]. To validate the MFHW
model, the well pressures vs. production time estimated by the simulation were compared
to what was observed in an analytical model for MFHWs [29].

Figure 9 compares the predicted well bottom-hole pressure (Pwf) by the simulation
model with that by the analytical model as a function of production time. The fact that
the two curves overlap and are stacked on top of one another supports the accuracy of
the simulation model. It should be emphasised that this study takes into account twelve
pertinent variables that have an impact on post-fracturing cleanup processes. The first
eight values among the twelve parameters represent the exponents and endpoints of the
Brooks–Corey relationship for Kr in two separate phases.
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The matrix’s Pc is influenced by the Km, IFT, and λ (pore size distribution index). The
final variable is Kf. Table 2 lists the possible variation ranges for the parameters. It should
be noted that six of the parameters given in Table 2—namely, the DP, porosity of the matrix,
and Swc and Sgc in both the fracture and matrix—are taken into consideration as constants
throughout the simulation sets.

Equations (1) and (2) depict the capillary and threshold (entry) pressure, respec-
tively [51,55]. Equations (3) and (4) establish the relationship between the gas and water
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relative to the permeability, as formulated by Brooks and Corey in 1966. It is important
to note that the data are generated using either FFS or LHS sampling techniques for each
simulation set, drawing from the specified parameter ranges listed in Table 2.

Pd
IFT

= 0.0075 × K−0.5 (9)

where

• IFT is the interfacial tension (IFT);
• Km is measured in mD.

(
Pd
Pc

)λ

=
Sw − Swr
1 − Swr

(10)

krw = Kmaxw ×
(

Sw − Swr
1 − Swr − Sgr

)nw
(11)

krg = Kmaxg ×
(

Sg − Sgr
1 − Swr − Sgr

)ng
(12)

Table 3 shows various simulation sets for each DP to fully understand how the pressure
drop (DP) affects the cleanup performance. The 12 relevant parameters in this study are
scaled between 0 and 1, where 0 represents the lower bound and 1 represents the upper
limit, making the assessment of the cleanup processes via the response surface approach
more effective (RSM).

2.4. The Main Output and RSM

The gas production loss (GPL), expressed as a percentage, measures the effectiveness of
the cleanup process. It is determined by calculating the difference in the cumulative fracture
productions between a clean, undamaged fracture and an unclean, damaged fracture, and
comparing it to the cumulative fracture productions of a clean, undamaged fracture.

GPL = 100 ×
[

FGPTclean − FGPTunclean
FGPTclean

]
(13)

where FGPT is the field gas cumulative production.
After a hydraulic fracturing operation, having a clean (undamaged) fracture is ex-

tremely difficult or technically impossible. In order to attain a much cleaner fracture and
higher productivity, the current field tactics for fracturing operations could benefit from
additional enhancements. This would require a comprehensive understanding of the pa-
rameters involved and their effects on post-fracturing activities. To facilitate the comparison
of different instances, the response parameter of the GPL should be reported in a normalised
format. The present work uses tornado charts to illustrate how the 12 previously listed
characteristics affect the gas production loss. According to this technique, if a parameter
positively affects the cleanup effectiveness, it reduces the gas production loss (GPL) or
increases the total amount of gas produced while the parameter is increasing. In contrast, if
a parameter harms the cleanup effectiveness, it will result in GPL or less cumulative gas
production as its value increases. The response surface methodology is frequently used to
examine how sensitive the several relevant parameters are to a specific major output. RSMs
in statistics and mathematics uncover a true relationship between multiple independent
variables, such as x1, x2, x3, x4, . . ., xn, and the primary output (y or f(xi)).

Equation (6) defines the RSM, often the polynomial that best fits the data.

y = a0 +
n

∑
k=1

akxk+
n

∑
i=1

n

∑
j=i+1

aiajxixj +
n

∑
l=1

alx
2
l (14)
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Equation (6) lists four distinct RSM models:

• An LRSM (Model for Linear Response Surface) with a0 and akxk.
• If a0 and akxk are taken into account in addition to aiajxixj, then an LRSM with an

interaction (ILRSM) will be used.
• A pure quadratic response surface model (PQRSM) that takes into account the quadratic

terms a0, akxk, and alxl
2.

• A full quadratic response surface model (FQRSM) transforms this into (alxl
2).

This study determines the GPL as a function of the 12 pertinent factors for the Latin
Hypercube Sampling (LHS) approach using ILRSM and FQRSM models. A Python code
is created to perform every simulation in a simulation set, including the pre-and post-
processing stages of the fracturing procedure.

2.5. The Second Response Surface Model

During flowback, some of the injected fracture fluid (FF) returns as flowback. The
FF volume that returns can vary greatly depending on the key parameters and the design
of the fracture. The FF that is produced normally includes a combination of surface-
returned FF, some formation brine, and a portion of the injected chemicals. Consequently,
understanding the volume of produced water is critical. Managing the produced FF
poses a significant challenge for the development and production of unconventional gas
formations due to strict regulations concerning FF flowback, its environmental impact, and
limited disposal options. These factors push operators to constantly review and adjust their
hydraulic fracturing strategies and FF flowback management approaches. To address this,
a new dimensionless term, the Produced Fracture Fluid (PFF), has been established. The
influence of the key parameters, similar to those affecting the GPL, on the PFF has been
examined. The PFF, which serves as the second response metric, indicates the proportion
of flowback relative to the total injected FF during the fracturing process, determined by
the following equation.

PFF = 100 ×
[

The volume of produced FF or simply Field water production
Total FF injected at fracturing stage (FF injection stage)

]
(15)

2.6. Analysis Methodology

This study examines five distinct sets of MFHWs (each set consists of 1000 simulation
runs). Table 3 lists each of these various sets in total. The fact that each set has a reservoir
with identical dimensions should be emphasised. However, each set has a different Pc
pertinent parameter (i.e., Λ), different pressure drawdown, matrix permeability, and FF
injection volume. The 12 pertinent factors are considered by the base reference set, with the
default ranges displayed in the table. When a parameter in Table 3 has a tick next to it, the
parameter’s default variation range is considered; otherwise, a new range of variation is
established, and the name of the new set is determined based on the degree of dissimilarity
between the range of parameter values and the set that was selected as the reference.

3. Results and Analyses

The previous and updated pore size distribution ranges relevant to the Pc for uncon-
ventional formations with varying Kmr, DP, and FVR are utilised. This approach aims to
assess how these parameters influenced the cleanup efficiency when employing an uncon-
ventional Pc. The resulting data are examined, compared, and discussed in this section.

3.1. Unconventional Capillary Pressure

Two sets are created and analysed in this section. Set 8 is the base reference set with
the dimensions and parameters’ variation range shown in Tables 1 and 2. As mentioned
previously, the MFHW is shown in Figure 8.

The updated λ range which corresponds to the Pc values for tight/ultra-tight forma-
tions is also used in Set 30 (0.3 < λ< 1.5),. Importantly, all the parameters and dimensions
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align with those of Set 8, apart from the revised λ range. A comparison is made between
the GPL tornado chart for Set 30, featuring the new λ range (0.3 < λ< 1.5, Figure 10), and
the Set 26 base reference set (Figure 9). The comparison shows consistent trends across
both charts for all the key parameters. Additionally, it is noted that in Set 30, with its lower
λ range, the Pc-related parameters, particularly Λ, have a greater influence on the GPL.
This increased influence is attributed to the narrower λ range in Set 30, which enhances the
importance of the Pc values relative to Set 26.

Km ↓, IFT ↑, λ ↓, Sw ↓ → Pc ↑
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Figure 10. GPL tornado chart of effect of unconventional Pc.

The effect of fluid mobility, particularly water mobility, within the matrix is slightly
more pronounced in Set 30 in contrast to Set 26, which has lower Pc values. This difference
arises from the higher Pc of the matrix in Set 30, which hinders fluid mobility.

The tornado chart for the PFF relating to Set 26 is shown in (Figure 11). The tornado
chart for the PFF relating to Set 30, utilising the updated λ range of 0.3 to 1.5 as shown
in Figure 12, is in comparison to the chart for the Set 26 base reference set that includes
a modified λ range (Figure 11). Both charts show a consistent trend across all the key
parameters, exclusive of Kf: in Set 30, an increase in Kf led to a decrease in FF production
(PFF), whereas the reverse effect was observed in Set 26. A new MATLAB (R20016b) code
was developed, and the water saturation (Swat), as well as the values from the GRDECL
file in Floviz for the end of the soaking period, were extracted and utilised. In an Eclipse
simulation, a GRDECL file defines the grid structure and geometry, including the grid
dimensions, coordinates, and properties. It is essential for setting up a simulation, as it
provides the spatial framework for the reservoir model.
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To further investigate the observed shift in the Kf trend shown in the PFF tornado
chart for Set 30, a run number of 29 was chosen, where Kf was set close to its maximum
value. A Sw map was then created to visualise the water distribution at the end of the
soaking period for this high-Kf scenario and to contrast it with the minimum-Kf scenario,
in which Kf was set to its lowest value.

Examining Figures 13–15 highlights the significant contrasts between the Max-Kf and
Min-Kf scenarios. In the Max-Kf scenario (Figure 13), a specific zone (Region B) within the
first 45 m of the fracture’s half-length from the well exhibits water saturation levels between
30% and 70%. Conversely, in the Min-Kf scenario (Figure 14), a considerable amount of
fracturing fluid (FF) is either injected into or absorbed by the matrix, resulting in water
saturation levels ranging from 60% to 100% (Region A) within approximately the initial
10 m of the fracture near the well. This disparity occurs because, during an FF injection,
the fluid moves significantly faster and more freely through the fracture in the Max-Kf
scenario compared to the Min-Kf case. This results in a more dispersed FF distribution,
particularly within the matrix, in the Max-Kf scenario. Therefore, in the case of Min-Kf, a
large volume of FF is infused or imbibed within a smaller matrix distance near the fracture
(around 10 m), creating Region A, which has a higher water saturation (Sw) and a lower
capillary pressure (Pc). This region is more easily replicated during the backflow phase
than in the Max-Kf scenario.
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Figure 13. FF saturation distribution map for run No. 29, with Kf-max for Set 30 following a
shut-in period.

The Pc is plotted in Figure 15 for Sets 26 and 30 (run No. 29) with different areas
indicated in Figures 13 and 14. From Figure 15, it is evident that Set 30 generally displays
significantly higher Pc values compared to Set 26. This difference is due to the narrower
λ range in Set 30 (0.3 to 1.5) compared to Set 26 (1 to 4), leading to an increase in the Pc.
Additionally, for Set 30, the Pc curve remains identical for both Kf-Max and Kf-Min.
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Figure 15. Pc, along with various regions discussed, is illustrated in Figures 13 and 14.

In Region A, where the water saturation ranges from 60% to 100%, the capillary
pressure (Pc) spans from 100 psi to 20 psi for Set 30, and from 30 psi to 20 psi for Set 26. In
Region B, with Sw levels between 30% and 70%, the Pc fluctuates between 2100 psi and
60 psi for Set 30, and between 80 psi and 25 psi for Set 26. Lastly, in Region C, where the
water saturation is between 0% and 30%, the Pc decreases from infinity to 2100 psi for Set
30, and from infinity to 80 psi for Set 26.

Notably, Regions A, B, and C each exhibit distinct Pc values. Throughout the flowback
period, a rise in FF production is noted, attributed to elevated Sw values and a reduced Pc,
which signifies a decrease in the retained FF within the set featuring the lowest Kf. This
explains the negative Kf value displayed in the associated tornado chart (Figure 12).

Kf influences FF production in two distinct ways:

1. As the value of Kf increases, the mobility of the FF within a fracture increases during
the production stage necessary for increased production of the FF.

2. A higher Kf increases the FF fracture mobility during the injection phase leading to
an improved distribution of the FF and reduced Sw values in the matrix and, hence,
higher Pc values that hold additional FF during the production phase and, hence, less
FF output.

In Set 30, the secondary influence of Kf is notably dominant, resulting in a shift in the
trend of Kf in the PFF tornado chart for this set, as shown in Figure 12. Additionally, for Set
30, where the λ range varies from 0.3 to 1.5, the parameters related to the Pc, especially Λ,
have the highest impact on the GPL. This is because the λ range of Set 27 is much narrower
as compared to that for Set 26 and, therefore, the Pc values are much more sensitive.
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An additional key observation from the PFF tornado charts for Sets 26 and 30
(Figures 12 and 13) is the inverse relationship between FF production and water mo-
bility within a matrix. This is due to the dual effects of the matrix water mobility on
FF production:

1. The maximum Kmaxwm and minimum nwm reduce the extent of water bound with
a matrix and increases the mobility of the FF within a matrix during the period of
production, leading to a higher production of FF.

2. The maximum Kmaxwm and minimum nwm also enhance the distribution of FF
throughout a matrix during the injection phase, with a better distribution of FF
throughout the matrix, a lower Sw in the matrix and, thus, higher Pc values. These
elevated Pc values keep a greater amount of FF through the manufacturing process,
consequently lowering FF creation.

As shown in Figure 16, the stronger Pc values in Set 30 correspond to lower FF
production, consistent with the fact that higher Pc values preserve FF more effectively,
reducing FF flowback. Figure 17 plots the GPL, PFF, and cumulative gas to water production
proportion (i.e., FGPT/FWPT) for various runs in Set 30, while Figure 18 illustrates that
increased FF production results in a higher GPL. This aligns with previous observations
for sets with Kmr = 1, where the retained FF within a matrix corresponds with reduced
GPL values.
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Investigating these two sets with two approaches towards estimating the Pc high-
lights that employing IFT reduction chemicals will increase the GPL in sets with tight
sand formation.

3.2. Sets Featuring Various Kmr, FVR, and DP Configurations

Therefore, to compare the cleanup efficiency under these unconventional Pc conditions,
three additional sets were examined with the Kmr = 100, a significantly increased FVR,
and a high DP. The idea was to assess the impact of the given parameters on the cleanup
efficacy, bearing in mind an unconventional Pc. Its extension was not incorporated into the
subsequent analysis of an unconventional Pc because the results obtained from the analysis
of the SFVW and MFVW sets indicated that an extensive ST further enhances FF penetration
within a matrix, thus enhancing FF saturation and, at the same time, reducing FF flowback.
That, however, appears to be applicable only to the early stages of the production process.

3.3. Low Km Sets with Unconventional Pc

This set was implemented in order to investigate the impact of a remarkably low
Km scale (Kmr = 100) on the cleanup efficiency under rather untypical Pc conditions.
The Km variation range was cut down from 1 mD to 100 mD in Set 30 to a new range
of 0.01 mD–1 mD in this set. From the analysis of the GPL tornado charts for Set 31, in
comparison to the highly compact formation presented in Figure 19 and the Set 30 base
reference set in Figure 11 that used a different Km range, most of the key parameters had
a similar trend, except for the Km factor. In Set 30, a change in Km was seen to change
the GPL, with Km significantly effecting the Pc, as depicted in Figure 10. However, in
the case of Set 31, there was a negative relationship between Km and the GPL, with an
increased value of Km decreasing the GPL, showing the importance of Km to mobility.
This shift is attributed to the low permeability characteristics of the rock in this set, which
greatly limits the mobility of fluids. The mobility of the fluids within the matrix is more
critical here than in Set 30, as previously discussed. The impact of the mobility of the fluids
becomes very important following the already high values of the Pc. This can be noted in
Figures 18 and 20; the GPL and PFF histograms for the two sets show that the degree of
the cleanup outcomes are almost similar, due to the excessive Pc values.
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When the PFF chart for the ultra-tight Set 31 is compared to the chart for Set 30 base
reference set, all the factors described in the tornado chart of Figure 19, except Kf, are
similar to those in Figure 12. In Set 31, the Kf primary effect is higher, while in Set 30 the
secondary effect of Kf is considered.

A comparison of the sets with unconventional formations highlights that employing
IFT reduction chemicals will increase the GPL in sets with tight sand formation (with
Km variation ranges of 1 µD–100 µD and 0.1 µD–10 µD). In contrast, employing such
substances to decrease the Pc and subsequently lessen the GPL in ultra-tight plays (i.e., km
range of 0.01 µD–1 µD) is advised. In essence, it has been established that incorporating
IFT (interfacial tension)-reducing agents into fracturing fluids is not advisable in tight
formations due to its adverse effect on gas production. However, ultra-tight formations
benefit greatly from it since it increases the gas rate.

3.4. Higher FF Volume Sets with Unconventional Pc

This set was created to determine the effect of enhancing the FVR from 2 in Set 30 to
10 on the cleanup efficiency under unconventional Pc conditions. When comparing the
GPL tornado chart for Set 32 with an FVR = 10 (Figure 21) with the Set 30 base reference
set (Figure 10), which incorporates adjustments to the FF injection during the injection
phase, similar trends were observed for all the corresponding parameters of both charts.
Furthermore, the following observations were made:

1. In this set, the impact of fluid mobility within the matrix and the fracture on the GPL
were more notable in relation to the base reference set.

2. The absolute values of all 12 relevant parameters at one year of production were
still high; this means that the cleanup process is significantly longer (up to a year)
compared to the duration set by the MFHW, at 30.
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These are due to the fact that the total FF volume introduced in this set is significantly
larger. Figure 22 also displays that the cleanup task for the high FVR configuration takes a
longer time. From Figure 23, the PFF tornado chart considering the data from Set 32, it can
be observed that the initial change predominantly influenced the Kf for the FF production.
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Figure 24 provides the histogram of the PFF for Set 30 (FVR = 2) and Set 32 (FVR = 10).
Notably, the cumulative frequency curves of Set 32 during the three production stages do
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not overlay one on another, unlike the Set 30 results, suggesting that FF manufacturing
goes on for one year.
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3.5. Impact of Increased Pressure Drawdown and Unconventional Pc

This set was created to capture the effect of a DP increase, with a new Pc, on the
cleanup efficiency (the DP was raised from 1000 in Set 30 to 4000 in this set). Using the GPL
tornado chart for Set 33 (DP = 4000, Figure 25) with the GPL tornado chart for the Set 30
base reference set (Figure 10), all the significant parameters showed the same trend as the
DP was changed from its earlier value. Notably, the impact of the Λ, IFT, and Km on the
cumulative gas loss was marginally less pronounced in Set 33 compared to Set 30, due to
the increased viscous force, i.e., the higher DP, which made it more challenging to retain FF
within the matrix. The influence of Kf on the FF flowback was minimal given the high DP
applied in this set (Figure 25).
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Figures 26–28 indicate that the larger DP did not expedite the cleanup process in
this configuration with an unconventional capillary pressure model. While a higher DP
typically enhances cleanup efficiency in the fracture and adjacent matrix, it raises the rate
of FF flowback from areas further from the fracture and from inside the matrix at greater
depths, which is not beneficial in terms of the cleanup. This amplified FF flowback is
illustrated in Figure 28. The balancing effect of these two opposing influences results in a
nearly identical cleanup performance across both sets.
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4. Conclusions

This work aimed to enhance the comprehension of recent HF treatments for practical
field usage by building upon previous research conducted by Nasriani and Jamiolahmady
(2019) [29], Nasriani and Jamiolahmady (2018a and b) [30,34], and Nasriani et al. (2018) [36].
The present study sought to investigate the effects of an unconventional Pc on the cleanup
effectiveness of MFHWs. For this reason, the assessment of the Pc correlations presented in
the current paper for tight and ultra-tight formations used Geo2Flow software.

For these five sets, a new term, analogous to the dimensionless GPL, was incorporated
to depict the influence of the relevant parameters on FF production—an aspect critical
to the HF of unconventional reservoirs. Outlined below are the principal findings and
conclusions of this work:
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1. The analyses of the Pc models, based on 200 sets of conventional and unconventional Pc
data, revealed that the Brooks and Corey model can be used as a simple, one-parameter
Pc model that adequately describes the Pc data for nonconventional formations.

2. On this basis, this research suggests that the λ range should be limited to a range
of 0.3–1.5 for a better characterisation of unconventional tight and ultra-tight rocks.
These changes were integrated into the model to reflect the unconventional Pc in the
new range indicated below.

3. As mentioned earlier, this work found a concave-down section in a few Pc curves due
to the dead volume in the Pc determination. Dead volume corrections are therefore
important because these errors should not be confused with changes in the inherent
properties of the rocks.

4. As expected, various Pc-related parameters, specifically the Λ, substantially affected
the GPL in all the sets with a Pc that was adjusted for unconventional cases. This can
be attributed to the difference in the λ variation range identified in the unconventional
Pc sets, which caused the Pc to be more sensitive than in the conventional sets.

5. Kf influenced FF production in two distinct ways:

• A higher Kf improved FF mobility within the fractured region during the pro-
duction phase, leading to increased FF production.

• Higher values of Kf also promoted increased FF mobility within the fracture
region throughout the injection phase, and also provided a better distribution of
the FF in the fracture, a lower saturation (Sw) in the matrix phase, and higher Pc
values. These higher Pc values maintained a greater proportion of the FF during
production and, thus, a lower FF.

6. The PFF tornado charts indicated a decline in FF production as the water mobility
within the matrix increased. This outcome is due to the dual impact of the matrix
water mobility on FF production:

• More FF is produced during the production stage when there is greater matrix
water mobility, which improves the FF mobility inside the matrix.

• Greater FF matrix mobility throughout the injection phase is a result of more
substantial water mobility in the matrix; this leads to more dispersed FF, lower
matrix Sw values, and higher Pc values. Higher Pc values produce less FF because
they retain more FF during backflow.

7. When the same sets were exposed to a reduced Km or an increased injected FF volume
to FVR for the sets using an unconventional Pc, the outcomes were similar to when a
conventional Pc was used. The primary ones are as follows:

a. It was only after bringing down the Km range or increasing the FVR that the
cleanup was significantly hampered.

b. However, in the set with Kmr = 1, the Km coefficient was positive, suggesting
that an increase in Km raised the GPL. This suggests that the Km effect, which
reduces the value of the Pc and increases the output of the FF, is critical. In
the set with Kmr = 100, the Km coefficient was negative; therefore, an increase
in Km led to a decline in the GPL. This implies that Km actually has a great
influence on the mobility of the matrix. The cause of this change in the trend
is that the rock in this set is very consolidated, and thus makes matrix fluid
movement practically impossible.

c. These are asymptotic and numerical values illustrating the impact of fluid
mobility on the GPL for the set with a higher FVR than the set with a lower FVR.

8. As mentioned before, the cleanup process in the set with an atypical PC was not
accelerated by the augmentation of the DP. This is because, as described earlier, while
increasing the DP accelerated the cleanup in the fracture and the vicinity of the matrix
surrounding the fracture, at some distance away from the fracture the repairs were
faster and reduced flowback from deeper FF zones in the matrix. These two impacts
tended to cancel each other out and the sets with standard and unusual Pc curves



Energies 2024, 17, 5822 28 of 30

revealed a cleaner output with comparable efficiency. The higher viscous force led
to a higher FF flowback in the relevant set, and that is why there was a higher FF
flowback in this high DP set with an atypical Pc. But the interaction of most of the FF
flowback with a conventional PC was found for a moderate value of the DP.

i. A stronger viscous force led to the formation of more FF flowback in the rele-
vant set, and that is why there was more FF flowback in this high DP set with
an executive pressure coefficient that deviated from the norm. However, since
a conventional Pc does not have as significant a Pc value as an unconventional
Pc to continue to keep the FF inside the matrix, most of the flowback occurred
at moderate values for the DP.

9. A comparison of the sets of tight and ultra-tight formations highlights that employing
IFT reduction chemicals will increase the GPL in sets with tight sand formation (with
Km variation ranges of 1 µD–100 µD and 0.1 µD–10 µD). In contrast, employing such
substances to decrease the Pc and subsequently lessen the GPL in ultra-tight plays (i.e.,
km range of 0.01 µD–1 µD) is advised. To put it differently, this study has established
that incorporating IFT-reducing agents into fracturing fluids negatively impacts gas
production rates in tight formations, but is highly beneficial in ultra-tight formations
as it increases production rates.

• The wastewater or flowback fluid that returns from a well is expected to have high
concentrations of naturally occurring minerals and metals that have dissolved
into the water from the shale and other rock formations.

• Additionally, a small amount of the non-hazardous chemicals injected during the
fracturing process and naturally occurring radioactive materials (NORMs) may
be present in the fluid. Therefore, this conclusion is environmentally significant.
Consequently, it is strongly advised against using IFT-reducing agents in tight
formations to aid the matrix in imbibing most of the FF and minimising flowback.
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